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Experimental mathematics in this paper is understood to mean the use of a 
computer tor doing mathematical experiments. For instance experiments 
designed to get the first glimmer of an idea how to tackle a given set of prob­
lems or experiments to indicate where to look for counterexamples or to pre­
cisize conjectures. This is rapidly becoming a major area of research and may 
well develop into a semi-separate discipline like computational fluid dynamics 
or statistics. 

1. INTRODUCTION 

The subject of description and discussion in this note is experimental 
mathematics. With this phrase I mean - more or less - using a computer as 
a mathematical laboratory, in which there can be done experiments for gaining 
insight and intuition for understanding (mathematical) problems and which 
can serve to generate ideas for conjectures. Or experiments which can suggest 
where to find, or how to construct, a counterexample. Or experiments designed 
to illustrate and modify certain potential routes for proving a conjecture and 
calculations to test or refine certain, as yet quite vague, conjectures. In brief I 
intend to discuss a branch of mathematics which relates to more established 
mathematical thinking roughly as experimental physics to theoretical physics. 

It is a simple fact of observation that computational results may - and very 
often do - lead to the development of new mathematics, i.e., also conceptual 
advances; just as observational and experimental results have always done 
since the time of Archimedes, both in the physical sciences and in mathemat­
ics. 

Of course experimental mathematics in this sense is not purely a modern 
phenomenon. It is well known that GAUSS did masses of calculations (exam­
ples) and derived insights from the results and e.g. the Littlewood-Richardson 
rule1 in the representation theory of the symmetric groups and general linear 
groups was first observed empirically in 1934, [77], later proved and since has 
led to a minor industry in combinatorics and representation theory. 

However computers have certainly added a new dimension to the enterprise 
of experimental mathematics, as if our mathematical laboratory suddenly 
obtained a new batch of instruments for measuring and exploring a new range 
of phenomena; also it may well be that in many fields of mathematics a 
natural limit for 'hand' calculations had been reached. In any case, the last 20 
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years or so have seen (the beginning ~f) a r_emarkab~e flowerin.g of expe~men­
tal mathematics often in the hands of mvestigators with a physical or engmeer­

ing background. 
My interest here, in this talk, is in experimental mathematics as a tool of 

discovery. That means that I shall not really talk about scientific computing in 
so far as that activity is aimed at obtaining numerical answers for problems 
which are well understood (in principle) and solved, but where actually doing 
all the calculations is beyond the capacities of a modern human calculator 
(and even of one of a number of generations ago), irrespective of how much 
ingenuity and talent is needed to do the job numerically. However, there is no 
sharp boundary between scientific computing and experimental mathematics 
for several reasons. It may, for instance, very well happen that a computational 
scheme will suggest conceptual advances (cf. subsection 3.4 below), or be so 
successful that a mathematical challenge arises: is this merely an unusually 
successful numerical trick or do we here have evidence for a previously 
unrecognized 'truth' about a certain mathematical or physical, or chemical, or 
... , problem (cf. especially subsection 3.13 below and also the later half of note 
5). Scientific computing is already a multi-billion dollar industry (with compu­
tational fluid dynamics taking care of most of the budget) and well on its way 
to becoming a separate mathematical discipline - much like e.g. statistics - , 
with a methodology and aesthetics of its own. There certainly is something like 
a beautiful computation, and in that aspect it becomes very close to experi­
mental mathematics which, in my view, will also become - it probably 
already is - a discipline in its own right. 

There is also a second reason why scientific computing, or even just the 
availability of enormous computing power, stimulates 'pure' mathematics. The 
mere existence of computing power has influence on the kinds of theoretical 
problems which can be considered and investigated27 . Thus a number of 
research areas with a fully developed theoretical (or pure, if one wants) com­
ponent, like e.g. semi-parametric statistics - I have in mind bootstrap 
methods and the jackknife statistic [37] -, two and more dimensional statistics 
(with its heavy dependence on computer graphics) [96]4, and computerized 
(read: applied) tomography would probably not have existed without very sub­
stantial computing power [64]. In this connection it is interesting to observe 
that the theoretical problem at the basis of computerized tomography, inver­
sion of the Radon transform, was solved in 1917 [95]; as a matter of fact the 
formula seems to have been known (in dimension 3) to the Dutch physicist 
LORENTZ before 1906 cf. [21], [110], and it has been rediscovered indepen­
dently a number of times2 • A Nobel prize was given for applying - more 
precisely: implementing - this formula and, later, these applications gen­
erated, and still generate, whole series of new theoretical problems [64], [53]. 

I shall also not discus 'computer assisted proofs' such as that of the four 
colour problem, and I shall certainly not say anything about the philosophical 
implications and questions thereof [35, page 380-386]. 

Also, these lines are written from the point of view of a user of experimental 
mathematics but not a doer, and I shall concentrate on three examples where 
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doing experiments (of quite moderate size as such things go) resulted in new 
~nexp~ted insights, sometimes concerning a topic where really nothing 
mterestmg was supposed to happen. And where the mathematical experiments 
gave rise to new concepts, solution methods and even whole new areas of 
inquiry. The examples which will be discussed briefly and anecdotically below, 
in general terms, and omitting virtually all hard mathematics are 'the h~rd hex­
agon model of lattice statistical mechanics', 'chaos and universality for iterated 
maps' and 'integrable systems and the soliton revolution'. These three exam­
ples are the topics of respectively Sections 4, 5, 6 below. Besides that a number 
of other examples will be briefly mentioned in Sections 3 and 7. 

2. Two CONTRASTING OPINIONS 

Here are two rather opposite opinions: 

'As I see it, within another generation, the mainstream of 
mathematics will not be analysis, number theory and topology but 
rather numerical analysis, operations research, and statistics. ... I 
am not suggesting that the pure areas of mathematics or for that 
matter the classical topics in applied mathematics such as 
transform methods, partial differential equations and approxima­
tion theory, will disappear. Instead like Newtonian mechanics, they 
may move permanently from centre stage in mathematics depart­
ments.' J.C. FRAUENTHAL (45] 

' ... by the judicious use of computers we can penetrate into new 
areas and discover linkages to diverse areas of mathematics unfore­
seen by our forebears. With insight obtained from numerous solu­
tions, often displayed naturally by graphs and cinemas, we may be 
liberated from the prejudices of our conservative and sometimes 
misguided mathematical intuitions. 
Almost everyone using computers has experienced instances where 
computational results have sparked new insights. The range 
covered is large: from uncovering mistakes in formal derivations or 
calculations to suggestions for combinations of parameters with 
which to make asymptotic expansions and thereby obtain equa­
tions which are analytically tractable; and finally to shining the 
light of inspiration into areas which have been thought devoid of 
possible new concepts or new fundamental truths. . 
Although several pioneering steps have been taken, we are 3ust at 
the beginning of a mind augmenting revolution . that ~expe?sive 
and robust computing will allow the prepared mvesttgator. N. 
ZABUSKY (116] 

This is precisely as JOHN VON NEUMANN expected things to develop. Speaking 
in 1946 he remarked (48]: 
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'The advance of analysis is at this moment stagnant along the 
entire front of nonlinear problems ... not transient ... we are up 
against an imported conceptual difficulty.' 

And he was counting on the computer to remedy this situation [ibid.]: 

'. .. we conclude by remarking that·really efficient high-speed com­
puting devices may, in the field of nonlinear partial differential 
equations as well as in many other fields which are now difficult or 
entirely denied of access, provide us with heuristic hints which are 
needed in all parts of mathematics for genuine progress ... . This 
should lead ultimately to important analytical advances.' 

Also, one should perhaps reflect that our much vaunted intuition (in 
mathematics) and feeling for phenomena is perhaps overrated. H. HAHN, [56], 
once described intuition as 'force of habit rooted in psychological inertia' 3•7, 
and without fresh experience to feed on, one can easily see how this might 
become so. If, therefore, as seems to be the case, we have indeed in a number 
of fields reached something of a limit in computation by hand, experimental 
mathematics becomes a must. Quoting HAHN, as above, ZABUSKY, loc. cit., 
speaks in this connection of the enriching possibilities of 'computational syner­
getics' and mathematical innovations, given a judious use of computer power. 

Below in Sections 4, 5, 6 I shall try to describe in more detail how in a few 
instances experimental mathematics - theoretical and applied mathematics 
interactions - went, and shall try to point out the synergetic influences. These 
short descriptions and the section of loose quotes below should suffice to indi­
cate which way things seem to be going. 

In addition it seems worth remarking that in all three of the main examples 
described below there is nice mix of pure and applied mathematics (besides 
experimental mathematics and physics) and not much seems to remain of the 
supposed gap between the two. This also makes papers dealing with these 
topics hard to classify, a more and common phenomenon, which indicates that 
present day mathematics is far less tree like than would be convenient for 
bibliographical and information storage and retrieval purposes. 

3. QUOTES 

As I remarked before, and as ZABUSKY remarked in the quote above, it is a 
simple fact of experience that doing mathematical experiments on a computer 
may easily lead to sudden illuminating (true or false, but stimulating) insights. 
Let me try to illustrate this by quoting from the more recent scientific litera­
ture. Let me also stress that I made no especial effort to find such quotes. 
These are simply the ones I happened to come across since the moment, now 
about a year ago, when I started thinking about a lecture on experimental 
mathematics. There are likely to be many many more and it seems clear that 
the controversy indicated above was in fact already settled long before 
FRAUENTHAL made his remarks. 
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3.1. From computational physics in general 

'The goals of computation .... include the discovery of new simpli­
fying physical principles by observing the computed behaviour of 
the model.' D.R. HAMANN [57]5•6 
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To this I would also like to add that computers enable both experimentalists 
and theorists to explore physical systems in a manner not previously possible 
(by 'real' experiments). For instance certain parameters can be pushed to 
unphysical values, or simply to values impossible to realize in an existing 
laboratory. Also this way experiments can be carried out in sciences where 
experiments have been said to be impossible; such as economics. 

And it is well known that (new) principles often manifest themselves most 
dearly in some sort of limit, some sort of extreme case. As R. ISAACS remarks 
in his advice to young applied mathematicians [65]: if you do not understand 
how something will behave, take an extreme case. 

3.2. Concerning Yang-Mills gauge theories 
For a quantum field theory of strong interactions based on quarks (interacting 
by exchanging gluons) one wants both 'confinement' wherein an isolated quark 
would have infinite energy and asymptotic freedom which means that the 
interactions between quarks become weaker as they move closer together. This 
seems hard to do, and maybe even counterintuitive. However out of Monte 
Carlo simulations for studying solutions to interacting quantum fields there 
came: 

'The main result is that we now have rather compelling numerical 
evidence that this theory [Yang-Mills gauge theory] can simultani­
ously give rise to the phenomena of quark confinement . .. and 
asymptotic freedom ... .' M. CREUTZ [32] 

3. 3. On food webs 
A food web is a schematic diagram showing the (who eats whom) relationships 
among species in a community of plants and animals. Omnivores are animals 
consuming prey from two or more trophic levels. In simulated webs with 
Lotka-Volterra interactions between species long food chains lead to severe 
population fluctuations that are inconsistent with long-term persistance. Also 
numerical studies of the dynamical stability of model webs with Lotka-Volterra 
interactions predict that the number of omnivores in a real food web is 
significantly lower than would be found if the connections within the web were 
made at random. This last fact turned out to be the case, and the first one goes 
a way towards explaining that in real food webs species tend to interact 
directly only with a handful, four or five or so, of other species regardless of 
the size of the ecological community. Sources for these remarks are [93] and 
[83]. 
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3.4. From computational fluid dynamics (CFD) 
Computational fluid dynamics (CFD) is the process of solving problems in 
fluid dynamics (including aerodynamics) on a computer. That is they basically 
deal with one particular set of partial differential equations, the Navier-Stokes 
equations. In spite of that, this is a multi-billion dollar industry which mostly 
belongs to scientific computing and which is rapidly turning into a discipline 
of its own (besides applied mathematics, statistics, pure mathematics, experi­
mental mathematics, ... ) with its own aesthetics and paradigms. It has how­
ever very definite and interesting relations with all three of pure, applied and 
experimental mathematics. For example: 

'Some mathematical and CFO developments go hand in hand: 
Lax's theories of hyperbolic conservation laws and of differencing 
in conservation form (see [74], [75]) are parts of a single picture. 
A recent example is provided by Glimm's existence proof for non­
linear hyperbolic equations [47], which was loosely suggested by 
Godunov's computing scheme and has in turn given rise to new 
algorithms (see [29]).' A.J. CHORIN [28] 

3. 5. On glassy solids and quench echos 

'When we try to understand atom motion in amorphous solids we 
face a complicated problem in classical mechanics. ... . Without a 
periodic crystal lattice to simplify the calculations, we must look 
for other properties that make things tractable. A phenomenon 
recently observed in computer models of many-body systems gives 
us such a simplification, at least in the calculation of a number of 
properties of glassy solids. 
In spite of their seemingly random motion, atoms in computer­
simulated glasses 'remember' the time interval between a pair of 
freezings, simplifying certain many-body calculations.' S.R. NAGEL 
a.o. (89] 

3.6. From geology 
One use of simulation or computer modeling is to find out whether certain 
accepted axioms of dogmas are indeed tenable. Just as mathematics has often 
been concerned with the question of whether a certain set of axioms is compa­
tible. Cf. also note 7. From palaeo geomagnetics we have e.g.: 

'Computer models, designed to synthesize palaeosecular variations 
of the geomagnetic field, cast doubt on some widely accepted 
palaeo magnetic dogmas.' K.M. CREER (31] 
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3. 7. A chaotic quote 

<:_haos, in .the set~g of iterated ~aps of ~ interval into itself, will be briefly 
discussed m Sect10n 5 below. Penod doubling bifurcations play an important 
role there. From thermosolutal convection (convection in the presence of a sta­
bilizing concentration of a solute): 

'Numerical experiments on two-dimensional convection reveal a 
transition from periodic oscillations through a sequence of period­
doubling bifurcations. ... . This is the first example of period­
doubling in solutions of partial differential equations.' D.R. 
MOORE a.o. [87] 

3.8. From catalytic chemistry 
The properties of single atoms (from a chemical point of view) have been 
known for a long time and also those of bulk substances, but not those of clus­
ters of say 2-200 atoms. Especially in connection with catalysis. 

'Some preliminary computational studies and complementary 
model experiments, ... , suggested that some really exciting chemis­
try could exist in this domain and provided a strong incentive to 
learn how to make the clusters.' Tu.H. MA.UGH II [82] 

3.9. Re-phase transitions and the van der Waa/s picture of liquids 

'A remarkable revival of the van der Waals picture of liquids 
occurred during the last two decades. This renaissance was spurred 
by the discovery [l], [2], [115] from computer simulations that a 
system of hard spheres (impenetrable 'billiard balls') has a first 
order fluid-solid transition that is intimatedly related to the freez­
ing and melting transitions of real materials ... .' D. CHANDLER 

a.o. [27] 

3.10. Re-planet formation 
One possible model for the formation of the planets of our solar systems 
involves the idea of lots of small pieces which when they collide may under the 
right conditions adhese to one another. This idea was computer-simulation 
tested by G.W. WETHERILL with spectacular results as the pictures below will 
testify36 • The first picture refers to the initial state ~th . a hun&:ed 
planetesimals, the second depicts the situation after a long tune mte1:"al with 
about 20 •small planets' and the third depicts the result a really long tune later 
with just five planets left. 
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FIGURE 1, from [112] FIGURE 2, from [112] 

FIGURE 3, from [112] 

3.11. From cosmology 

'Take a mixture of gas and dust, cook it appropriately with the aid 
of a large computer and a galaxy may emerge. That, at least, is the 
dream of astronomers who study the most remote galaxies.' J. 
SILK (103] 

Besides that it has become clear that the universe contains very large, indeed 
unusually, large voids; it is not at all homogeneous with galaxies or clusters of 
galaxies, or superclusters randomly distributed. Instead it is very clumpy. It 
thus becomes interesting to test whether various candidate cosmogenies predict 
(or admit) such dumpiness. Computer studies concerning this have indeed 
been carried out and some of these are reported on in a beautiful report [50] in 
the National Geographic Magazine. An artist's impression of the resulting 
filirnentary structure (caused by clumping of neutrinos) is shown in figure 48• 
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FIGURE 4, from [50] 

3.12. From.fluid dynamics (out of equilibrium) 

'Progress (in fluid dynamics) through the years has been uncertain 
however, with periods of success amid long periods of frustration 
and fragmentation of effort. But today we are in an upswing. In 
particular it seems that we may be close to understanding quantita­
tively why a fluid out of equilibrium can behave as it does - long 
an intractable problem. Two tools especially have contributed: the 
laser and computer simulation. These tools, the one experimental, 
the other theoretical, yield unambiguous results that allow one to 
test theories (some of which were proposed long ago) and that sug­
gest paths for father study.' H.J.M. HANLEY 1984. Physics Today, 
p.25 . 

'Computer simulations indicate that simple liquids can display a 
surprising range of exotic nonequilibrium phenomena, more com­
monly seen in systems of macromolecules.' D.J. EVANS a.o. [38] 

'However computers are prompting important changes within 
mechanics itself .... We will see that the effort to model real sys­
tems forces us to pay close attention to constraints, in particular, 
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to nonholonomic constraints, which we do not often encounter in 
textbook problems in classical mechanics'. W.G. HOOVER [62] 

3.13. From quantum field theory 
Finite element methods are well known in partial differential equations. Basi­
cally one selects a number of functions (often monomials in the variables) and 
attempts to the PDE by taking linear combinations of these functions. To this 
end divide the region into nonoverlapping patches, impose the PDE at one 
point in every patch and impose conditions of matching (with the functions on 
a neighboring patch or boundary conditions, as the case may be) at the boun­
daries of each patch. This gives algebraic conditions for the coefficients. 

In principle one can also take operator valued coefficients and try to do 
similar things for the equations of quantum field theory, by using say a lattice. 
There arises the extra difficulty of seeing to it that the equal time commutation 
relations hold (at all times). This turns out to be possible [17], [18]. In other 
words the resulting operator difference equations preserve equal-time commu­
tation relations. When the same idea is applied to a free fermion theory it 
turns out that the resulting difference equations are consistent with equal-time 
anti commutation relations, and other nice properties, and, quite surprisingly it 
turns out that the oft-encountered problem of so-called fermion doubling is 
avoided. This last fact was a totally unexpected bonus and is remarkable in 
that there are general theoretical results [69] showing that fermion doubling 
when taking lattice approximation is difficult to avoid. As CARL BENDER 

recently remarked in a telephone conversation with me: 

'It is as if Nature intended us to use finite element methods' C.M. 
BENDER Dec. 1983 9· 10 

4. THE HARD HEXAGON MODEL OF LATTICE STATISTICAL MECHANICs13 

In lattice statistical mechanics models one works with a lattice in d-space for 
example a square lattice in two space as depicted in figure 5. Atoms are sup­
posed to be located at some or all of the sites. Each atom can be in several 
states. To each configuration c there is assigned an energy E(c). For a large 
chunk of N sites of the lattice now write down the so-called partition function 

ZN = Lexp(-E(c)lkT) (4.1) 
c 

(where k stands for the Boltzmann constant and T for the temperature. This is 
the basic object of statistical mechanics and from it one calculates various 
thermodynamically interesting quantities such as the free energy 
F = -: k~ZN, the probability of the system being in state c, the free energy 
per site m the large N limit f (t)= -kTlimN_ 00 N- 1 lnZN(T) (one expects this 

limit to exist), the internal energy per site u(T)= -T2 ,}T (T-1j(T)), the 

specific heat per site c(T)= 3~u(T), ... (also all kinds of average and 



Experimental mathematics 203 

FIGURE 5 

expected values, such as correlations), the partition function per site 

K = K(T)= lim Z(T) 11N (4.2) 
N-oo 

and one is in particular interested in finding out whether these functions f (T), 
u (T), c (T), ... have singularities at certain values of T (phase transitions). For 
instance for the square lattice depicted above one could be interested in the 
model where all sites all are occupied with an atom at each site i with spin 
either up (a;= 1) or down (CJ;= -1) and nearest-neighbour-only interaction 
resulting in an energy function (Hamiltonian) 

E(a) = -1,L:<J;a1+.K2;a; (4.3) 
(i,j) 

where the first sum is over all pairs of adjacent sites (i,j) and the second one 
over all sites i. This is the well known nearest neighbour Ising model, and is 
not the subject of this section. In the case of the hard hexagon model one 
considers a triangular lattice as shown in figure 6. The possible states at each 
site are I (atom present) and 0 (empty). The energy function (Hamiltonian) is 
such that the partition function takes the form of the generating function 

Z(z,N) = _L:g(p,N)zP=l+Nz+ N(~- 7) z2 + ... (4.4) 
p 

where g(p,N) is the number of ways in which p atoms can be distributed over 
the lattice of N sites such that no two coincide and no two neighbouring sites 
are occupied. Thus if a given site is occupied a whole hexagon of sites is for­
bidden ( cf. figure 6), as if we were dealing with a gas of impenetrable hexago­
nal atoms. Whence the name hard hexagon model 12 . 

The parameter z in (4.4) has much to do with Tin (4.1) and plays the same 
role. It is called the activity. 

Now if there are only a few atoms, say 1, each site has equal probability of 
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FIGURE 6 

being occupied. So for small z one expects the full triangular symmetry to be 
present. There are three ways of packing very large densities of atoms on the 
triangular lattice (cf. figure 7): either all the rectangular sites are occupied (and 
no others), or all the circular ones or all the triangular ones. There is loss of 
symmetry, indicating a phase transition, which is of course just the sort of 
thing one is looking for when constructing such models. Let Ps = density on 
square sites, PT= density on triangular sites and Pc= density on circular sites. 
Suppose that as z increases the square sites are preferred, then Ps_,.l, PT-"O, 
Pc-"O as Z-'>OO and if R=ps-Pr, say, the graph of Ras a function of z 
would look something like in figure 8. I.e. there must be a critical point Zc 
where R first becomes nonzero. By various numerical calculations (maximum 
eigenvalue estimates, series expansions in z and z - 1) estimates for Zc can be 
obtained. One such by J. GAUNT in 1967 gave zc=ll.05+0.15. There is also 
a nonphysical critical point zn for which GAUNT obtained 
zn = -0.0900+0.0003. If one is in an experimental mood one can calculate 
sum and product of Zc and Zn to find Zc + Zn = 10.96+0.15, 
zczn = -0.995+0.014 and observe that these are practically integers. This 
would result in 

(4.5) 

All this was observed by GAUNT but he did not include the conjecture (4.5) in 
his paper. Other calculations resulted in a value for K(l) (cf. (4.2) above) of 
lnK(l)=0.3333+0.0001 by METCALF and YANG in 1978 and they did publish 
the conjecture that ln K(l) = II 3. 

Around this time RODNEY J. BAXTER, Canberra, Australia, decided to take 
up the challenge, convinced that he had devised a class of methods which 
would yield far more precise numerical results. This method is based on so 
called transfer matrices, in this case corner transfer matrices, and it results in 
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the partition function Z(z,N) being written as a trace of the sixth power of an 
(in principle infinite) matrix 

Z = Trace A 6 (4.6) 

The power 6 here is important from the numerical point of view, leading, with 
a bit of luck, to rapid convergence of the series expansion 

Z = ;>..~+;>..~+;\~ + ... 

where Ai. ;\2, ;\3 , ... are the eigenvalues of A in descending magnitude. How 
to actually calculate ;\1' .\2 , ... requires more clever ideas (cf. [13]), but some 
of the results are given in table I. 

TABLE l 

approximating ln K(J) error 
matrix size 

2X2 0.333 050 l.9Xl0- 4 

3X3 0.333 242 657 6.5x10-s 
5X5 0.333 242 721 958 l.8X 10- 11 

7X7 0.333 242 721 976 l 4.1x10- 15 

so that, obviously, lnK(l) is not 1/3. 
Of course the A; are functions of z, and knowing a small z expansion of 

Z (z) and A (z) one can write down the leading terms of A; in the small z 
expansion 

-z z2 z2 -z3 -z3 z4 z4 z4 

and test various monomials in the A; suggested by these leading terms in a 
search for some kind of regularity. BAXTER did just that, and found (for the 
7 X 7 approximation): 

0.999 999 853 
0.999 999 539 
0.999 757 797 
0.999 730 684 

Thus it seemed that \=;\~x\ sE{O,l}, x =;\3. Now BAXTER had encoun­
tered some such situation before. Namely when he solved the eight vertex 
model, and in that case theta functions and elliptic functions had played a fun­
damental role. So he programmed the computer to calculate the exponents in 



Experimental mathematics 207 

a product expansion 
00 

z = -xIT(I-xn)c" 
n =l 

(one of the sorts of thing one naturally thinks of if one has theta functions in 
mind) and BAXTER found 5,-5,-5,5,0, 5,-5,-5,5,0, 5,-5,-5,5,0, 5,-5,-5,5,0, 5,-5,-

5,5,0, 5,-5,-5,5,0, ... A most stimulating result. This then provided the starting 

point for solVWg; the hard hexagon model exactly [14] including that indeed 

Zc = l/i( 11 + 5 Y 5 ). 
The story does not stop here. Far from it. BAXTER found that he could 

make good use of certain (formal) identities of the type 
2 

ao n oo l 

n~O (l-q)(l-qz) ... (1-qn) = nll (l-q5n-4)(1-q5n -1) 

known as Rogers-Ramanujan identities [10], [11], [12]. These 'belong' to the 

world of theta functions. More precisely it turned out that there are four 

regimes for the generalized hard hexagon model. For three of these the identi­

ties that BAXTER found and could use turned out to be known. For the fourth 

one he could conjecture (and verify to degree 80) one which turned out to be 

new, again using computer support. This one was shortly after proved by G.E. 
ANDREWS [5]. 

Still the story is not finished. One can consider the 'decorated hard hexa­

gon' model in which instead of two possible states 0 and I one has k possible 
states at each site. This has also been considered by BAXTER and ANDREWS 

and turns out to involve generalized Roger-Ramanujan type identities in which 

the magic number 5 is replaced by 2k + 1. And things go on .... 
All in all there now is a flourishing interdisciplinary area of research 

between combinatorics and lattice statistical mechanics which arose to a large 

extent from Baxter's work on the hard-hexagon model 11 •14 . 

5. CHAOS AND UNIVERSALITY FOR ITERATED MAPS OF AN INTERVAL INTO 

5. ITSELF 
We are interested in a map of an interval into itself. For instance 

fµ.(x)=l-µ.x 2 , [0,1]~[0,l] 

fµ.(x)=µ.x[l-x], [0,1]~[0,l] (5.1) 

fµ.(x)=µ,sinwx, '[-1,1]--?[-l,l] 

And we are especially interested in what happens if the mapping is iterated a 
large number of times and how this 'limit behaviour' changes as the parameter 

µ,changes. 
Before I say anything about the phenomenology let me quote something 

from [73] about the history of the topic: 

'The methods used to study smooth transformations of intervals 
are by and large elementary and the theory could have been 
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developed long ago if anyone had suspected that there was anything 
worth studying. In actual fact, the main phenomena were 
discovered through numerical experimentation and the theory has 
been developed to account for the observations. In this respect, 
computers have played a crucial role in its development.' O.E. 
LANFORD [73) 

A quote which certainly supports the point of view of VON NEUMAN and 
ZABUSKY rather than that of FRAUENTHAL 16 . 

Here is something of the phenomenology observed. For smallµ (µ<0.75 for 
the second of the maps of (5.1 )), there is a unique attracting point x 0 ; that is 
for almost all x (in fact all x except x = 0) the sequence 

x, J,,(x), j/l(x) = f,,(J,,(x)), jjl(x), ... 

converges to x 0 • Then asµ becomes larger x 0 splits into an attracting orbit of 
period 2, that is there are two points, x 1 and x2, say, such that f,,(x 1)=x2, 
fµ.(x 2 )=x 1 and for almost all x,j,,nl(x) comes arbitrarily close to x 1 or x 2 and 
hops back and forth between the two with each new iteration. For still larger µ 
(at µ2 = 1.25 ... ) an attracting orbit of period 4 appears which in turn splits into 
one of period 8 at µ3 = 1.368 ... etc. It turns out (numerically) that these µn 
have a limit and that 

µ00 -/J-0 "'const.(4.6692 ... )-n as n--?oo (5.2) 

This number 4.6692... now turns out to be a universal constant meaning that 
the same constant appears for all kinds of different maps, a numerical 
discovery of M. FEIGENBAUM [40] and COULLET-TRESSER [30]. It is now often 
known as the Feigenbaum number. There is more. If one plots the position of 
the attractors of period 1, 2, 4, 8, 16, ... as they are about the fission one 
obtains something like the following picture (figure 9). 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
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FIGURE 9 



Experimental mathematics 
209 

?ne o?serves that the left half of each line is the mirror image of the line 
unm~d1~tely above scaled down by a factor of about 2.5. The precise factor (in 
the limit) turns out to be a= 2.5092078 .... and again it turns out to be a 
universal constant. 

These .numerical observations or discoveries of course simply cry out for an 
explanat10n an~ great progress has bee~ made in the theoretical understanding 
of why such things happen. Mathematically the clue lies in the consideration 
of the nonlinear mapping (of functions into functions) T :f-a - 1 if of)( ax) and 
to search for. a s.caling cons_tant. a for w~ch this mapping has a fixed point. 
The fixed pomt 1s hyperbolic with one eigenvalue (of its linearization at the 
fixed point) greater than I. This eigenvalue is equal to 4.6692 .... 

There also remain lots of open questions. For instance there is very little 
known of the solvability of functional equations lik.ef(x)=a- 1ifof)(x) and of 
the properties of the solutions. E.g. does there exist a smooth solution? 
Another open question concerns the order in which various periodic orbits 
appear asµ increases. Omitting the periods of order ;;;;:8 this sequence is 

1,2,4,6,7,5,7,3,6,7,5,7,6,7,4,7,6,7,5,7,6,7 

and it also appears to be of a universal nature [86]. This is as yet unexplained 
and ununderstood. 

As µ,, reaches its limiting value 1,401... and goes past it the motion of a 
point becomes chaotic17 meaning that it is virtually impossible to predict the 
position of the n-th iterate fn>(x) for a starting point x; in other words small 
differences in starting position rapidly (exponentially fast) become very large 
differences in the higher iterates. For still larger µ a measure of more ordered 
motion may reappear etc ... We are also as yet quite far from understanding 
this pattern of reappearance and disappearance of more ordered motion. 

Turning to the more dimensional case, there also appear to be universality 
phenomena for both conservative and dissipative mappings of pieces of planes 
into themselves which still are ununderstood and provide a fruitful hunting 
ground for experimental mathematicians [23], [41], [51], [91], [113]. 

Deterministic chaos theory has become a thriving business 18 and has made 
significant contact with other areas of investigation such as scaling and renor­
malization (group) theory in physics and theories of turbulence in fluid dynam­
ics. 

6. INTEGRABLE SYSTEMS AND THE SOLITON REVOLUTION 

Probably the first mathematical experiment on a computer was done . in Los 
Alamos, at the time that the MANIAC, the Los Alamos copy of the Pnnceton 
Von Neumann machine, was barely finished. FERMI, ULAM and PASTA had 
deliberatedly selected a problem for which the machine would ~e ~mc~ more 
suitable than a human calculator. Here is STAN ULAM on the topic m his auto­
biography [111]. 

'As soon as the machines were finished Fermi, with his great com­
mon sense and intuition, recognized immediately their importance 
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for the study of problems in theoretical physics, astrophysics, and 
classical physics. We discussed this at length and decided to 
attempt to formulate a problem simple to. state, . but such that a 
solution would require a lengthy computation which could not be 
done with pencil and paper or with the existing mechanical com­
puters. After deliberating about ~os~ible problems. we found_ a typ­
ical one requiring long-range predict10n and long-trme behaviour of 
a dynamical system. It was the consideration of an elastic string 
with two fixed ends, subject not only to the usual elastic force pro­
portional to strain, but having, in addition, a physically correct 
small nonlinear term. The question was to find out how this non­
linearity after very many periods of vibrations would gradually 
alter the well-known periodic behaviour of back and forth oscilla­
tion in one mode; how other modes of the string would become 
more important; and how, we thought, the entire motion would 
eventually thermalize, imitating perhaps the behaviour of fluids 
which are initially laminar and become more and more turbulent 
and convert their macroscopic motion into heat. ... 
Our problem turned out to have been felicitously chosen37 • The 
results were entirely different qualitatively from what even FERMI, 

with his great knowledge of wave motion, had expected. The origi­
nal objective had been to see at what rate the energy of the string, 
initially put into a single sine wave (the note was struck as one 
tone), would gradually develop higher tones with the harmonics, 
and how the shape would finally become a 'mess' both in the form 
of the string and in the way the energy was distributed among 
higher and higher modes. Nothing of the sort happened. To our 
surprise the string started playing a game of musical chairs only 
between several low notes, and perhaps even more amazingly, after 
what would have been several hundred ordinary up and down 
vibrations, it came back almost exactly to its original sinusoidal 
shape .... 
Another Los Alamos physicist, JIM TucK, was curious to see if 
after this near return to the original position, another period 
started again from this condition and what it would be after a 
second 'period'. With PASTA and METROPOLIS, he tried it again 
and, surprisingly, the thing came back, a percent or so less exactly. 
These continued and, after six or twelve such periods, it started 
improving again and a sort of superperiod appeared. Again this is 
most peculiar.' S. ULAM [111] 

Here is a picture of the sort of thing which went on (figure 10). This of course 
demanded an explanation. It was almost as if there were certain entities which 
were stable in time and for which some sort of superposition principle would 
hold. 

These entities were found, they are the so-called solutions, a term coined by 
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KRUSKAL, MIURA, GARDNER, GREENE, ZABUSKY to describe a solitary travel­
ling wave which retains its shape while travelling and with the remarkable sta­
bility property that when it encounters another soliton both emerge intact 
from a temporary messy interference pattern (apart from a phase change). A 
picture illustrating this behaviour of solitons is figure 11. For a lengthy and 
most thorough account of how the concept of solitons developed initially in 
the hands of the five persons just named and of how the computer or more 
precisely mathematical experiments with the help of a computer continued to 
play an important role cf. the review paper [116] by one of those deeply 
involved, N. ZABUSKY. Such was the start of the soliton revolution and out of 
it there came the so-called 'inverse spectral transform' method of solving a 
number of nonlinear equations such as the Korteweg-de Vries equation 
u1 + uux + Uxxx = 0, the sine-Gordon equation <f>zz -<Pu = wfi sin <j>, the cubic 
Schrooinger equation, ... and with it the number of important physical models 
which can be exactly solved increased from around four to something like 
thirty. By now the soliton business is booming and both in theory and in 
applications it accounts for hundreds of papers each year (perhaps more). 

Solitons like those depicted in figure 11 can, of course, be small, but this 
does not mean that we can linearize the KdV equation e.g. to u1 +uxxx=0, or 
the sine-Gordon equation to <f>zz -<Ptt =w5!/>. The solitons than disappear, they 
are truly nonlinear phenomena. The top picture of figure 12 shows a solution 
of the linearized sine-Gordon equation ( discretized as coupled systems of pen­
dulums). The second picture of figure 12 shows a true soliton solution of the 
sine-Gordon equation. The pictures of figure 13 also show such solutions to 
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FIGURE 11, from [116) 

the sine-Gordon, this time in an application to magnetic systems. 
There exists so far no method (algorithm) for determining whether a given 

system is (completely) integrable which is the mathematical property lying 
behind the soliton phenomenon. If a system is suspected of being complete~ 
integrable the done thing is, also nowadays, to first throw it on a computer 1 • 

The following two sets of pictures may indicate what one looks for in such 
cases. The figures 14, 15, and 16 depict the orbits of an unequal mass, respec­
tively equal mass so-called Toda-lattice at higher and higher energies 19 • All 
the dots in the left sides of pictures 15 and 16 come from a single orbit. The 
unequal mass Toda lattice of the left exhibits more and more chaotic 
behaviour with increasing energy: it is not integrable. The equal mass Toda 
lattice of the right hand side of the preceding three pictures shows much more 
regular type behaviour. It turned out to be integrable. It is also a historical fact 
that the integrability of the Toda lattice was thus discovered by computer 
experiments [27], [44). The theoretical proof, by H. FLASCHKA, followed some 
years later 28 . 
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FIGURE 16a,b from [27] 

7. SOME MORE EXAMPLES IN BRIEF 

The three examples described above are simply three examples, if rather 
important ones. There are many more. Eleven stimulating computer experi­
ments are described in the uncommonly interesting book [52] and both this 
work and, so far, this article have totally ignored the role of computer experi­
ments and verifications in number theory 20 and algebraic geometry. As an 
example of the latter it was a computer which came up with the fact that 
275 +845 +1105 +1335 =1445 , thus disproving Eulers assertion (circa 1769) 
that it is also impossible to find three fourth powers whose sum is a fourth or 

four fifth powers whose sum is a fifth power. 
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7.1. The Atkin-Swinnerton-Dyer conjectures 
Another example involves the socalled Atkin-Swinnerton-Dyer conjectures. 
Associated to an elliptic curve over Z - whatever that is - , there is its Artin 
L-function - whatever that is -, which can be developed into a power series 
in a certain way. The coefficients obtained in this way turned out numerically 
to satisfy certain congruences of the form 

anp -a(p )a,,+ /3(p )a,,11P=O mod pv/n), n = 1,2 ... 

Here p is a prime number, p v,(n) is the largest power of p dividing n and 
ani tp =antp if p divides n and =O otherwise. For an account of the first numer­
ical work in this direction cf. [7], cf. also [ l 08] which also discusses more high 
powered numerical algebraic geometry. Later these congruences were indeed 
proved; cf. e.g. [58] for a proof. 

7.2. Julia sets 
Consider a complex polynomial p (z ). In 1879 CA YLEY proposed to extend 
Newton's method for calculating the roots of a polynomial to the complex 
case. This gives the formula 

(7.3) 

and he posed the problem of determining for each root a of p(z) its set of 
attraction, A (a), and is boundary 3A (a). These boundaries are socalled Julia 
sets and one of their more remarkable P,roperties is e.g. in the case of the 
cubic z 3 -l, that one has 3A(l)=3A(-f +fiV3)= 3A(-f-fiV3)=J. 

To see what happens pictorially PEITGEN c.s. [92] defined level sets of equal 
attraction as follows: let O<E<<l, L 0(a)={z:lz-al:E;;i}, Lk+ 1(a)= 
{z 1tL0(a): N(z)ELda)} and in their various pictures they coloured z ELk(a) 
black if lm(Nk(z)) is positive and white if Im(Nk(z)) is negative21 . The result­
ing picture for the polynomial z 2 - l with roots + l is shown in figure 17. 
Apparently each point of the Julia set, in this case the imaginary axis, comes 
so to speak with a binary address. Figure 18 shows part of the picture for the 
third degree polynomial z 3 - l. In the upper third of this picture one discerns 
what looks like a curved version of a neighbourhood of the imaginary axis in 
figure 17. It seems as if the dynamical system for z 3 - l in this neigbourhood 
behaves like the system of a quadratic polynomial, instead of a third degree 
one. This has since been proved. 

7.3. Formal groups 
A commutative formal group of dimension I over a ring R is a formal power 
series in two variables F(X, Y) which satisfies 

F(O, Y)= Y, F(X, O)=X, F(X, Y)=F(Y,X), 

F(F(X, Y),Z)=F(X,F(Y,Z)). 

(7.5) 

One way to obtain such a thing if R is an integral domain, e.g. R = Z = the 
ring of integers, is to take a power series f (X) over the quotientfield Q(R) 
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FIGURE 17, from [93] 

FIGURE 18, from [93] 
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which looks like f(X)=X+a 2X 2 + ... and to define F(X,Y)= 
r 1if(X)+f(Y)) where 1- 1 is the inverse function of f(X), i.e. 

J- 1(j(X))=X. For suitable/(){) the coefficients of F(X, Y) then miraculously 

are in R CQ(R) and it is a theorem that every one-dimensional formal group 

over an integral domain can be obtained in this way. 
There exist universal formal groups from which every such animal can be 

obtained by assigning particular values to parameters V 1' V 2··· These universal 

examples can be recursively calculated. One such universal formal group is 

given by 

Fv(X, Y) = x + Y- V1 (XY2 + X 2 Y)+ Vy (XY4 + X 4 Y) 

+3V~(X2 Y3 + X3 Y2)-Vy(XY6 + X 6 Y) 

-6 Vf (Xi ys + xs yi)-13 Vf (X3 y4 + X4 y3) 

-3Vi(XY8 + X 8 Y)+(6Jl1-12Vi) 

(X2 y7 + x1 yi)+(27M -28V2)(X3 y6 + x6 y3) 

+(52Jl1-42Vi)(X4 Y5 + X 5 Y4 ) 

+(6V1 Vi+ Vl)(XY 10 + x 10 Y)+45V1 Vi(Xi Y 9 + X 9 Y2 ) 

+(163V1 V2-27Vl)(X3 Y8 +X8 Y3 ) 

+(362V1 V2 -27Vj )(X3 Y8 + X 8 Y3 ) 

+(362 V 1 V2 -106 vT )(X4 Y7 + X7 Y4 ) 

+(532V1 Vi-192Vl)(X5 Y 6 +X6 Y 5 )+ ... 

+(-105024048Vy v~ +95416130Vj Vi +213 396 72 Vj 1 ) 

(XIO yl3 + Xl3 yJO) + ... 

and I challenge anyone to see the regularity in this 22 • 

This shows that playing experimental mathematics games on a computer is 

fine but will not lead to stimulating results unless a) one has a good idea of 

what should be calculated and b) the results are presented in a form suitable 

for the superior human pattern recognition faculties23 • 

In this particular case the formal group Fv(X, Y) itself is simply totally the 

wrong thing to look at. The power series fv(X) such that 

Fv(X, Y)=]v 1(fv(X)+ fv(Y)) looks like 

v 0, v 
fv(X) = x+-1 x3+(-1 +-2 )X9+ 

3 9 3 
(7.6) 

and here one can see the hidden regularity; especially when one reflects that 

we are dealing with the prime number p =3 and if one substitutes 3=p, 9=p 2, 
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27=p 3, 4=l+p, l3=l+p+p 2. And as a matter of historical fact this is 
(essentially) how the general formula for fv(X) was discovered. In November 
1969 I spent a month calculating fv(X) up to degree 27 removing by means of 
suitable isomorphisms all terms that I could get rid off. All this in a vain 
attempt to find a counter example to something. Formula (7.6) was what I 
finally found (apart from two sign mistakes). Nowadays such things should be 
done by machine. Since then the formula has found quite a few applications 
in various parts of mathematics [58]. 

This also brings me to another point I wish to stress. For problems with a 
geometric content colored computer graphics are important for experimental 
mathematics23 and for problems with a more algebraic or analytic flavour it 
will be symbolic computation, formula manipulation computation, which will 
perhaps be more important than number crunching24 . 

7.4. Anti-diffusions 

Consider a process with an autocatalytic component, i.e. such that initial dis­
turbances will tend to grow, up to a certain point. One possible model, at first 

y 

p 

FIGURE 19 

sight, for such a thing could be an anti diffusion equation of the form 

a2 
Pt = - ax2 <P(p) (7.8) 

where p is some sort of density and cf> is a function of the form shown in fi~~e 
19. Our hope was that starting from an initially homogeneous P and ~mall ~­
tial disturbances, or, better, small stochastic disturbances all the ~e, this 
would give rise to stable periodic patterns in space. Analytically, vrrtually 
nothing is known about equations like (7.8), beyond the fact that they are 
highly unstable. So I suggested my student t~ p~t it on a (small) computer. 
One of the sequences of pictures he came up with is figure 20. 
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FIGURE 20d continues b) and c): after 25000 periods 

Such patterns seem to arise remarkable often in this context and they also per­
sist for long times. They still could be transient phenomena of course and 
indeed there are reasons to believe so (no proof). Even so they persist for very 
long times. Similar phenomena occur in (36]25 e.g. and they pose the general 
problem of how to deal mathematically with such 'patterns' which are semi­
stable in the sense of persisting for very long times (also in the face of distur­
bances) but eventually disappear, or which persist only in a looser sense, in 
that there are always the same number of bumps at roughly the same equal 
distance, but they keep moving and changing shape slightly and never settle 
down29 • 

7.5. Traveling salesmari26 

The traveling salesman problem is the following. Consider n cities, n large, and 
the distances between them. Find the shortest circuit which passes through 
each of them once. 1bis can be viewed as a programming problem with deci­
sion variables xij, xiJ = 1 if the stretch from city i to city j is to be included in 
the circuit and 0 otherwise, and a large number of restrictions to make the 
path a socalled Hamiltonian one, i.e. one which passes through each vertex 
precisely once. pie convex hull of all admissible integral vectors constitutes a 
polytope in Rn , which has not yet been characterized. Early in the game 
DANTZIG, FULiffiRSON and JOHNSON developed a quite successful algorithm 
which approached the problem as a (continuous) linear programming problem 
with O=s;;;x;1 =so;; l and with a smaller set of the restrictions than the set defining 
the original polytope. They started with the trivial restrictions '2.;xiJ =I, 
"2.1x;1 = l and then if a 'subcircuit' came out (e.g. x 12 =I =x21) a new restric­
tion (here x 12 +x 21 =so;;1) was added. This approach got neglected when branch 
and bound became more successful. 

"ed . 38 In 1953 ALAN HOFFMAN and HAROLD KUllN cam out an expenment . 
Stand in the middle of the polytope and fire a gun at random in all directions. 
All shots turned out to pass through a part of the 'wall' defined by facets of 
the trivial type xiJ = O. These 'experiments' contributed to n~w insight in the 
structure of the traveling salesman polytope and the best algonthms anno 1983 
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are based on a combination of the Dantzig c.s. 1954 method (initially) fol­

lowed by branch and bound methods. 

8. A FEW FINAL REMARKS 

Tue three main examples of Section 4,5 and 6 above are but a random selec­

tion dictated by personal taste. There are of course many more. Indeed it 

seems clear by now that experimental mathematics is developing very fast and 

that it is already generating conjectures, results and challenging problems at a 

higher rate than can be handled by the theoreticians. Here are some more 

challenges posed by experimental results (besides the ones already mentioned). 

There is a wealth of material, bifurcation pictures and phase diagrams, 

concerning the socalled Josephson-junction , an equation which probably 

will play the role of the well studied and illustrative example which in the 

past has been played by the VAN DER PoL equation [16], [98], [99], [106]. 

It is perhaps also interesting to remark that the socalled 'breather solu­

tions' of the Josephson-junction were first discovered numerically3°. 
As a rule, if a Hamiltonian system is not integrable, its behaviour 

becomes more and more chaotic as energy is increased. No proof is avail­

able. Exceptions are of course systems which decouple into integrable sub­

systems as E-HX>. There are however also systems which do not have this 

property and still show a return to more regular behaviour as E increases 

[l], [2]. 
There is quite a bit of numerical evidence for various kinds of universal 

behaviour for iterated maps of more-dimensional objects, e.g. subsets of 

the plane, which await theoretical elucidation [23], [41], [51], [113]. 

There are literally masses of experimental results dealing with percolation 

through porous media and associated phenomena like clogging of throats 

of pores and 'fingering'. Both computer generated and as a result of real 

hydrology experiments. Mostly, again, awaiting analysis and concept for­

mation to bring some order and classification33 . 

Stimulated by a hypothesis of CRICK and MITCHISON [34] to the effect 

that one of the functions of dream sleep might be an 'unlearning process', 

HoPFELD a.o. [63] carried out mathematical and computer modelling on 
networks of neurons. I quote: 

'Although our model was not motivated by higher nervous func­
tion, our system displays behaviours which are strikingly parallel to 

those needed for the hypothesized role of 'unlearning' in rapid eye 
movement sleep'. 

Here again is a conceptual and mathematical challenge32 . 

Before finishing let me stress again that 'user friendly' outputs like colour 

graphics, movies are likely to be more important in experimental mathematics 

than rows and rows of numbers. Also symbolic calculation and formula mani­

pulation is likely to grow in relative importance, again because symbolic for­

mulae are better suited to human pattern recognizing abilities than numbers35 . 
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Also we really_ need the computer assistance at this point, again because we 
seem to have m many cases reached a sort of natural limit of what can be 
done by hand31 • 

Let me also remark on the pleasing fact that all three main examples I dis­
cussed above have as much to do with classical pure mathematics as with clas­
sical applied mathematics and that thus it seems that experimental mathemat­
ics is doing much to remove the silly and distressing distinction between the 
two. 

Finally let me close with expressing the hope that what has been said above 
will have helped to make it clear that experimental mathematics is a vigorous, 
fast growing subject, synergetically related to its scientific neighbours. Indeed I 
have the feeling that we are at the beginning of what may well turn out to be a 
heroic period in mathematics comparable in significance and future influence 
to the l 920's in physics. In any case I hope to have helped to make it clear 
that VON NEUMANN appears to have been absolutely right in his predictions of 
1946. 

NOTES 
1. 

2. 

3. 

4. 

5. 

The Littlewood-Richardson rule deals with the question of the multipli­
cities of the representation A1 E of GL (E), E a vectorspace, in the direct 
sum decomposition of Aa E®Afl E. Here a,/J and y are partitions. 
I owe the information about BOCKWINKEL and LORENTZ to JAAP J. 
SEIDEL and F. Al.BERTO GR°ONBAUM. 
HAHN uses this phrase in the context of a critique of the Kantian idea 
that mathematics, especially geometry, is completely based on intuition 
a priori. To this end he discusses the counterintuitive properties of such 
things as Peano and Sierpinsky curves and noneuclidean geometry. 
Such logical constructs are of course equally intuition and mind enrich­
ing as computer experiments. 
Cf. also 'Computer graphics comes to statistics' (GINA KOLATA), Sci­
ence 217 (1982), 919-920. By means of three dimensional projections 
generated by means of computer motion graphics from multi dimen­
sional data sets, combined with human pattern recognition abilities it 
seems to be possible to detect previously unrecognized interesting 
phenomena. (Discrepancies in this case). 
Later in this paper, discussing renormalization-group ideas and 'the new 
physical principle of scale invariance' the author remarks: 'In this 
example it was a new physical principle that permitted computation 
capable of solving a previously intractable set of proble~s. The ~~al 
computational test of the principle played a mayor role m establishing 
its utility.' This is an aspect of experimental mathematics that I do not 
stress in this paper, though of course it is similar to experiments - as 
discussed in 3.10 - to find out whether a given type of model is capa­
ble of producing the phenomena it is designed to 'explain'. However, to 
the remark of DONALD R. HAMANN on renormalization ideas I would 
like to add that from a lecture of KENNETH G. WILSON in Los Alamos 
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in 1972 I have the impression that, at least in the case he was discussing 
(the Kondo problem), the desire to find some computational scheme to 
handle the problem had a lot to do with the genesis of Wilson's renor­
malization group ideas. 

6. The 'soliton story' and the 'iterated maps and chaos story' which are 
the subject matter of Sections 6 and 5 of this paper are also briefly 
mentioned in [57]. 

7. As I have remarked before [59], una:lded intuition or common sense are 
poor instruments of thought when confronted with cause and effect 
relations which cannot be linearly ordered, i.e. when there are mutual 
interactions and/or feedback loops present. From this point of view 
mathematics is a highly necessary tool for finite human brains. A God 
would have no need of it. And within mathematics itself experimental 
mathematics is proving to be an equally necessary tool for helping our 
mathematical intuition. It also does a similar job in geology, physics, 
chemistry etc. Examples are e.g. the Phillips stabilization paradox of 
economics, [9] (dealing with Government spending to stabilize an econ­
omy), the fact that monopoly positions can very well be disadvanta­
geous [8], and the Arrow impossibility theorems, see e.g. [ 100] and [88], 
(dealing with the design of democratic voting systems). As ERIC T. 
BELL [15] says: 'One service mathematics has rendered the human race: 
it has put common sense back where it belongs, on the top shelf next to 
the dusty canister labelled "discarded nonsense"'. 

8. The picture has to do with studies by s. WHITE, M. DAVIS, C. FRANK 
(Berkeley); other studies were done by S. DJORGOVSKY (Berkeley), J. 
CENTRELLA, A. MELOTI (Lawrence--Livermore Lab.). The socalled 
inflasionary cosmogonical model of A. GUT (MIT) is important here. 

9. In a short 'News and Views' report on the work of C.M. BENDER and 
D.R. SHARP, JOHN MADDOX (Nature 303 (1983), p. 279) comments that 
the chief value of their method will be to sharpen physical intuition, 
and that much the same may be true of a new numerical technique of 
M. CREtrrZ [33] for calculating partition functions in statistical physics. 
In both cases, especially in my view the first, things work so well that 
one feels to have received a fir~t hi,nt of the presence of some 
unsuspected physical or matl::tematical principle. 

10. There appear to be even more bonusses coming out of the FEM 
approach to quantum field theory, (BENDER, MILTON, SHARP, to be 
published), dealing with finding a gauge invariant FEM model and 
what happens as a certain dimensionless lattice spacing parameter goes 
to zero. 

11. Further developments from the hard hexagon model involve directed 
lattice animals, polymers, directed percolation theory etc. Numerical 
calculations here continue to play a dominant role in finding, formulat­
ing and testing conjectures as a good look at the following papers will 
show: D. DHAR, Phys. Rev. Lett. 49 (1982), 959-962; V. HAKIM, J.P. 
NADAL, J. Phys. A 16 (1983), L213-L218; J.P. NADAL, B. DERRIDA, J. 
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VANNIMENUS, J. de Physique 43 (1982), 1561, B. DHAR, M.K. PHANI, 
M. BARMA, J. Phys. A 15 (1982), L279-L284; N. BREUER, H.K. 
JANSSEN, Z. Phys. B 48, 347-350; F. FAMILY, J. Phys. A 15 (1982), 
L583-L592; J.E. GREEN, M.A. MOORE, J. Phys. A 15 (1982), L597-
L599; A.R. DAY, T.C. LUBENSKY, J. Phys. A 15 (1982), L285-L290; J.L. 
CARDY,]. Phys. A 15 (1982), L593-L595; S. REDNER, A. CONIGLIO, J. 
Phys. A 15 ( 1982), L273-L278. 

Also finding the exact results has involved (as in the hard-hexagon 
case) considerable computer assistance. The original version of the 
bijection between directed lattice animals and certain kinds of discrete 
paths which is at the basis of a combinatorial approach to these exact 
results involved first numerical comparison of the respective numbers of 
animals and paths respectively and also considerable numerical search 
in finding the right 'size' parameters for these things (the latter search 
involved analogues with orthogonal polynomials). These matters will be 
reported on in G. VIENNOT, Problemes combinatoires poses par la phy­
sique statistique, Sem.Bourbaki, Fehr. 1984, Expose 626. 

12. Instead of, say, triangular lattice gas with nearest neighbor exclusion. 
13. The story as outlined below is the sort of thing which rarily, if ever, 

gets published in the official journals. As outlined here it owes very 
much to a cassette tape and copies of the slides of a lecture that 
BAXTER gave at King's college in London in July 1980. I am extremely 
grateful to BAXTER for sending me this material. 

14. RODNEY J. BAXTER received the much coveted Boltzmann medal for 
his work on exactly solvable lattice statistical mechanics. 

15. The 10 X 10 approximation figures are even more spectacular. 
16. It also illustrates another point. Interesting systems, phenomena, of a 

particular kind, ... etc. are (likely to be) rare. For instance (completely) 
integrable Hamiltonian systems are rare (in the class of all Hamiltonian 
systems). Another role for the computer in experimental mathematics 
could be in a searching for interesting unusual phenomena of certain 
specified kinds. Much as in [72] where is described how in astronomy 
computers can help in finding interesting stars. However, cf. also note 
37. 

17. Such deterministic chaos; i.e. chaotic behaviour caused by perfectly 
deterministic maps may provide another model for modeling certain 
random phenomena. I.e. models different from stochastic models. One 
type of noise which frequently appears in (solid state) electronics is 
socalled II f- noise [84] and it may be possible that deterministic chaos 
will be fruitful in its study and analysis [101], [54]. The problem of how 
to distinguish observationally between deterministic chaos noise and 
stochastic noise is still open. 

18. There have, of course, been other inputs than the computer experiments 
briefly indicated in this section. Notably the invention of 'Strange 
attractors' (E. LORENZ 1963 [78], D. RUELLE and F. TAKENS, 1971 [97]). 
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Lorenz's model of a strange attractor is a severely cut down approxima­
tion of atmospheric flow and the fact that there is a strange attractor 
present illustrates some of the notorious difficulties of wheather predic­
tion. 

19. More precisely it shows the intersection of these orbits with the p 1-q 1 

plane. The Toda lattice of picture 14, 15 and 16 is the one with Hamil­
tonian H =Y2(prm1 1 +p~m2 1 )+exp(-q2 +q 1)+exp(q2)-3. The pic­
tures on the left have mass ratio m 2 1m 1 =0.33; the ones on the right 
m21m 1 =1.0. 

20. The first 300 million or so of the non real zeros of the Riemann zeta 
function do indeed lie exactly where they should ([79]) and the 
mathematics developed to prove such a thing certainly would not have 
developed without the big machines. Another instance of this is the 
matter of the mathematics of fast prime number tests [76]. Also the 
high interest in effective upper bounds for the solutions of diophantine 
equations (Baker-Gelfond theory) is certainly connected with the availa­
bility of lots of computing power. All these, however, I consider 
instances, like the case of semiparametric statistics discussed in the 
introduction, where the presence of the big machines enlarged the set of 
problems which we are willing and interested to think about, rather 
then examples of experimental mathematics. 

21. In 'reality' H.-0. PEITGEN c.s. used colors and the resulting pictures are 
really quite beautiful. Four of them occur in the 1984 Springer Verlag 
mathematics calender. They have also been the material of an art exhi­
bition in the Sparkasse in Bremen [44] in Jan/Febr. 1984. 

22. As a matter of fact the example shown is a p-typical universal formal 
group, in this case for p = 3. These are not truly universal but are 
universal for a more restricted class. They are however much more reg­
ular than a truly universal one can be, essentially because there is so to 
speak only one prime number to worry about. 

23. ZABUSKY [116] stresses this particularly and has repeatedly insisted on 
the desirability of using computer graphics and movies in this connec­
tion. The studies hinted at in 7.2 above also illustrate this point. 

24. There may be considerable number crunching behind a computer gen-
erated picture of course, and often there is. 

25. In this case the phenomenon is definitely transient. 
26. This example I owe to JAN KAREL LENSTRA, CWI, Amsterdam. 
27. Another example, besides the ones that follow, is [104]. Here there is a 

criterium for the existence of a closed orbit for systems with strange 
attractors. This criterium involves estimates which are designed to be 
verified by computer. Otherwise one would hardly consider them. 

28. Cf. [116] for a detailed account of these happenings. 
29. One phenomenon to which we hope to apply ideas along these lines is 

the phenomenon of Liesegang rings in (colloid) chemistry. Another 
model designed to deal with this phenomenon is described in [39]. The 
patterns generated by that model are of a similar nature. They also 
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appear to be transient, but with a very long life. Here also a mathemati­
cal analysis predicting these patterns is almost completely absent. 

30. By two physicists: lMRY and SCHULMAN. I owe this bit of information 
to M. LEVI of Boston Univ. 

31. A totally different topic, also of high interest, both from a theoretical 
and practical point of view, coming out of the availability of computer 
power is the matter of (flexible?) computer design to meet the require­
ments of certain problems, cf. [118, 105]. 

32. To illustrate a point let me quote from [22], noting that this is but one 
example from very many. 'We have performed Monte-Carlo simulations 
on the Kinetics of ... . The extent of reaction ... increases with decreas­
ing fraction of divinyl monomer, with increasing solvent concentration 
and with increasing initiator concentration. These pnxiictions, and the 
observed trends for the dependence of the overall polymerization rate 
on the same concentrations, are in qualitative agreement with labora­
tory experiments'. 
This type of work is of course most important e.g. in constructing ade­
quate models and in testing tentative principles and formulating 
theories. But if things stop right here progress will soon cease. A model 
which is conceptually murky but works numerically well is of very lim­
ited value unless the challenge posed by an unusually well working 
model is taken up. 

33. Another area of vigorous interaction between numerical experiment and 
theoretical and applied (in the more traditional sense) mathematics is 
the physics and mathematics of disordered media. The key words here 
are 'fractals', 'percolation', 'random walks (especially nonintersecting)', 
'chaos'. A recent workshop on the topic took place at the IMA in 
Madison, Wisconsin in Fehr. 1983. The proceedings will appear in the 
Leet. Notes in Math. series of Springer Verlag. In~vitably perhaps -
everything relates (strongly) to everything else-. This topic has quite a 
bit to do with the topic of Section 4, cf. note 11. 

34. Here is another example to illustrate the point. I quote from [20]. 
'High-performance computer graphic techniques have been developed in 
the last year or two, and are now taking the place of conventual model 
building. ... Sophisticated computer graphics were used to survey the 
likely active conformations of known inhibitors of the converting 
enzyme. This survey guided the synthesis of putative inhibitors with 
functional groups in rigid orientations. It resulted finally in the syn­
thesis of a potent bicyclic inhibitor molecule, and a patent was applied 
for a few weeks ago'. 

35. One area where symbolic computation is becoming increasingly impor­
tant is in describing and calculating the symmetries of important physi­
cal models such as Gauge theories. Cf. [70, 71). 

36. The sources of all reproduced figures in this paper are stated in the cap­
tions. I am grateful for the permission to reproduce these. 

37. All in all it seems that this happens quite often. I.e. that computer 



228 M. Hazewinkel 

experiments bring something new to ponder. Rather remarkably often 
perhaps, indicating that there are very many interesting phenomena still 
awaiting discovery. Not only in experimental mathematics, but in all of 
mathematics I often have had the feeling 'can one be so lucky'. There 
really is very often something fascinating going on. This does not con­
tradict note 16. 

38. Cf. the remark by Kuhn (page 118) in the discussion of [49]. There are 
more interesting challenges in this area. E.g. the 'unreasonable 
effectiveness' of some assignment problem algorithms. Cf. the discussion 
between EDMONDS and KUHN, loc. cit. 
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