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UPPER BOUNDS FOR THE NUMBERS OF SOLUTIONS 

OF CERTAIN DIOPHANTINE EQUATIONS 

J. H. EVERTSE 

§ 1 - Introduction 

In this lecture we shall consider, among other things, the diophan
tine equation 

( 1 ) F(x,y)=m in x,yE-ZZ., 

where F(x,y) in an irreducible binary form of degree n .?_ 3 with coef
ficients in -ZZ. and m is a non-zero foteger. In 1909, A. Thue [39) 
showed that this equation has only finitely many solutions. In fact, Thue 
showed that every solution (x,y) of (1) yields a good approximation 
x/y of one of the zeros of F(x,1) and that there are only finitely ma
ny of such approximations. Unfortunately, Thue's method was ineffective. 
In 1967, A. Baker [2], [3) gave an effective proof of the finiteness of 
the number of solutions of (1), using lower bounds for linear forms in 
logarithms. Baker's method is totally different from Thue's and it is not 
very likely, that a modification of Thue's method can lead to general ef
fective results on (1). Only in certain special cases, modifications of 
Thue's ideas can lead to effective finiteness results for the number of 
solutions of (1), cf. Thue [40), Baker [1), Choodnovsky [5). Although 
Thue's method can not be made effective in general, it can be used in 
principle to give upper bounds for the numbeP of solutions of (1). In 
this lecture we shall discuss certain interesting upper bounds which have 
been obtained by modifications and generalisations of Thue's ideas. Befo
re doing this, we shall give a historical survey of results which have 
been derived concerning upper bounds for the number of solutions of (1). 

Let F(x,y) be an irreducible cubic form with coefficients in -ZZ.. 
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Between 1920 and 1930, Delone [6] and Nagell [27] independently proved 

that the equation 

(2) F(x,y) = 1 in x,y E 71. 

has at most ~ive solutions if F has negative discriminant. They used a 
• 

method totally different from Thue's namely they studied units in the 

field ~(ci) where ci is a zero of F(x,1). In 1929, Siegel [32] sho

wed that (2) has at most eighteen solutions if F has a positive discri

minant which exceeds some (explicitly computable) absolute constant. 

Siegel proved this by modifying some of Thue's ideas. In fact, by refi

ning Siegel's techniques one can show that for all irreducible cubic 
forms F with coefficients in "ll. and positive discriminant, (2) has 

at most twelve solutions (cf. Evertse [9]). 

In 1933, K. Mahler [21] [22] generalised Thue's result in the fol

lowing way. Let F be as in (1) and let {p1, ... ,pt} be a (possibly 

empty) set of distinct prime numbers. Then the number of solutions of 

the equation 

k1 kt (3) jF(x,y}I = p1 ,. .. ,pt in x,y,k, ... ,ktE?l. with (x,y) = 1 

is finite and bounded above by ct+l, where c is a constant depending 

on F only. Mahler proved this by generalising approximation techniques 

of Thue and Siegel to p-adic valuations. In 1950, C.J. Parry (28] gene

ralised Mahler's result to equations of type (3) with variables in the 

ring of integers of some algebraic number field. It is worth while to 
mention, that in 1961, Lewis and Mahler [20] gave a more explicit bound 

for the number of solutions of (3), namely 

c2/ii t 1 
c a +(c n) + 
1 3 

where c1, c2, c3 are explicitly computable constants, n is the degree 

of F and a is the maximum of the absolute values of the coefficients 
of F. Very recently, J. Silverman (35], [36) proved that the number of 

solutions of (1) can be estimated from above by a constant depending only 
on the degree of F and the rank of J ( m) where J is the Jacobi an 

m"' ' m 
variety of the curve F(x,y) = m zdeg F, provided that m satisfies cer-
tain conditions. 



73 

From the historical remarks made above we infer that it is possible 
to give an upper bound for the number of solutions of (1) which depends 
only on the height of F, the degree of F and w(m) (i.e. the number 
of primes dividing m). Moreover, in case that F is cubic and m= 1 
we saw that it is possible to give a bound not depending on the coeffi
cients of F. This leads to the conjecture that the number of solutions 
of (1) can be estimated from above by a constant not depending on the 
coefficients of F. In fact, we shal 1 see that it is possible to give 
an upper bound depending only on w(m) and the degree of F. We shall 
state the general result after having considered some special cases. It 
is not our intention to give proofs in full detail. We shall however in
dicate the main ideas behind the proofs whenever possible. 

§ 2 - The equation axn - by°= c. 

The equation of the title has been studied by many mathematicians. 
In 1918, Thue [40] solved some of these equations. In 1937, Siegel [33] 
showed, by modifying some of Thue's techniques, that the equation 

(4) axn-byn=c in x,yEIN, 

where a,b,c,n are non-zero integers with n~3, has at most one solu
tion if 

If for instance c > 0 and b > 188n c4 then the equation 

has only one solution, namely x = 1, y= 1. For historical remarks about 
the method used by Siegel we refer to Siegel [34]. 

Using Siegel's method it is possible to give an upper bound for 
the number of solutions of (4) under more general conditions. We restrict 
ourselves to pI'imitive solutions of (4), i.e. solutions (x,y) with 
(x,y) = 1. In fact we have 

THEOREM 1. (4) has at most 2R(n,c) + 4 primitive solutions, where 
R(n,c) is the number of congruence classes u (mod c) with un"' 1 (mod c). 



74 

Using elementary number theory one can show that R(n,c) )_2nw(c). Acom
plete proof of Theorem 1 can be found in Evertse (10] Chapter 2. Here we 
shall only indicate how we can derive a bound of the type C1R(n,c), 
where c1 (similar to c2,c3, ... ) will denote an absolute constant. 

For convenience we assume that (a,c) = (b,c) = 1 which is in fact 
no restriction. Then all primitive solutions (x,y) of (4) satisfy 
(x,c) = (y,c) = 1. We call two primitive solutions (x 1 ,y1), (x2,y2) of 
(4) eongruent mod c if x1y2 -x2y1"o (mod c), i.e. if x1Jy 1 
x1;y1 ,,x2;y2 (mod c). The number of congruence classes mod c of primi
tive solutions of (4) is clearly at most equal to the number of congruen-
ce classes u(mod c) satisfying un:b/a (mod c). But if the latter 
congruence equation has one solution then it has at most R(n,c) solu
tions. Hence if suffices to show the following : 

THEOREM 2. The number of primitive solutions of (4) in a fixed congruen
ce class is at most c1• 

In fact it is possible to prove Theorem 2 with c1 = 6 but to this 
end we need better estimates than those we use in this paper. 

We shall now sketch the proof of Theorem 2. First of all, we intro
duce some notations. For positive integers x,y we define the height 
w(x,y) by w(x,y) :=Max (laxnl, lblll. Moreover, GE[ is a fixed 
n-th root of b/a such that IArg BI )_TI/n. Then we have for each other 
n-th root e' of b/ a that 

(5) 11-e· ¥1>11 -e¥1 x - x for x,yE:JN. 

Using this fact we can prove 

LEMMA 1. If (x,y) is a solution of (4) then 

(6) Min (1,11-e~ll.S.~lclW(x,y)- 1 . 

PROOF. Let p be a primitive n-th root of unity. Then we have by (5), 

I I n n-1 . n-1 
_c = 11-~I= n l1-p 1 e¥J.2_l1-e~I· n 2!{lp-i-e~l+l1-etl} jaxnl axn i=O x x i=1 x x 
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Hence 

( 7) Y zn- 1 lcl 
11-ex-I < - --

n I axn I 

Similarly we have 

(8) 11-e-1~1 < zn-1 _l_c_I 
y - n I b/I 

If laxnl ?_ lbynl then (6) follows from (7). Suppose lbll > laxnl. 
I -1 I 1 -1 I 1 -Then ley/xl?_1. If e x/Y~z then 11-8 x/y.2_ 2; if 

le- 1x/yl >~ then l1-e- 1x/yl = le- 1x/yl x 11-ey/xl ?.~11-ey/xl. Hence 

I 1-e-1x/yl 2_~ Min (1,l 1-8y/xl ). Together with (8) this proves (6). a 

LEMMA 2. Let S be a real with 2/n < S < 1. Put 

n 

U= U(S) = (.L lcl1-s)ns-2. 
2nS+1 

(i) If (x 1,y1),(x2,y2) are two distinct, primitive solutions of (4) 
which are congruent mod c and which satisfy w(x2,y2) 2_ w(x 1 ,y1) then 

(ii) Let M1 ,M2 be constants with U < M1 < M2. Then the number of pri
mitive solutions (x,y) of (4) in a fixed congruence class mod c with 

is at most 

log{log(UM2)/log(UM 1)} 
1 + log (nS-1) 

Since Min (a,Max(b,c)) = Max (Min(a,c),Min(b,c)) for a,b,cCIR and 
since 2/n<S<1 wehavebylemma1, 
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1/n Y1 Yz B 
!cl~ lx1y2 -x2y1j ~ 2(w1w2) max {min(1,j1-ex,l),min (1,11-ex;j)} 

This clearly proves (i). 

(ii) Let (x1,y1), (x2,y2), ... ,(xk,yk) be distinct primitive solutions 

of (4), belonging to the same congruence class mod c, such that 

M 1 ~w(x 1 ,y 1 )~ ... ~w(xk,yk)~M2 . Then by (i), 

nB-1 Uw(xi+l'Yi+l) ~ (Uw(xi,yi)) for i=1, ... ,k-1, 

hence 

This clearly implies (ii). [J 

We shall now apply an approximation method to (6) or more generally 

to the inequality 

(9) Min (1, I 1- 8 ~I) ~ Aw(x,y)-B in x,y e: IN, 

where, as before, n is an integer with n > 3 and where A,B are posi
tive constants with A~ 1, ~+~<B~1. Sin~ the method we are going to 
apply is essentially Thue's we have to restrict ourselves to the case 

-1 (n ) B>n 2+1. 

LEMMA 3. There exist explicitly computable, absolute constants c2 ~ 1, 
c 3 ~ 1 with the following property. If (x1 ,y1), (x2,y2) are two solu
tions of (9) with 

1 1 -1 (B-2--) 
(10) w(x2,y2} ~ w(x1 ,y1) ~ (C~A5 ) n 

then 

(11) 

PROOF. We shall not give the complete proof of Lemma 3, but indicate the 
main steps in it. We assume that for every pair of integers r ~ 1, n > 3 
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there are polynomials Gr(X), Hr(X), Tr(X) E ?l. [XJ, with coefficients 

depending on r, n, such that 

(11) deg Gr= r, deg Hr = r, deg T r = r(n-2); 

( 12) 

(14) Gr, Hr, Tr have positive coefficients which do not exceed 

cnr 
4 

For a proof of this we refer to Evertse [10), Chapter 1. 

Let (x 1,y 1), (x2,y2) be two solutions of (9) with w2 >w1_?_A 118 , 

where W; = w(xi ,yi) for i = 1,2. Put Z = by~/ax~ and 

Note that UrE?l.. Hence if Urf0 then we have by (11), (12), (14), 

Lemma and the fact that \1-8y/xil ~ 1 for i = 1,2, 

< (c nr A r+1/n 1/n-8 Cnr A2r+1 1/n+r-B(2r+1) 1/n) 
max 5 w1 w2 , 5 w1 w2 . 

By(12), Ur=O implies that Ur+llO. Hencewehaveforall r_?.1, 

since B>1/2, 

( 16 ) 1 < Max(C~(r+1) Aw~+1 +1/n w1/n-8, C~(r+1) A2r+3 w~/n+r-B(2r+1 )w1/n). 

2 
k > 28-nB +2 

- nB(B-~-1/n) 
Let k be the smallest positive integer with and sup-

pose that 

( 17) 

We shall show that (17) is impossible. This proves Lemma 3, since 
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1 
B-1/n~ 2 • B<1 and 

2 
k + 1 + nl _< Max ( 0' 2B-nB +2 ) + 2 + 1 

1 ) n nB(B-2-1/n 

1 B--nB+2 1 
= Max ( 1 , 21 ) + 1 + -

nB(B-2-1/n) n 

~Max(1, 5-n/2)(B-L1;n)- 1 +1+!< 2 
n 2 n- B-L1;n 

2 

By assumption of (17), there is an integer r with r~k such that 

For this integer r we have firstly, 

Cn(r+1) Awr+1+1/n w1/n-B < 1 
5 1 2 

and secondly, since r~k and B>~+1/n, 

Cn(r+1) A2r+3 1/n+r-B(2r+1) 1/n 
5 W1 W2 

( -1 < (C~(nB-1) (r+1 )+n(r+2) A (nB-1 )(2r+3)+1w\nB-1) (1/n+r-B(2r+1) +r+2+1/n) nB-1) 

2 1 1 2 -1 (C~-B(r+1)+nA(nB-1)2r+3nB-2w~nB( 2+~-B)r+2B-nB +2)(nB-1) 

1+1 /n-B nBr 
< (C~n As w~ )nB-1 < l. 

This contradicts (16). Hence (17) is impossible. This completes the proof 
of Lemma 3. Cl 

PROOF OF THEOREM 2. By Lemma 1 and Lemma 3 with A= ( 2n /n) I c I , B = 1 

and by n_c3, there are certain absolute constants c6, Cl' such that 
for any two primitive solutions (x 1,y1), (x2,y2) of (4), with 

( 19) 

we have 

(20) 
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Let u be the set of primitive solutions of (4) belonging to a given 
congruence class. We divide u into three classes. 

2n __!!§__ 
I. The solutions (x,y) EU with w(x,y) < (~)nS-2; 

2n 
I I. The solutions (x,y) EU with (~)nS/(nS-2) .:S_w(x,y) < c2Jc130; 

I I I. The solutions (x,y) EU with w(x,y) ~ C21cl30. 

Here we choose S such that 2/3 < S < 1 and B does not depend on n. 
Since w(x,y) ~max(x,y)n the number of elements of I can be estimated 
from above by an absolute constant. Using Lemma 2, (ii) we can also esti
mate the cardinality of II from above by an absolute constant, on noting 
that lei can be eliminated due to the strictly positive exponent of 
lei in the expression for U(S) in Lemma 2 and that n can be elimi
nated by the factor log(nS-1) appearing in the denominator of the ex
pression in Lemma 2(ii). Let (x 0,y0) be an element of III for which 
w(x0,y0) is minimal. Then all solutions in III satisfy 
w(x 0 ,y0 ).s_w(x,y).:S_C~lcl 2w(x 0 ,y0 ) 24 . Using Lemma 2(ii) it is again easy 
to show the number of solutions in III can be bounded above by an abso-
lute constant. This completes the proof of Theorem 2. D 

§ 3 - On the equation 

Let a,b,c,n be non-zero integers with n ~ 3, c > D and let 
{p 1, ... ,pt} .be a set of distinct primes. We shall consider the equation 

n n k1 kt (21) I ax -by I = cp 1 .• ·Pt in x,y E lL with (x,y) = 1 and xy f. D. 

Solutions of (21) are shortly denoted by (x,y). We call two solutions 
(x1,y1),(x2,y2) congruent mod c if x1y2-y2y1 =O (mod c). C1'C2, ... 
will denote absolute constants. 

THEOREM 3. t (21) has at most c1(c 2n) solutions belonging to a fixed 

congruence class mod c. 

Theorem 3 can be proved by generalising the techniques in the proof 
of Theorem 2 to p-adic valuations. We shall not give a complete proof of 
Theorem 3 but we shall point out how the estimates in the proof of Theo
rem 2 can be generalised to estimates involving p-adic valuations. 

Let p be a prime number (i.e. a "finite" prime). We define the 
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-1 h abso 1 ute va 1 ue I . IP by Ip Ip= p . Moreover, we denote t e usual abso-
ute value on ~ by j .1",. (co is called the infinite prime). Thus we 

have a set of absolute values on m satisfying the product formula 

22) n la:lp=1 for aEm-....{D}, 
pEM 

where M is the set consisting of "' and the prime numbers. For p EM 

we denote the completion of m at p by ~p and the algebraic closure 

of ~P by ~P (thus ~"' = lR, ~00 =It). Finally we put s(p) = 1 if 

p="' and s(p)=O if p;too. 

Let S= {oo,p1, .•. ,pt}, let (x,y) be a solution of (21) and let 

8p (p ES) that n-th root of b/a in ~p such that 

I 1-8 y/xl <I 1 - 8y/xl for each other n-th root 8 of b/a. Then one ' p p- p 
can show, similar to (6), 

zns(p) 1 
Min (1,11-ep~lpl ~ Jnr;- !axn-bynlp Max(!axnlp·lbynlpl-. 

Hence by (22) 

(23) n Min(1,l1-ep~1) < 2ncw5(x,y)- 1, 
pES x p -

where 

(24) c = n lei , 
pES p 

Note that we have at most n possibilities for each ep, where 

p<::\p1, ... ,pt). Moreover, !Arg 800 -Arg (y(x)! ~n/n. Thus we have at 
most two possibilities fore . Hence each solution (x,y) of (21) satis
fies one of at most 2nt in:qualities of type (23). 

We shall now "split up" (23) by using the following lemma, a proof 
of which can be found in Evertse [10], Chapter 6. 

)J:_MMA ~. Let B be a rea 1 number with ~ < B < 1 and let q be a pos i -
t i ve integer. Let F 1 , .•. , F , f\ be positive real numbers with F, < 1 

,_ q q J-
for J - 1 ,. .. , q and n, _ 1 < f\. Put 

J- -

R(B) = (1-Bf1 BB/(B-1). 



There exists a q-tuple 
r~ 1r. = B which can be 

J= J 
tuples which depends on 

and A, such that for 

01 

(r1····•rq) with rj_::o for j=1,. .. ,q and 
chosen from a set of at most R(B)q- 1 of such 

B and q only and does not depend on the Fj 
j=1, ... ,q, 

r. 
F. < ' J J - Jl • 

As an immediate consequence of Lemma 4 we have for 

LEMMA 5. Every solution (x,y) of (21) satisfies one of at most 

2 x (nR(B))t systems of inequalities of the type 

(25) (pES), 

where e~=b/a and rp~O for pES and rpES rp=B. 

Similar to Theorem 2 one can show that the number of solutions of 

(21) in a fixed congruence class which satisfy a fixed system (25) can 

be bounded above by a constant depending on B only. One needs the fol

lowing analogues of Lemmas 2 and 3. For convenience we denote the set of 

solutions of (21) which belong to a fixed congruence class mod c and 

which satisfy a fixed system (25) by U. We assume that ~ + 1/n < B < 1. 

Moreover, we put 

LEMMA 6 (i). Let (x 1 ,y1) ,(x2,y2) be distinct elements of u with 

W5(X2,Yzl ~ W5(X1 ,y1). Then 

(ii) Let M1 ,M2 be constants with u0 <M1 <M2. Then the number of pairs 

(x,y)'E U with 

is at most 

log{log(u 0M2)/log(U 0M1)} 
1 + log (nB-1) 
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7. There are explicitly computable absolute constants C3 _?_ 1, 
c4 __ 1 with the following property. If (x1 ,y1),(x2,y2) are two solu
tions of U with 

then 

Lemma 6 (i) can be proved similarly to Lemma 2 (i) by estimating 
[x1y2 -x2y1i;:i from above similarly to the proof of Lemma 2 (i) for each 
pES and by noticing that 

n lx 1y2 -x2y11p= n lx 1 y 2 -x2y 1 1~ 1 _?_ n IC1~ 1 =C. 
pES pEM' 5 pEM' S 

Lemma 6 (ii) can be derived from Lemma 6 (i) in exactly the same way as 
Lemma 2 (ii) is derived from Lemma 2 (i). Lemma 7 can be proved in a si
milar way as Lemma 3, by estimating the expression IUrlp from above for 
each pE:S, where Ur is defined by (15) and by noting that Urt-D im-
~lies that n ju I ) 1. Now Theorem 3 can be derived from Lemmas 6 and . pES r l'---

7 in just the same way as Theorem 2 has been derived from Lemmas 2 and 3. 
D 

§ 4 - On the equation aX + bY + cZ = 0 in integers X, Y, Z composed of 
f_!_~ed primes. 

Let lp 1, ••• ,ptl be a set of distinct prime numbers, let S be 
the set of those a E: -ZZ for wh i eh I a: I is composed of primes from 
{p 1, ••• ,pt; and let a,b,c be rational integers with abc t- 0 and 
{abc,p 1 ... pt) = 1. Then we have 

THEOREM 4. The equation 

(26) aX+bY+cZ=O in X,Y,ZES with (X,Y,Z)=1 

has at most 

6 x 72t+3 

solutions. 
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Although this equation seems to be totally different from the equations 

mentioned in the previous sections it can be dealt with by similar tech

niques. We shall give a very rough sketch of the proof below. 

We assume that (a,b,c) = 1 which is clearly no restriction. Let 

p= e21li/3 and let (X,Y,Z) be a solution of (26). Put 

E,= aX-pbY, n= aX-p2bY. 

Then 

3 3 2 
E, - n = 3(p-p )abcXYZ. 

Hence there are rational, non-negative integers k1, ••• ,kt such that 

(27) 
3 3 2 k1 kt 

E, - n = 3(p-p )abc p1 ... pt . 

Let (x 1,v 1, z1), (X2, v2, z2) be two solutions of (26) and let 

(t, 1,n 1), (t,2,n2) be the corresponding (E,,n)-values. Then 

(28) 

Moreover, by (26), 

He nee, s i nee (a , b) = 1 , 

Together with (28) this shows that 

(29) 
2 

F,1n2 - s2n1 5 0 (mod (p-p )abc). 

Hence the solutions of (26) correspond, roughly speaking, to solutions of 

(27) belonging to the same congruence class mod (p-p2)abc. Moreover, 

the gcd of E,,n need not be equal to 1 but is in any case a divisor 

of 1-p. Now we can prove, using similar techniques as in paragraphs 2 

and 3, that (26) has at most c1 x C~ solutions, where c1 ,c2 are cer-
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tain absolute constants. A precise computation yields Theorem 4. o 

It is possible to generalise Theorem 4 to algebraic number fields. 
Let K be an algebraic number field of degree m with ring of integers 
OK and 1et r be the rank of the unit group of OK. Let {p1, ... ,pt} 
be a (possibly empty) set of prime ideals and let S* be the set of tho
se c E OK such that the idea 1 generated by a is composed so 1 e l y of 
prime ideals from {p1' ... ,p1J. Let a,S,y be non-zero elements of OK. 
We shall consider the equation 

(30) aX+SY+yZ=O in X,Y,ZES*. 

If (X,Y,Z) is a solution of (31) and if uES*, then (uX, uY, uZ) 
is also a solution of (30). We say that (uX, uY, uZ) is derived from 
(X,Y,Z) by multiplication with an element of S*. Without proof we state 

THEOREM 5. Up to multiplication by elements of S*, (30) has at most 

3 x 7m+2(r+t+1) 

solutions. 

For a proof we refer to Evertse [11]. 

§ 5 - On the Thue-Mahler equation and some generalisations. 

In this section we shall discuss some applications of Theorem 5. 
First of all it is possible to derive an upper bound for the number of 
solutions of the Thue-Mahler equation (3) which does not depend on the 
coefficients of the binary form involved. Let {p 1, ... ,pt} be a set of 
primes and let F(x,y) E "ll.. [x,y) be a binary form of degree n > 3 which 
has at least three distinct linear factors in [(x,y). Then we have 

I.!i~OREM 6. The number of solutions of the equation 

is at most 

7n3(zt+3) 

Note that this bound depends on n and t only. A complete proof of 
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Theorem 6 can be found in Evertse [11]. 

In fact, it is not difficult to derive Theorem 6 from Theorem 5. 

We assume that F( 1,0) = 1 which is in fact no restriction. For suppose 

that (31) is solvable. Then we may assume that a := F(1,0) is a posi

tive integer which is composed of primes from {p1, ... ,pt}, by repla

cing F by an equivalent form and by multiplying all coefficients of F 

with -1 if necessary. Put G(x,y) = an- 1F(x/a,y). Then 

G(x,y) E ?l [x,y], G(1,0) = 1 and moreover, the number of solutions of (31) 

will not decrease when F is replaced by G. 

By our assumption on F, we have 

(32) 

where a 1 , ... ,an are algebraic integers of which at least three are 

pairwise distinct, a 1, a2, a3 say. Let L = m(a1'a2,a3) and let 

µ 1, ... ,pu be the prime ideals in L which divide p1. ··Pt· Denote so

lutions of (31) by (x,y). For each solution (x,y) of (31), x-a1y, 

x - a2y, x - a3y are algebraic integers composed of prime ideals from 

µ1, ... ,pu. Moreover we have 

If (x 1,y1),(x2,y2) are two solutions of (31) with 

(x 1-aiy1)/(x2-aiy2) = (x1-ajy1)/(x2-ajy2) for i,j E {1,2,3} then 

(x2,y2) = ±(x 1 ,y 1). Hence by Theorem 5, on noting that u_S_ [L: mlt 

and [L: ml _S_ n(n-1 )(n-2), the number of solutions of (31) is at most 

2 x 3 x 7n(n-1 )(n-2)(2t+3) < 7n3(2t+3). 
0 

By similar arguments it is possible to derive results on the Thue-Mahler 

equation with variables in the ring of integers of a given algebraic num

ber field, cf. Evertse [11]. By applying similar approximation techniques 

as discussed in the previous sections to function fields of characteris

tic zero it is possible to give upper bounds for the number of solutions 

of the Thue-Mahler equation over function fields. We shall state a result 

only for rational function fields although it can be generalised to al

bebraic function fields. Let Ill'. be a field of characteristic 0, let 

K= lK(X 1, ... ,Xr) and 0= IK[X 1, ... ,Xrl where x1, ... ,xr are alge-
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braically independent over JK. Let n1, ... ,nt be distinct, pairwise 
non associated irreducible polynomials in 0 and let F(x,y) E: O[x,y] 
be a binary form of degree n~3 which has at least three distinct li
near factors in some extension of K and which has the following addi
tional property: thereare no a:,6,y,8EO with wS-SyfO, i 1, ..• ,£tE7Z 
and a binary form f(x,y) E: JK [x,y] such that 

(34) 
,Q,1 9,t 

F(a:x+Sy,yx+oy) = 1T1 , ... ,nt f(x,y). 

Then we have 

THEOREM 7. The equation 

(where (x,y) = 1 means that x,y are not both divisible by the same 
non-constant polynomial in O) has at most 

7n3(2t+3) 

solutions. 

For a proof we refer to Evertse [12]. We mention that Mason [24] has de
rived an effective analogue of this theorem in case that r = 1. 

Finally we mention that Theorem 5 can also be applied to a special 
class of norm-form equations. Let a:1, ... ,a:r be algebraic numbers such 
that [C)(a:1):0)]?_3 and [C)(a:1, ... ,ai+l): C)(a1, ... ,ai)J2_3 for 
i=1, ..• ,r-1. Let K= C)(a:1,. .. ,ar) and n= [K:C)]. If SEK then 
we denote the conjugates of 6 by S(l) , ••. ,S(n) Put 

where aEC),{O} is chosen such that F(x0, ... ,xr) has coefficients in 
ll. Let P1, ... ,pt be distinct prime numbers and let g be the degree 
of the normal closure of K over 0). 

THEOREM 8. The equation 

k1 kt 
[F(x0, ... ,xr)1 = p1 , .•• ,pt in x0, ... ,xr,k 1, ... ,kt<::?Z with (x 0, ... ,xr)=1 

has at most 
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2(4 x 79(2t+3) {-1 

solutions. 

For a proof we refer to Evertse and Gyory [13]. In fact, Evertse and 
Gyory proved a genera 1 i sat ion of Theorem 8 dealing 1~ith norm form equa
tions over rings which are finitely generated over ?l. 
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