
Volume 6, Number 4 OPERATIONS RESEARCH LETTERS September 1987

A NOTE ON THE PARTITIONING SHORTEST PATH ALGORITHM *

Martin DESROCHERS

Centre for Mathematics and Computer Science, P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

Received April 1987
Revised July 1987

Recently Glover, Klingman and Philips proposed the Partitioning Shortest Path (PSP} algorithm. The PSP algorithm includes
as variants most of the known algorithms for the shortest path problem. In a subsequent paper, together with Schneider, they
proposed several variants of the PSP and conducted computational tests. Three of the variants were the first polynomially
bounded shortest path algorithms to maintain sharp labels as defined by Shier and Witzgall. Two of these variants had
computational complexity 0(/ N / 2 /A/), the other 0(IN/ 3). In this note, we add a new step to the PSP algorithm resulting in
new variants also scanning from sharp labels and having computational complexity 0(/ N 13) for two of them and 0(IN 12)

for the other. This new step also provides a test for the early detection of negative length cycles.

shortest path * computational complexity * negative length cycles detection

1. Introduction

Few problems have so many applications as the
shortest path tree (SPT) problem. It is used in
distance matrix calculation, vehicle routing, traffic
equilibrium problems or as a step in the resolution
of problems as assignment, matching, knapsack,
generalized assignment. This explains the great
interest the SPT has generated in the past years;
see Gallo and Pallottino [4] for a survey covering
both the single shortest path tree problem and the
all-pairs shortest path problem. This survey also
contains a section on reoptirnization procedures.
In this note we will restrict ourselves to the Parti­
tioning Shortest Path (PSP) algorithm.

2. Notations and background

Consider a directed network G = (N, A) with
node set N and arc set A. We denote the cardinal­
ity of N and A by INI and IAI. Let l(i, J)
denote the arc length for arc (i, j) E A. We as-

* This research was partly supported by a NA TO Science
Fellowship obtained through the Natural Sciences and En­
gineering Research Council of Canada. Author's current
address: GERAD, Ecole des HEC, 5255 Decelles, Montreal,
Quebec, Canada H3T 1 V6.

sume that the network contains no cycles of nega­
tive length. In Section 4, a test to verify this
assumption will be presented. For a given node
r E N, which we call the root, we want to de­
termine for each v E N, the length of the shortest
path from r to v, d(v), and to build a directed
tree rooted at r such that the unique path from
the root to any other node is the shortest path
between these nodes in G.

All algorithms for the shortest path tree have in
common that they start from an arbitrary tree T
and arbitrary labels d(u). Usually the following
initial labels are chosen:

d(r) =0,

d(u)=oo VuEN, u=Fr.

The algorithm updates the tree T and the labels
whenever it finds an arc (i, j) EA such that

d(i) + l(i, J) < d(j). (1)

The label d(j) is set to d(i) + l(i, j), and the tree
T is updated by replacing the current arc incident
to j by the arc (i, j). The process terminates
when all arcs (i, j) EA satisfy Bellman's optimal­
ity conditions,

d(r)=O,

d(i) + /(i, j);;;. d(j) V(i, j) EA.

(2)

(3)

0167-6377 /87 /$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 183

Volume 6, Number 4 OPERATIONS RESEARCH LETTERS September 1987

[4J'

[~L - - -

(7)
4

[3]

}--------;~5

[5] (9)

Fig. 1. Examples of sharp and non-sharp labels.

Gallo and Pallottino [3,4] showed that all pro­
posed algorithms are derived from this single pro­
totype method. The only difference between al­
gorithms is the data structure used to implement
the search for arcs violating optimality condition
(3). Usually all arcs going out of a node are
treated consecutively, i.e., the algorithm scans a
node. An extensive empirical study by Dial et al.
[2] has shown that no algorithm could be said to
dominate all others on all problem instances.
However, they concluded that, in general, for low
density networks a label-correcting algorithm
called C2 and proposed by Pape [8] was the most
efficient and that for networks of higher density a
label-setting algorithm called S2 and proposed by
Dantzig [1] performs best. In an attempt to ex­
plain these results Shier and Witzgall [9] studied
the properties of labelling algorithms. They dis­
covered that Pape's algorithm has an exponential
worst case complexity and that is successful be­
havior in practice could be explained by a prop­
erty of the labels they called 'sharp'.

A node v has a sharp label if the length of the
path from r to v in the current tree is equal to
d(v). In Figure 1, there is a five-node network.
With each node is associated a label in parenthe­
ses and with each arc a length in brackets. The
arcs belonging to the current tree are in bold,
other arcs are dashed. Presently nodes 1, 2 and 3
have sharp labels and nodes 4 and 5 do not have
sharp labels because arc (2, 3) was added to the
current tree and d(3) was updated. This tree mod­
ification causes labels d(4) and d(5) to be non­
sharp. Any scanning of a node v with non-sharp
label will have to be done again when d(v) will be
updated. It should be noted that for non-negative
arc length networks label-setting algorithms al­
ways scan sharp nodes.

Glover et al. [6] proposed the general partition­
ing shortest path (PSP) scheme. This scheme can

184

be used to produce several polynomially bounded
shortest path algorithms. In fact most algorithms
proposed to solve the SPT can be interpreted as
variants of the PSP.

The PSP algorithm (Glover et al. [6])
Step 0. Initialization. Initialize the predecessor

p (i) to define an arbitrary tree, and initialize a
distance label d (i) for each node,

p(i)=O '\liEN,

d(i)=oo 'ViEN, ief=r,

d(r)=O.

Set iteration count k = 0. The set of scan eligi­
ble nodes will be partitioned in two lists NOW
and NEXT. Initially NOW = { r} and NEXT= 8.

Step 1. Select an element of NOW. If NOW is
empty, go to Step 3. Select any node u from
NOW.

Step 2. Scan selected node u. Delete node u
from NOW. For each successor of u, i.e., v E

{vl(u, v)EA}, if d(u)+l(u, v)<d(v) then set
d(v) = d(u) + l(u, v), update T by setting p(v)
= u and add v to the NEXT list if v is not already
in NEXT or NOW. When all successors have been
examined go to Step 1.

Step 3. Repartition scan eligible nodes. If NEXT
is empty, stop. (Bellman's conditions are met by
all arcs.) Otherwise, set k = k + 1, transfer all
nodes from NEXT to NOW and return to Step 1.

In a subsequent paper, Glover et al. [7] pro­
posed several variants of the PSP and in an em­
pirical study compared them to the C2 and S2
algorithms. Three of the variants were the first
polynomially bounded sharp label-correcting al­
gorithms for the SPT. However, their computa­
tional complexity is an order of magnitude greater
than their non-sharp equivalent. These variants
have computational complexity 0(IN I 21 A I) for
two of them while similar non-sharp algorithms
have computational complexity 0(IN 11 A I). The
third sharp algorithm has complexity 0(IN j 3).
To overcome this disadvantage, they defined two
near-sharp algorithms for the non-negative arc
length case. In a near-sharp algorithm, at the
beginning of each iteration all the nodes in NOW
have sharp labels. Those near-sharp algorithms
have computational complexity 0(I N I I A I) and
one of the two, THRESH-X2, outperforms other
algorithms in the empirical study.

Volume 6, Number 4 OPERA TI ONS RESEARCH LETTERS September 1987

3. A new sharp algorithm for SPT

In order to scan only sharp nodes, the sharp
algorithm by Glover et al. [7] maintains sharp
labels at all the nodes through the whole process.
This can be viewed as a specialized variant of the
primal simplex algorithm. Each time the label of a
node v is updated, the algorithm also updates the
labels of all the nodes in the current subtree
rooted at v. This represents a considerable compu­
tational burden.

However, to obtain a sharp algorithm, it is not
necessary to maintain sharp labels at all the nodes;
we only need to assure that the label of the node
scanned is sharp. Checking if the label of a node is
sharp is simpler than maintaining sharp labels at
all the nodes. If the label of the node to scan is
not sharp, we simply have to update this label first
to have a sharp label. However, one has to be
careful in updating the label of node u to obtain a
sharp label. We must preserve primal feasibility
for all the arcs of the current tree, i.e., d(p(v)) +
l(p(v), v) ~ d(v), Vu* r. Let 8 be the correction
label d(u) needs to become sharp, if d(p(u)) +
l(p(u), u) < d(u)- o then to preserve primal
feasibility, the algorithm must correct all non-sharp
labels on the path from u to the root r. The
following Step la checks if a label is sharp and
updates it (if necessary). This step can be inserted
between Steps 1 and 2 in the PSP algorithm.

Step 1 a. Check if the label of the current node u
is sharp.

V = U,

o = d(u),
while v * 0 do

o = 8- l(p(v), v),
v=p(v),

end while.
{If o = 0, the label d(u) is sharp;
otherwise o is the correction needed to obtain a
sharp label.}
d(u) = d(u)- o.
Ii.d(p(u)) + l(p(u), u) > d(u)
then {The label of the predecessors of u must
also be corrected.}

v = u,
while d(p(v)) + l(p(v), v) > d(v) do

d(p(v)) = d(v) - l(p(v), v),
v=p(v).
If v is not an element of NOW or NEXT,
add v to NEXT.

end while,
end if.
Each Step la has computational complexity

0(IN I) if the access to l(p(v), v) takes constant
time. As the resulting algorithm is a variant of the
PSP algorithm, Lemmas 1 and 2 and Theorem 1
(except the part on computational complexity) of
Glover et al. [6] hold. Adding Step la modifies the
computational complexity of the algorithm. By
Lemmas 1 and 2 there are still at most I N I - 1
iterations of Step 3. The maximum number of arcs
treated at each iteration is still I A I· At each of
the possible I N I - 1 iterations, we have to check
at most I N I - 1 labels to see if they are sharp.
Therefore this variant of the PSP has computa­
tional complexity 0(IN I 3).

The implementation of this variant is rather
simple. We need three IN I length arrays: the
distance function, d (u), the predecessor function,
p (u), and the array lgtprec (u) containing the
length of the arc (p (u), u). This last array enables
constant time access to l(p(u), u). The imple­
mentation of the sharp algorithm of Glover et al.
[7] uses at least five IN I length arrays: distance
and predecessor functions as in our implementa­
tion and thread, depth and reverse thread func­
tions to update the labels of the nodes in the
subtree efficiently. Our simpler implementation
and better time bound raise the hope that our
variant of the PSP algorithm runs quicker than the
other sharp algorithms.

4. A test to detect negative length cycles

The assumption that there are no negative
length cycles is necessary to guarantee the ex­
istence of a shortest path tree. However, except
for networks with non-negative arc length, the
only way to detect negative length cycles is to use
an SPT algorithm, say the PSP algorithm. If the
algorithm terminates in less than I N I iterations,
then there is no negative length cycle, otherwise
there is at least one. It is possible to use a variant
of Step la to detect negative length cycles earlier.
If at any Step la, the path from node v to root r
in the current tree has more than IN I arcs, there
must be a negative length cycle. As the complete
tree has exactly I N I - 1 arcs, this is impossible
and we have detected a negative length cycle.

185

Volume 6, Number 4 OPERATIONS RESEARCH LETTERS September 1987

Fig. 2. Current tree before scan of node 5.

In Figure 2, using the same conventions as in
Figure 1, we can see the current tree before scan­
ning of node 5 and formation of a cycle in this
tree. As soon as the algorithm tries to scan a node
belonging to the same subtree as the cycle, i.e.,
nodes 3, 4, 5, 6 in Figure 3, the modified Step 1 b
detects the cycle. The modified Step 1 b is as
follows:

Step 1 b. Check if the label of the current node u
is sharp and try to detect negative length cycles.

v=u,
Ip = 0, {is the # of arcs in the path from u to r
in the tree;}
8=d(u),
while v -:/:- 0 and Ip < I N I do

8 = 8 - l(p(v), v),
v = p(v),
Ip= Ip+ 1,

end while.
If Ip= IN I then stop. {Step lb has detected a
negative length cycle.}
{If 8 = 0, the label d (u) is sharp;
otherwise 8 is the correction needed to obtain a
sharp label.}
d(u) = d(u) - 8.
If d(p(u)) + l(p(u), u) > d(u)
then {The label of the predecessors of u must
also be corrected.}

v = u,

(2) [3] (3)

[2] ~~[;] ___ 4~1] <ov ~ . , 4)

CD [!]: \ [OJ 6
I ' '(f
I ' /

[l] [2] ,,'[2]

3
(!) [-3] 5

(3)

Fig. 3. Current tree after scan of node 5.

186

while d(p(v)) + /(p(v), v) > d(v) do
d(p(v)) = d(v)- l(p(v), v),
v = p(v).
If v is not an element of NOW or NEXT,
add v to NEXT.

end while,
end if.
Step lb detects negative length cycles without

modification to the computational complexity of
the new algorithm.

Recently Glover and Klingman [5] suggested a
modification to the sharp algorithm leading to the
earliest possible detection of negative length cycle.
As any negative length cycle introduced while
scanning node u must include this node, they
suggest to add a negative length detection step
after each scanning step. This Step 2a would be as
follows:

Step 2a. Try to detect negative length cycles
introduced during the last scanning step.

u= u,
Ip = 0, {is the # of arcs in the path from u to r
in the tree;}
while v -:/:- 0 and Ip < I N I do

v=p(v),
Ip= Ip+ 1,

end while.
If Ip= IN I then stop. {Step 2a has detected a
negative length cycle.}
The resulting algorithm would include Step la

before the scanning step and Step 2a after it. It is
easy to check that the worst case complexity of
this algorithm would be 0(I N I 3).

5. Conclusion

In this note, a sharp PSP algorithm for the
general case of the SPT was presented. It is possi­
ble to modify the two other sharp PSP algorithms
presented by Glover et al. [7] in the same fashion
to obtain a sharp threshold algorithm for the
non-negative arc length case having computational
complexity 0(IN 13) or by limiting the number of
nodes transferred from NEXT to NOW as in their
third variant to obtain an algorithm having com­
putational complexity 0(I N I 2).

We proved that sharp algorithms having com­
putational complexity of the same magnitude as
non-sharp algorithms exist, and devised a test for
early detection of negative length cycles. Two
questions remain open. Is there a sharp label-cor-

Volume 6, Number 4 OPERATIONS RESEARCH LETIERS September 1987

recting algorithm with computational complexity
0(I N I I A I)? And will the improved sharp al­
gorithms be competitive in practice?

6. Note

The referee pointed out to the author some new
work on sharp algorithms for the SPT by Glover
and Klingman [5]. They refine the concept of
sharpness and introduce new sharp algorithms
and new early negative length cycle detection steps.

References

(1] G.B. Dantzig, Linear Programming and Extensions, Prince·
ton University Press, Princeton, NJ, 1963.

(2] R. Dial, F. Glover, D. Karney and D. Klingman, "A
computational analysis of alternative algorithms and label­
ling techniques for finding shortest path trees", Networks
9, 215-248 (1979).

[3] G. Gallo and S. Pallottino, "Shortest path methods in
transportation models'', in: M. Florian, ed., Transportation
Planning Models, North-Holland, Amsterdam, 1984,
227-256.

(4) G. Gallo and S. Pallottino, "Shortest path methods: A
unifying approach'', Math. Programming Study 26, 38-64
(1986).

(5) F. Glover and D. Klingman, "New sharpness properties,
algorithms and complexity bounds for partitioning shortest
path procedures", Management Science/Information Sci·
ence Report 87-3, Graduate School of Business Adminis­
tration, University of Colorado, Boulder, CO, 1987.

(6) F. Glover, D. Klingman and N. Phillips, "A new polynomi­
ally bounded shortest path algorithm", Operations Res. 33,
65-73 (1985).

(7] F. Glover, D. Klingman, N. Phillips and R. Schneider,
"New polynomial shortest path algorithms and their corn·
putational attributes", Management Sci. 31, 1106-1128
(1985).

(8] U. Pape, "Implementations and efficiency of Moore-al­
gorithms for the shortest route problems", Math. Program­
ming 7, 212-222 (1974).

(9] D. Shier and C. Witzgall, "Properties of labelling methods
for determining shortest path trees", J. Res. Nat. Bur.
Standards 86, 317-330 (1981).

187

