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Absrracr.· The odd-even hopscotch (OEH) scheme.. which is a time-integration technique for time-dependent partial 
differential equations, is applied to the incompressible Navier-Stokes equations in conservative form. in order to 
dt-'Couple the computation of the velocity and the pressure, the OEH scheme is combined with the pressure correction 
technique. The resulting scheme is referred to as the odd-even hopscotch pressure correction (OEH-PC) scheme. As a 
numerical example. we use the OEH-PC scheme to compute the flow through a reservoir. 1bis contribution is based on 
the work reported in [13). We refer to that paper for a more comprehensive discussion of the OEH-PC scheme. 

L The OEH-PC scheme: time-integration 

In this section we consider the odd-even hopscotch (OEH) scheme applied to the incom
pressible Navier-Stokes equations in conservative form. The OEH scheme is an efficient 
integration technique (regarding computing time and storage requirements) for the solution of 
time-dependent partial differential equations (PDEs) [3,4]. We combine the OEH scheme with 
the pressure correction method, in order to decouple the computation of the velocity and the 
pressure in a predictor-corrector fashion [1,2,9]. In what follows, the resulting scheme will be 
referred to as the odd-even hopscotch pressure correction (OEH-PC) scheme. 

Consider the incompressible Navier-Stokes equations in conservative form in d space 
dimensions ( d = 2 or d = 3) [10] 

u=/(u)-Vp, with /(u)= -v·(uu)+ iev2u. t>O, xE!l; (1.1) 

V'. u = 0, t>O, xEg, (1.2) 

where u is the (scaled) velocity, p the (scaled) presure, and Re the Reynolds number. Boundary 
conditions. to be specified for the velocity field u on the boundary r of the connected space 
domain !?, will be introduced later. We shall present the OEH-PC scheme for (1.1), (1.2) by 
following the method of lines approach [8]. Thus we suppose first that by an appropriate finite 
difference space discretization the PDE problem (1.1), (1.2) is replaced by a system of (time-con-

0377-0427/87/$3.50 © 1987, Elsevier Science Publishers B.V. (North-Holland) 



394 J.H.M. ten Thije Boonkkamp / Odd-even Hopscotch correction scheme 

tinuous) ordinary differential equations (ODEs) coupled with a set of (time-continuous) alge
braic equations 

U=F(U)-GP, 
DU=B. 

(1.3) 
(1.4) 

In (1.3) and (1.4) U, F(U) and P are grid functions defined on a space grid covering D, and 
represent the finite difference approximation to respectively u, f(u) and p. The operators G and 
D are the finite difference replacements of respectively the gradient- and divergence-operator 
and B is a term containing boundary values for the velocity u. 

We are now ready to define the OEH-PC scheme for the semi-discrete PDE problem (1.3), 
(1.4). In this section j = (j1, ••• , id) is a multi-index connected to the grid point x1 of the space 
grid under consideration and U; the component of U for x1 (likewise for F(U) and P). First we 
consider only the ODE system (1.3) (Suppose for the time being that P is a known forcing term.) 
For this system the OEH scheme is given by the numerical integration formula 

U/+ 1 - r8f +1( F( U)j+ 1 - ( GP)j+ 1 ) = U/ +TO/ ( F( U)j - (GP )j). (1.5) 

Here T = tn+i - tn is the time step, U;n stands for the fully discrete approximation to U;(tn), and 
8 is a grid function whose components 0/ are defined by [3,4] 

8~= I { 
1 if n + "2;ii is odd (odd points), 

1 0 if + °LJ; is even (even points). 
(1.6) 

Note that if we keep n fixed, then (1.5) is just the explicit Euler rule at the odd points and the 
implicit Euler rule at the even ones. 

A somewhat more convenient form of (1.5), for its presentation, reads 

un+l = un + -rFo(Un) + TFE(un+l) - T(GPn)o-T(GPn+l)E, {1.7) 
where F0 is the restriction of F to the odd points (etc.). Note that F0 +FE= F. We shall use this 
(method of lines [8]) formulation in the remainder of the section. It is also customary to write 
down two successive steps of (1.7) with step length !r, where the order of explicit and implicit 
calculations alternate [8,12} 

U= un + i-rFo(Un) + iTFE(U) - iTGPn' 

un+l = U+ iTFE(U) + ~TF0(Un+l)- iTGpn+t. 

(1.8a) 

(l.8b) 

Alternating between explicit and implicit calculations is the essential feature of the OEH scheme. 
Scheme (1.8a), (1.8b) is a one-step scheme for the ODE system (1.3) using stepsize T and U is 
interpreted as a r~sult from the intermediate time level n + i. Further we note, that when 
considered as an ODE solver, this scheme is 2nd order accurate. We also observe that in (1.8a) P 
is set at time level n and in (l.8b) at level n + 1. An alternative, for maintaining 2nd order, is to 
compute P at time level n + ! both stages. However, the choice made in (1.8) is better adapted 
to the pressure correction approach which we shall discuss now. 

Consider (l.8a), (l.8b) coupled with the (time-discretized) set of algebraic equations 
Dun+1 = Bn+i. (1.8c) 

The computation of un+I and pn+I requires the simultaneous solution of (1.8b) and (l.8c). In 
order to avoid this, we follow the known pressure correction approach [l,2,9], in which the 
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computation of the velocity and pressure at the new time level is decoupled in the predictor-cor-
rector fashion. _ 

Substitution of pn for pn+l in (l.8b) defines the predicted velocity U. The corrected velocity 
and pressure (which we hereafter also denote by un+l and pn+i and hence not should be mixed 
up with the appr.oximations in (l.8a), (1.8b) and (1.8c)) are then defined by replacing F0 (U"+ 1) 

in (l.8b) by F0 (U): 

U"+ 1 = U + iTFE(U) + !rF0 (U) - !TGP"+ 1 , (1.9) 

together with the discrete continuity equation (1.8c). From (1.9) and the modified equation (1.8b) 
we trivially get 

un+l _ U= -1-TGQn, Q"+pn+l _pn_ (1.10) 

The trick of the pressure correction approach is now to multiply (1.10) by D and to write, using 
(l.8c), 

(1.11) 

Since L = DG is a discretization of the Laplace operator v · ( V), the correction Q" for the 
pressure can be obtained by applying a Poisson solver. Once Q" is known, the new velocity un+I 
can be directly determined from (1.10). 

To sum up, the OEH-PC scheme for the semi-discrete Navier-Stokes problem (1.3), (1.4) 
reads 

U= un + hFo(Un) + !TFE(ii)- iTGP", 
- -

U= if+ !TFE(U) + !TF0 (U)- hGPn, 

LQ"=~(DO-Bn+1), pn+l=P"+Q", 

(1.12a) 

(l.12b) 

(l.12c) 

un+l = U- !TGQ". (l.12d) 

We conclude this section with two remarks. First, the 2nd stage (l.12b) can be economized by 
using its equivalent fast form (Cf. [3,4]) 

~ -
OE = 2UE - u;.' Vo= Uo + !TFo ( {j) - iT (GP" )o. (1.12b') 

Our implementation is based on this fast form. Second, in the derivation of scheme (1.12) no use 
has been made of the particular definition of F0 and FE, except that F0 +FE= F. Consequently, 
in the spirit of the method of lines formulation [8], pressure correction schemes using other 
splittings of F, such as ADI, can also be described by (1.12) (see e.g. [9] where an ADI splitting is 
used). 

2. The OEH-PC scheme: space discretization 

This section is devoted to the space discretization of the Navier-Stokes problem, which 
defines the fully discrete OEH-PC scheme. For the sake of presentation, we restrict ourselves to 
2-dimensional rectangular domains. 
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Consider the 2-dimensional incompressible Navier-Stokes equations in conservative form 

u1=/1(u, v)-px with/1 (u, v)= -(u2 )x-(uv)y+ ~e(uxx+uyy), (2.la) 

v1=f2 (u, v)-py with/2 (u, v)= -(uv)x-(v2 )y+ ~e(vxx+vyy), (2.lb) 

Ux +Vy= 0, (2.2) 

with boundary conditions 
u=ur, v=vr onr=as&. (2.3) 

Note that there are no pressure boundary conditions available, although we have to solve a 
Poisson equation for the pressure. We will return to this point later in the section. 

For the space discretization, we use the staggered grid first introduced by Harlow and Welch 
[6], see Fig. 1. The application of standard, 2nd order central differences on this grid converts 
(2.la) and (2.lb) into (cf. (1.3)) 

where 

(f;j = F1,ij(U, V) - dxP11 , i = l(l)N-1, j = l(l)M (interior X-points), 
(2.3a) 

i = l(l)N, j = l(l)M -1 (interior 0-points), 
(2.3b) 

(2.4c,d) 

Fig. 1. The staggered grid. 
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Note that in the above formulation U, V and P are time-continuous grid functions whose 
components ll;j, v;j and Pij approximat~ the velocities u, v and the pressure p, respectively, at 
the corresponding gridpoints_ In (2.~) v;j represents an approximation to V in the X-points 
(points we~ U is defined); likewise lf;j represents an approximation to U in the 0-points. The 
values of v;j and ll;j are determined by averaging over neighbouring values of respectively v;j 
and U;1 in such a way that the odd-even coupling between the variables is preserved. This means 
that a variable in an odd point is only coupled with variables in even points and vice versa This 
leads to 

(2.5) 

The space discretization of (2.1), as defined in (2.3), (2.4) determines the vector-function F( U) 
and the operator G jn (1.3). Let U= (U, V)r, then F;iU) = (F1.iJ(U, V), F2,;iU, V))T and 
GP;j = (dxP;1, dyP,) . 

Treatment of the boundary conditions for the velocity is somewhat tedious. Consider e.g. 
equation (2.4b) in a 0-point (1, }), which involves the value VQ1 outside the computational 
domain. There are various ways to define the outside value V01 , Cf. [10]. We applied a simple 
reflection technique, which consists of writing the given velocity V1121 on I' as the mean value of 
the two neighbouring velocities V01 and V11 , so that VQ1 = 2Vi111 - Vi1; see Fig. 1. 

Equation (2.2) is discretized (using central differences) in all ·-points as 
1 

(DU)ij•= ;;(U;1 - lJ;_ 1,1+/3(ViJ-v;,1_1))=0, (2.6) 

where fJ = h/k. Note that boundary values for U or V occurring in (2.6) are written in the right 
hand side B (cf. (1.4)). For example, for j = 1, equation (2.2) is discretized as 

1 1 
(DU)n = y;(ll;1 - ll;-1,1 + /3V,·1) = B11 = k V:o· (2.6') 

Having defined the operators G and D, one can easily deduce the following expression for the 
operator L 

(LQ);j = D( GQ);1 = *( dxQij - dxQi-l,J + /3(d.vQiJ- dyQ;,1-1)) 

(2.7) 

which is the standard 5-point molecule for the Laplace operator. Near a boundary (2.7) takes a 
different form, because of the different definition of the operator D. For example for j = 1, one 
finds 

1 
(LQ)il =D(GQ)n = y;(dxQil -dxQi-1,1 +/3dyQ;1) 

= :1 (Q;-1,1 - (2 + /3 2)Q;1 + Qi+l,l + fJ 2Q;2)· (2.7') 

Now consider equation (1.12c) at the ·-points (i, 1) (i = l(l)N). Using (2.6), (2.6'), (2.7) and 
(2.7'). it is easy to see that (Q;o- Q;1)/k = 2(V;0+ 1 - V;0 )/r = 0, which is the (central difference) 
approximation of (aQ;an)((i - ~)h, 0) = 0, where n is the outward unit normal on x = 0. Hence 
we see that a Neumann condition for the pressure (-increment) is automatically involved in the 
scheme. 
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3. A numerical example: flow through a reservoir 

In this section we discuss results of the OEH-PC scheme when used to compute the flow 
through a reservoir [9] (see Fig. 2). Computations were performed subject to the following initial
and boundary-conditions: 

initial conditions: u = v = 0 for t = 0 
boundary conditions: 

no slip : u = 0, v = 0, 

free slip: uY = 0, v = O; 

inlet: u = 0, v = -432(x - l)2x(l - e-t), 

outlet: u = 432{t - y )y(l - e-t), v = 0. 

Notice that the boundary conditions satisfy 

fao. u · n ds = J £ V" · u dS = 0, 

where n is the unit normal on ().Q (conservation of mass). The outlet boundary condition, which 
is a Poisseuille profile is not very realistic, especially not for high Re-numbers since it causes a 
numerical boundary layer at the outlet. This boundary layer may cause oscillations in the 
solution in the interior domain. Therefore, we have to look for other outlet boundary conditions 
with minimal influence on the interior flow field. A suitable outlet boundary condition is the 
so-called traction-free boundary condition. This means that there are no viscous normal and 
tangential stresses at the outlet, Cf. [5], i.e. 

(3.1) 

However, these boundary conditions do not easily fit in the OEH-PC scheme. Another possibility 
we adopt is to extend the computational domain with a horizontal pipe connected at the outlet 
(extended domain). The assumption hereby is that the flow has fully developed into a Poisseuille 
flow at the end of the pipe, which is a realistic assumption provided the pipe is long enough. In 
our computations we did not bother about the length of the pipe, and took it equal to 1. The 
horizontal walls of the pipe are no slip walls. 

The Poisson solver we used is the multigrid algorithm MGD5V, which is a sawtooth multigrid 
iterative process (i.e. one relaxation-sweep after each coarse grid correction) for the solution of 
linear 2nd order elliptic boundary value problems [7,11). This multigrid method uses incomplete 
line LU-decomposition as relaxation method, a 7-point prolongation and restriction, and a 

no slip no slip 

J. 
8 

'outlet 
'--~~~~~~~~~ 

0 no slip 

Fig. 2. The reservoir. 
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Galerkin approximation for the coarse grid matrices. The multigrid process was repeated until 
the /2-norm of the residual was less than io-6. 

We have computed the solution of Re= 100(100)800 on the original domain as well as on the 
extended domain, on a staggered grid with gridsize h = k = f,z. Time-integration was performed 

from t = 0 to t = 4. The time step T was bounded by the linearized stability restriction 
r/h ~ fi /(umax), where umax is the (modulus of the) maxi.mum velocity. This (time step) 
restriction is based on von Neumann analysis applied to the OEH scheme for the corresponding 

Re=IOO 

Re=500 

.. - -----. 
Re '=800 

- .. - -----. 
Fig. 3. Velocity field at t = 4 for Re= 100, 500 and 800. 
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linear convection-diffusion equation (12,13]. Consequently we have chosen -r = ih for Re= 
100(100)700 and -r = ih for Re= 800, although these values for -r are not the optimal ones. 
However, especially for increasing Re, we prefer to remain on the safe side in order to prevent 
non-linear instabilities. Another reason to be careful is the fact that we use the pressure 
correction method, the influence of which on stability is not yet fully clear. In Fig. 3 and 4 you 
find the velocity and the isobars for respectively Re = 100, 500 and 800 at t = 4 computed on the 
extended domain (the pipe of the extended domain is not shown in these figures). 

Re,,,,100 

Re=SOO 

Fig. 4. Isobars at t = 4 for Re= 100, 500 and 800. 



J.H.M. ten Thije Boonkkamp /Odd-even Hopscotch correction scheme 401 

From our numerical experiments we can draw the following conclusions. For small Re-num
bers (Re~ 200), there is hardly any difference between the velocity field and the isobars 
computed on the original domain and on the extended domain. The velocity fields computed on 
both domains are virtually free of oscillations. However, small oscillations do occur in the 
velocity field for Re > 200. In this case, the velocity field computed on the extended domain is 
slightly better (small oscillations) than the velocity field computed on the original domain. The 
isobars computed on the original domain for Re > 200 are not correct, whereas the isobars 
computed on the extended domain are much more realistic. 

We borrowed this model problem from van Kan [9]. He computes the flow (without pipe) 
using a pressure correction Crank-Nicolson ADI scheme (ADI-PC scheme). The outflow 
boundary conditions he uses are a Poisseuille profile and the traction-free boundary conditions. 
Comparing his results with ours, we can conclude the following. Our velocity fields are in good 
agreement with the corresponding ones computed by van Kan. However, his results are more 
disturbed by oscillations than ours, and this is due to the numerical boundary layer at the outlet 
occurring in his computations. We note that for the corresponding linear convection-diffusion 
problem the ADI scheme is unconditionally stable, whereas the OEH scheme is only condition
ally stable [12,13], so that with respect to stability he can take larger time steps. The computa
tional costs per time step for the OEH scheme are less than those for the ADI scheme, since the 
OEH scheme is in fact an explicit scheme [13], and the ADI scheme requires the solution of a 
number of tridiagonal linear systems. Therefore it is not clear, which scheme is to be favoured 
regarding the computational time required. Another point is that extension of the computational 
domain is rather tedious using as ADI technique, whereas for the OEH scheme this extension is 
straightforward to implement. Finally we note that both schemes behave 2nd order in space and 
time. 
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