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Abstract: It is shown that it is possible to obtain fourth-order accurate diagonally implicit Runge-Kutta-Nystrijm 
methods with only 2 stages. The scheme with the largest interval of periodicity, i.e. (0, 12), is given. Furthermore, the 
requirement of P-stability decreases the order to 2. 

Keywords: Numerical analysis, ordinary differential equations of second-order, diagonally implicit Runge-Kutta
Nystrijm methods, interval of periodicity. 

1. Introduction 

For the numerical integration of the special second-order initial value problem 

y"=/(t,y), y(t0 )=y0 , y'(t0 )-y~, (1.1) 

it is often advantageous applying a direct method for this type of differential equations, rather 
than rewriting (1.1) to its first-order form. 

Therefore we consider general Runge-Kutta-Nystrom methods which are of the form [5,6) 
m 

Y,,,j = Yn + cihy; + h2 L aj.l/(tn + c1h, Y,,,1), j = 1, ... , m, 
1-1 

m 

Yn+l = Y1t + hy: + h2 E bjf( tn + cjh, Y,,), 
j-1 

m 

Y:+1 = y; + h E b;f(t,, + cih, Y,,), 
j-1 

(1.2a) 

(1.2b) 

(1.2c) 

Here h is the step size, t,, == t0 + nh and Yn+l• Y~+l are approximations to the exact solution 
y(tn+i) and y'Ctn+ 1). Since the computational complexity of this fully implicit scheme is a 
deterrent prospect, we confme our considerations to diagonally implicit (or semi-explicit [2)) 
methods, which result from (1.2) by setting a M == 0 for I > j. These methods are much more 
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attractive from a computational point of view, because now in each implicit relation in (l.2a) 
only one (unknown) Y,.,1 is involved. Furthermore, if we require a1,1 =a( ::P 0) for all j, then the 
scheme allows for an efficient implementation because the decomposition of the matrix I - ah 2Jn . 
.!,, =(a/ ;ay) I, occurring in Newton-type methods can be used in all stages. 

In the seq~el these schemes are referred to as DIRKN methods; they are compactly 
represented by means of the Butcher array 

a 0 

A= 
a 

with obvious definition of c, b and b'. 
In the case of first-order ODEs, this idea with respect to the choice of the A-matrix was 

introduced by Nersett [8] and, since then, extensively discussed in numerous papers (e.g. [l}). On 
the contrary, for second-order ODEs, this approach is rarely discussed in the literature; as a 
matter of fact, we are not aware of any such a paper. 

In this note, we will derive a fourth-order, two-stage DIRKN method. 

2. Stability 

In studying the (linear) stability of DIRKN methods, we apply the scheme (1.2) to the scalar 
test equation 

y"= -f..2y, ft.ER. (2.1) 

Setting H ... hft. and eliminating the intermediate results Yn,J' the numerical solution satisfies [6] 

( Yn+t ) = M(H2)( Yn ), M(H2) = ( l -H2bTL- 1e 1 -H2bTL- 1c) (2.2) 
h' h' -H2b'TL- 1 l-H 2b'TL- 1c' ~n+l ~n e 

where L ==I+ H 2A and e = (1, ... , l)T. 
Introducing the functions 

S(H2 ) = Trace{M) and P(H2 } = Det(M) 

the characteristic equation corresponding to the difference equation (2.2) is of the form 

r2 - S(H2 }r + P(H2 ) = 0. 

(2.3) 

(2.4) 

In this note we are particularly interested in DIRKN methods which are suitable for the 
integration of periodic initial value problems. Therefore, we introduce the following definitions 
(cf. [7]). 

Definition 1. An interval (0, HJ) is called the interval of periodicity of the method (1.2) if the 
roots of (2.4) are complex conjugate and of modulus one. 

Definition 2. The method (1.2) is said to be P-stable if its interval of periodicity is (0, co). 
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The feature of a nonempty interval of periodicity is important in integrating periodic 
solutions. It guarantees that for H 2 e (0, Hl) the numerical solution will not be damped (nor 
amplified); hence, the phenomenon of 'orbitally instability'. as it was termed by Stiefel and 
Bettis [9] will not occur. · 

Obviously, if the method (1.2) has an interval of periodicity (0, HJ) with HJ> 0, then the 
product of the roots of (2.4) is equal to l, for all H 2 E (0, HJ) (see Definition 1). Since the term 
P(H2 ) in (2.4) equals the product of the roots of this quadratic, we have: 

A necessary condition for the method (1.2) to possess a nonempty interval of periodicity is 
P(H2 ) = 1. 

3. Construction of the method 

In [5], Hairer derived m-stage methods of order 2m. His starting point was the optimal 
(Gauss) methods [2] for first-order differential equations. The resulting methods are proved to be 
P-stable. However, they have a full A-matrix. 

In this section we will study what is attainable within the class of two-stage DIRKN methods, 
possessing a nonempty interval of periodicity. 

First we observe that, by virtue of the 'compatibility conditions' (1.2c), there are only six free 
parameters at our disposal. For fourth-order consistency, we have to satisfy eight conditions (see 
e.g. [3]): three conditions for they-component and five conditions for the y'-component. This 
seems to be overambitious, however there appears to exist a solution. 

To simplify the analysis, we use a lemma due to Hairer [4]. 

Lemma. Let 

bj=b;(1-cj), j=l, ... ,m. (3.1) 

Then the order conditions for the y-component are a subset of the order conditions for the 
y' -component. 

Now, in terms of the free parameters c1, c2 , b~ and b~, the fourth-order conditions reduce to 

b;cf + b;c~ = 1, b~ci + b~c~ = 1. 
b;ct + b;c1 ( c~ + c1c2 - cf) = A. 

The equations (3.2) are solved by 

b; = b~ = ·L C1 = ! ± i./3. 

(3.2a, b) 

(3.2c, d) 

(3.3) 

(3.4) 

and it turns out that the remaining order condition (3.3) is satisfied by these values. Moreover, 
we found P(H2 ) = 1. 

Now, the scheme is completely determined by (3.4), (3.1) and (l.2c). 
Obviously, the periodicity condition requires I S(H2 ) I < 2. It is easily verified that the first 

solution in (3.4). i.e. the one where superior signs are used, yields n; == 12, whereas the other 
solution, taking lower signs, results in n; = 3 + 3./3 = 8.2. 
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Hence, we are now able to formulate our final result: within the class of two-stage DIRKN 
methods it is possible to obtain fourth-order accuracy and the scheme with the largest interval of 
periodicity, i.e. HJ - 12, is given by 

t + i/3 i + fi./3 
t - i/3 -i/3 

i - -b.v'3 
1 
2 

0 

Lastly, we state, without derivation, a few additional results: 

(3.5) 

(i) One may wonder whether it is possible to obtain P-stability within this class of two-stage 
DIRKN methods by decreasing the order from four to three. Here is the negative answer: There 
is no P-stable third-order two-stage DIRKN method. Moreover, the periodicity interval cannot 
be enlarged. It turned out that (3.5) possesses the optimal HJ-value for two-stage methods of (at 
least) order 3. 

(ii) It should be observed that the c-values in (3.5) are the Gauss-Legendre quadrature points, 
which are probably responsible for the relatively high order of this scheme. Therefore, it is 
natural to ask whether this choice is suitable in obtaining high-order DIRK.N methods using 
more stages. We investigated the case m - 3 and, once more, the answer is disappointing. 

If we again impose condition (3.1). we have 8 additional conditions for order 6, and only 4 of 
them are fulfilled. However, the ones which are not satisfied, have extremely small error 
constants. Therefore, this method may be of interest because of its accurate behaviour and its 
relatively small extra costs (cf. the discussion in Section 1). This fourth-order three-stage method 
is given by 

t - tov'iS t-2~lf5 
-io + to/i5 t- tom 

--ls+ ?sv'fS 
.l 
9 

4 
9 

t - fo/i5 (3.6) 

Finally, we remark that this scheme has an empty interval of periodicity. It is strongly stable 
(i.e. It I< 1) for H 2 e (0, 9.5) u (10.6, 19.5) with lf<H2 ) I< 1.025 for H 2 e (9.5, 10.6) D 
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