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The socalled reference probability of unnormalized probability method for nonlinear filtering problems leads 

to a (robust) infinite dimensional filter of bilinear type. If the associated Lie algebra is topologically solvable 

or nilpotent an infinite dimensional version of Wei-Norman theory applies. If not then ideas of nilpotent 

approximation lead to (potential) approximation filters. This note is not so much a definite report on results 

as on outline of a research program. 
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I. STATEMENT OF THE PROBLEM 

In full generality filtering is concerned with obtaining estimates concerning a stochastic process { x 1 }, 

the signal process, on the basis of another related process {y1 }, the observation process. In this paper 

we have the following realization of this situation in terms of stochastic differential equations. 

dx, = f(x1)dt+G(x1)dw1 , x,elR", w1 EIRm 

dy, = h(x,)dt+dv,, y,eRP, v,eRP 

(1.1) 

(1.2) 

where j,G,h are vector and matrix valued functions of the right dimensions and w1 and v, are 

independent Wiener noise processes also independant of the initial state x 0 • The problem is the fol­

lowing. For ~given (interesting) function <f>(_x) of the state x, give a calculation procedure for the best 

estimation <l>(x,) at time t given the observationsy,, O.;;;s.;;;t. More generally one also considers finding 

.p{x,) giveny,, Q.;;;s,.;;t 1, t 1 <t (prediction) and finding .p{x,) giveny,, Q.;;;s.;;;1 2, t<t 2 (smoothing). Of 

particular importance is finding X, (state estimation). 

Ideally one would like the calculation procedure to be finite dimensional, exact, recursive, and robust. 

The first three adjectives here mean (more or less by definition) that the calculation procedure, the 

filter, should be of the form 

dm, = a(m,)dt+ ± flj(m,)dt/,y,) (1.3) 

1=1 

(1.4) 

Here a, 'iJ1, f1, 'f are known functions and vectorfields and m, evolves over a finite dimensional mani­

fold (finite dirnensionali5,y); recursiveness is embodied by the fact that (1.3) is directly driven by the 

observations and that </>(x,) only depends on the filter state m,; and the current observations; (1.4) of 

course also reflects exactness. For robustness one requires that the filter equations be driven by y, 

itself instead of also involving the qy,. I.e. one requires ( 1.3) to be replaced by an equation 

r 

a(m,)+ 2: f:J/m1 )~1(y1,,. . .,yp,). 
j=l 

( 1.5) 



198 

Thus while (1.3) is a stochastic differential equation its robust version (if it exists) (1.3) can be treated 
pathwise and makes sense as a family of differential equations, one for each possible observation path 
(y,}. 

The problem now is: given a system (1.1), (1.2) and a function</> how to find a filter (1.4), (l.5); i.e. 
how to determine the functions y and tj and vectorfields a and f3j occurring in (1.4), (1.5). 

2. THE DMZ FILTER . 
Under mild regularity assumptions on f, G,h and reachability and observability conditions on the sys­
tem (!.I), (1.2) the conditional state X, = E[x1 ly.,O,.;;s.;;;tJ has a density 'IT(x,t). 

THEOREM 2.1. (Duncan [2], Mortensen [6], Zakai [9]). Under appropriate regularity conditions there 
exists an unnormalized version p(x,t) of 'IT(x,t) (i.e. p(x,t) = a(t)'IT(x,t) for some unknown function 
a(t)) which satisfies the stochastic partial differential equation 

dp = f:pdt+ f h;(x)lfy;,. (2.2) 
i=l 

Here e is the second order partial differential operator defined by 

1• a2 ·a 1-t. BJ; = T }".: -a , . ((GGr)u.P) - 2:-a . (f;>Ji>- 2 _i;.h]>/J. 
i,j=I x,uxl i=I x, j=I 

(2.3) 

Here Gr is the transpose of the matrix valued function G and (GGr)u is the (ij)-th entry of the 
matrix GG r, f; is the i-th component of the function f and hj the j-th component of the function h. 

The stochastic PDE (2.2) is to be regarded as a Fisk-Stratonovic stochastic PDE. To obtain the 
equivalent Ito version remove the term -t }".:h}.p in (2.3). 

Consider the time dependant gauge transformation 

P(x,t) = exp(-h 1(x)y 1,-••• -hp(x)Yp1)p(x,t). 

Substituting this into (2.2) yields an equation 

where 

a::.t y •\ - .t. - .t. -
.=L = e.p - _i;.y;(t)f;p - .i;. y;(t)yj(t)f;jp 

a1 ; =1 1.;=1 

I i; = [h;,EJ := h;e-eJz,, e.;1 = !j; = T[h;,[h1,en 

Given </>(x) and i>(x,t) the best estimate<!>(";,) can be calculated by 

p(x,t) = exp(h 1(x)y11 + ... +hp(x).yp1) 

</>(~,) = (j p(x,t)d~T 1 j<f>(x)p(x,t)dx. 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Note that (2.5) together with the output map (2.7), (2.8) is a recursive, exact and robust filter. The 
only trouble with it (from the calculation point of view) is that it is infinite dimensional. 

3. WEI-NORMAN THEORY [8). 
For the moment let us consider control systems of the form 

x = u1A1x+ ... +ukAkx, xeR" (3.1) 

where the A; are n X n matrices and the u; are inputs (known functions of time). Adding a few more 
terms (with u1=0, j>k) we may as well assume that A lo····Ak are a basis of a Lie algebra of n Xn 
matrices (under the commutator difference product [A,B] = AB-BA). Let us look for solutions of 
the form 
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(3.2) 

te g;(t) are still to be determined functions of time. By differentiating (3.2), inserting 

A 1)·· ·exp(-g;) exp(g;A)· ··exp(g 1A)just after g;+ 1A;+ 1 in the result, using the Baker­
Hausdorff formula, using (3.1) and collecting terms, one finds a set of equations 

k 

g;+ °"2,gjhj;(g1,. . .,gd = U;, i = J, ... ,k 
j:I 

), .. .,O)=O and the following properties of the hij(g1 ,. .. ,gk): 

hij only involves g i, ... ,g; - I 

+ I>··.,Ak are a basis of an ideal or a c g (so that [A;, a] c g for all i) then 

hji = 0 for i = i,. . .,I; j = J+l,. . .,k 

(3.3) 

(3.4) 

(3.5) 

he equations for g 1,. • .,g1 do not involve g1+i.··.,gk at all. It is also important to note that the 
miversal functions depending only on the Lie algebra g and the chosen basis and totally 
lent of the particular matrix realization (representation) we may be dealing with. In particu­

> an ideal of g and A i. .. .,Ak is a basis as above then 

equations for g 1 ,. • .,g1 only depend on g / a. (3.6) 

that g is nilpotent (or more generally solvable) equations (3 .3) therefore take a particularly 
triangular form which can be solved just using quadratures. Indeed if L is nilpotent, so that 

L:) [L,L] =Li:) [L,L2J = L3:) · · · :) [L,L,] = Lr+I = 0 

* * * =fa 
e choose a basis 

A i •••• ,Ak, ,Ak, + i ,. . .,Ak, ,. . .,Ak,_, +1,. .. ,Ak,• kr = k 

s for L;, i = l,. . .,r, then the equations take the form 

g1 = u 

Kk, = uk, +ak,(ui, . .,uk, ;gl> ... ,gk,) 

Kk,+I = uk,+I +ak,+1(u1,. . .,uk,;g1,.···Kk,) 

(3.6) 

1te that the robust DMZ filter equation (2,5) is of the form (3.1) except that it takes place in a 
l space, So in particular if the Lie algebra generated by the operators e, i;, i;j in (2.5) is nilpo­
lvable) and finite dimensional with basis A 1,. • .,Ak and we have given an initial density p0(x) 
.ction <j> then equations (3.6) together with the output equation 
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(gi, ... ,gk) >-> P<x,t) = exp(g 1A 1)"·exp(gkAdPo(X) 

p(x,t) ,_. p(x,t) = exp(h 1 (x)u 1 )···exp(hp(x )yp)p(x,t) 

</>("';.;) = <J p(x,t)dx)- 1 j c/>(_x)p(x,t)dx 
.A 

constitute a recursive exact robust filter for c/>(_x, ). It is not really finite dimensional because the A; 

here are operators and calculating exp(g;A;) (for known g;(t)) amounts to solving :i B; = g;A;B;, 

B 0 = id which is again a partial differential equation. 

4. THE IDENTIFICATION CASE 

The problem of identifying a linear system 

dx, = Ax,dt + Bdw,, dy, = Cx, +dv, (4.1) 

i.e. the problem of determining the unknown matrices A,B,C on the basis of the observations, can be 
viewed as a nonlinear filtering problem for the system with state vector (x,A,B,C) obtained by adding 
the equations dA =O, dB =O, dC =O to (4.1). It can be proved that the Lie algebra generated by the 
e,i;,i;1 in this case is topologically solvable. I.e. there is a sequence of ideals a; such that g/ a; is 
finite dimensional solvable for all i and na, = {O}. Because of (3.6) this yields a sequence of 

I 

approximate filters via 

where A i. ... ,Ak,,Ak, + i. ... ,Ak,, · · · are such that the equivalence classes of A i. ... ,Ak, mod a, are a 
basis for g /a,. Cf [5] for more details. 

5. NILPOTENT AND SOLVABLE APPROXIMATIONS 

However, in many cases, the Lie algebra generated by e,i;,i;1 will not be topologically solvable. For 
instance in the case of perturbed linear systems 

(5.1) 

where the PA(x), Ps(x), Pc(x) are golynor;:al higher or~er disturbances. I~ this c~se the Lie algebra 
tends to be w. = IR<x 1,. • .,x.,-a-, ... ,-a->, the Lie algebra of all d1fferent1al operators (any 

X1 Xn 

order) with polynomial coefficients. In this case the higher order operations come with higher powers 
of £ in the sense that 

Lie(e,i;,eiJ)modf"is finite dimensional for all n (5.2) 

(and these algebras are solvable). Again there result approximate filters and they seem to perform 
well [3,4]. Still more generally there is no small parameter at all, but there still is a natural gradation 
structure on the Lie algebra. To see why this might be the case and why this will give us possibilities 
for constructing approximate filters observe that the operators e, i;, i;1 are of the general forms 

a2 a e =~au-a a +~bj-,-+c 
X; x1 ux1 

i; = ~d-a-+e· 
lj 0Xj I 

l:i1 = fu 

where the aiJ,biJ.fiJ,e;,c are explicit functions of the Gu,f;,h1 and their derivatives. Commuting vari­
ous e's brings at least one derivative of the Gu.f;,h1 in each term, third order brackets bring second 
order derivatives or products of first order derivatives, .... 
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Now if the system described by the f;,h1,G;1 is supposed to model some real world phenomenon 

then we can not assume that we know these functions perfectly. In general one would expect that the 

values of the functions would be known very well, their derivatives less so, their second derivatives 

still less, etc., and by the time r-th derivatives come into play their values are almost totally unknown. 

For r =2 the kind of approximation involved is somewhat like illustrated on the above, i.e. something 

like a piecewise linear approximation with rounded comers. One expects a system close to real one in 

this sense of diminishing importance of higher derivatives (globally) to behave much like the true one. 

The comulative effect of small inaccuracies in first derivatives, larger ones in second derivatives, ... , 

very large ones in r-th derivatives will be such that r order brackets are almost totally unknown. And 

thus a system approximation which just happened to have all these zero would perform much as the 

original one but that one would have a filter as in section 3 above and this filter should also give rea­

sonable results for the true system by considering the stability properties of the composed system 

1---y_, _,__-+I moo:::.-
~-------

w, 
true system 

which is close to the system with exact filter 

w -'-----.,I modiliol 'J"<rm f-l---'-Y_1,___~_m_od_~_lt_::_:;_s_te_m~1------.pfx,) 
Now such a modified system which just happens to have all terms in r-th order brackets of the e, i;, eij 
equal to zero will probably not as a rule exist. But the corresponding filters can certainly be con­

structed. It suffices to introduce a counting mechanism and to consider the Lie algebra generated by 

the operator zE,zl:;,zi;j. This one is topologically nilpotent and so Wei-Norman theory can be applied 

to Lie (zE,zl:;,zi:;1) mod z" for all n (after which one sets z = L) Here z is an extra parameter. 

The argument above indicates that such a procedure could work well. Another not unrelated argu­

ment can be based on Volterra series expansions. These ideas have of course a good deal to do with 

nilpotent and solvable approximation ideas [l], [7]. 
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