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Let x 1 , ••• , x,,+ 1 be independent exponentially distributed random variables with intensity A1 

for i"' T and Ai for i > T, where T as well as A1 and A2 are unknown. By application of theorems 
concerning the normed uniform quantile process it is proved that the asymptotic null-distribution 
of the likelihood ratio statistic for testing A1 =Ai (or, equivalently, T = 0 or n + 1) is an extreme 
value distribution. 

Change point problems occur in a variety of experimental sciences and therefore have consider
able attention of applied statisticians. The problems are non-standard since the usual regularity 
conditions are not satisfied. Explicit asymptotic distributions of likelihood ratio tests have until 
now only been derived for a few cases. The method of proof used in this paper is based on the 
'strong invariance principle'. 

Furthermore it is shown that the test is optimal in the sense of Bahadur, although the Pitman 
efficiency is zero. However, simulation results indicate a good power for values of n that are 
relevant for most applications. 

The likelihood ratio test is compared with another test which has the same asymptotic null
distribution. This test has Bahadur efficiency zero. The simulation results confirm that the likelihood 
ratio test is superior to the latter test. 

AMS 1980 Subject Classifications: Primary 62E20, 62F03; Secondary 62E25, 62F04. 

Bahadur efficiency * change point problem * exponential distribution * likelihood ratio test * 
normed uniform quantile process * power properties 

1. Introduction 

Let x 1 , x2 , ••• , Xn+i be n + 1 independent random variables. In general, tests for 
a change point are concerned with the hypotheses: 

H 0 : the x;'s are identically distributed with probability density h.(x), 
H 1 : the x/s are identically distributed with probability density f;.,(x) for 

i""" r and J;.)x) for i > T, 

This paper is based on report MS-R8507 of the Centre for Mathematics and Computer Science, 
Amsterdam, The Netherlands, which is also included in Haccou (1987) and Van de Geer (1987). 
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where )'1 as well as ,\ 2 are in whole or in part unknown, and where the change point 
r is unknown. 

The problem of abrupt parameter changes arises in a variety of experimental 
sciences. For instance in hydrological (Cobb, 1978), economical (Hsu, 1979), and 
ethological time series (Haccou et al., 1983). Therefore, it has received considerable 
attention of applied statisticians over the past twenty years (see e.g. Basseville and 
Benveniste, 1986, Kligene and Telksnis, 1983, and Shaban, 1980, for an extensive 
bibliography). In some cases, when a priori information concerning the moment 
and/ or rate of change is assumed available, the asymptotic distribution of test 
statistics has been derived (e.g. Broemeling, 1974). However, this is not a common 
situation in practice and then, usually, likelihood ratio tests are applied. Explicit 
asymptotic distributions are only available in a few cases. For instance Hawkins 
(1977) gives the asymptotic distribution for the case that the x;'s are normally 
distributed. Deshayes and Picard (1984a, b) derived the asymptotic distribution of 
the product of the log likelihood ratio statistic and a weight function. The weight 
function has been introduced in order to avoid problems due to the behaviour of 
the likelihood ratio near the edges of the sample space. Hinkley ( 1970) and Hinkley 
and Hinkley (1970) derived integral equations for the asymptotic distribution of 
the likelihood ratio statistic which have to be solved numerically. Although it does 
not concern a change point problem in the above mentioned sense, the results 
derived by Matthews et al. ( 1985) are noteworthy. They give asymptotic results for 
the score-statistic for the problem of testing a constant failure rate against alternatives 
with failure rates involving one single change point. In general there is a great 
practical interest in the asymptotic theory of likelihood ratio change point tests 
since, usually, the asymptotic distribution of likelihood ratio type statistics gives 
good approximations for relatively small sample sizes and the tests appear to have 
favourable efficiency and power properties (see Hinkley, 1970, Deshayes and Picard, 
1982 and 1986, Praagman, 1986). Moreover, the problem is of theoretical interest 
since we are dealing with a non-standard situation where the usual regularity 
conditions do not hold. 

In this paper we derive the explicit asymptotic distribution of the likelihood ratio 
test statistic when the X; are exponentially distributed by taking advantage of the 
special structure of the problem in this case. Let k be an integer between 1 and n. 

Denote by A1 and A2 the maximum likelihood estimators under the corresponding 
hypothese~ provided that the change point is at k Define the function fn(x; k) by 

[{ 
k n+I }/n+! J 

fn(x; k) = 2 log l]
1 
f;,)x;) ;D+i /x 2(x;) l]

1 
fx(xJ , (1.1) 

where x denotes the vector (x1 , x2 , ••• , Xn+ 1). The likelihood ratio test statistic is 
maxkf,,(x; k). We show that for h. (x) = ,\ exp(-Ax), fn(x; k) can be considered as 
a function of partial sums of the X; divided by the total sum. It is well known that 
these are distributed as the order statistics of a uniform ( 0, 1) distribution. This 
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enables us to use the the asymptotic theory of uniform quantile functions to prove 
that a transformation ofmaxkj~(x; k) has asymptotically an extreme value distribu
tion (under the null-hypothesis of no change). 

Our method of proof is based on the principle of 'strong invariance' as developed 
by Erdos and Kac (1946 ). This kind of approach has been used to derive the 
asymptotic distribution of a variety of partial sum statistics (see Csorg6 and Revesz, 
1981). However, to our knowledge it has not been applied previously to this type 
of change point problems. 

Yet, the results are mainly of theoretical importance, since in this case the 
asymptotic distribution only gives good approximations for extremely large sample 
sizes. It appears that we are here at the limit of what asymptotic theory can contribute 
to a solution of a practical problem. Thus, for applications there remains a need 
for small sample approximations as are given by Haccou et al. (1985), Haccou and 
Meelis (1986) and Worsley (1986). 

The power properties are not unambiguous: in this paper we prove that the test 
has optimal Bahadur efficiency. However, its Pitman efficiency appears to be zero 
and a minor modification of the test statistic results in a zero Bahadur efficiency. 
Therefore we have made a detailed simulation study of the power (see Haccou et 
al. 1985 ). In this paper we give a summary of those results. 

2. Relation with the uniform quantile process 

When the x; ( i = l, ... , n + I) are exponentially distributed, the likelihood ratio 
process, specified in ( 1.1) can be written as: 

J;,(x; k) = 2(n + I)[-y"(k) log{/3n(x; k)/ '}'n(k)} 

-(1-y,Jk)) log{(I -f3n(x; k))/(1-yn(k))}] (k = 1, 2, ... , n), 
(2.1) 

where f3n(x; k) and y,,(k) are defined by (l:~~i x;)/(2:'.~:: x;) and k/(n + 1) 
respectively. 

When f,.(x; k) is considered as a function of f3n(x; k), a second order Taylor 
expansion in the point 'Yn ( k) leads to the more convenient form: 

J.,(x; k) = {(n + I)(f3,,(x; k)- y,Jk)// y,.(k)(l- y,,(k))} · {l + R,,(k)} 

(k=l,2, ... ,n), 

where the remainder R,,(k) is equal to 

}(/3,,(x; k)- '}'n(k))[{ y,,(k)(l - 'Yn(k)) 2/(l -g2,,.(k)) 3 } 

-{(y,,(k)) 2(1-y,,(k))/(g1,11(k)) 3}], 

with g1,n ( k) and g2,,. ( k) between 'Yn ( k) and f3n (x; k ). 
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Let U"(k) denote the k-th order statistic of a random sample of size n from a 
uniform ( O, 1) distribution. It is well known that, when the x; 's ( i = 1, ... , n + 1) are 
identical exponentially distributed, the distribution of f3n(x; k) is equal to the 
distribution of Un(k) (k = 1, ... , n) for every n ~ 1. We will use this to define a 
process in U,,(k) which has the same properties as J.,(x; k). 

Define the following functions: 

U -{U,,(k) for(k-1)/n-$.y~k/n, 
nCv)- o f o or y= , 

z -{k/(n+l) for (k-1)/n<y~k/n, 
,,(y)- 0 f 0 or y= , 

X11 (y) = (n+ 1)112(U11 (y)-z,,(y)), 

(,,(y) = {zn(y)(l-zn(y))}112. 

The function U,, (y) is called the uniform quantile function. 
Now, consider the process: 

with 

j,,(y) = (X,,(y)/ £;,,(y))2 (1 + R,,(y)), O.,,;,_y.,,;,_ l, 

R"(y) = ~X"(y)(n + 1)-112[{z,,(y)(l -z"(y))2/(1-g2,n(Y))3} 

-{(zn (y) )2 ( 1- Zn (y) )/ (g1,n(Y ))3}] 

and g1,n(y) and g2,,,(.v) between z11 (y) and U,,(y). 

(2.2) 

(2.3) 

Clearly, for each n ~ 1, the distribution of the maximum over k ( k = 1, ... , n) of 
J11 (x; k) is the same as the distribution of the supremum over y (yE[(n+l)-1, 
I - (n + 1)- 1]) of j,,(.v). Thus, theorems concerning properties of the uniform quantile 
function U11 (y) can be used to derive the asymptotic distribution of the maximum 
of f,,(x; k). (However, note that, since the two processes are defined on different 
probability spaces, almost sure convergence of the supremum of j 11 (y) implies only 
convergence in distribution of the maximum of f.,(x; k).) In the proof we will in 
particular use limit theorems concerning the so-called uniform quantile process: 

0Zl11 (y)=n 112 · (U11 (y)-y), 0-$.y-$. l. (2.4) 

We want to emphasize that the theorems proved in this paper might also be derived 
directly, without referring to the uniform quantile process. Yet, nothing would be 
gained since it would imply the almost exact duplication of well-known analogous 
results. 

3. Asymptotic properties of the process j,,(y): An outline of the proof 

Inspection of equation (2.3) reveals that the first term in the expansion of j 11 (y) 
closely resembles the square of: 

(3.1) 
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Inspired by Jaeschke ( 1979), Cs6rg6 and Revesz ( 198 i proved that the asymptotic 

distribution of a linear combination of lgn(_v)i is equal to an extreme value distribu
tion. In this paper we will prove: 

Theorem 3.1. Let 

an= (2 log log n) 112 

and 

bn = 2 log log n +~log log log n -~log 1T; 

then 

lim P{ . sup . (an(jn(y)) 112 -bn)<t} 
n-.x, tn+l)- 1 ~ys:t-{n+1) 1 

=exp(-2exp(-t)), -co<t<co. 

To this end we will first prove almost sure convergence of a"(fnCv)) 112 to a"lgn(.r)i 

on an expanding subinterval. This follows from the following two propositions: 

Proposition 3.1. Let en =(log log n )4/ n; then 

Jim sup sup an{l(jn(y)) 112 -IXnCv)/?nCv)li}=O almost surely. 
n-ro e,z~)'""'l-t-;'n 

Proposition 3.2 

lim sup sup a~l(X"(y)/?n(y)) 2 -(g.,(y)) 2 1 =0 almost surely. 

Subsequently it is proved, that the probability that the supremum of { a"(fn(Y)) 112 -

b"} lies in either of the remaining intervals [ ( n + 1 )- 1, en] or [l - E,., 1 - (n + 1)-1], 

goes to zero as n goes to infinity. This follows from: 

Proposition 3.3 

lim P{ sup jn(y)>(t+b.)"/a~}=o, -co<t<co. 
n-+-OO (( n+ 1 )-I :::;:;y,,;£ En )u( 1-frr:s;:Y~ 1-( n+1) -I) 

The result obtained by Csorgo and Revesz (1981) combined with Theorem 3.1 

gives the asymptotic distribution of the maximum of the likelihood ratio process 

( cf. equation (2.1)) provided that it is properly normalized: 

Theorem 3.2 

lim P {max (an Un (x; k)) 112 - b") < r} =exp( -2 exp(-t) ), 
n-·:O k 

-co< t <oo. 
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4. Almost sure convergence on a subinterval 

In this section Propositions 3.1 and 3.2 are proved. For the proof of Proposition 
3.1 we use a straightforward modification of a theorem proved in Csorgo and Revesz 
(1981): 

Lemma4.1 

limsup sup {(log log n)- 112JXn(y)ftn(y)J}<5v'2 almost surely. 

Furthermore we need: 

Lemma4.2 

limsup sup {(loglogn)·JRn(Y)l}=O almostsurely. 

Proof. Rearranging terms in the expression for Rn (y) in (2.3) gives 

R"(y) =~(X"(y)/ ?n(y))(r2,n(y)- r1,n(y)) 

with 

and 

r2,n(Y) = ( Zn(Y) )312{ (1- zn(Y) )/ (1- g2,n(Y) )}3 {( 1 - Zn (y) )(n + 1)} -!/2. 

Consider r1,n ( y ). It is easily seen that 

( 4.1) 

O<r1,n(y)<(loglog n)-2(zn(y)/g1,n(y))3 uniformly in yE[en, 1-e"]. 
(4.2) 

Since gl,n(y) lies between Zn(Y) and Un(y), the right term in (4.2) is O{(log log nr 2 } 

for those y for which z" (y) is less than Un (y ), otherwise 

0 < Zn(y)/ gl,n(Y) ~ Zn(y)/(zn(y)-1 Un(y)-zn(Y)I) 

(4.3) 

Now, since 

(log log n)-1;2(?n(y))-1/2(n+ 1)112zn(Y) 

~ {(n +I)/log log n} 112{en/(1- e")} 112 

=(log log n )312{1 + O((Iog log n )4/ n)} uniformly in y E [ e"' 1 - en], 

it follows from Lemma 4.1 and equation (4.3) that, for large n, (zn(y)/ g1_n(y)) is 
almost surely less than two, uniformly in y E [e", 1- en]. Thus, it follows from (4.2) 
that, for large n, 

0 < r1,n (y) < 8(log log n )-2 almost surely, uniformly in y E [en, 1 - en]. 

In an analogous way this can also be proved for r2,n(Y ). Combining this with 
equation (4.1) and applying Lemma 4.1 gives the required result. O 
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Proof of Proposition 3.1. Taking square roots on both sides in equation (2.3) gives 

(i,,(y)) 112 = [Xn(y)/ ~n(y)[{l +iRn(.V)/(1 + f3.n(y)) 112} (4.4) 

with g3,n(Y) between 0 and Rn(y). 
From Lemma 4.2 it follows that, for large n, ( 1 + f 3,n (y)) is almost surely larger 

than l uniformly in y E [t:n, 1- en]. Furthermore, combination of Lemma 4.1 and 
4.2 gives 

Jim sup sup {(log log n) 112[Xn(y)/ ~n(y)[ · [Rn(y)[} =O almost surely, 

which, in view of (4.4), proves Proposition 3.1. D 

The proof of Proposition 3.2 is based on Lemma 4.1 and the fact that 

Jim sup sup [(log log n) 112[0Zl"(y)[] = T 112 almost surely. 

(Proof: see Smirnov (1944.) Application of this result and rearrangement of the 
expression for Xn(y) (defined in 2.2) gives 

Lemma4.3 

limsup sup [{(n+l)/loglogn} 112[X11 (y)-oUn(Y)[]=O almostsurely 
n-,,.oo O~y~,1 

Proof of Proposition 3.2. First note that 

sup /(Xn(y)/?11 (y))2 -(g11 (y)) 2 [ 
f- 11 ~--y~; 1-f' 11 

,.-n""'-Y"''' 1--Fn 

-{X"(y)/(y(l-y))1;2}2[. (4.5) 

The last term in ( 4.5) is less than 

L .. ~8,.~R-,,, [Xn(J)/ ,n(J)[} l,,,.~.~~-'" [1-C,(y)/{y(l- y)}[J. (4.6) 

Furthermore, 

sup /1-~;,(y)/{y(l- y)}[ = O((log log nt4 ). (4.7) 

Equation (4.7) is easily derived from the definition of '"(y). Thus, according to 
Lemma 4.1, expression (4.6) will almost surely tend to zero, when multiplied by 
log log n. The remaining term on the right hand side in ( 4.5) is less than 

( En(l - £,,)) l L .. sv~K '" [Xn (y)- OZln(Y JI r 
+2(e 11 (1- e 11 )) l/ZL .. ,~~R-,,,, [Xn(y)- OZln(y)[}L,,"'~~.t,,, /gn(_y')/l (4.8) 
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Now, since (en(l-en))- 1 is O(n/loglog n)4 ), according to Lemma 4.3 the first 
term in (4.8) vanishes almost surely when multiplied by log log n. Application of 
Lemma 4.3 and the fact that 

(en (1- en) )- 112 =O(n 112 /(log log n )2) 

proves the same for the remaining term in (4.8). D 

S. Convergence in distribution over the entire interval 

From the preceding section it follows that the supremum of ancin(Y)) 112 converges 
almost surely to the supremum of anlgn(y)\ on the interval [en, 1-en]. We will now 
prove that the probability that the supremum of (anCJn(y)) 112 - bn) lies in either of 
the intervals [(n + 1)-1, en] or [1-en, 1-(n + 1)-1] goes to zero as n goes to infinity. 
Since the proofs are identical for both intervals, it suffices to consider the left interval 
only. For the proof we need a lemma mentioned in Cs6rg6 and Revesz (1981): 

!~~ PLn+1~-~~yo;;s" \oUn(y)/ Y112\ >(log log n)l/4} = 0 

which can be modified in a straightforward manner to 

LemmaS.1 

Furthermore, from results on nonnegative, exchangeable random variables 
obtained by Daniels (1945), also mentioned in Karlin and Taylor (1981) the following 
lemma can be derived: 

Lemma S.2. Let Pn be an increasing sequence of numbers, with lim" ... 00 Pn = oo; then 

Proof. See Haccou et al. (1985). 

Proof of Proposition 3.3. From the definition of an and bn (cf. Theorem 3.1) it is 
seen that for every t E ( -oo, oo) there is an N, such that for n > N,, ( t + bn )2 /a~ is 
larger than log log n. Hence, it suffices to prove 

lim P{ sup l](y)\ >log log n} = 0. 
n-+aJ (n+l)- 1 ~y:!$sn 

(5.1) 
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From equation (2.3) it is easily seen that for large n: 

[Jn(y)[.;: 2[{Xn(y)/(zn(y)) 112f{l + Rn(y)}[ uniformly in YE [(n + 1)-1, en]. 

Thus, application of Lemma 5.1 gives 

!i~ PLn+l~-~~y~e,,[Jn(y)[ >log log n} 

{ (loglogn) 112 } 

< !~~ p (n+l~·~t"''" [Rn(y)[ > 16 . (5.2) 

Furthermore, it follows from equation ( 4.1) that, for large n, 

[Rn(y)J.;: J{Xn(y)/(zn(y)) 112 }{r2,n(y)-r1,n(y)}J uniformly in y E [(n + 1)- 1, c:,,]. 

Thus, Lemma 5.1 and equation (5.2) give 

!~~. PLn+J~~t~,,, [},,(y)J> log log n} 

. { (loglogn) 114 } 
< !1..~ p (n+l~~~y'-"e,, lr2,n(y)- r1,n(y)J > 32 . (5.3) 

Since r1,11 (y) and r2 ,n (y) are both positive, the supremum of their difference is less 
than or equal to the maximum of their suprema. From the definitions in equation 
( 4.1) it follows that 

r1,,,(y) < (z,,(y)/ g1, 11 (y)) 3, 

r2,n(Y) < (zn(y)) 312{(1- z,,(y))/(1-g2,,,(y))}3 uniformly in y E [(n + ir 1, en]. 

With ti,n(y) and t2,,,(y) between Un(y) and Zn(y). Thus, for those y for which 
z,,(y) is less than U,,(y), r 1, 11 (y) is less than one and 

r2,n(Y) < (z,,(y)) 312{(1-z,,(y))/(I - U,,(y))}3 

<c:~12(1-U,,(y))- 3 uniformlyinyE[(n+1)· 1,c:,,]. 

Hence 

( ) 312 { (log log n) 112
} ·

3 
312 { (log log n) 112

}-
3 

r y < c: 1-y- < c: I - c: -
2·" " 2(n+l) " " 2(n+l) 

for large n, almost surely uniformly in y E [ ( n + 1) 1, c:,,]. Thus, in this case r 1,,, (y) 
is 0(1) and r2,,.(Y) is Or(l). Hence, the probability on the right in (5.3) automatically 
goes to zero for those y for which z,,(y) is Jess than U,,(y). When U,,(y) is less than 
z,,(y), Lemma 5.2 can be applied with p,, = (:l2(1og log n) 114 )113 to derive 

{ (loglogn) 114 } 

!~~, p (n+l~~~y·· ,,, Jz,,(y)/ U,,(y)j3> 32 = O. 

Furthermore, r2,,, ( y) is in that case less than e~12 uniformly in y E [ ( n + l) · 1, c:,,]. 
Thus, in view of (5.3), statement (5.l) follows and Proposition 3.3 is proved. 0 
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6. Efficiency of the likelihood ratio test 

In this section we shall consider the change point model of the introduction, with 

j~ (x) the probability density of a one-parameter exponential family {FA: A EA}. The 

model with exponentially distributed random variables is a special case of this. We 

shall investigate efficiency of the likelihood ratio test in the sense of Bahadur and 

also briefly address its behaviour at local alternatives. 

For the concept of Bahadur slope and efficiency, we refer to Bahadur ( 1967, 1971) 

and Groeneboom and Oosterhof! (1977). We review some general results. Let 

{P0 ; 8 E 6>} be a set of probability measures dominated by a er-finite measure µ. 

Pe==dPa/dµ, 

and let { Tn} be a sequence of test statistics for testing Ho: e E Bo against H l: e E e l . 

Define for t > 0 

Gn (t) ==PH,,( T,, ~ f) 

with 

PH0(Tn~t)==sup P0 (T,,~t). 
0E6o 

Denote L,, == G,,(T,,). The sequence {T,,} has exact slope c(8) if 

1 
- log L,, ~ -!c( 8). 
n 

The Kullback-Leibler information number of Po with respect to Pw is defined as 

K ( 8, 8,) == {f
00

Pe log( Pol pf)') dµ if Pe « Pe., 

otherwise. 

Finally, denote 

1(8) == inf K(8, 8'). 
fJ'E. (~u 

Theorem 6.1. For each 8 and s > 0 

lim P0 (.!_log L,, <S: -J( 8)- s) = 0. 
n-cc n 

Proof. see Bahadur (1971). 

The next theorem is very useful to find the Bahadur slope of a sequence of tests. 

Theorem 6.2. Suppose that 

1 Po 
-T,,--+c(8), 8EB1 , asn~oo 
n 

(6.1) 

I. 1 
,,1_.~ ~log PH0 ( T,, ~ na) ==-/(a) for all a> 0 in a neighbourhood of c( 8), 

(6.2) 
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where l( ·) is a nonnegative function continuous at c( (J ), then the Bahadur slope of 
{T11 } is equal to 2/(c(O)). 

Proof. see Bahadur (1967, 1971). 

Hence, if ( 6.1) and ( 6.2) are satisfied with I ( c ( (J)) = J ( fJ ), then { Tn} is optimal in 
the sense of Bahadur. Although Bahadur originally demanded P8 almost sure 
convergence in (6.1), for practical purposes convergence in probability suffices. In 
that case the number /(c(O)) is called the weak Bahadur slope. 

Lemma 6.1. Suppose that 

for all e > 0. 

. 1 
hm sup - log PH ( T11 ;;;;: na),,;:; -!a, a > 0, 

n-a.:::i n () 

then Tn is optimal in the sense of Bahadur. 

Proof. This is a minor modification of Corollary 5 in Bahadur and Raghavachari 
(1972). 

Lemma 6.1 in its general form is the basic tool for the problem of concern here. 
The situation is as before; {x1 , .•• , xr} respectively {xr+ 1 , ••• , x11 + 1} are sampled 
from F;.., respectively F;..,, with { F;..; A E ;1} some family of distributions, such that 
for each F;.. the probability density f>. with respect to a a--finite measure µ, exists. 
As a convention adopted from preceding sections, we take the total sample size 
equal to n + l instead of n. 

The likelihood ratio for the two sample problem (the case T is known) is 

In the change point model there is one more unknown parameter. The likelihood 
ratio becomes 

The aim is to check the optimality of these tests, using the asymptotic concept of 
Bahadur efficiency of sequences of tests. In the two sample as well as the change 
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point situation, the Bahadur slope can only be defined at alternatives for which the 
proportion of observations in both samples converges to some limit: 

r= Tn, 
1 

-- Tn -7 KE [0, 1]. 
n+l 

In the sequel we will always consider alternatives of this type. Furthermore, we 
regard K (rather than Tn) as the parameter of interest. The parameter space is thus 

B={8=(Ai,A2,K),A;EA, i=l,2,KE[O, l]} 

6 0 = {8 = (A 1 , A2 , K), A1 = A2 and/or KE {O, l}}, 

B 1 ={8=(Ai.A 2 ,K),A 1 rfA 2 and KE(O, l)}. 

The Kullback-Leibler information of (FA1)7n(FA,r+l-T,. with respect to (FA r+] is 
equal to 

where K (Ai> A), i = 1, 2 is the Kullback-Leibler information for a single observation. 
Hence for 1(8), with e = (A 1 , A2 , K), we find the expression 

J( 8) = inf KK (Ai. A)+ (1- K )K (A 2 , A). 
AE.I 

Theorem 6.3 below is closely related to the results of Deshayes and Picard ( 1982) 
for the case of normally distributed random variables. 

Theorem 6.3. For {F,: A EA} a one parameter exponential family in standard rep
resentation, { T"} is optimal in the sense of Bahadur at all alternatives 8 =(A 1 , A2 , x ), 
A;, i = 1, 2, in the interior of parameter space, x E (0, 1). 

Proof. We have 

1 Pe 
n + 1 f,,(x; T,,)----? 21( 8) 

(see Kallenberg, 1978). Hence, also 

Now consider the liklihood ratio's 
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and 

LR1 (k, A0 ) is the likelihood ratio statistic for testing A 1 = A0 against A 1 ~ A0 , based 
on the first k observations, and similar for LR2 (k, A0 ). For every sequence {kn}, 
1 ~kn~ n, n = 1, 2, ... 

(6.3) 

a>O, i=l,2, 

(Kallenberg, 1978). 
Since 

for each A0 E A, 

PH0 (fn(x; kn)~ (n + l)a) =sup PA 0Un (x; kn)~ ( n + l)a). 
AoE ./\ 

~sup PA0(LR 1(kn, Ao)+ LR2(kn, Ao)~ (n + 1 )a). 
Au£"~\. 

For each e > 0, 

[a/e] 

~ I PA0[LR1(kn, Ao) E [(n + l)ie, (n + l)(i+ l)e), LR2(kn, Ao) 
i=O 

~ (n + l)a -(n + l)(i+ l)e] 

[a/<] 

~ I P,dLR 1 (kn,Ao)~(n+l)ie)PA0 (LR2(kn,Ao) 
i=O 

~(n+l)a-(n+l)(i+l)e] 

From (6.3) we have, for arbitrary 8 > 0 and n sufficiently large, 
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and 

sup PA0 (LR2(Ao, kn);:;;, (n + l)a - (n + l)(i + l)s) 
AoE,1 

~exp(-(n+l)(~-(i+2l)s)-8), 
which implies that, for n sufficiently large, 

[a/<] 

L sup P;,0(LR 1 (kn,Ao);:;;,(n+l)it:)PA0(LR2(k",1'.o) 
i=O AoEA 

;:;;, (n + l)a -(n + 1 )( i + l)t:) + sup PA0(LR1 (kn, Ao);:;;, ( n + l)a) 
AoE.1 

~ [ ( [ ~] + 1) /n+! )(e/2) + 1 J e-(n+l)(a/2-28). 

Since s and 8 are arbitrary, this implies 

Jim sup-1-Iog PH11 (fn(x; kn);:;;, (n + l)a) ~-!a. 
n .... oo n+l 

But since ( 6.3) is true for all sequences {kn}, also 

. 1 
hm sup--log PH0(Tn ~ (n+ l)a) 

n .... oo n + 1 

~ lim sup-1-log {n max PH0 (fn(x, k);:;;, (n + l)a)} 
n-oo n + 1 J,,;;k,,;;n 

Application of Lemma 6.1 completes the proof. D 

(6.4) 

In contrast to the Bahadur optimality of Tn, test statistics which are a modification 
of Tn can have Bahadur slope zero and moreover, other efficiency criteria can 
disagree completely with optimality. This shows that the optimality in Bahadur's 
sense of the likelihood ratio test for a change point is only one of the relevant 
properties and it emphasizes that we are here at the limit of what asymptotic methods 
can tell us. We shall illustrate this for the situation of exponentially distributed 
random variables. 

Recall that for h. (x) = ,\ exp(-A.x), the null-distribution of Tn = max1,,,k,.nfn(x; k) 
can be approximated by the null-distribution of T~ = max 1,,, ko<in f~(x; k ), where 

(f3n(x; k)-;h) 2 

f~(x; k) = (n + 1) _k_ ( 1 __ k_) 

n+l n+l 

This suggests T~ as an alternative test statistic. However, by straightforward applica
tion of Theorem 6.2 one sees that T~ has Bahadur slope zero. 

Let us now investigate the behaviour of T" at contiguous alternatives. We 
shall only sketch what happens, omitting rigorous proofs. If KE (0, 1), contiguous 
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alternatives are the ones with IA1 -A 21 = O(n- 112). Closer inspection of Tn reveals 
that both under H 0 and under contiguous alternatives, fn(x; k) attains its maximum 
at a value k with k/ n close to 0 or 1. Now, define 

x~ = x;/ Exio i = 1, ... , n + 1. 

Then Tn,o = max1""k""n fn(x 0 ; k) has the same distribution as T" has under H0 • Write 

I C,,(k)I has its maximum for k/ n near K, but it can be shown that at contiguous 
alternatives IC,,(k)I is negligible: 

This means that 

i.e. Tn has asymptotic power equal to its significance level. 
These theoretical properties of Tn are of course not a peculiarity of the exponential 

distribution: similar results hold for e.g. the normal distribution. 

7. Power properties 

Let K be 7/(n+l) and let p be A2/A 1. By means of Monte Carlo methods we 
estimated the power of the test for several K, p and n. 

Fig. 1 shows the estimated power for n + 1 = 100, as a function of log p, for several 
values of K. The situation when K = b and p = a is equivalent to the case that 
K = 1- b, p = 1/ a (O < b < 1, a> O). Thus, when K = 0.5 the power as a function of 
log p is symmetric around p = 1. For each p (p ¥ 1) the power increases with K 

(O< K ~ 0.5) and thus is optimal when K = 0.5 (Fig. 1). The results also indicate that 
when the fraction of small x/s is small, i.e. when K < 0.5, p < 1, the test performs 
less good than in the opposite case, i.e. K < 0.5, p > 1 (see Fig. 1, Haccou et al., 
1983, and Worsley, 1985). From Fig. 2 it can be seen that, even when K is near zero 
and p less than one, the power increases rapidly with n. For those n that are relevant 
in most applications (20 < n < 200) the power is good. A survey of further simulation 
results is given in Haccou et al. (1985). 

In Section 6 it was proved that the test based on Tn has optimal Bahadur efficiency. 
Although a test based on T~ has Bahadur efficiency zero, it might be more practical 
than the likelihood ratio test since it is to be expected that the limit distribution is 
already accurate enough for practical purposes at small values of n. Therefore we 
compared the power properties of the two tests for small n. We found that, when 
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Fig. 1. Power of the likelihood ratio test for n + 1=100. Based on 500 simulation runs per point. 

K is small and p > 1 (or, equivalently K is large, p < 1), the power of the T! test is 
slightly better than the power of the T,, test. When K is near 0.5, the likelihood ratio 
test is more powerful for all p. For small K and p < 1 (or large K, p > 1) there is a 
huge loss in power when T~ is used instead of T". These conclusions hold for all 
tested values of n (see Haccou et al., 1985). Since K and p are unknown, it can be 
concluded that the likelihood ratio test is to be preferred to the test based on T~. 

Our results agree with those derived by Worsley ( 1986) for a few special cases. 
Moreover, he compared the power with a test proposed by Hsu (1979) and arrived 
at conclusions that favour the likelihood ratio test. Hinkley (1972) also mentions a 
loss of power when other discriminant functions than the likelihood are used. 

8. Discussion 

From the proof of Theorem 3.2 it can be inferred that the convergence rate of 
the null-hypothesis distribution of the likelihood ratio test statistic is low. This is 
confirmed by simulation results. Use of the asymptotic distribution would result in 
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Fig. 2. Power of the likelihood ratio test for K = 0.1 and several n. Based on 500 simulation runs per point. 

a far too conservative test. Therefore small sample critical values have been deter
mined by simulation (see Haccou et al., 1985). These values agree with the values 
calculated by Worsley (1986), who used an algorithm of Noe (1972). 

The last two decades there have been made several attempts to solve the problem 
of deriving the asymptotic null hypothesis distribution of (a function of) the 
likelihood ratio (e.g. Hinkley, 1970 and 1972, Hinkley and Hinkley, 1970, Hawkins, 
1977, Deshayes and Picard, 1984a, b ). In this paper we present a new approach to 
this type of change point problems, using theorems that have been derived by the 
method of 'strong invariance'. Matthews et al. (1985) apply methods essentially 
based on the same principle, but in a different context: they derive asymptotic results 
for the problem of testing a constant failure rate against a rate with one change point. 

In the case of testing for a change point in a sequence of independent exponentially 
distributed random variables it is possible to use theorems for uniform quantile 
functions. Thus, in this case, it is not necessary to use the 'strong invariance principle'. 
However, it is possible to prove our result directly, by means of this method. In the 
case of other change point problems, it might be possible to use this approach by 
considering the test statistic as a function of partial sum statistics, since in general 
increments of these statistics can be approximated by Wiener processes (see Csorgo 
and Revesz, 1981). 
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