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SUMMARY. Some recent related proposals for estimating regression coefficients with 
incomplete observations are discussed. The proposals included approximate standard errors 
for the estimators. It is shown that the estimators of the regression coefficients are consistent 
under fairly weak conditions, but that only under rather strong ones can the usual (asymptotic) 
tests of significance be validly based on the estimated coefficients and the computed standard 
deviation.-s. The results depend heavily on whether a random or a fixed specification for the 
covariates can be assumed. 

1. INTRODUCTION 

Very many procedures, both specific and general, have been suggested in 
the literature for dealing with the problem of incomplete observations in 
regression analysis; see the papers of Afifi and Elashoff (1966, 1967, 1969a, b), 
Hartley and Hocking (1971) and Dempster, Laird and Rubin (1977). How­
ever few of the methods which are applicable in a general regression analysis 
situation give consistent estimators of the regression coefficients, and still 
fewer show how asymptotic standard deviations may be validly estimated 
(in order to carry out the usual t-tests, etc.). There are three very similar 
proposals which do at least give suggestions in this direction though little 
theoretical justification is given : these, the subject of this note, are :Beale 
and Little's (1975) "method 5" and "method 6" and the method of Dagenais 
(1973). 

Let us briefly sketch the kind of situation we are interested in. Each 
of N observations if complete would be a (K+l)-vector of values taken by 
K independent or predictor variables and 1 dependent or criterion variable. 
However for some observations, the values taken by some of the predictor 
variables are missing. We suppose that the mechanism causing this works 
independently of that generating the values of both predictor and criterion 
variables. This assumption is only implicitly made in the sequel, but it is 
an assumption of major importance (as is usual in the literature on this subject). 

Jl'latliematic8 subject classification (1980) : 62J05. 

Key words and :p7vrase8 : Incomplete observations, Missing data, Regression analysis. 



20 R. D. GILL 

We shall work conditionally on the realized patterns of :rnissing and non­
missing values. For the sake of simplicity we assume that none of the values 
taken by the criterion variable are missing. 

\Ve wish to make as few assumptions as possible about the predictor 
variables. In particular we certainly want to avoid the assumption that each 
corn.plete (K+I)-vect.or observation is a drawing from a multivariate normal 
distribution. In practical applications of regression analysis it is usually 
possible to classify each predictor variable as being either a fixed "design 
variable" or a random "covariate". By design variables, we mean variables 
which are preset by the experimenter as part of the planned experimental 
design. Covariates on the other hand are variables which are generated by 
some stochastic mechanism jointly with the criterion variables, so that co­
variates and criterion variable together can be considered as drawn from 
some multivariat.e distribution (generally a different distribution for each 
set of values of the design variables). 

Even if the natural specification of the predictor variables is random, 
the regression model may be specified in terms of the conditional distribution 
of the criterion variable given the predictor variables. So if one starts with 
a random specification of the predictor variables, one can step over to a fixed 
specification. by conditioning. One also has the natural possibility, when 
some of the predictor variables are missing, of just conditioning on the non­
missing predictor variables. 

Our main aim is in fact to discover whether the methods for dealing with 
incomplete observations mentioned above are only appropriate with one of 
these possible specifications of the predictor variables. All three proposals 
work by filling in the missing values in each observation with least squares 
predictions based on the non-missing predictor variables in that observation; 
the coefficients needed for this are estimates based on a11 the present data. 
Then a standard weighted least squares regression analysis is carried out on 
the completed data set, supplying both estimates of the regression coefficients 
and standard errors for them. Weights are needed because the least squares 
prediction introduces an extra error of varying size in each incomplete obser­
vation. The proposals only differ in how the coefficients for the least squares 
predictions and how the weights for the final regression analysis are to be 
estimated (they all agree on what these coefficients and weights should be). 
Since it turns out that only consistency of the estimators of these quantities 
is needed, the differences between the proposals are not crucial. 
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We are interested in the problems of finding reasonable and non­
technical conditions under which (i) the proposals yield consistent estimators 
of the regression coefficients, and (ii), suitably normed, these estimators are 
asymptotically normally distributed about the true regression coefficients 
with a covariance matrix which is consistently estimated by that produced in 
the weighted least squares regress·ion analysis. Problem (i) turns out to have 
a satisfactory solution whatever the specification of the predictor variables. 
However in (ii), asymptotic normality is only easily proved with random 
predictor variables. Even when asymptotic normality can be proved, the 
asymptotic covariance matrix of the regression coefficient estimators only 
coincides with the limiting value of the covariance matrix estimator under 
conditions quite close to multivariate normality of the predictor variables. 

In the next section we specify our general model, define the estimators, 
and prove consistency. Section 3 looks at asymptotic normality while in the 
final section we briefly discuss some implications of our results. 

2. PROBLEM (i) : CONSISTENCY 

First some notation. Random variables ·will be underlined, so that the 
same symbol not underlined represents a possible value of the corresponding 
variable. aT denotes the transpose of the vector a. We specify a model 
for N observations for each N = 1, 2, ... ; all quantities (including the under­
lying sample space) may depend on N unless explicitly stated otherwise, 
though this dependence is generally suppressed in the notation. We write 
~ and ~ for convergence in probability and in distribution respectively 
'l'1 Zi. 
(always as N ~ oo) and denote a multivariate normal distribution with given 
mean vector and covariance matrix by It ( ·, ·). 

Let P and M (a pattern of observed predictor variables and its comple­
ment of missing ones) denote sets of indices such that PU M = {l, .. ., .K} 
(where K is the number of predictor variables), P n M = cp, P =I= cp and if 
e.g. the first predictor variable is the constant 1, 1 e P. Vectors and matrices 
will often be partitioned according to P and M, e.g. if jJ is a Kx I vector and 
2; a K x K matrix then 

P= (PP)' 
PM 

( Lpp l;pM ) 
:Z::= = (.l;p 1:.M)· ... (1) 

:Z::MP I;MM 
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Let (p_n, y1>, ~n), n = l, ... , N, denote the complete KX l vector of pre­

dictor Yariables, the criterion variable, and the disturbance variable for the 
11-th observatfon, related by 

(2) 

for some fixed ]{ x I vector ff of regression coefficients which we want to 
Psfonatc. Let pn and .J."Vfn, n = I, ... , N be patterns of observed and missing 
predictor variables; the data consists of ('!:j_n, ;ri, Pn), n = I, .. ., N, where 
we have written xj'; for xn . Similarly we often write *'.ik for the unobserved - -pn 

i:11 To (2) \Ve add the usual assumptions :...u11: 

for all n 

for all n, n' (3) 

r 0 n =I= n' 
8(£n ~n') = ~ 

L CT2 > 0 n = n' 
where o-:! like fJ does not depend on N. The second equality in (3) implies 
the first, one if (2) includes a constant term, e.g. 

:.ri = l almost surely for each n. (4) 
Note that our model does not yet assume independence or identical 

distributions for the N observations, nor have we excluded the predictor 
·n1riables from being fixed design variables. We make the following further 
assumptions, which we shall illustrate with some important examples in a 
moment. For each pattern P let pp be a non-negative number, and let 2: 
be a fixed ]( x K symmetric positive definite matrix. The symbol :f!= denotes 
the number of elements in a set. Suppose that for each P, the folloing 
convergences hold as N ~ oo : 

Al N-1 :ff: {n: pn = P} ~pp, 

N-1 ~ x; ~iT ~ PP :Z::pp, 
n: pn=p 'P 

A4 

Defining a~= a2+/i1(.SMM-.'EMP :S;,~ l:ipM)/JM suppose we also have 
Ai'i A = ~pCTj,2 ~.p 2:::p~ .'Ep. is non-singular. 
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Interpreting 2: as a limiting average value of xn22nT, A2 and A3 together 
with Al express the fact that the patterns of missing values are at least 
asymptotically not influenced by the predictor variables, while A4 expresses 
the same fact for the disturbance. The role of A5 will become clear later. 

Example 1 : Random predictor variables : (:rn, ~n), n = 1, .. ., N, are 

independent over n and have the same distribution for all n and N, with 
& (2'n2'nT) = z::. ( 5) 

In this example A2, A3 and A4 follow from (3), (5) and Al by the weak 
law of large numbers, taking special care for P such that pp= 0. Here we 
use the fact that if UJc ~ a a,s k 4- oo for some sequence of random variables 

- 'Ji' 
?!:_Tc, and if kN satisfies kN/N 4 p as N ~ oo, then (kNfN)'l!:.kN;, pa as N 4 oo. 

This is trivial when p > O; when p = 0 we still have that the sequence 'I! kN 

is bounded in probability and the result is then again trivial. 

Exarnple 2 : Fixed predictor variables : For some vector xn (depending 
also on N), f!::n = xn almost surely for each n and N; these vectors satis:(y A2 
and A3 with convergence in probability replaced by ordinary convergence. 

We now have that A4 follows from (3) and A2, since N-1 Z:: x;i, ~n 
n:P11=P 

has expectation zero and covariance matrix (<T2N-1 ~ xY,xf',T)/N. This 
n:Pn=P 

example can be obtained from Example 1 by conditioning. Suppose we are 
in the situation of Example 1 with (;rn, en, Pn), n = l, ... , N being the first 
N elements of a single infinite sequence. Then for almost all realizations 
(x1, *2 , ... ) = (x1, x 2, ••• ), conilitions A2 and A3 continue to hold for the 
conditional distribution of the data given this realization of (g1, ~2, ... ). 

We need to assume separately that (3) also holds with the expectations replaced 
by conditional expectations given g:n = xn. 

Example 3 : Non-missing predictor variables fixed, missing predictor 
variables random, : for some vectors x1}:, (depending also on N), !lfp = xF almost 
surely for each n and N; these vectors satisfy A2 with convergence in proba­
bility replaced by ordinary convergence. 

Again A4 follows from (3) and A2, but A3 needs to be assumed separately. 
This example will generally arise from Example l by conditioning. Consider 
the situation of Example l with (a;n, ~n, Pn), n = 1, ... , N, being the first N 
elements of a single infinite sequence. Then for almost all realizations 
(Ji~, a;~, ... ) = (x},, x~, ... ), condition A2 continues to hold for the conditional 
distribution of the data giyen (x}» xJ,, ... ). We need to assume A3 and the 
conditional form of (3) separately. 
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We sha.Il not give explicit definitions of the estimators proposed in 
Dagenais (1973) and in Beale and Little's (1975) "method 5" and "met.hod 6" 
but first work as if the parameters needed for the proposals (certain functions 
of (}'2, f1 and 2:) were known. Define 

<XMP = :EM; l:j;~' (where :E:P~ = (2:pp)-1.) (7) 

(}'~ = o-2+(JJ(2:MM-LMP l:p~LPM)fJM (8) 

where P = Pn (9) 

i = (a;l, .. ., ~N)T (10) 

~ = the N X N diagonal matrix with diagonal elements (J';n' n = 1, .. ., N ( 11) 

p = (XTi:-\!)-.l(Kri:-1Y) if J:T~-1! is non-singular (13) 

If <XMP and (}'], were known, P would be the proposed estimator of fJ and 

(.,tit-\f)-1 the proposed approximate covariance matrix for it. In fact 

in Example 1 a;;; is the best linear predictor of q;11~ based on ;c~ while u;n is 

the expanded variance of the error term in (2) if .2!;} is replaced there by 

~Jj. For defining 

~n = ~n+,BJ(~~-aMpa:;) (where P = pn and M =Mn (14) 
we rewrite (2) as 

where in Example 1 

&(~n) = O 

&([n~ti') _:_ O ( c.f. (3)) (16) 

&(~n~n') = (f)nn' 

After conditioning on *; = x]l, n = 1, .. ., N (Example 3), (16) no longer 
necessarily holds, while in Example 2 it is generally false. 

Theorem I : Under AI to A5, ~ defined by (13) is a consistent estimator 

of f1 and N(X~-1f)-1 is a consistent estimator of A-1. These statements are 
also true if in the definitions (7) to (13), <XMP and(}'~ are replaced by consistent 
estimators aMP and (}'¥, of the same quantities, 
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Proof: We first look at the estimation of A-1: 

Because A is non-singular, the probability that N-1t_ f-1 J" is non-singular 
converges to 1 as N ~ oo and hence 

Next defining 
A 

E - ("1 AN)T _- ~' ... ,~ 
we can rewrite (15) as 

Y=XfJ+E - -~ -

and so by (13) and (17), with probability converging to 1, 

!.. = fJ+Nckr'f.-1x)-lN-liTt.-1i_. 

So to prove 

it suffices to establish 

Now, 

N-l}(_T 'i;-1.E-* O as N < oo. 
- 'to 

(17) 

... (18) 

.. . (19) 

... (20) 

. . . (21) 

(22) 

= ~ O'i2 L.p ~'Pt ( N-1 !; (or;~ ~n+(q;; f.!2~-!fp oo'j,T a1p)/3M) ) 
P n: pn=p 

~o 
'P 

by A2, A3, A4 and (7). 

... (23) 

Finally even if CXMP and uf, are everywhere replaced by consistent esti­
mators of the same quantities, all the above arguments remain valid. O 

Remark 1 : The consistency of the estimators of CXMP and <TJ, in Beale 
and Little's (1975) "method 6" can be established by the same type of argu· 
ments as in Gill (1977) even though they. derive their estimators from 

B 1-4 
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considerations of maximum likelihood under multivariate normalyty of 
(f!!n, ~n), n = l, ... , N. Suitable conditions for consistency are Al, A2 and 
A4 supplemented with 

A6 For P such that pp = 0, =\:f:: {n: pn = P} = 0 for sufficiently large N, and 

A7 N-1 2: (en)2 ~pp G'2 for all P. 
n: pn=p 1t' 

The (more complicated) other two proposals are harder to analyse though a 
similar approach is applicable; we have not worked out the full details. 
Since consistency of the estimators of IXMP and CJ'} is all that is needed 
( v N -consistency of the estimator of IXMP for asymptotic normality; see next 
section), less complicated proposals can easily be made which still have the 
required properties. The proof of Theorem l actually also shows consistency 
of Beale and Little's (1975) "method 4", where weights are not introduced. 

Remark 2 : If ;!;';t- is predicted by regression on a;~ and yn for each n, 
the resulting estimator of j3 is generally inconsistent. For instance in 

A 

Example 1, if we let ~M be the best linear predictor of ;;i;'M based on r and 
~'P, and write 

Yn - /JT xtt +/JT X~n + en _ - P-P M _M _' 

" then we find that in general 8.a:.P ~n =!= 0 and so it does not hold that 
" N-1 ~n: pn=p ;:i;j! en ~ 0 if pp > 0. This fact makes another of Beale and 
- 'P 

Little's (1975) proposals (middle of their section 5) rather difficult to motivate. 

3. PROBLEM (ii): ASYMPTOTIC NORMALITY WITH OORBECT 

COVARIANCE MATRIX 

Reviewing the proof of Theorem 1, we see that under the conditions of 
that theorem, 

... (24) 

if and only if 

... (25) 

Since then (17) holds too we can indeed validly use (Xr :£-1.i)-1 as an 
asymptotic covariance matrix for p and carry out the usual tests of significance 

on regression coefficients. We shall prove a theorem giving conditions for 
(24) to hold in the special case of Example 1, but shall give some heuristic 
arguments that it cannot hold in Example 2, and only holds under rather 
special conditions in Example 3. 
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Theorem 2 : Consider the situation of Example 1 and suppose furthermore 

d.((~n)2Xp;!;¥,T} = "o/p 

.for some .finite matrices '¥ p. Then 

where 

A sufficient condition .for (24) to hold (i.e. for equality of A and B) is 

'Y p = aJ'i:.pp for all P. 

.. . (26) 

(27) 

(28) 

... (29) 

These results also hold with aMP and crffi replaced by consistent estimators pro­

vided the estimator of CXMP is actually vN-consistent, i.e. Nt(g._MP-CLMP) is 
bounded in probability as N ~ oo. 

Proof: Multiplying (23) by Nt and recalling (16), we see that by the 
Central Limit Theorem, (again with special care for P such that pp= 0), 

... (30) 

Obviously if (29) holds, then A = B. The proof of the last part of the theorem 
is straightforward. D 

Remark 3 : Theorem 2 is a satisfactory solution to problem (ii) if we 
can consider the predictor variables as random and can assume that the 
complete observations would have been independent and identically distribu­
ted, with (,f)2 uncorrelated with !!dp;r'J,T. This does not seem a very heavy 
assumption; we already have that gn is uncorrelated with i!<J;. 

Of course one could often be reluctant to assume that the g;n's are random 
variables at all. However, it is easy to see that (27) cannot hold under 
reasonable conditions in the case of Example 2, even with a different definition 

of the matrix B. In (27) x = X is now non-random, and jz_ is the sum of 
a random and a non-random component, so the left hand side of (27) itself 
splits into a random and a non-random part. There is no reason why the 
non-random part should converge at all. For instance suppose that the 
situation of Example 2 has arisen by starting in Example 1 and conditioning 
on a;n = xn, n = 1, 2, ... , as in the discussion after Example 2. Suppose 
the conditional distribution of §.n does not depend on xn. 
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Looking at (27), (18) and ( 14) we see that under the assumptions of 

Theorem 2, unconditionally, both parts of the left hand side of (27) converge 

in distribution to in general non-degenerate normal distributions. Conditional 

on ~n = xn, n = 1, 2, ... the random part still converges in distribution to 

a normal distribution with mean vector zero. The other part, now non­

random, would have to converge to zero for (27) to be valid. But the proba­

bility must be zero that such xn's have been realized, in view of the uncondi­

tional non-degenerate limiting normal distribution. 

We finally tmn to Example 3, supposing it has arisen by starting from 

Example 1 and conditioning on the non-missing predictor variables as des­

cribed previously. If Al holds, then with probability 1 after conditioning 

A2 holds too, and this implies that 

N-1 r-Z--1 x-+ A ... (31) 

(X is now non-random). However the validity of A3 and A4 depends on the 

conditional distributions of !!:ji and §n given g;~ = x;. Let us make the 

rather strong assumption (it implies for instance (29), and is itself implied by 

multivariate normality of (~n, ~n)) that these are such that for all P and x_p 

8.(~n 12'; = xj;) = O 
(c.f. (16)) .. . (32) 

d((§n)2 I ~P = x;) = u~ 

or in words, every regression on yn on a group of variables from ;?;n is linear 

and homoscedastic. Looking at (20), this now implies that 

8.(~ I ! = .i) = P 

(33) 

By (31) and (33), S is consistent; but more importantly, (33) gives new 

motivation for using (XT±-1 i)-1, with IXMP and u~ replaced by estimates, 

as an approximate covariance matrix for ~- Does such a simple argument 

also give asympt.otic normality of Nl(S-/J) ? 

By (25), what is needed is a central limit theorem for N-! ±TJ:.-1iJJ which 

by (32) can be written as a sum of N independent zero mean random vectors. 

Moreover, by (31) the covariance matrix: of this sum converges to A. So we 

need only add a Lindebergh-type condition ensuring that each term in the 

sum is asymptotically negligeable in order to guarantee asymptotic normality 

of F- This condition is going to involve the conditional distributions of 
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~n given ~.P = x;, which could depend on pn and x; in a very complicated 
way. For simplicity we might assume them only to depend on Pn; we have 
already assumed this for the conditional expectations and variances. How­
ever this is rather close to assuming multivariate normality of a;n as the 
following special case, K = 2, shows. The new assumption is equivalent to 
assuming that Xp and §n+fil1(a;~-a:MP'1?p) are independent for each P. 
Taking P ={I, 2} and M = cp, §.n and g;n are independent; taking P ={I} 
and then P = {2} we find that ;r1 is :independent of fi2(:f;.~-rx'21x1) and ;r2 of 
p\(x~-cx12~2). By the theorem of Skitovich (see Kagan, Linnik and Rao 
(1973) Theorem 3.1.1) it now follows that if all the coefficients involved here 
are non-zero then ~n is bivariate normally distributed. 

Of course, if (;rn, e:_n) is multivariate normally distributed, then conditional 

on X = X, jJ has the 'tl(fi, ( XTi-1 X)-1 ) distribution and the required results 

can be obtained very easily. 

CONCLUSION 

Though under reasonable conditions the estimators considered are 
consistent-it is not even necessary to assume the covariates are random-

fairly strong conditions are needed to justify the use of (~T:i;-1.i)-1 as an 
approximate covariance matrix for$ : namely randomness of the covariates, 

independence between the N observations, and uncorrelatedness of (~n) 2 and 
x;;r/;,T. It is worth pointing out that small sample simulation results in the 
literature are nearly always based on a multivariate normal distribution for 
(a;n, ~n); see for inst.ance Little (1979). 
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