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ABSTRACT
Shortest-path computation is central to many graph queries.
However, current graph-processing platforms tend to offer
limited solutions, typically supporting only single-source and
all-pairs shortest path algorithms, with poor filtering op-
tions. In this paper we address the shortest-path computa-
tion problem in two complementary directions. First, we in-
troduce a restrictable, top-N “bulk”shortest-weighted-paths
operator in the Cypher graph query language, that subsumes
all previously known shortest path variants. In addition to
ease of use, both in terms of short notation and more robust
performance thanks to guaranteed amenability to pruning,
this operator supports calculated path weights, as well as
filtering on the path edges and vertices. Second, we provide
a scalable algorithm for the parallel implementation of this
top-N operator on Giraph, a graph-processing system based
on the Bulk Synchronous Parallel (BSP) model. We present
an initial evaluation on a number of queries executed over
the LDBC-SNB dataset.

1. INTRODUCTION
The popularity of modeling connected data with graphs,

with social, transportation, and knowledge networks as few
examples, is growing both in industry and academia. With
wide adoption comes a number of disparate workloads that
range from graph pattern matching to graph analytics. In
recent years, a number of graph-processing platforms have
been introduced for scalable computation of such workloads
on commodity machines. Examples of these platforms are
so-called graph databases like Neo4j and OrientDB, and
batch processing systems like Pregel [7], Giraph [2], and
GraphX [3]. Graph databases usually offer a high-level query
language to express graph patterns and aggregations (e.g.,
Neo4j offers a language called Cypher while OrientDB can
be queried with a SQL-like language with proprietary exten-
sions for path-like queries), while batch processing systems
expose a simplified graph-specific programming interface,
usually following a so-called vertex-centric paradigm. Work-
loads on these platforms tend to have different expected la-
tencies that vary from milliseconds to hours or sometimes
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days. More recently, hybrid systems like PGX [4] offer both
a high-level language and a low-level programming API, and
target both interactive and analytical workloads.

Central to the analysis of graphs is the computation of
shortest paths. As such, it is crucial for query languages to
provide simple but expressive and integrated functions to de-
fine shortest paths as part of complex graph patterns, and
for graph-processing platforms to be able to execute such
queries on graphs of massive scale. However, we found that
current graph query languages, like Cypher and SPARQL,
lack such features, and that scalable parallel solutions for
shortest paths computations are limited to the traditional
single-source and all-pairs shortest paths algorithms designed
to target high-end hardware and supercomputers.

Contributions. In this paper, we propose an operator to
compute (restricted) top-N shortest-weighted-paths queries
between any combination of source and destination vertices.
This “bulk” definition subsumes known definitions of the
single-path, single-source and all-pairs shortest path prob-
lems. Our operator supports filters of edges and vertices on
the paths based on labels and properties, and it requires a
monotonic cost function to evaluate path costs as well as
path-independent filters on edges and vertices. Moreover,
we present a parallel implementation of the operator based
the Bulk Synchronous Parallel (BSP) model [12]. We in-
tegrate our operator in the Cypher query language, due to
the popularity of the open-source Neo4j graph database, and
implement our prototype on top of Giraph, an open-source
implementation of Pregel running on Hadoop clusters.

This paper is organized as follows. First, we provide an
overview of the existing literature related scalable short-
est paths computation. After we propose our new operator
within the Cypher language, we present its implementation
on top of Giraph. Then, we present an initial evaluation
of the operator on a number of queries executed over the
LDBC-SNB dataset. Finally, we conclude with a discussion
about limitations and opportunities for future work.

2. RELATED WORK
Shortest path problems are discussed in the paper pre-

senting Pregel [7]. Three variants are mentioned: s-t short-
est path (i.e. fixed destination), single-source, and all pairs.
Because the last yields a Θ(V 2) space complexity, it is not
discussed. The first one, s-t, is considered a quite easy prob-
lem; experiments by Lumsdaine et al. [5] showed that only
a small part of the vertices are visited before finding the
shortest path. Only for the single-source variant an imple-



mentation was provided for Pregel, a parallel version of the
Bellman-Ford algorithm [7]. They note that this parallel
(BSP) implementation performs more comparisons than se-
quential versions (Dijkstra and Bellman-Ford), but is also
much more scalable. More advanced parallel versions do ex-
ist: for this they refer to Thorup [11] and the Delta-stepping
method by Meyers and Sanders [9]. The Delta-stepping al-
gorithm is designed for parallel computing, running in linear
average time for most graphs. It uses buckets with a fixed
width (∆), containing the vertices to evaluate in each it-
eration. Edges with a small weight (<∆) are traversed in
the same iteration, while edges with a large weight (>∆)
are postponed to later iterations. By setting ∆ very high,
the algorithm behaves like Bellman-Ford; while by setting ∆
very low, it behaves like Dijkstra. The best performance is
obtained somewhere in between, where the best ∆ depends
on the edge weight distribution. Madduri et al. [6] applied
this algorithm on billions of vertices and edges and found
almost linear speedup on the Cray MTA-2.

Wang et al. [13] note that usually single-source or all pairs
algorithms are used to solve the multiple-pairs shortest path
problem. Each single-source run can be used to calculate
all pairs with the same source or the same destination. To
calculate the minimum number of such single-source runs,
the minimum vertex cover can be calculated on a bipartite
graph representing the pairs. They present a new algorithm
that first applies a preprocessing step, determining an order
to process the vertices based on the graph structure. There-
fore, they consider their algorithm especially useful when
the graph is fixed, but edge costs change between runs. In
an experiment using grid graphs, the algorithm turns out
to be comparable to other optimized implementations of Di-
jkstra and others. We call approaches that compute the
multiple-pairs problem in a way that seeks to create syn-
ergy between the work bulk shortest paths algorithms, and
note that graph query languages with path-finding function-
ality typically set the stage for bulk path-finding, which thus
poses an interesting algorithmic research area.

Regarding distributed algorithms, two important algorithms
for routing are Chandy-Misra and Merlin-Segall [8]. Both
are used for a single-source shortest path computation, where
each node in the network finds the length of the shortest path
to the source and the first hop in the shortest path. How-
ever, Chandy-Misra has exponential message complexity in
the worst case, while Merlin-Segall has a message complex-
ity of Θ(N2∆E). For very large graphs, this will probably
generate too many messages to perform well.

Neo4j supports searching for all paths, all simple paths,
shortest paths, paths with fewest hops, or the paths with a
fixed number of hops. For cheapest path calculation, two
algorithms are available: A* and Dijkstra. The fewest hops
calculation uses breadth-first search from the source and the
destination, alternating between exploring a level forward
from the source and a level backward from the destination.
These algorithms can be called from Cypher or by the REST
API of Neo4J. The A* implementation of shortest path can
only be called from the Java API, after implementing an es-
timation heuristic. To calculate shortest paths from many
source vertices, Neo4j implemented the Floyd-Warshall al-
gorithm for all pairs shortest paths, though this does not
scale to larger graphs and is therefore no longer used. Re-
turning the top-N shortest paths is possible only with the
non-scalable all paths algorithm.

3. A FIRST-CLASS-CITIZEN SHORTEST-
PATHS OPERATOR FOR CYPHER

Calculating weighted shortest paths in Neo4j/Cypher is
possible, but it is not efficient. Variable length paths allow
for queries such as calculating all cities within 200 km, but
only by matching all paths towards cities and filtering them
on total length. The language does not support general re-
cursion or calculating fixed points.

Requirements. We identified three related features that
would be useful in a shortest-paths operator. They are listed
in order of increasing expressiveness, where each feature is
a more general version of the previous one.
1. Paths of variable length, also known as reachability queries
or relationship closure
2. Shortest path queries, with (i) conditions on vertices
and edges within a path (ii) support both the shortest path
length and the path itself as result (iii) support multiple
shortest paths (top-N) (iv) efficient calculation of multiple-
source, multiple-destination paths
3. Support recursive queries using an inflationary fixed point

Current situation. Cypher provides two ways to specify
a shortest path query. The first one is based on the number
of hops, and does not support edge weights nor a top-N
feature. In addition, the only way to apply conditions is in
the WHERE clause, potentially removing the only result from
the query. Filtering is applied after finding the shortest path,
not before, so it is not possible to find the shortest path
over a specified subset of the graph. For example, the query
below will first find the shortest path from Start to Finish.
If a node on that path then has a property called “danger”,
the query returns an empty set.
MATCH p=shortestPath((a:Start)-[:ROAD_TO*]->(b:Finish))
WHERE ALL (x in nodes(p) WHERE NOT x.danger)
RETURN p, length(p)

To work around the restrictions of the built-in shortest-

Path function, it is common to apply a combination of the
reduce function and the ORDER BY / LIMIT clauses. In this
way, it is at least possible to express a weighted shortest
path, and to apply a condition before choosing the path:
MATCH p=(a:Start)-[e:ROAD_TO*]->(b:Finish)
WHERE ALL (x in nodes(p) WHERE NOT x.danger)
RETURN p, reduce(time=0, r IN e | time +

(r.distance/r.maxSpeed)) AS TotalTime
ORDER BY TotalTime ASC LIMIT 5

The addition of LIMIT 5, makes the query return the top
5 shortest paths, instead of just one.

The problem here is that the above shortest-path formu-
lation is a complex interplay between multiple language ele-
ments, and it will be hard for the query optimizer to identify
this as a shortest path query that may be executed with an
efficient algorithm. If the system is unable to recognize such
opportunity, it would have to enumerate all paths and cal-
culate all their lengths to decide which is shortest. This has
exponential complexity and will not terminate in reasonable
time for large graphs. We believe that only supporting ef-
ficient algorithms as a special case for certain queries will
result in a bad user experience. Small changes to the query
will lead to it no longer returning an answer. For instance,
changing the keyword ALL into ANY or SINGLE would already
be incompatible with an efficient shortest path algorithm.

Proposal. Leading to our proposal, we designed and evalu-
ated a number of alternative extensions. We present them in



Appendix A. Compared to those alternatives, our proposal
corresponds closest to the first extension for shortest paths.
All of the new syntax was placed in the MATCH part of the
query, like the existing shortestPath function. Because it
is more powerful than a regular function, and requires more
complex arguments, the syntax is different and separated
from the shortestPath function.

MATCH path=src -[e*|sel(e) ]->dst CHEAPEST n SUM cost(e) AS d

There are four arguments in this extension of MATCH, marked
in italics and described below. All of these are optional, ex-
cept for the cost(e) expression.
1. First, between square brackets after the |, there may be
a boolean condition sel(e) on the edges e in the path, which
is applied before evaluating the WHERE condition. This is an
important difference, as it enables filtering without reducing
the number of paths found. Applying a filter afterwards, in
the WHERE clause, may result in not having any result at
all. This mechanism can also be used to apply a filter on
the incident vertices, accessing them via the existing Cypher
functions startNode(e) and endNode(e).
2. The second argument is the number of alternative paths
for each pair n. This is different from a LIMIT clause, which
is evaluated on the full set of results. If it is omitted, only
the single best path is found for each pair. The number
of paths should always be exactly this amount, unless not
enough paths exist. In the case more than one path per pair
is requested, we restrict the problem to returning non-cyclic
paths only (simple paths).
3. The CHEAPEST SUM, constructs a (monotonic) cost func-
tion by computing for each traversed edge e a numeric value
cost(e) that must be ≥0. The ≥0 requirement may be en-
forced at runtime. We call it CHEAPEST to distinguish from
the shortestPath function, which only counts the number
of hops. It is still possible to achieve the same result by
specifying a constant cost(e) of e.g. 1, but much more com-
plex calculations are possible as well. We denote the cost
expression as a function of edge variable e, similar to the
way filter conditions were defined above. The distance d of
path is

∑
e∈path cost(e), the sum of all values resulting from

evaluating the cost expression over each edge e in path.
4. Finally, a method is desired to bind the distance d found
to a variable. Although it is possible in Cypher to find this
distance again using the reduce function on the path, adding
AS d is clearly preferable for usability.

Note that the enclosing Cypher query provides (poten-
tially) multiple binding combinations for (src,dst) so we can
search an arbitrary set of source and destination combi-
nations, not only single-single (s-t), single-multiple (single-
source), or Cartesian product of some vertex set (all pairs).
This sets the stage for bulk shortest path algorithms that
try to create execution synergy between shortest path find-
ing for each combination.

Thanks to the monotonic cost metric, and the fact that fil-
ters are independent of path-finding (can be applied before),
each possible query instance is amenable to pruning tech-
niques; such that “performance cliffs” where certain query
instances are fast but others never terminate, should be
avoidable – creating a good user experience.

Example. Let us assume a graph where some vertices are
named “Start”, and some others are named “Finish”. Addi-
tionally, the graph contains some vertices marked as “Dan-
ger” that should be avoided. For each pair of Start and End

vertices, we want to find their top 3 fastest routes without
crossing dangerous points. The time spent on a road is the
distance divided by the speed limit. This problem can be
expressed in the following query.

MATCH path=(a:Start)-[e*|not(endNode(e).danger)]->(b:Finish)
CHEAPEST 3 SUM e.distance / e.maxSpeed AS length
RETURN a, b, path, length

4. GIRAPH IMPLEMENTATION
Our work is part of the Lighthouse system that imple-

ments a Cypher-like graph query language on top of Giraph.
Hence, we implemented our shortest path operator follow-
ing the Pregel model. In this so-called vertex-centric model,
the developer expresses a computation from the perspective
of a vertex receiving and sending messages to other vertices,
and updating its associated value and edges. A Giraph com-
putation is executed in a number of supersteps, where the
messages sent at superstep i are delivered to the destination
at superstep i+1. The data-model is a directed graph where
edges are attached to their source vertices and both vertices
and edges can have arbitrary values (e.g., used for weights,
key-value properties, and labels). Vertices can vote to halt,
meaning that the user-defined function (UDF) will not be
executed on those vertices during the following superstep,
unless they have new messages in their “inbox”. Giraph fol-
lows a master-worker architecture, where vertices are parti-
tioned across a number of worker machines. Workers execute
the UDF on their vertices and exchange messages directly
over the network, while the master coordinates the different
phases of each superstep.

The core of the algorithm follows the structure of a Pregel
Bellman-Ford single-source shortest-path distance computa-
tion. A computation starts from the source vertex, which
sends a message through its outgoing edges containing the
edge weight (or a hop count of 1, if no weights are used).
Each time a vertex receives a message from one of its prede-
cessors, it checks whether the new distance from the source
is shorter than the current. If that is the case, the vertex up-
dates its distance and propagates it to its neighbors through
its outgoing edges (adding the respective edge weight to the
distance), otherwise it ignores the update. The computation
is concluded when no messages are transient.

Basic algorithm. As we want to compute distances and
paths, as well as control the number of top-N paths, we need
to use a different data-structure associated to each vertex
than the sole distance from the source. For each source,
each vertex needs to store a sorted list of distances with
corresponding paths.

Messages between vertices have the same structure as the
values stored by each vertex. They contain the new or im-
proved paths found by the vertex sending the message. In
each iteration, a vertex creates a new map to store all im-
provements found and then processes each received message.
For each source described in the message, the (sorted) list
of paths is merged with the list of the top-N shortest paths
found so far. This results in a new list of shortest paths
that is stored in the vertex value. Each occurrence of a re-
ceived path in this new list is then an improvement to the
old list. Therefore, it is added to the map of improvements.
At the end of the iteration, a modified version of the map
is built for each outgoing edge. For each outgoing edge e
to some target vertex v, all distances in the map are in-



creased according to the cost expression for e, and all paths
are updated by adding v at the end. Each modified ver-
sion of the map is then sent to the target vertex v. If in a
certain iteration a vertex did not find any improved path,
the map of improvements is empty. In that case, nothing
is sent to neighboring vertices. Instead, the vertex votes to
halt the computation. If all vertices vote to halt and no
messages were sent, all shortest paths have been found and
are present in the vertex values.

Postponing exploration. Inspired by the Delta-stepping
algorithm, an improved version of the algorithm was imple-
mented to reduce the exponential growth of exploration in
the first few supersteps. The main idea is to have each ver-
tex store its paths to the source in a number of “buckets”,
depending on the length of the path. For example, bucket
2 would contain all paths with length between ∆ and 2 ∗∆.
All paths in bucket i are not broadcasted to neighbors until
superstep i. To find a good setting for ∆, one could use
statistics about edge weights and/or properties computed
before-hand. Note that this method is not equivalent to
the Delta-stepping method, where the outgoing edges are
divided into buckets based on their edge weights.

A multi-phase approach. A downside of the algorithm
described so far is its large memory footprint, because the
vertex-lists that are passed around can be long. Instead of
sending lists for each path, we want to represent each path
only by the vertex ID of the predecessor. When the ex-
ploration is finished and all calculated paths are fixed, the
paths should be reconstructed from the references to pre-
decessors. This way, we reduce the amount of data to be
exchanged and stored in memory during exploration, at the
cost of more supersteps. To reconstruct the paths, there are
two main possible approaches: building paths starting at the
source or in reverse direction by starting at the end. The
latter approach has two advantages. First, we can forward
directly to the following vertex in the path, because the pre-
decessors are known locally. Second, all the paths with an
endpoint that is not selected as destination can be ignored
immediately. There is also a disadvantage: when having
one source and many destinations, all paths from the source
will end up at a single vertex, potentially resulting in low
scalability. However, path reconstruction should in general
be a small part of the total work, once distances have been
discovered. Therefore, we have chosen to reconstruct paths
starting from the destinations, back to the source vertices.

The basic idea of the algorithm is to route the total dis-
tances corresponding to paths from the destination to the
source, using the predecessor references as a routing table,
and appending vertex IDs along the way. In order to sup-
port top-N paths, it is not possible to use a regular routing
table, since we need to restore the sub-optimal paths as well.
Therefore a routing table is used that also contains up to N
entries for each source. In this way, it is possible to recon-
struct multiple different paths from a destination, even when
the destination has no information to distinguish them. This
routing table is the result of the shortest path exploration,
and stored in the vertex value.

3-phase approach. A further optimization is to divide the
first phase into two parts, resulting in a 3-phase algorithm.
The goal of the first step is then to find the minimum amount
of data from which the shortest paths can be reconstructed.

Since the predecessors can be inferred from the shortest dis-
tances, they do not need to be tracked during the explo-
ration. When the distances of all top-N shortest paths are
fixed, each vertex can find the predecessor corresponding to
each distance by comparing the distances of its neighbors.

Using message combiners. Combiners are features of the
Pregel model that can be used to reduce messages by com-
bining data to the same destination on the sender (worker)
side. It is noted that they can only be used for commuta-
tive and associative operations, since the order and group-
ing of messages is unspecified. Messages at the same worker
with the same recipient are combined into one, before they
are sent to the recipient. If we want to keep track of the
paths, instead of just finding distances, it will be necessary
to first duplicate some information. Without using combin-
ers, a message can be “signed” by the sender: by including
its vertex ID once in a message, the recipient knows the
predecessor for all distances within the message. This infor-
mation about predecessors is eventually used to reconstruct
the paths. With combiners, some messages are combined
into one before reaching the recipient, removing the pos-
sibility for signed messages. Instead, each distance needs
to be signed individually. A combined distance list could
then contain distances belonging to different predecessors.
In case of two top-N lists for the same source vertex and re-
cipient, the two sorted lists are merged into one sorted list.
The merge operation makes a linear-time pass over both lists
and combines them into a new list, keeping at most N items.

Pruning using landmarks. If shortest-paths distance
estimates are available as upper bounds, they can be also
used in pruning the search for the exact shortest path. One
method to find such upper bounds is to define a set of land-
marks as a subset of the vertices in the graph. Instead of
searching for the shortest path for each pair, only paths from
or to a landmark are searched. An upper bound for an ar-
bitrary pair (A, B) can then be found by iterating over the
landmarks L and finding the shortest path A → L → B.

In a bulk shortest path query extension, with query-dependent
weights, it may be unrealistic to assume that landmarks
would already be available prior to query execution, as an
index structure. Still, if there are many (src,dst) pairs in
the bulk shortest path operator, it can be worth computing
landmarks first, or better, to use earlier computed (src,dst)
pairs as landmarks for paths computed thereafter.

A recent all-pairs shortest paths (APSP) algorithm using
landmarks was presented by Akiba et al. [1]. We have ex-
plored the possibilities to adapt this algorithm for use in
the BSP model of Giraph, while using a combination of ex-
tensions for top-N results, directed edges, weighted paths
and path queries (instead of only distances). The authors
note that the algorithm would perform especially well in a
BSP setting, since it is based on a breadth-first search where
pruning is done locally. However, the extensions introduced
by our operator cause a number of complications. First,
regarding the extension for weighted edges, it is suggested
to replace breadth-first search by sequential applications of
Dijkstra’s algorithm. It is however not feasible to run N
instances of Dijkstra in parallel, with N being the number
of vertices. Instead, we select a number of vertices to be
landmarks, and run a Floyd-Warshall algorithm for each
landmark in parallel. In a second phase, we can prune all



following searches based on the results found for the land-
marks. Another challenge in parallelizing the algorithm is to
efficiently prune the search, based on the distances found via
landmarks. In the BSP setting using weighted paths, this
means each (src,dst) pair needs to exchange their distances
to each landmark. In order to do this efficiently, we use
aggregation to send the best distances from each source to
each landmark. Then, each destination can access the aggre-
gated result, removing the need to send a copy of the same
information to each destination vertex. Additionally, prun-
ing is more difficult when using top-N results. Since paths
are stored distributively, it is not possible to determine the
top-N paths from the top-N paths to the landmarks.

Hence, we use a relaxed form of pruning, using 3 rules:
1. If N paths A → V have length ≤ X and the best path
V → B has length Y , then at least N paths A → B have
length ≤ X + Y .
2. If the best path A→ V has length X and N paths V → B
have length ≤ Y , then at least N paths A→ B have length
≤ X + Y .
3. If there are N different distances d ≤ D where, for some
V, A→ V → B has distance d; then at least N paths A→ B
have length l ≤ D.

Finally, the vertices of the graph should be ordered by
degree, since this has been shown to improve performance by
an order of magnitude [1]. To order vertices distributively,
we use an aggregator that keeps track of the top-K vertices
with highest degree.

In summary, the Giraph algorithm has the following steps:
1. Initialization of sources, destinations, excluded paths;
and aggregating vertex degrees.
2. Running extended Floyd-Warshall from landmarks.
3. Reversing all edges in the graph.
4. Running extended Floyd-Warshall to landmarks.
5. Reversing the edges back to original.
6. Exchanging paths from/to landmarks and calculating all
upper bounds for pruning.
7. Running extended Floyd-Warshall for all sources, pruning
where possible.
8. Reconstructing distributed paths from predecessors.

5. EVALUATION
We performed an initial small-scale evaluation of our Gi-

raph implementation of the shortest-paths algorithm on graphs
generated with the LDBC SNB generator [10] with scale-
factor 1 (SF1) with 10, 993 vertices and 451, 522 edges, scale-
factor 10 (SF10) with 72949 vertices and 4, 641, 430 edges,
and with an Erdős-Rényi random graph (Rnd1K) with 1, 000
vertices and 50, 000 edges (hence each vertex had 50 edges).
For the LDBC SNB graphs, the elapsed time since the friend-
ship edge creation time was used as edge weight, while for
the random graph we chose edge weights uniformly at ran-
dom in the [0, 1] range.

The evaluation was performed running Apache Giraph
version 1.2 on a cluster of 8 machines with 8 cores and 64GB
of RAM each. The data was stored in HDFS and loaded into
main memory by Giraph at the beginning of each compu-
tation, and the resulting paths and distances were written
back to HDFS at the end of the computation.

We executed the basic algorithm on the SF10 graph by
varying the number of workers exponentially from 1 to 32 by
choosing a source vertex at random and computing shortest-
paths to all other vertices as destinations. Table 1 presents

No. workers 1 2 4 8 16 32
Total computation s. > 1k 492 222 126 89 72
Paths computation s. 10 7 5 6 5

Table 1: Runtime in seconds of the shortest-paths
computations on SF10 graph starting from a random
source vertex to all other vertices as destinations.

Figure 1: Impact of postponing path exploration
based on the lengths of the paths discovered so far.

the wall-clock runtime of each computation on the SF10
graph. Note that the computation scales with the number
of workers. The reported numbers for Total computation
include Giraph start-up, input, and output phases.

We further evaluated the impact of the Delta-stepping
expired exploration postponing on the Rnd1K graph. One
vertex is selected as source, and the top-5 shortest paths are
calculated from the source to each vertex. In the improved
version, parameter Delta is set to 0.5. Computation is di-
vided over three workers. Figure 1 shows the per-superstep
runtime of one of such computations. Clearly, there is a
significant difference in runtime and communication. Espe-
cially in early supersteps, a lot of unnecessary communica-
tion is prevented. Total runtime decreases from 35 seconds
to 25 seconds with 49% less data being sent overall.

Next, we evaluated the impact of the multi-phase ap-
proach. First we compared the 2-phase algorithm to the
regular shortest path computation. Afterwards, the Delta-
stepping improvement was applied to the 2-phase algorithm,
to evaluate if it still leads to a significant reduction in com-
munication. In this experiment we used dataset Rnd1K. Ta-
ble 3 shows that the path reconstruction phase requires less
communication than the rest of the shortest path algorithm.
Building the paths afterwards reduces communication by
more than 50%. In the second experiment, the combination
of path reconstruction and Delta-stepping was tested, and
1000 destinations were selected. Clearly, the large reduc-
tion in communication holds even when using the algorithm
using Delta-stepping. This was to be expected, since Delta-
stepping reduces the amount of paths explored, while storing
paths distributively reduces the amount of communication
for each path. In this graph, the optimal parameter setting
is around 0.15. When we applied the 3-phase we noticed a
further 8% decrease in communication, without relevant im-
provement in total runtime. In other words, the time saved
exchanging data was spent during the additional superstep.

Regarding the application of message combiners, we found
that combiners in most cases improve the runtime of the
algorithm (in our test, up to 28%), even when the amount
of data prior to combination needs to be doubled in order to
use them. However, when the ratio between vertices’ degree



GBytes Messages Supersteps Total
Basic 79.9 402628 18 27.1 s.
2-stage (5 dst) 80 402749 18+10 25.1 s.
2-stage (1k dst) 82.4 408203 18+17 33.0 s.

Table 2: Impact on communication (data and mes-
sages), number of supersteps and runtime of the 2-
phase algorithm.

GBytes Messages Supersteps Total
Basic (∆ = .5) 88.3 337032 18 25.0 s.
2-phase (∆ = .5) 47.6 342607 18+17 33.6 s.
2-phase (∆ = .25) 35.9 339171 19+17 30.3 s.
2-phase (∆ = .15) 31.2 395713 25+17 29.9 s.
2-phase (∆ = .1) 32.6 502921 36+17 30.8 s.

Table 3: Impact on communication (data and mes-
sages), number of supersteps and runtime of the dif-
ferent values of ∆.

and the number of workers becomes low, there is little to
combine within a worker. This causes the non-combined
configuration to be more scalable than the combined version.

Finally, the impact of landmarks was evaluated compared
to the two-phase algorithm alone. We used the SF1 graph,
selecting a random subset of 25 sources, and calculating the
top-5 shortest paths from the sources to each vertex in the
graph. When using landmarks, the 2 vertices of highest de-
gree were selected to be landmarks. The path reconstruction
phase is excluded from this experiment, as the modifications
do not affect this part.

In Figure 2 we can see that the actual computation is
pruned significantly, reducing the search time by 40% to
50%. However, in the current setting, the total computation
is not faster at all. In order to use landmarks as an effec-
tive optimization, the number of sources should probably be
higher than the 25 vertices selected. In addition, the run-
time of constructing the landmark tables seems quite high,
considering that this phase is using the same algorithm, only
with a much lower number of sources. Runtime could prob-
ably be improved by calculating the two phases computing
paths to and from landmarks in parallel.

6. DISCUSSION AND CONCLUSIONS
This work was done in the context of the Lighthouse sys-

tem, which combines Giraph’s power with the expressiveness
of Cypher, to allow easy-to-write pattern matching and ag-
gregation queries be performed efficiently at large scale.

In this paper, we specifically defined a new graph query
language operator for shortest paths that allows for com-
putation of paths, with (i) flexible weights computed over
edge and vertex properties, (ii) flexible filter conditions over
these, that (iii) can return not only the best, but also top-N
best paths. These three features are relevant for users but
unavailable in the existing graph query languages SPARQL
and Cypher. The syntax for this operator is concise, and im-
portantly it guarantees that efficient (pruning) algorithms
can be used. This feature distinguishes it from recursive
SQL queries, which are flexible, but systems implementing
these must generate all possible paths and filter from these
afterwards – an approach with exponential complexity that
does not scale on large and complex real-world graphs.

We also explored a number of parallel algorithms for bulk

Figure 2: Runtime of shortest-paths computation
with and without landmarks computations.

shortest path exploration and presented early evaluation re-
sults. These algorithms and experiments, while encouraging
and interesting, are work-in-progress. Generally speaking,
our operator provides opportunity for bulk shortest path
computation, where algorithms can find synergy in the task
of finding paths between many (src,dst) combinations – this
we think is a relevant and promising area of future research.

While some of the proposed changes drastically reduce
the number and size of messages, they do not necessarily re-
duce runtime. The significance of these optimization should
not be undermined, as memory footprint for an in-memory
analytics system constitutes a key limitation.

Finally, the computation of landmarks incurs an overhead
that is not always beneficiary to the overall execution time,
notably when the graph has dynamically changing proper-
ties and topology, requiring the recomputation of landmarks
for each query. An automated prediction of when the com-
putation of landmarks can reduce the total runtime is an-
other future step to complement our research.
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APPENDIX
A. OTHER POSSIBLE EXTENSIONS

For the three features described in Section 3, a number
of alternative language extensions were explored and evalu-
ated that lead to the proposal. For the first feature, vari-
able length paths, the syntax is already provided in Cypher:
(a)-[r * 4..6]-(b). It allows for minimum and maximum
length, both of which are optional. We now focus on the lan-
guage extensions needed for the other two: shortest paths
and recursion.

A.1 Shortest-paths
For shortest paths, two alternatives are evaluated: one ex-

tending the existing shortestPath function with additional
arguments for the weight function, conditions, and number
of top N paths, and one alternative adding new aggregation
functions. The first has the advantage that it does not re-
quire a new function, it just adds optional arguments that
extend the function in a relatively natural way (new syntax
in italics).

MATCH p=shortestPath((a:Start)-[r:ROAD_TO*]->(b:Finish),
x in r | x.distance/x.maxSpeed,
ALL y IN nodes(p) WHERE NOT y.danger )
RETURN p

If no cost function is given, the cost of each edge is con-
sidered to be equal, just like in the original function. For
the cost function, we can use the same syntax as used by
the reduce method of Cypher, so again little new syntax is
required. The same holds for the third argument, which is
a condition that would be moved from the WHERE clause to
within the function. This provides a clear distinction be-
tween filtering before and after finding shortest paths.

There are also a number of downsides to this approach.
First of all, it would be preferable if an existing Cypher
feature could be used. Second, the user is forced to decide
whether to use a shortest path algorithm, instead of leaving
this choice to the query optimizer. Finally, a natural way to
add the number of pairs (top-N) is lacking, as is a way to
easily refer to the distance of a path.

An alternative syntax extension is to implement shortest
paths as an aggregation function. This is used in Cypher
to find aggregated results over some result, such as mini-
mum, sum, count, and more complex calculations such as
arbitrary percentiles. In this variant, the “minimum” aggre-
gation function would be combined with the reduce function
into a new shortest function that operates on paths:

RETURN startNode, endNode,
shortest(path, x IN x.distance / x.maxSpeed, 5),
cost(path, x IN x.distance / x.maxSpeed)

While this syntax would be consistent with other aggre-
gation functions, this variant would not completely solve
the problem for the query optimizer: it is still possible to
write complex conditions in the WHERE clause, making it im-
possible to run a shortest path algorithm. Then the query
optimizer could decide to use the brute-force option of the
reduce/minimum functions as a fallback method, but this
decision would be complex to implement. It would have to
evaluate if the path is subject to any conditions that can not
be satisfied by excluding vertices or edges from the graph
over which the algorithm is run.

A.2 Recursion
Inspired by the approach of SQL:99, a corresponding syn-

tax is suggested for Cypher. This has a number of benefits:
it is much more expressive than the other options, enabling
variable length paths (closure) and shortest path queries.
The change in syntax compared to the existing Cypher is
relatively minor and one powerful mechanism could avoid
the need for many different extensions to implement specific
algorithms. However, it is both quite hard to optimize and
hard to express shortest path queries with the desired func-
tionality. Also, Cypher already has other syntax for most
simple variable length paths, so it may be more consistent
to extend the existing variable-length syntax.

The following syntax illustrates how such a recursive query
could be used to traverse a hierarchy of employees and man-
agers in an organization. They are connected to their de-
partments through WORKS_AT and IS_HEAD_OF edges, respec-
tively.

MATCH (a)-[:IS_HEAD_OF]->(b)
WHERE NOT((a)-[:WORKS_AT]->())
RETURN a AS x, 1 AS n , NULL AS manager
UNION RECURSIVE
MATCH (x)-[:IS_HEAD_OF]->(:Department)<-[:WORKS_AT]-(y)
RETURN y AS x, n + 1 AS n , x AS manager

From a user perspective, it may be easier to write the
recursive case in one clause, using the existing OPTIONAL

MATCH or a new RECURSIVE MATCH. For example, compare the
queries above and below. The disadvantage in this case is
that the semantics are not very clear from the syntax, such
as the distinction between variables for the base case and
the recursive case. Additionally, it does not solve the other
problems, such as the complications for the query optimizer.
Therefore, the previous option would be preferred.


