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The econometric modeling of time serres by linear stochastic models has been criticized by R.E. Kalman. 

Instead he proposes to formulate this modeling problem as a stochastic realization problem. In this note 

Kalman's approach is followed and in a non-dynamic framework generalized to multivariate stochastic reali­

zation problems. The special case of the three-varrate Gaussian stochastic realization problem is investi­

gated in some detail. In a dynamic context the stochastic realization problem is posed of representing an 

observed process such that the inherent causality or dependency relation between the components 1s made 
explicit. 

I. INTRODUCTION 
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The purpose of this paper is to formulate certain stochastic realization problems that are motivated by 
econometrics. 

A general problem of econometrics, as of other areas of science and engineering, is to represent 
observations by a model. R.E. Kalman [24,25,26,27] has been voicing a critique of modeling in 
econometrics. His suggestion is to formulate this modeling problem as a realization problem of sys­
tem theory. 

R.E. Kalman's criticism of econometric modeling may be summarized by: 
I. one should not impose conditions on the model that cannot be falsified by the data; 
2. that a definition of identifiability that has been proposed by econometricians [33] and that is still 

used in econometrics is besides the point. 
Econometric modeling and the above criticism lead to the following system theoretic questions: 
I. how to model an observation vector such that the dependencies among the components are made 

explicit while keeping the model falsifiable?; 
2. how to model an observed stochastic process such that the dependencies between the components 

of the observed process are made explicit? 
A difficulty in econometrics is that the above questions are mixed up and that there the solution of 

question 1 is adapted to solve question 2. In the opinion of the author the above questions have to 
be separated. As yet it is not clear that the solution to question 1 may be used to solve question 2. 

For the modeling of an observed random vector several models have been used. Some of these 
models are: the regression model, the error-in-variables model, the factor analysis model and the 
confluence analysis model. Factor analysis has been introduced by the psychologist C. Spearman in 
1904 [49], generalized by L.L. Thurstone in 193 l [50] and developed by psychologists and statisticians. 
Confluence analysis has been introduced by R. Frisch in 1934 [14] and partly developed by 0. 
Reiers0l [33,43,44,45,46]. Econometricians such as T.C. Koopmans [31] have considered these models, 
but have apparently become bogged down by what they call the "identifiability" problem for these 
models [32,33,45,46]. Yet there still is much to say for the factor or confluence analysis model. The 
key property of this model is the conditional independence of the components of the observation vec­
tor given the factor. On the basis of this property one may define a rather general factor model. This 
model then includes the model of latent structure analysis introduced by th~ sociologist P.F. Lazers­
feld [36] and further developed by him and others [37]. This approach will be followed below. 

In this paper stochastic realization problems will be formulated for an observation vector in a non-
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dynamic context. The questions in this problem are the eitistence of a factor model that .represents 

the given observation vector and the classification of all minimal such models. Only a special case of 

these stochastic realization problems will be discussed in some detail. 
In a dynamic context where an observed stochastic process has to be modeled, the criticism of 

econometrics leads to a stochastic realization problem for a Gaussian process. The problem is to 

represent an observed process such that the inherent causality relation is made explicit. Several 

classes of stochastic dynamic systems with which this may be done are discussed. 

To properly motivate the stochastic realization problems to be posed below, section 2 contains a 

lengthy discussion of stochastic models. However, because the terminology in the literature is not 

standard, this discussion is necessary for the understanding of the proposed problems. In this paper 

no proofs are given, they are deferred to a later publication. 
Acknowledgements are due to G. Picci for helpful comments and encouragement. 

2. PROBLEM FORMULATIONS 

In this section several stochastic realization problems are motivated and formulated. First some nota­

tion and terminology is introduced. 

Definitions and notations 
Let (Q,F,P) denote a complete probability space, consistin& of a set Q, a a-algebra F and a probabil­
ity measure P. Let 

{
G a a-algebra of subsets of rl J } 

!. = G CF. completed with all the null sets of F · 

and for GE F 

L + ( G) = {:x :~l-•R + J x is G - measurab/+ 

If y:O->Rk is a random variable then FYEF is the a-algebra generated by y. If F 1,F2 EF then 

(F1VF2)EFdenotes the smallest a-algebra that contains both F 1 and F 2 , and that is completed with 

the null sets of F. The notation (F1,F2, ... ,F0 )E/ is used to indicate that F 1 ,F2 , ... ,F. are independent 

<!-algebras. The set R" will be equipped with the <!-algebra B. of the Lebesgue measurable sets, 
together denoted by (R",B.). 

The following notation is needed. Let 

Z+ ={1,2,3, ···}, N={0,1,2, ···}, 

andfornEZ+, 

z. = (1, 2, ... , n}, N0 ={O, !, 2, ... , n}. 

If n EZ + and Q ER"x", then QT denotes the transpose of Q; if Q is symmetric then Q ~O denotes 
that Q 1s positive definile and Q>O that it is strictly positive definite. 

The notation x EG(µ, Q) will denote that the random variable x has a Gaussian distribution with 

mean µ. and variance Q. Furthermore, (x 1,x 2, ... ,xm)EG(µ,Q) denotes that with 
xT=(xi.···,Xm), xEG(µ.,Q). 

Modeling of an observalion vector 

The questi~n here is, ~ven a probability distribution on a vector, to represent this distribution by a 

r:iodel. This vector will be referred to as the observation vector and its component~ as the observa­

tions. For the following discussion one limits attention to a random vector with a Gaussian distribu­

tion. Below four models for the representation of such an observed vector are discussed. 

In .general one dist~nguishes ex~~t a~d ~pp~oximate modeling. In exact modeling there must be 

equality between the given probability d1stnbut10n and the distribution of the observed random vector 
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that is associated with the .,model. In approximate modeling the given probability distribution must 
be approximated in a specified sense by the probability distribution on the observed vector that is 
associated with the model. Below attention is limited to exact modeling. 

DEFINIT!ON 2.1. The regression model. The observation vector y: n~Rk' y E G (0, Q,. ), is defined by 

y = ~~]· Y1:U~R*'.y2:fl--'>Rk', k1 +k2=k, 

Yi = Hy1 +w 
h n k . k Xk 

w ere w :••->R ', w E G (0, Q.., ), (>1 1, w) are independent and H ER ' '. Here y 1 is called the regres-
sor or independent variable and Yi the dependent variable. 

References for this model are [38,p.8 I ;40,p.72]. 
The main criticism of the regression model is that it imposes a partition and causality structure that 

cannot be determined from the data. Thus the question whether one can determine the indices 
k 1,k 2 EN from the variance matrix of y has a negative answer. In fact for any pair of indices 
k 1.k2 EN, with k 1 +ki = k, and any partition of the vector y one can write a regression model. 

The interpretation of causality is that somehow y 2 is caused by y 1 and the error w. Definitions of 
a causality relation between random variables or stochastic processes have been proposed in the 
econometric literature. The two concepts most often mentioned are Granger causality (17,18,19], and 
Sims causality [47,48]; see also the references [8,13,42,58] and the references quoted there. None of 
these definitions are useful in this context. ' 

Another interpretation is that the variable Yi consists of y 1 and the error w, while the variable y 1 

does not contain an error. 

DEFINITION 2.2. The errors-in-variables model (restricted sense). The observation vector y :Il->Rk is 
defined by 

y = ~~]· Y1:fl--'>R*', yi:fJ->R*', k1+k2=k, 

x =Gu, 

Y1 =u+wi. 

Yi =x+w2, 

w1 ,u:Il->R*', w2 ,x :fl->Rk'. G ERk' ><k,, (u,w i. w2 ) are independent and Gaussian distributed. 

The errors-in-variables model has been introduced into econometrics by A. Wald [55,p.286]; actu­
ally there the additional condition is imposed that Qw,, Qw, are diagonal. See also (40,p.72]. The 
model discussed by K. Pearson [41] can be considered as a special case of definition 2.2. In this 
model both observation components are subject to errors and in that sense it counters the criticism of 
the regression model. A point of criticism remains, one still assumes a partition of the observation 
vector into ()l 1,y 2) that in general cannot be determined from the data. The errors-in-variables model 
2.2 has a serious difficulty that will be discussed in section 3. 

DEFINITION 2.3. The factor analysis model. The observation vector y: n ~ Rk, with components 
(y 1, .. ., yd. is defined by 

y = H x + w, 

or, equivalently, as 
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y; = H,x + w,, J EZm. 

where x:O->R", xEG(O,Qy) called the factor, HERkxn, called the matrix of factor loadings, 
w:O->Rk, wEG(O.Q..,). Q.., diagonal and (x,w) independent. Here Q., diagonal is equivalent to 
(w I• ... , wk) independent. 

Factor analysis is a subject that has apparently been introduced by the psychologist C. Spearman in 
1904 [49], and that has been generalized by L.L. Thurstone in 1931 [50). In [49] the condition is 
imposed that n = I. 

DEFINITION 2.4. The confluence analysis model (the errors-in-variables model (general sense)). The 
observation vector y:O->R*,yEG, is de.fined by 

y =u +w, Su =O, 

where u,w :0--+Rk, wEG(O,Q.,), with Q., diagona~ u E G(O,Q.). (u,w) independent and SE RPx * of full 
rank. 

The factor analysis model 2.3 and the confluence analysis model are easily seen to be equivalent. 
This fact is well known [S,p.20;33;46]. In the econometrics literature model 2.4 is also called the 
errors-in-variables model [38,Ch.10,§2,p.386]. Moreover, the models 2.2 and 2.4 are not always dis­
tinguished. Because of the equivalence of the models 2.3 and 2.4, in the following attention will be 
restricted to the factor analysis model. 

The model 2.4 has been introduced by the econometrician R. Frisch in 1934 [14] in a subject 
termed confluence analysis, in fact for the case p= I. Confluence analysis has been developed partly 
by 0. Reiers0l [43,44]. F.risch's reason for proposing the confluence analysis model has apparently 
been the inappropriate use of the regression model. 

By which of the above four models should one represent an observed random vector? Assume 
given a probability distribution on an observed random vector. Because exact modeling has been 
adopted one has to "determine a model in the appropriate class such that the probability distribution 
of the observed vector associated with the model equals the given probability distribution. As cri­
terion for the above question we now pose that one must be able to falsify the model on the basis of 
the given probability distribution. 

The factor analysis model and equivalently the confluence analysis model satisfy the above criterion 
with the modifications stated below. Therefore the factor analysis model will be used in the sequel. 
The regression model is rejected because it imposes a causality assumption that cannot be determined 
from the given probability distribution. Here the indices k i.k 2 as defined in 2.1 cannot be deter­
mined from the data. In the factor analysis model no causality assumption is imposed, all observa­
tion components are treated equally. The modification that one must impose on the factor analysis 
model to make it falsifiable are the restriction to a minimal factor and the dividing out by an 
equivalence class. This will be discussed below. 

What is particular about the factor analysis model? To answer this question the concept of condi­
tional independence is needed. 

DEFINITION 2.5. The multivariate conditional independence relation for an (m+l)-tuple of a-algebras 
Fi.F2 •... ,Fm •. G E!_ is defined by the condition that, with for all i EZm y; EL+ (F;), 

E[yi · · · Ym \ G] = E[yi\ G] · · · E[ym \ G]. 

Then one says that Fi.Fi, ... , Fm are conditionally independent given G. Notation 
(Fi.F2, ... ,Fm \ G)ECJ. 

DEFINITION 2.6. The multivariate Gaussian conditional independence relation for an (m+l)-tuple of 
a-algebras FY', ... ,FY·,px generated by y 1:'1-> Rk' , ... ,ym:O--+ Rk", x:a-+R", is defined by the 
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(Fv' ,F'" , .... F''· i F')EC/, 

(Y 1 ·Yi .. y. ,x)E G. 

Notation (F"' , ... ,F"· I F')E C/G. 

It will be shown in section 3 that random variables (F 1, ••• , Ym ,x) satisfy 

(Fv', ... ,Fv" IF)EC!G 

iff they satisfy the specification of the factor analysis model, namely 

y = H x + w, 

with Q., diagonal, or, equivalently, as 

y, = H1x + w1, 
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in which (w1, ... , wm) are independent. The interpretation of this condition is that the factor x 
represents all the information such that conditioned on it the observations are independent. In other 
words, every observation consists of a systematic part represented by the factor and an error that is 
particular for the observation component. From a modeling viewpoint this is a natural property. 
This point has been stressed in (2,p.112;4,p.11 ]. The concept of factor is a generalization of the con­
cept of state in stochastic dynamic systems [ 12,53,54]. 

In the following the conditional independence relation will be used to describe the dependencies of 
the components of the observations. One may generalizalize the factor analysis mo9el as follows. 

DEFINITION 2.7. a. A factor model is a collection of sets Y 1, ... , Ym,X and random variables 

Y 1:fl-.Y1 .... •Ym :Q-> Y m• x :fl->X, defined by the condition that 

(Fy' , ... ,F"· I F)EC/. 

The random variables y 1, , •• ·Ym are called the observations and the random variable x is called the 
factor. 
b. A Gaussian factor model is a factor model such that for i EZm, Y, =Rd', X=R" and (Y 1, .•. ,ym,x) 
are jointly Gaussian. 
c. A finite factor model is a factor model such that Y h···, Y m ,X are finite sets. 

The Gaussian factor model contains the factor analysis model, the confluence analysis model and 
the errors-in-variables model 2.2, with m=2, as special cases. A factor model like 2.7 has been used 
by T.W. Anderson in [4,p. 10] and D.J. Bartholomew in [6,7]. 

Factor models for random variables taking values in discrete sets have been used in latent structure 
analysis. This subject has been introduced by the sociologist P. Lazersfeld (36]. The concept of latent 
variable in sociology and statistics is identical to the concept of factor, see [4,p.10;6,p.295;39,p.551]. 
The term latent variable is used differently in econometrics (l,p.1323;32,p.127;46,p.123]. 

Stochastic realization problems 
The modeling problem of econometrics will now be formulated as a static stochastic realization prob­
lem. Before presenting a fom1al problem formulation an informal discussion is given. 

The problem is, given an observed random vector with Gaussian distribution G(O,Q) on Rk, to 
show existence of a factor analysis model with parameters (k,n,H,Qx, Q,.,) such that the distribution of 
the observation vector y that is associated with this model equals the given distribution G(O,Q). If 
such a model ex.ists then it will be called a stochastic realization of the given observed vector. In gen­
eral a stochastic realization, if it exists, is not unique. Two stochastic realihtions will be called 
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equivalent if they are associated with the same distribution for the observed vector. For any observed 
vector there is a class of equivalent stochastic realizations. This class must be reduced by imposing a 
minimality condition. To formulate this condition a definition follows. 

DEFINITION 2.8. The minimal multivariate conditional independence relation for an (m+ I )-tuple of a­
algebras F 1, ••• ,Fm,G EF is defined by the conditions: 

1. (Fi.F2 •... ,Fm J G)EC/; 
2.if(Fi • ... ,Fm I H)EC/, and if HCG, then H =G. 

Notation (F1, ... ,Fm JG)EC/min· 

In analogy with the definitions 2.4 and 2.5 one may define a minimal multivariate Gausssian condi­
tional independence relation that will be denoted by 

(F1', ... , F1" JP)EC/Gmin· 

Minimality in this relation is equivalent to minimality of the dimension of the random variable x. 
The minimal two-variate conditional independence relation is discussed in [53,54] and the minimal 
two-variate Gaussian case in [52]. 

In the ~tochastic realization problem a major question is to classify • or to describe, all equivalent 
minimal stochastic realizations. It is a fundamental fact of stochastic realization theory for Gaussian 
processes that in general a minimal stochastic realization is not unique. The above mentioned 
classification question is therefore important. Once one has obtained the classification of all minimal 
stochastic realizations of a given probability distribution'one can obtain a falsifiable model by divid­
ing out the equivalence relation. 

Identifiability in econometrics. It is illustrative to compare the above formula.ted system theoretic 
approach for the stochastic realization problem to the econometric approach to modeling. We would 
like to concentrate. attention on the socalled "identifiability" problem of econometrics. R.E. Kalman 
[26, p. 119] has criticized the econometric concept of "identifiability" and this criticism should be 
widely known. 

The econometrics literature usually refers for definitions of "identifiability" of a model to the paper 
of T.C. Koopmans and 0. Reier50l of 1950 [33). In that paper a realization problem is posed in 
abstract terms [33,p.169). There two structures are defined to be equivalent if these have the same 
distribution on the observations. But, 

"We then say that a model 6 identifies a parameter 8(S) in a structure S 0 , if that parameter 
has the same value in all structures S0, contained in G and equivalent to So" (33,p.169). 

There follows, 
" ... a new group of identification problems: to determine which of the parameters or other 
characteristics of a given structure are identifiable by (or "within") a given model" (33,p.169). 

Attention is thus concentrated on finding parameters that may be determined from the distribution of 
the observations. See also [32,p.133;45,p.376;46,p.125]. If the parameters of a certain model cannot 
all be determined from that distribution, then the model is termed "unidentifiable". Current practice 
in econometrics has not changed much since [ l,p.1332-1335; 16,p.993;20;28;38,p.63,p.646). 
"Identifiability'' of a parameter is sometimes also defined as the existence of a consistent parameter 
estimator for this parameter [J,p.1335;38]. The question of minimality of a realization is hardly ever 
posed and neither is the question of classification of all minimal realizations. 

By analogy consider the standard deterministic linear realization problem where one wants to 
represent a linear input-output map by an element of the class of time-invariant finite-dimensional 
linear systems. Such systems are described by the parameters k,n,m, respectively the dimension of 
the output, state and input space, and matrices A,B,C,D (56,57). According to the above definition of 
"identifiability" only the parameter Dis "identifiable". The parameters n,A,B,C are "unidentifiable". 
Note that no condition of minimality is imposed. 
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Stochastic realization problems continued. 

PROBLEM 2.9. The weak multivariate Gaussian stochastic realization problem. Given 
1=m 

m E Z +, k 1, ... , km E Z + and a Gaussian probability measure G (0, W) on R ', r = L k,. 
l=1 

a. Does there exist a Gaussian factor model, say with n E Z +, a Gaussian measure G(O, Q) on R' +n and 

for i EZm, y;:G ...... Rk,, x :fJ ...... R" random variables with 

(Fy, ,. ..• P· j F') EC/G, 

(y,, .. ., Ym• x)EG(O,Q), 

such that 

(y1 •... , Ym)EG(O, W)? 

If so, call (n, G(O, Q)) a weak Gaussian stochastic realization of G (0, W). 

b. What is the minimal n E Z + for which the question a. has a solution? Call a stochastic realization for 

which n is minimal, a minimal stochastic realization. 
c. Classify all minimal weak Gaussian stochastic realizations of G (0, W). 

The motivation of problem 2.9 comes from psychology, sociology and econometrics. It may also be 
relevant for game and team theory. Problem 2.9 is a probl~m of mathematics. It should not be taken 
as a suggestion to apply it to the representation problem discussed earlier with arbitrarily chosen 
indices k; > I. 

The multivariate weak Gaussian stochastic realization problem with k 1 = ki = ... = km= 1 is 
known as the factor analysis problem in psychology and statistics and as the confluence analysis 
problem or representation by errors-in-variables model in econometrics. For references to the psycho­
logical and statistics literature see [2,21,23,29.35,49,50,51,52], and for the econometrics literature 
[l.14.16,20,28,31,32,33;34,38,40,43,44). A survey of the theory up to 1956 is given by T.W. Anderson 
and H. Rubin [2). For a review of the history of factor analysis in psychology see [21,l.1;29,p.74-
76;51,Preface]. 

Despite the age of problem 2.7 for k; = 1, i EZm, it is apparently still unsolved. The existence 
question has been discussed. The minimality question is hardly ever mentioned, [2,p.114 I] being an 
exception. 0. Reiers0l [46,p.127-128] touches on this question in his study of the identifiability of the 
factor analysis problem. For the psychological literature see [21,Ch.5]. The classification problem has 
been posed under the name of identification question, see [2,section 5] and the references quoted 
there. Again, 0. Reiers0l [46) treats this question in the context of the identifiability problem. This 
question is also unsolved. In factor analysis the equivalence class is often reduced by imposing adhoc 
conditions on the matrix of factor loadings. Approximations of factor models have been proposed in 
which the variance of the error term is minimized [21,Ch.9]. Most of the literature on factor analysis 
deals with statistical tests and not with the system theoretic questions of characterization of minimal­
ity and classification. 

Why have econometricians given up on confluence analysis or factor analysis? The problem has 
been introduced into econometrics by R. Frisch [ 14]. T.C. Koopmans has treated it in [31 ]. 0. 
ReierS01 has partly developed the subject [43,44,45,46]. Apparently econometricians have turned away 
from this analysis because of the "identifiability" problem mentioned below 2.8 and because of the 
presence of unobservable random variables in the model. See [16,p.992;20,p.977] for discussions of 
this point. R.E. Kalman's [24,25,26,27] suggestion of a system theoretic approach to econometric 
modeling should be taken seriously by econometricians. 

PROBLEM 2.10. The strong multivariate Gaussian stochastic realization problem. Given a probability 

space (fJ,F,P), m EZ +• ki. ... , k,. EZ +,for i EZm, y, :fl-4R\ y =(y 1, ... , km)EG(O,Q,). 
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a. Does there exist a Gaussian factor model with n EZ + and a random variable x :f>l->Rn. such that 

(F1 ', ... ,FY" IF')EC!G, 

F'C (F1'v ... vFY"). 

If so, call this Gaussian factor model a strong Gaussian stochastic realization ofy. 
b. Derermine the n E Z + for which in a. 

(F'', .. ., F'" IF')ECIGmin 

Call a strong Gaussian stochastic realization of y minimal if n satisfies this condition. 
c. Class if; all minimal strong Gaussian stochastic realizations of y. 

Problem 2.10 has first been formulated in a Hilbert space framework in [ 12]. 

PROBLEM 2.11. The weak multivariate finite stochastic realization problem. Given k, m EZ +• and a 
probability measure po on (Zk)m. 
a. Does there exist a finite factor model with n E Z + and a probability measure p 1 on ( Zk r X Zn such 
that, if for i E Zm )'; :fil->Zk, x :ll->Zn are random variables with the distribution of (F 1, •.• ·Ym·X) 
equal top 1 and 

(F>", ... , F'··i F")ECI 

then the probability distribution of (y 1, •.• , Ym) equals the given probability distribution Po? 
b. What is the minimal n EZ+ for which question a. has a solution? 
c. ClassifY all minimal stochastic realizations p 1• 

The motivation for problem 2.11 comes from summarizing data of psychological tests. This prob­
lem has been formulated by the sociologist P.F. Lazersfeld in 1950 [36], and subsequently developed 
by him [37] and others [4,39). See the last two references for literature on this subject. A discussion 
of this problem is given by T.W. Anderson [4]. One may also pose a multivariate strong finite sto­
chastic realization problem. 

A generalization of the factor analysis problem has been posed by D.J. Bartholomew [6,7]. 
The strong Gaussian stochastic realization problem may be generalized as follows. 

PROBLEM 2.12. The multivariate a-algebraic stochastic realization problem. Gi1•en F 1, ••• , F m E F. 
Determine all a-algebras G E !:_such that 

(Fi, .. .,Fm I G)E CJ min• 

GC(F1VF2V · · · VFm)· 

Preliminary results on problem 2.12 will not be stated here because of space limitations. The two-­
variate version of problem 2.12 is discussed in (53,54). 

3. THE MULTIVARIATE GAUSSIAN STOCHASTIC REALIZATION PROBLEM 
A special case of problem 2.8 will be discussed. 

A technical result 

PROPOSITION 3.1. Let m EZ +•and for i EZm y;:ll->Rk,, x :ll->R", be zero mean random variables. 
Then a., b., and c. below are equivalent: 
a. 

(F1 ',. .. f" IF')EC!G; 
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b.l. 

(yi. ... , Ym• x)EG; 

b.2. with respect to some basis, for all i, j E Zm, i-=f. j, 

Qi]= QiXQ; 1QXJ' 
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where X EG(O,Qx), Qx>O, Q11 = EJri.YJ1 and Qix = E[y,xTk 

c.there exist for iEZm, w1 :n~R', w1 EG(O,Q..,,). and H1 ERk.xn. such that xEG(O,Q,), 

(x, W1, ... , wm) independent, and 

y;= H;x + W;, i EZm· 

The weak and strong two-variate Gaussian stochastic realization problem have been solved, see [52] 
and for another representation [12]. It is of interest to know that the solution has been obtained by 

exploiting the canonical variable representation [3, Ch.12], by using a suitable representation and by 
solving a Riccati-like inequality. 

Comments on the errors-in-variables model 

The errors-in-variables model 2.2 leads to a difficulty that is due to non-minimality. Assume given 
this model with 

Y = ~~]· k1<k2 say, 

z =Gu, Yi =u t'w 1,y2=z +w2, 

y= ~~]= [~] u + [:~]· 
If one accepts the partition of y into.(v 1, y 2) one may ask for the minimal x :n~Rn such that 

(Fy', Fy' I F')EC/Gmin• 

or, equivalently, 

~~] (Z~] x + (:~]· 
with (x, w i. w2) independent and Gaussian. Now it may be the case that n =dim(x)<k 1 <k 2 (52]. 
Then the errors-in-variables model defined above, in which 

(Fy', Fy' I F")EC/G, 

with k 1 == dim(u)>n, is necessary non-minimal. This non-minimality will lead to a rather large class 
of equivalent realizations. This in turn will lead to difficulties if one tries to estimate parameters of 

this model. 
However the problem is not as bad as it seems. Generically the dimension of a minimal x is 

rank(E[y 1yf])= ki. if k 1 <k 2, and then there is no difficulty with non-minimality [52]. 

The three variate Gaussian stochastic realization problem 
The multivariate weak Gaussian stochastic realization problem will probably have to be solved by 

induction on the number of components of the observation vector. Since the case of two variables 

has been solved in (52], the next case in line is the three-variate case. 
Assume one is given for i EZ 3 y1 :n~R\ (y 1, y 2, y 3)EG(O, Qy). In the two-vtfiate case referred 

to above, a key role is played by the canonical variable decomposition developed by H. Hotelling [22]. 
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For the three-variate case a canonical form seems also necessary. One can speak here about a canoni­

cal variable form because the problem is specified in terms of spaces rather than in terms of the par­

ticular variables. 

PROBLEM 3.2. [22, p.375]. Consider Q ERkxk with Q =QT~o. k =k1 +k2 +k3. Define an internal 

transformation as Q~SQST with 

S = blockdiagona/(S i.S 2, S 3), 

where for i=l,2,3, S, ERk,Xk,. Call Q 1, Q2 ERk Xk equivalent if there exists an internal transformation 

S such that Q 1 = SQ 2ST. Determine a canonical form for Q under this equivalence relation, thus for the 

set 

_ {QiERkXk I Q 1 =Q 1 T~Oandthereexistsaninternal1 

!_(Q) - transformation S such that Q 1 =SQST · 

Problem 3.2 is posed by Hotelling at the conclusion of the paper [22] in which he solves the analo­

gous problem for two sets of random variables. There are some references on this problem, see [30] 

and the references quoted there. 
A conjecture has been formulated for the canonical form requested in problem 3.2. In mathemati­

cal terms it is somewhat elaborate, hence it will be described in words. Each of the three sets of vari­

ables may be decomposed into several parts consisting of: 

I. components that are independent; 
2. components that are correlated with those of one other variable but independent of the components 

of the third; 
3. components that arc< dependent. 
For the third set of components a further decomposition should be given but how is not yet clear. 

The weak multivariate Gaussian stochastic realization problem 2.9 with k; =I for all i E:Zm, can be 

shown to be equivalent to the following problem. 

PROBLEM 3.3. Given QE':Rm><m, Q=QT~O. Determine (n, H, Q,.,) with n E':Z+, HER"'xn, 

Q .. ERmxm, Q,.,=Q~~O and diagonal, such that 

Q = HHT + Q ... 

In particular, determine the minimal n EZ +for which this is possible and classif.; all solutions (n,H, Q.,) 

for the minimal n. 

A characterization for the existence of just one factor has already been given by C. Spearman [49]. 

See also [2,section 4] for results of this problem. R.E. Kalman has presented solutions to specific 

cases of this problem [24,p. !0;27]. It seems that algebraic and geometric methods must be used to 

attack problem 3.3. 

In the following attention is restricted to the three-variate strong Gaussian stochastic realization 

pro~J;;n 2.8. It can be shown that this problem has a solution iff there exists a T ERn><\ with 

k = 2: k,, such that, 
1=1 

I. x =Ty, Q,>0, 

2. Q;1 =Q,,Q; 1Qx1.foralliEZ3, i=f=.j, where Q;1, Q;, areasdefinedinll. 

In the following attention is further restricted. 

CASE 3.4. Consider the three-variate strong Gaussian stochastic realization problem with 
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k1 =k2 =k3 =I, Y1·Y2,y3:Q->R, (y 1,Yi,y 3)E<3{0, Q,.), rank(Q,.)=3. Assume, without loss of 
generality, that 

q12 q13 

Qy q12 I q23 

q13 q23 1 

If rank( Qy )< 3 then there are other special cases. 
It is first shown that the existence question of problem 2.10 is trivial. For example, either x 1,x 2, or 

x 3 defined by 

- f y 1 ] f y ' ] f Yi] 
X1 - lY2 'X2 ~3 , X3 ~3 , 

satisfies the conditions of 2.9.a. 
The next question is the minimality of the dimension of the random variable x. In general the 

minimal n can be 0, 1, or 2. 'One may distinguish special cases based on the conjectured canonical 
form for problem 3.2. Thus if q 12 =q 13 =q 23 =O, which implies that (j• 1,y 2,y 3 ) are independent, then 
the dimension of x is zero. Of all the other special cases, that of q 12 ,q 13 ,q 23 nonzero is the most 
interesting one. 

PROPOSITION 3.5. Given case 3.4 of the three-variate strong Gaussian stochartic realization problem. 

Assume that for i, j E Z 3 , i=fai one has %=1'0. Then there exists a solution x :Q->R of this problem of 

dimension n=l iff one of the following conditions is satisfied: 

1. q12=q13q23; 
2. q13=q12q23; 

3. q23 =q12q13. 

Moreover, if q 12=q 13 q 21 then x =y 3 and (F'' ,Fv' IF") E CIG. The condition (F'' ,F'' IF"') E CIG 

implies directly that (F'' ,F'',FY' I FY') E CJG. 

Consider again case 3.4 of the three-variate Gaussian stochastic realization problem. In the cases 
not discussed above the dimension of the minimal factor is 2. What is the classification of all such 
x's? This question leads to a set of quadratic equations. Thus one has to determine all TER 2 x 3 

such that 

TQyTT =I, 

q12=q1TTTq2, q13=q1TTTq3, q21=q2TTTq3, 

where q 1,q2 ,q3 are the columns of Q,.. As of yet no transparent way of representing the solution is 
known. The solution will have to be based on the theory of quadratic equations. 

4. REALIZATION OF STOCHASTIC PROCESSES 

The problem formulation 
The problem to be considered here is the modeling of a process or time series. Specifically, this 
involves the selection of a class of stochastic dynamic systems that may be used to model the process, 
and the formulation and solution of a stochastic realization problem. This modeling problem arises 
in econometrics, psychology, control and communication and in other areas of science and engineer­
ing. 

This modeling problem becomes more interesting if one demands that the inherent causality 
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relation or dependency between the components of the observed process is exhibited. This problem 
should be considered in the light of the discussion of section 2. Thus below one will see the analogue 
for stochastic processes of the regression model, the errors-in-variables model and the factor analysis 
model. 

A question is then what concept of causality or dependence relation to use in this context. As men­
tioned before definitions of a causality relation between a pair of random variables or stochastic 
processes have been proposed in the econometric literature. The two concepts most often mentioned 
are Granger causality [17,18,19] and Sims causality [47,48]; see also the references [8,13,42,58] and the 
references quoted there. The notion of a pair of feedback free processes has also been introduced. 
Considering the discussion of [8] it seems that the only interesting system theoretic question is the 
decomposition of a stochastic system into subsystems that are interconnected serially and/or in paral­
lel without feedback connections. The usefulness of such a general decomposition is not clear. 
Another topic must be mentioned in this context namely the feedback decomposition of Gaussian 
processes [15]. 

Below attention is concentrated on two methods to represent the causality relation between the 
components of a stochastic process. The first method concerns a rather strong causality concept, in 
which one set of components is, the input of a stochastic system and another set of components the 
output of the same system. The second method is factor analysis for stochastic processes. 

For a mathematical problem formulation assume given of an observed Gausian stochastic process 
the family of finite dimensional distributions. In the rest of this section some attempts to model such 
a process are reviewed. 

Modeling of time series in psychometrics 
In the past psychologists have applied factor analysis to time series in a rather naieve way. Below the 
criticism of this approach by T.W. Anderson [5] is summarized. Psychologists may have data from a 
patient over time. The application of factor analysis then proceeds by averaging these data over time 
and applying a factor analysis to the averaged data. T.W. Anderson's criticism is that in this 
approach, 

" ... there is a danger of missing important and interesting characteristics which are significant 
because of their development in time ... " [5, p. 9]. 

See also the criticism in [5,section 6]. Finally he suggests psychologists apply time series analysis, in 
particular ARMA-representions, to psychological time series. In system theoretic terms his advice is 
to use stochastic dynamic systems and stochastic realization theory. 

Stochastic realization without causality relations 
Econometric practice for the modeling of time series is to apply the regression model where the 
regressor may contain observations with lagged time indices. One may interpret this representation as 
one in which some variables are caused or explained by other, possibly delayed, variables. The result­
ing equations may be combined into an autoregressive representation possibly with moving average 
part. 

The criticism from system theory on this procedure is that the selection of regressors is arbitrary, 
see the comment on the regression model, and that the concept of state of a dynamical system is not 
made explicit. 

The system theoretic approach to the modeling problem posed above is then to define dynamic sys­
tems in which the state is made explicit and to use realization theory. In the problem under discus­
sion one would use stochastic realization theory for which only the case of Gaussian processes has 
been developed in some detail (10,11,12]. 
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Stochastic realization in the class of stochastic systems with inputs 

DEFINITION 4. l. A Gaussian system with input is an object described by 

x, + 1 = Ax, + Bu, + Mv1, 

y, = Cx, + Du, + Nv,, 
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where v :flX T --.RP, v, EG(O, Qv) is a Gaussian white noise process, u :OX T-.Rm a stochastic process in 
some class !:!; x :OX T --.R", y :fl X T-+Rk are stochastic processes defined by the above relations, 
A ER"x". BER"xm, MER"xP, CERkxn, DERk><m, NERk ><p, (v,u) are i~dependent, and T=Z. 
The observations consist of the processes (u,y ). 

For the class of inputs U one may take white noise processes or zero mean stationary Gaussian 
processes possibly with a rational spectral density. 

PROBLEM 4.2. Given a zero mean stationary Gaussian process with values in R', the class of Gaussian 
systems with input and a class of input processes U. Determine k,mEN, a permutation matrix PER'x' 
and a Gaussian system with inputs with k,m beingrespectively the dimensions of the output space and the 
input space, such that 

r = k + m, 

P ~) • equals the given process in distribution. 

Such a system will be called a weak Gaussian stochastic re11Iization of the given observed process. It will 
be called minimal if the dimension of the system is minimal: Moreover, classify all minimal such realiza­
tions. 

Note the analogy of definition 4.1 with the regression model of 2.1. Problem 4.2 has been inspired 
by work of J.C. Willems [56,57] on deterministic realization problems. 

As a criterion for.the usefulness of definition 4.1 one must pose that the dimension m of the input 
space and the dimension k of the output space can be uniquely determined from the family of finite 
dimensionl\l distributions of the given process. Apparently this cannot be done without imposing 
additional conditions. If the class of inputs U consists only of white noise processes then one can 
show that the dimension of the input space is not unique although its maximal value is unique. If the 
class of inputs consists of zero mean stationary Gaussian processes then the example of a series con­
nection of two Gaussian systems with inputs shows that the dimension of the input space cannot be 
uniquely determined. Possibly the condition that the dimension of the input space is minimal may be 
necessary to achieve uniqueness. Therefore this approach remains to be investigated in more detail. 

The dynamic errors-in-variables system 
The opportunity is taken to criticize a stochastic system suggested in [12,p.449). The stochastic reali­
zation problem proposed there is to represent an observed process as an element of the following class 
of dynamical systems. 

DEFINITION 4.3. A dynamic errors-in-variables system is an object described by 

x1 +I =Ax, + Bu,, 

y, = Cx,, 
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where wi.z 1:llXT-+Rk', w2,z 2 :0XT-+Rk', are stochastic processes with w 1,wi independent Gaussian 
white noise processes, u:OXT-+Rk' is a stochastic process from some class U, x:OXT-+R", 
y:OXT-+Rk' are stochastic processes, A ER"x", B ERnxk, C ERk,xn and the observed process is 

(z i.Z 2} 

Apparently an assumption is imposed on the data, namely the partition of the observation in the 
components zi.z 2 • If one disregards this aspect, then the class of these stochastic systems is a proper 
subset of the class defined in 4.1 above. 

Stochastic realization and factor analysis 
Can factor analysis be used in the modeling of time series? Confluence analysis as proposed by R. 
Frisch and developed by 0. ReierS01 has also been formulated for time series, see (14,43,44). 
Specifically they have considered roughly the following representation. 

DEFINITION 4.4. The dynamic factor analysis model. The observed process z :llX T-+R' is specified by 

Sr,.= 0, 

where w :OX T-+R' is a stationary Gaussian white noise process with for all t ET w1 E G(O,Qw) and Q,. 
diagonal, r :0 X T -+R' is a zero mean stationary Gaussian process independent of w and S ERP x r. 

Equivalently, one can say that 

z, = Hs, + w1, 

where s :OXT-+Rq is a zero mean stationary Gaussian process independent of wand H ERrxq. 

The above definition piffers from (43,44) in that the assumption of uncorrelatedness of random vari­
ables has been replaced by the assumption of Gaussian distributions and independence of random 
variables. 

The dynamic factor analysis model has apparently not been investigated since the work of 0. 
ReierS0l [43,44]. The difficulties with the "identifiability" issue as discussed in section 2 has halted 
progress on this approach. The question whether factor analysis can be used in the modeling of time 
series remains therefore unanswered. 

The criticism from a system theorist of the dynamic factor analysis model 4.4 is that it does not 
specify the dynamic behavior of the process r or the process s. In system theory one uses state space 
representations in which the state is made explicit. One could extend the dynamic factor analysis 
model by specifying that the stochastic process sis the output of a Gaussian stochastic system (12,54). 
This approach remains to be investigated. 

Conclusion 
The analysis of the stochastic realization of a stochastic process while exhibiting the dependencies 
between the components is incomplete. The approach of searching for a realization in the class of 
Gaussian stochastic systems where the observed process has to be partitioned into an input and out­
put process is unsatisfactorily without further conditions. The criticism of the regression model 
should be taken seriously also for this approach. The combination of factor analysis and Gaussian 
stochastic dynamic systems may be useful. For the moment a definition of a stochastic dynamic sys­
tem that incorporates both the factor and the stochastic dynamic system properties is still missing. 
More research is wanted here. 
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