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1. Recent textbooks focus on the subcritical transition from Townsend to
glow discharge, i.e., on a falling current-voltage characteristics. However, in
short gaps, the transition can also be supercritical or even show some interme-

diate mixed behavior.
[See Chapter 5 in this thesis.]

2. The current-voltage characteristics of a gas discharge is typically pre-
sented in a semi-log plot; and it is very interesting (but not at all true) that a

load line in a semi-log plot stays just a line!
[See Fig. 1.2 in this thesis.]

3. The semiconductor-gas-discharge system exposed to a DC voltage can
spontaneously attain a mode of temporal oscillations while staying spatially
homogeneous and a bifurcation diagram for this transition can be calculated.

[See Chapters 3 and 6 in this thesis.]

4. Despite expectations based on simplified reaction-diffusion models, oscil-
lations are possible even when the current-voltage characteristics has a positive
differential conductivity.

5. By increasing one of the control parameters (e.g., applied voltage) the
period of oscillations can double. Further increase of the voltage leads to the
well known route to chaos through a cascade of period doubling events. This
shows again that a simplification to a two-component reaction-diffusion model

is not possible.
[For stellingen 4 and 5 see Chapter 7 in this thesis.|



6. Our system can make a transition from spatially homogeneous to spa-
tially structured oscillating patterns on the mere increase of the width of the
semiconductor layer while its resistance and capacitance stay unchanged.

[See Chapter 8 in this thesis.]

7. ‘Justice for all’ exists only in theory. The truth is that justice may exist
only among equals. Should we call this justice?

8. Science is certainly capable of answering many questions. The question
is how many scientists are asking the right questions!

9. Animals and nature are suffering from mankind. Also, people closest to
nature are suffering. The solution might be to help those people first.

10. The mathematics of string theory requires at least 11 dimensions. Al-
though we can experience only 4 out of 11, the others are said to be curled up,
but our incapability to experience them doesn’t necessarily mean that they are
not developed. They might be as well wide open and very important, but we as
3D beings do not have the means to see, feel or explain them.

Inspired by the book of Brian Greene - ‘The Elegant Universe’

11. When it comes to everyday relations and the matters of heart, scientific
methods and concepts are pretty much inapplicable.

12. The cruel and severe conditions of life in regions of eternal ice make you
respect and appreciate the miracle of life the most!

13. The ability to learn Dutch is closely related to the ability to cope with
the pain felt when actually trying to speak it.
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Preface

This thesis is based on more than four years of research that I have carried out
at the Center for Mathematics and Computer Science (CWI) in Amsterdam.
So far, this research has resulted in four publications which served as a base
for some of the chapters. However, these chapters are not meant to be read
separately, since the thesis is made as one compact story with the model and its
notation fixed in Chapter 4. The papers and corresponding chapters are listed
as follows:

Chapter 5 D.D. Sijaci¢ and U. Ebert, Transition from Townsend to glow dis-
charge: Subcritical, mized, or supercritical characteristics, Phys. Rev. E
66, 066410 (2002).
Yu.P. Raizer, U. Ebert and D.D. Sijaci¢, Dependence of the transition
from Townsend to glow discharge on secondary emission, Phys. Rev. E
70, 017401 (2004).

Chapter 6 D.D. Sijaci¢, U. Ebert and 1. Rafatov, Oscillations in DC driven
‘barrier’ discharges: Numerical solutions, stability analysis and phase di-
agram, submitted to Phys. Rev. E

Chapter 7 D.D. Sijaci¢, U. Ebert and L. Rafatov, Period doubling cascade in
glow discharges: local versus global differential conductivity, Phys. Rev. E
70 (2004) [to appear].

There are two more papers in preparation:
Oscillations despite local and global positive differential conductivity based on
Subsection 7.4.1 and,
Spatio-temporal patterns in DC driven ‘barrier’ discharges: Numerical solutions
and stability analysis based on Chapter 8.

Furthermore, this thesis has an extensive introduction which consists of three
chapters. That seemed necessary since:
The problem comes from gas discharge physics (Chapter 1);
It is investigated by applying methods from nonlinear dynamics and pattern
formation theory (Chapter 2);
Chapter 3 reviews particular experiments on whose explanation we focus in later
chapters.



O God, I could be bounded in a nutshell and count myself a King of
infinite space.

Hamlet, II, 2

So far as theories of mathematics are about reality, they are not
certain; So far as they are certain, they are not about reality.

Albert Einstein
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Introduction

A survey

We encounter nonequilibrium plasmas in traditional neon tubes, in modern
plasma screens as well as in sparks or lightning — to name only a few of these
natural or technical phenomena. In contrast to plasma in stars or fusion, in
all these cases the plasmas are formed not thermally; In such low temperature
plasmas the ionization is generated by strong electrical or electromagnetic fields.
Therefore they carry currents and are far from equilibrium like for example
liquid crystals in electric fields. In applications, such nonequilibrium plasmas
are typically tamed, i.e., they have a homogeneous and stationary, controllable
behavior. Looking at natural processes, it is clear that this is nontrivial: most
natural processes do form complex spatial and temporal structures. This is
generic for nonlinear nonequilibrium systems.

This thesis is concerned with such pattern forming processes in a nonequi-
librium plasma system that is as simple as possible, and therefore generic: two
thin parallel layers are sandwiched between planar electrodes to which a DC
voltage is applied, see Fig. 3.1. One layer is a semiconductor layer with high
linear resistivity, the other layer is a simple gas like pure nitrogen or pure argon
in which a discharge takes place. The discharge is the nonlinear element of the
setup: it acts in the transition region between the Townsend regime where the
interaction of charged and ionized particles in the gas is negligible, and the glow
regime where space charge effects make the process nonlinear.

The spatially homogeneous two-layer system with stationary DC drive can
spontaneously form a variety of spatial, temporal and spatio-temporal struc-
tures depending on the parameters of operation. The aim of this thesis is to
understand these patterns by applying concepts from pattern formation and
nonlinear analysis.

So far, two basically different theoretical approaches have been developed:

1. On the one hand, one can try to catch all specific properties of a particular
system and solve it numerically. The result is a specific answer for this
particular system, but
(7) the result can depend on numerical solution strategies, so either some
physical understanding or very careful numerical testing is required to be
sure of the results,
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(i1) typically, one will not investigate many different parameter sets, there-
fore it is difficult to say whether the observed results are generic.

(i77) Numerical solutions only give limited insight into the physical mech-
anisms underlying the observed phenomena.

. On the other hand, one can have a completely different approach guided

by the patterns observed in other physical systems. Since very differ-
ent systems can form similar patterns, researchers have searched for a
general principle to explain the phenomenon. For example, the hydrody-
namic Rayleigh-Benard-convection, the chemical Belousov-Zhabotinsky-
reaction, the migration pattern of Dictyostelium cells, the excitation waves
of nervous tissue and our gas discharge system all can form rotating spiral
waves. It is well known that a reaction-diffusion model with two com-
ponents in two spatial dimensions can exhibit this and many other ob-
served patterns, and indeed in many of the above examples, it is a valid
way to describe system. It therefore, has been proposed by a number
of researchers that reaction-diffusion models might be a valid approxima-
tion for the gas discharge system as well. Hence, the following questions
arise:

(i) Can such a model actually be derived from the underlying gas dis-
charge physics?

(ii) Can this approach actually lead to specific predictions for phase dia-
grams of spatio-temporal structures formed in the gas discharge system?

In this thesis, an intermediate approach is chosen:

An explicit gas discharge model is investigated, but it is a minimal one,
i.e., it has as few parameters and mechanisms as possible. T his model has
been described by many previous authors and textbooks.

New results for the stationary, temporal and spatio-temporal solutions of
this classical model are derived

— by full numerical solution and also

— by stability analysis which allows the derivation of phase diagrams.

A comparison of both approaches with each other and with experiments
is performed.

On the conceptual side, it is discussed

— whether a two-component-reaction-diffusion model can be derived from
the gas discharge model, and

— whether negative differential conductivity (or equivalently a falling
current-voltage-characteristics) is necessary for pattern formation.

The thesis shows that the answer to both questions is negative.



Organization of the thesis

Chapter 1 contains an introduction to gas discharge physics. Relevant processes
of creation (and annihilation) of charges are discussed as an illustration for the
possible complexity of discharges. Out of this variety, our model takes only two
essential processes into account, namely ionization processes by electron impact
in the bulk of the gas and secondary ionization by ion impact on the cathode.
Also the whole current-voltage characteristics from Townsend through glow up
to arc discharge is discussed whereas we later only need the regime between
Townsend and glow discharge.

In Chapter 2, a few examples of pattern forming systems are given. In
comparison with other systems, our gas discharge system has the advantage of
particular convenient experimental handling and time scales. Furthermore, a
few concepts and methods are explained that will be used later in the thesis.
These include dimensional analysis and adiabatic elimination. Different bifur-
cation structures are classified and related to the observed patterns. Linear
stability analysis is discussed in detail.

In Chapter 3, the specific experimental system is reviewed. In general, gas
discharges on the transition from Townsend to glow regime exhibit a wealth of
spatio-temporal structures. Long discharge columns [1-3] can form striations,
Le., spatial structures along the current direction. Short discharges with wide
lateral aspect ratio, on the other hand, can exhibit rich spatio-temporal struc-
tures in the transversal direction as reported by a number of authors [4-10].
This is even the case when the externally applied voltage is stationary and the
gas is pure, as long as the system is sandwiched between planar electrodes and
at least one Ohmic layer. An interesting sequence of experiments has been
performed in Miinster [11,12] where the bifurcations between different spatio-
temporal states in parameter space were investigated very systematically. Their
theoretical understanding is the main subject of the thesis.

Chapter 4 can be considered as an introductory chapter as well, since it
introduces the simple classical model that is subsequently used to describe the
experiments from Chapter 3. Based on the processes and mechanisms explained
in Chapter 1 and introducing a number of assumptions and simplifications, the
minimal model is derived. In the gas discharge, two ionization mechanisms
cooperate to maintain conductivity: the so-called a process of impact ionization
in the bulk of the discharge, and the v process of secondary emission at the
cathode. The classical ‘fluid’ approximation consists of continuity equations for
electron density and positive ion density, coupled to the Poisson equation for
the electric field. Substantial densities of charged particles change the electric
field according to the Poisson equation; in turn the electric field determines
drift and ionization rates of the particles. Therefore the process is nonlinear as
soon as space charges become relevant. It causes the transition from the linear
Townsend discharge to the nonlinear glow discharge.

The transition from Townsend to glow discharge with growing current den-
sity is discussed in Chapter 5. The one-dimensional stationary solutions are
derived in complete parameter space with numerical and analytical means. In
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contrast to the textbook case of a subcritical bifurcation as shown in Chapter 1,
this transition can also be supercritical or even exhibit some unexpected ‘mixed’
behavior for sufficiently short discharge gaps. This means that at the transi-
tion from Townsend to glow discharge, the voltage does not necessarily decrease
with an increase of the current density. According to many authors [13-19],
a negative differential conductivity of the current-voltage-characteristics is ex-
pected to play a central role in the spontaneous formation of patterns, quite
like in nonlinear semiconductor devices [20]. Therefore, the observation that the
characteristics can have a positive differential conductivity through the whole
transition, is quite important. However, in Chapter 7 it will be shown that the
differential conductivity does not play such a decisive role, in contrast to the
claims above.

After solving the one-dimensional stationary solutions, in Chapter 6 the one-

dimensional time-dependent problem including the semiconductor layer is con-
sidered. In fact, due to the lateral homogeneity of the experimental discharge
in some parameter regime, this one-dimensional approximation is very good.
The investigation serves two purposes: first, understanding the temporal struc-
tures is a first systematic step towards understanding the full spatio-temporal
structures; second, there are numerous observations of temporal oscillations in
comparable parameter regimes [16 18, 21-25]. Indeed, for the oscillations, the
setup need not contain an Ohmic layer as in [11,12], a serial resistor with ca-
pacitance in the circuit will have the same effect on the gas discharge.
The qualitative and quantitative results of numerical solutions and experiments
are discussed and compared. In particular, the hysteresis between stationary
and oscillating solutions observed in experiments is demonstrated numerically,
amplitude and frequency of the limit cycle oscillations as a function of applied
voltage and conductivity of the semiconductor are compared with experimental
results, and the physical mechanism of the oscillation is discussed. Furthermore,
a stability analysis about a stationary solution of the complete system is per-
formed. First a convincing agreement between numerical solutions of the full
PDE’s and these stability analysis results is found. Then the stability analysis
is used to calculate bifurcation diagrams for the transition from stationary to
oscillating states which are then compared with the experiment.

Chapter 7 continues the investigation of one-dimensional time-dependent so-
lutions, but with a different focus. Rather than predicting experiments, here
model reductions are examined that were suggested previously. We concentrate
on the question whether a simple two-component reaction-diffusion model for
current and voltage in the gas discharge layer [5,9,15,18,19,22,26 28] is suthi-
cient to describe the oscillations. Such a model is suggested through similarities
with patterns formed in a number of physical, chemical or biological systems as
already stated in the survey above. However, the actual results of a realistic gas
discharge model are in conflict with a simple two-component reaction diffusion
approximation that neglects the height and subsequent memory of the system.
This can be seen, in particular, from the occurrence of a period doubling cas-
cade of the oscillations. Furthermore, a reduced analytical model is derived
systematically by adiabatic elimination of the electron dynamics. It does not



have the form of a reaction-diffusion-model. Finally, the concept of negative
differential conductivity as a driving force for pattern formation is investigated.
We actually find a counterexample where positive differential conductivity of
the discharge coexists with a linear instability of the stationary solution. This
unstable mode eventually evolves into a limit cycle.

Finally, in Chapter 8, spatio-temporal structures are analyzed. The compu-
tations are extended by one transversal direction which allows the general study
of linear perturbations of the stationary state. These perturbations are studied
in computations as well as through stability analysis. Stability analysis shows
that spatial modes with non-vanishing wave number can have the fastest positive
growth rate; these modes always are temporally oscillating. In such a param-
eter regime, spatially structured, oscillating patterns will form. Such patterns
are indeed observed in the corresponding experiments, however, with a larger
wave number than in our theory. This question is unresolved. Furthermore,
the computations are extended into the nonlinear regime and show phenomena
such as the approach to a limit cycle of spatially structured patterns.






Chapter 1

Introduction to gas
discharge physics

Historically, the term gas discharge refers to the discharge of a plate capacitor
through the air gap. Generally, air is a rather good insulator but if the electric
field in the gap is high enough, the gas becomes ionized and short-circuits the
capacitor gap. Nowadays, any current flow through ionized gas is called ‘gas
discharge’. The ionized gas is usually luminous, therefore expressions like ‘the
discharge ignites’ or ‘burns’ are very often in use. Electric discharges can create
a low temperature plasma locally. In contrast to high temperature plasmas as
in stars or fusion reactors that exist due to heating and magnetic confinement,
low temperature plasmas exist under nonequilibrium conditions, e.g., due to an
externally applied electric field. They generically are inhomogeneous in space
and time and form a variety of a spatio-temporal patterns.

Gas discharge (plasma) physics is a wilderness. Nevertheless, we made an
attempt to classify discharges using (and introducing) the terminology typical
for this field. As a next step of this introductory chapter, we concentrate on a
DC driven gas discharge explaining its current-voltage characteristics and differ-
ent discharge modes. Furthermore, we discuss the mechanism of the Townsend
breakdown in general form to illustrate how two ionization mechanisms together
can create a stationary discharge. These two mechanisms also underlie the ex-
periments discussed in Chapter 3. Finally at the end of this chapter, an overview
of the microscopic processes responsible for the generation and annihilation of
charge carriers is presented. The accent is put only on the processes which we
actually use in our modeling of the experiments.

1.1 Classification of discharges

Gas discharge physics is an interesting and very complex field with a huge
amount of experimental data and theoretical models. There is a variety of
known discharge types. Among the parameters characterizing the gas discharge
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are the gas type, its pressure and temperature, spatial dimensions and the shape
of the discharge region, presence and composition of electrodes and boundaries,
and the kind of energy supply. Internally, a gas discharge is characterized by
the electric field and its homogeneity, the ionization rate, energy distribution
of particles, spatial distribution of charge carriers, and dominant processes in
the plasma. The variety of discharge properties makes a complete and strict
classification of gas discharges on the basis of one or two parameters impossible.
Though, multiple classifications based on specific points of view coexist. First of
all, a discharge can be classified according to its temporal characteristics (steady
or transient) and dominant processes like space charge effects or heating. The
glow discharge is an example of a stationary type where space charge effects
are essential (while in a Townsend discharge they can be neglected). If heating
starts to play a dominant role, the stationary discharge that will develop is an
arc and the transient is lightning.

The dominant mechanism of electron reproduction can also characterize the
discharge. One can distinguish between either an external ionization source for
a non-self-sustaining discharge or gamma and alpha modes for a self-sustaining
discharge.

On the other hand, the frequency range of the applied fields can serve as a
classification:

e DC, low-frequency, and pulsed fields (excluding very short pulses)
o radio-frequency fields (f ~ 10° — 10%Hz)

e microwave fields (f ~ 10% — 10''Hz)

e optical fields.

We have seen that the frequency of the externally imposed electric field can
be varied over a huge range giving rise to (pulsed) DC, AC, capacitively coupled
plasmas (CCP), inductively coupled plasmas (ICP), plasmas induced by micro
waves (MIPs) and (laser) light produced plasmas (LIP). Basically all techno-
logical plasmas (gas discharges) are created by an electric field which primarily
affects the electrons resulting in different charge and currents distributions. By
increasing the frequency of the applied electric field the role of the electrodes
is reduced since the electrons are basically bounced forward and backward, not
having the time to enter a (electrode) wall. In this thesis we focus on a DC sit-
uation, thus we are devoted to phenomena where electrodes play an important
role. Tt is always instructive to start with a DC treatment, since space charge-,
glow- and arc-like conditions can be found in ICP, MIP etc. as well.



1.2 Current-voltage characteristics of DC discharge 9

1.2 Current-voltage characteristics of DC dis-
charge

DC discharges are commonly classified on the basis of the current-voltage char-
acteristic of the gas discharge of which a typical example is given in Fig. 1.2.
The presented situation corresponds to a discharge in a long tube at relatively
low values of the pressure. The tube can be filled with various gases. Two metal
electrodes are inserted at the ends of the tube and connected to DC power sup-
ply via a series resistor as can be seen in Fig. 1.1. This is classical experimental
setup which serves well to study many different types of discharges.

u

cathode anode

Figure 1.1: Classical experimental setup for the investigation of different modes
of a DC discharge.

The steady state of the discharge is defined as the crossing point of the
current-voltage characteristics and the load line of the external circuit, which
consist of a power supply and a resistor in series. Depending on the applied
voltage U; and the resistance R, the load line can intersect the current-voltage -
characteristic in different regimes therefore defining which mode of the discharge
will develop. In this thesis, we will operate in the regime of Townsend to glow
discharge and corresponding current-voltage characteristics can have different
shape than the one presented here (Fig. 1.2), as will be discussed later in Chapter
5.

Non-self-sustaining discharge

If the applied voltage is below the breakdown threshold, no visible effects are
produced though a very small current can be measured. The gas is practically an
insulator and current is carried by charged particles which are always present
due to cosmic rays or other ionizing agents (like the natural radioactivity).
This discharge is not self-sustaining which means that it would extinguish if all
ionizing agents were removed. Non-self-sustaining discharge corresponds to the
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AG
load line

SG

Voltage
Z

O Current log(/)

Figure 1.2: A semi-log plot of a gas discharge current-voltage characteristics.
Different discharge modes are marked with gray vertical bands and denoted with
abbreviations: N for Non-self-sustaining discharge; T for Townsend discharge;
SG, G, and AG for Subnormal glow discharge, Glow discharge, and Abnormal
glow discharge, respectively; A for Arc discharge. Load line defines the operating
mode studied in this thesis. (This figure follows the style of [11,12,29], but
should be considered only as an instructive artist’s impression. For details, see
‘Stellingen’).

region at the very beginning, of extremely steep voltage growth in the current
range denoted as N in Fig. 1.2. One can see that the current density saturates
quickly while the voltage increases. Saturation corresponds to the situation
where all electrons and ions generated in the gas volume are collected by the
electrodes, therefore the current is limited by the rate of ionization.

Townsend discharge

With further increase of the voltage, after the threshold of simple charge re-
production (1.2) is reached, stationary state of gas discharge is broken and the
current grows exponentially several orders of magnitude at nearly constant volt-
age. The limiting factor for this growth is the resistance of the external circuit.
If the external impedance is high enough, the load line of the external circuit
crosses the current-voltage characteristics in region T (Fig. 1.2). This discharge
regime is known as the Townsend discharge. Avalanches develop in the entire
volume of the gas and leave behind traces with positive ions which drift slowly
due to a low mobility, towards the cathode. Electrons have a high mobility and
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move very fast to the anode. Thus, non-compensated positive space charge is
formed in the gas volume. However, the current in Townsend discharge is so
small that the space charge is negligible and does not distort the electric field in
the gap. The Townsend discharge, also called dark discharge, is characterized
by a weak luminosity and a low ionization rate of the gas.

Glow discharge

Increasing the external voltage or reducing the load resistance, the current in-
crease and the crossing point can be located in the region of glow discharge G
(Fig. 1.2). The charge density in glow discharge is substantially higher than
in Townsend discharge and the field of space charge cannot be neglected. The
electric field distribution along the gas gap is strongly inhomogeneous and the
discharge may have a complex longitudinal structure.

Due to higher current than in the Townsend mode, the positive space charge
becomes larger. It partially screens the cathode so that the field near the cathode
becomes stronger and that far from the cathode weaker than in the case of a
homogeneous breakdown field. The drop of avalanche amplification in the rest
of the gas gap behind the cathode region is easily compensated by amplification
growth in the cathode region of the strong field. In the steady state, the field is
concentrated near the cathode and avalanches develop there. In the rest of the
gap between the electrodes the field is very weak and practically no ionization
occurs. The electrons born in avalanches near the cathode drift slowly through
this region gradually gaining energy from the field and exciting the neutral
particles of gas. Due to the glow of excited atoms, the discharge is referred to
as a ‘glow discharge’. The existence of the cathode layer with a strong field,
where the charge multiplication and reproduction, necessary for self-sustaining
discharge occurs, is the essential attribute of a glow discharge.

The region of constant weak electric field is referred to as the positive col-
umn. There, electrons with a low mean energy are drifting slowly to the anode.
However, some of them have a high energy and they are responsible for the ion-
ization in the column, which compensates the electron losses. Weak luminosity
of the positive column is produced by a small amount of these highly energetic
electrons, which are present in the electron energy spectrum. Sometimes, the
emitted light is not homogeneous, but has a periodic layered structure composed
of striations [1-3,29]. The positive column may have a different length and be-
comes shorter or disappears completely if the electrodes are shifted towards each
other.

The efficiency of ionization depends strongly on the electric field. The field
concentration near the cathode can make the ionization so effective that the
total voltage (including the voltage drop on the positive column) required for
a self-sustaining glow discharge can be lower than that for Townsend discharge
with a homogeneous field and ionization in the entire gas volume. This explains
the falling of the current-voltage characteristic by the transition from Townsend
to the glow discharge (Fig. 1.2). However, in some other range of parameters
(much smaller pd for instance), transition from Townsend to glow discharge has
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monotonically increasing current-voltage characteristics. In Chapter 5, we show
that this transition can have some intermediate, nonmonotonical form to which
we refer as to ‘mix;’ or ‘mixy;’ depending on whether the ‘glow’ voltage is lower
or higher to the Townsend breakdown voltage.

The current range of glow discharge can be orders of magnitude wide, whereas
the required voltage remains nearly constant. The remarkable property of glow
discharge to keep a so-called ‘normal’ current density is responsible for this
adaptivity. As the discharge current varies, the normal current density at the
cathode is preserved and the occupied area at the cathode is changed. If the
current is decreased (for instance, by an increased ohmic load in series with gas),
the current spot at the cathode contracts until its size becomes comparable with
the thickness of the cathode layer. The electron losses from the current channel
become larger, and a higher voltage is necessary to support the discharge: the
subnormal glow discharge (region SG in Fig. 1.2) takes place.

If the current of a normal glow discharge keeps growing, the entire cathode
area will be covered with the discharge of the normal current density. This is
a 3D explanation for a plateau in the normal glow discharge region, which is
naturally missing in our 1D investigation of the current-voltage characteristics
performed in Chapter 5. Further increase of the current by increasing the voltage
results in the growing of the current density. This is the transition to abnormal
glow discharge (region AG in Fig. 1.2).

Transition to arc discharge

In the abnormal glow discharge, the required voltage grows rapidly with the
current density, and becomes high enough to produce substantial heating of the
cathode. The thermionic emission from the cathode grows, resulting in more
electron avalanches. This leads to a higher density of charge carriers, i.e., to
lower resistance, and, consequently to higher currents. When the current reaches
approximately a value of 1 A glow discharge cascades down to an arc discharge.
The current-voltage characteristics falls (see the region A in Fig. 1.1) and the
arc needs only tens of volts for support. The arc releases large thermal power
and can destroy the glass tube.

Since this thesis focus on the transition from Townsend to glow discharge,
the arc discharge is not discussed further.

1.3 Townsend breakdown

The primary element of the often very complicated breakdown process is the
electron avalanche, which develops in gas when an electric field of sufficient
strength is applied. An avalanche begins with a small number of seed electrons
that appear accidentally, e.g., due to cosmic rays. An electron picks up energy
in the electric field. Having reached an energy higher than the ionization poten-
tial, the electron ionizes an atom or a molecule, thereby losing its energy. The
two slow electrons resulting from this process are in turn accelerated in the field
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and ionize two atoms or molecules. Thus, an exponential growth of the number
of electrons and ions takes place. The breakdown is essentially a threshold pro-
cess. It occurs only when the field exceeds a certain critical value. By a gradual
increase of the field under the threshold value, no noticeable changes in the state
of the gas can be observed. By reaching the breakdown field, ionization rises
dramatically, a current through the gas can be detected, and a light emission
can be seen. Such a behavior is a consequence of the steep dependence of the
rate of atomic ionization by electron impact on the field strength. But, on the
other side, avalanche is slowed down by electron energy losses and by the loss
of electrons themselves. Electrons lose energy to excite electron states of atoms
and molecules, and molecular vibration and rotation. Electrons also lose energy
in the electric field if they move against the drift direction after elastic colli-
sions. These will lead to an obstruction of the accumulation of electron energy.
Diffusion leads to the removal of electrons from the field (e.g., precipitation on
the walls), attachment in electronegative gases leads to direct electron losses,
and the drift of electrons to the anode also removes them from the discharge.
Because of the low electron density, the recombination rate at this stage is low
as well, and practically does not contribute in the removal of electrons. The
electron losses are breaking chains in the multiplication chain reaction. The
breakdown threshold is determined by the relation between creation and re-
moval of electrons. The electronic current at the anode can be calculated as an
exponentially amplified electronic current at the cathode:

i1a = G0,

where « is Townsend’s ionization coefficient, d the distance between electrodes
and g, the electron current at the cathode. The first Townsend coefficient «
describes the multiplication rate and represents the number of ionization events
performed by an electron in a 1 cm path along the field. It can be defined
as a function of the reduced field (E/N) or, in the case of a constant temper-
ature, (E/p), where E is the electric field, N is the concentration of neutral
gas particles, and p is the pressure. Strictly speaking, the first Townsend co-
efficient depends on the mean energy of the electrons, and not on the electric
field. However, for a field with small gradients, i.e., for a field which can be con-
sidered as constant on the mean ionization length of electrons, the assumption
a = f(E/N) is valid.

Electron avalanche leaves behind positive ions, which drift slowly to the
cathode. The ion current at the cathode includes all ions generated in the
avalanche:

fe = f1a = fge = o (e®® — 1) »

This is the primary process in the volume of the discharge. The secondary
process is the generation of secondary electrons at the cathode with the help
of the particles generated in the primary gas ionization process. Especially
important is the generation of secondary electrons by ion bombardment of the
cathode.
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The ratio of the emitted electrons and impacting ions is called v - the sec-
ondary emission coefficient.

The secondary electrons are then multiplied in the gas gap and the electron
current at the anode is
ad

log = Vi, X% =7 (e“d -1)- W

Each electron avalanche is amplified by the factor

1e
b= 2% = (e —1) .
lla
The stationary current is then determined by the limit of geometric progres-

sion: g
Z‘ e(l L
e (1.1)
1— (e —1)

An equation of this type was first derived by Townsend in 1902. For a non-self-
sustaining current, the denominator in (1.1) is positive and less than one.

With a voltage increase, o grows until the denominator in (1.1) becomes
equal to zero and then negative. The current cannot be stationary at this point
arid the formula becomes meaningless.

In the case of y(e®® — 1) > 1, the number of secondary electrons is larger
than that of primary electrons. The exponential growth of their number is then
guaranteed. The external source of electrons is no longer necessary and the
discharge becomes self-sustaining.

The condition for initiating a self-sustaining discharge

i:

’Y(ewd o 1) =1 or oad= hl(l/"}/ + 1) ) (12)

describes the simple reproduction of electrons. The transition of non-self-
sustaining to self-sustaining discharge can be interpreted as the onset of break-
down. The threshold voltage Uy, which corresponds to the condition of a steady
self-sustained current in the homogeneous field E, = U,/d (1.2), is considered
as the breakdown voltage. The so-called ‘ignition condition’ (1.2) will be de-
rived in a stricter way in Chapter 5. Breakdown voltage U, (and corresponding
breakdown field Ej) depends on the gas type, the pressure, the width of the
discharge gap and the material of the cathode. Explicit expressions are [29]:

o =1

U = —— "~ —
T C¥mpd p C+lnpd

n Tk (1.3)
derived by inserting the Townsend approximation «(E) = Ap exp(—Bp/|E|)
into the ignition condition (1.2). The breakdown voltage, calculated in that
way, with an experimentally determined constants A and B [29] Table 4.1,
usually gives a satisfactory agreement with the experiment.

Experimental curves expressing the dependence of the breakdown voltage
on discharge system parameters as gas pressure and the distance between the
electrodes, are called Paschen curves. The curves have a clear minimum
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which means that a minimal breakdown voltage for the discharge gap exists.
According to (1.3), the parameters of this minimum point are:

In(1/y+1), (E) ' = B, (U)mm:% In(1/v+1). (1.4)

€

(pd)min ES

b

where € = 2.72 is the base of Natural logarithm. These expressions together with
the experimental Paschen curves, can be used for the estimation of the secondary
emission coefficient (see Appendix of Chapter 3), since only the value of (%)min
does not depend on the cathode material. That value corresponds to the point
(Stoletov’s) where ionization capabilities of electrons are at a maximum.

At the left-hand branch and right-hand branch of the Paschen curve dif-
ferent physics is taking place. At the left-hand side, the steep increase of the
breakdown voltage towards lower pd values corresponds to the transition to vac-
uum breakdown. Electrons there experience fewer collisions on their way to the
anode and the ionization efficiency a has to be very high, i.e., a high electric
field is necessary to maintain the process. To the right of the minimum, the
breakdown voltage grows as well. In this case electrons have many collisions
but their ionization efficiency is low due to either a lower electric field (if the
distance between electrodes d becomes larger) or a shorter mean free path (if
the gas pressure p becomes higher). This similarity law is valid for a rather
broad range of pressure and distance between the electrodes.

Strictly speaking, the voltage necessary for the breakdown should be slightly
higher than U, in order to ensure the expanded reproduction of electrons. The
current and ionization in the gas will then increase until the growth is stopped by
recombination or the ohmic resistance of the circuit. As the current increases,
the resistance accepts a progressively greater part of the supply voltage, the
voltage on the electrodes decreases until it reaches U, and the current becomes
stationary. The characteristic retardation time of the breakdown is on the order
of 1075 — 1072 s [29]. It consists of the statistical time of waiting for a seed
electron and of the breakdown development time, which depends on both the
electron multiplication rate and the characteristic time between two consequent
generations of secondary electrons.

Multiple avalanches may develop simultaneously and each avalanche spreads
transversally due to electron diffusion, so that new avalanches can start at dif-
ferent spots of the cathode. As a result, the Townsend breakdown most often
involves the entire volume of the gap in a diffuse manner. This is the clear
difference from the other breakdown mechanisms.

1.4 Production and loss of charges in a gas

There are two different categories of elementary discharge processes, namely vol-
ume processes and wall processes. To the volume processes where new charge
carriers are generated, belong direct electron impact ionization, photoioniza-
tion, Penning ionization (important in a gas mixture) and associative ionization
(important in the inert gases). Volume processes where the number of free
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electrons decrease are attachment and recombination. The excitation process
also belongs to volume processes but it does not change the number of charged
particles directly, but slows down the electrons. An excitation process occurs if
the electron energy is big enough to bring the atom into an excited state. The
excited atom may later participate in ionization processes or undergo a transi-
tion to the ground state with emission of a photon which is usually the reason
of discharge glow.

In the atomic gases, the most important volume process is the ionization
by electron impact. In the simplest case, it occurs if the electron has obtained
from an electric field more energy than necessary to ionize the neutral atom and
can be described by the formula

A+e = At 42 .

Attachment of an electron to a neutral atom or molecule leads to a generation
of negative ions. This process plays an important role in electronegative gases,
such as Oy, Cly, and SFy. It decreases the concentration of electrons and thus
influences the development of avalanches. Negative ions have very low mobility
and practically do not take part in excitation or ionization processes. This leads
macroscopically to a higher breakdown field, therefore these gases are often used
as insulators. Discharge is very sensitive to this process and even a small amount
of oxygen or water vapor in the discharge gap leads to a strong increase of the
breakdown voltage.

The most important wall processes are the removal of charge carriers from
the gas volume and the generation of secondary charge carriers.

For the generation of secondary charge carriers, electron emission from wall
(electrode) surfaces is important and there is a large variety of electron emis-
sion mechanisms which will not be discussed. Secondary electrons can also be
emitted under the influence of various particles: Positive ions, excited atoms,
electrons, and photons [30]. Secondary emission from a cold cathode produces
breakdown of the discharge gap and also sustains a small DC current that is
incapable of substantial heating of the cathode or of creating such a strong field
at the cathode that thermionic or field emission develops. The most important
secondary emission process is the ion-electron emission. It is characterized by
the second Townsend coefficient v;: The number of secondary electrons emitted
per incident positive ion. The kinetic energy of ions is practically the same as
that of neutral particles (on the order of 10~* eV) and is insufficient to knock
out an electron. The energy necessary for an electron to escape is obtained by
the neutralization of the ion. The electric field of an ion on a distance compara-
ble to atomic dimensions is very strong and transforms the potential well on the
surface into a low and very narrow potential barrier. An electron from the body
(metal, semiconductor or dielectric) tunnels to the ion and neutralizes it. The
released recombination energy may be then spent on the emission of a second
electron. The kinetic energy of secondary electrons is then I — 2ep, where [ is
the ionization potential, and ¢ is the work function. Usually, the value of ; is
on the order of 1072, but in some cases it can reach the value of v; ~ 0.5.



Chapter 2

A pattern formation primer

Next to knowledge on gas discharges, concepts and methods of pattern formation
and nonlinear analysis are used in this thesis. They are introduced in the present
chapter, complemented with references for further reading.

2.1 General introduction

Dissipative, spatially extended systems which are driven far from equilibrium
generate a great diversity of the spatio-temporal structures. The spontaneous
emergence of these patterns is a fascinating phenomenon observed in many
physical, chemical and biological systems far from thermal equilibrium. The
behavior of the patterns can be rather complex, with temporal, spatial or spatio-
temporal structures.

Some examples of nonequilibrium patterns with the largest length and time
scale in the universe are [31]

o formation of galaxies into sheets and voids
e existence of spiral galaxies (versus elliptical galaxies)

e formation of nonequilibrium stripe patterns common to all gas giant plan-
ets like Jupiter, Saturn, Neptune and Uranus.

An example of a pattern on a smaller scale is, for instance, the formation of
the ripples in sand on the beach [32]. Apart from these examples from granular
matter and the universe, typical examples are the patterns found in chemical
reaction-diffusion systems [33,34], hydrodynamic and liquid crystal systems [34,
35], electrochemical systems [36], semiconductors [20,37], optical systems [38],
the heart [39,40], the central nervous system [41], and many other biological
and ecological systems [42-46]. The most famous and very well understood
patterns, which can be prepared in a laboratory are Rayleigh-Benard convection
and Taylor-Couette flow in hydrodynamics and the most prominent example of
a chemical pattern-forming system is the Belousov-Zhabotinsky reaction. The
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complexity and diversity of self-organizing systems is mathematically reflected
by nonlinear equations. Nonlinear dynamics [47, 48] gives the framework to
describe all these phenomena.

Every pattern-forming process is accompanied by the appearance of charac-
teristic length and time scales. Typically, the extension of the pattern is much
larger than the size of an individual element of the system. Therefore, to de-
scribe the dynamics of the pattern, it is often not necessary to take into account
the individual dynamics of every single element together with their mutual inter-
actions. Instead, it is possible to interpret the pattern dynamics as a collective
phenomenon and describe it by a macroscopic mean-field variable or order pa-
rameter. Another important feature of self-organization is that, although there
are often different time scales involved in the dynamics of a given system, its
long-term behavior is typically governed by the slow processes. In this case, it
is possible to reduce the number of effective degrees of freedom by adiabatically
eliminating the fast variables. Oscillations or wave phenomena in many systems
can be described successfully by reaction diffusion models. This is obvious for
chemical systems. Examples in the field of living systems are excitation waves
(and their breakdown) in the heart [39], the propagation of action potentials
in neural tissue [41] , and the aggregation patterns in slime mold colonies [49].
Also current filaments in semiconductor devices [20] can be explained by effec-
tive reaction-diffusion models. Therefore, there have been many attempts to
also explain the localized patterns found in gas-discharge systems by such mod-
els [5,9,15,18,19,22,26-28]. This concept will be addressed in detail in Chapter
7.

The investigation of pattern formation is an interdisciplinary task and impor-
tant contributions were made by studying dynamical systems and deterministic
chaos [50,51]. These branches of applied mathematics can be traced back to
Henri Poincare, who first described complex dynamics in a system with three de-
grees of freedom [52]. Since then, the dynamics of such low-dimensional systems
has been intensively investigated [48,53,54], in particular chaotic behavior and
instabilities due to parameter changes, called bifurcations [55]. Pattern-forming
nonequilibrium systems on the other hand, are described by partial differen-
tial equations (PDE’s) with an infinite number of degrees of freedom. Generic
methods include the identification of stationary states and coherent structures,
and the analysis of their perturbations.

2.2 Stability analysis and bifurcations

The investigated pattern forming system (like in Fig. 3.8) is spatially extended
(in & — y directions) and has a small hight (in z direction). The key steps of
linear stability analysis about homogeneous stationary state can be summarized
as follows:

e Formulation of the explicit equation of motion for the system
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e Reformulation of the equations in dimensionless form in order to introduce
the truly independent parameters in dimensionless form

e Use of the periodic boundary condition in order to be able to neglect
influence of the boundaries in the extended direction

e Find an explicit stationary solution (u = ug(z)) which is uniform in ex-
tended direction x, for a set of control parameters

e Linearization of the non-linear dimensionless equation of motion about
the uniform base state ug in order to see how sufficiently small perturba-
tions du evolve (according to the linear equation which is easier to solve).
The coeflicients of this linear equation do not depend on the extended
coordinates z.

e The particular solution of the form u(z) e** €?* is used to solve linearized

equations and to get the growth rate \.

e Analyze the function Re(\) versus wave vector k and identify local and
(even more important) global maxima and the wave vector corresponding
to these maxima. The uniform stationary state is linearly stable for the
chosen parameters if max; Re()) < 0, and unstable otherwise.

e Analyze dispersion relation for different sets of parameters. Find param-
eter p of special interest and its critical value defined as max; Re()\) = 0,
and corresponding critical wave number and critical frequency.

Reaction-diffusion equations as an example and the classification of
the patterns due to linear instability

As an illustration, a set of partial differential equations of reaction-diffusion

form is considered:
du = f(w;p)+ D Vu. (2.1)

u is a vector (in general n-component) describing the physical fields, f models
the reaction in the system, D is a diffusion matrix and p is a set of control
parameters. The behavior of the solutions of this equation can be quite complex.
In general, the nonlinear equations can not be solved analytically. One method
to characterize the solutions systematically is perturbation analysis. Following
the steps above, we first have to construct the linearized equation of motion. We
consider a uniform stationary state uy which is a solution for all values of the
control parameters p. Then, near this state, it is possible to write the unknown
solution u as an expansion of Fourier modes in the following way:

u=uy +/ ouy dk (2.2)
0

where _
Sug, = v AreMt* 4 cc 4+ hoot. (2.3)
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High order terms are denoted by h.o.t and c.c denotes complex conjugates. The
Fourier modes with a wave number k depend on the eigenvector vi, which is
determined from the linearized problem, and on the amplitude A.

The complex eigenvalue X of the linearized problem can be decomposed into
its real part s and imaginary part w in the following way

A(k;p) = s(k; p) + iw(k;p)

where it is assumed for simplicity that the bifurcation only depends on one
parameter p. For p < p,. all perturbations decay, i.e., s < 0 for all k. For the
spatially extended system, the spectrum of eigenvalues is continuous; but we
always focus at the eigenvalue of the largest real part. The critical parameter
value p. is given by s(k.;p.) = 0 for a critical k., while all other modes relax
for t — oo, i.e. s(k;p.) < 0 for all k # k.. Then, after a short transient, the
critical Fourier mode uy,. is given by

SUp, = Vo ApelFemtoet) | (2.4)

where we = w(ke;pe). Therefore, the systems may be classified according to
the (critical) mode with the eigenvalue that first crosses the imaginary axis.
At the bifurcation point, the critical wave number k. and critical frequency w,.
may be zero or nonzero, yielding three cases which are of interest here. The
case k. = 0, w, # 0 corresponds to the so-called Hopf bifurcation, the case
ke #0, w, = 0 to the so-called Turing bifurcation, and the case k. #0, we#0
to the wave bifurcation. Fig. 2.1 shows the linear growth rate (s = Re o) as a

Rea

Figure 2.1: Three ways how an unstable mode can emerge on variation of a
control parameter e. Cases I and II lead to spatially periodic patterns, case III
to a homogeneous mode. The notation of this figure taken from [56] differs from
our notation. The eigenvalue is denoted by o (instead of A), wave number by ¢
(instead of k) and control parameter is € (defined as € = (p — pc)/pc)-

function of the wave number (k = ¢) for various values of e.
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So, we have seen that by increasing the control parameter above a certain
critical value, patterns arise; the bifurcation from stationary homogeneous state
is called stationary if the resulting basic pattern is time independent and it is
called oscillatory (Hopf bifurcation) if the critical mode is time-dependent. If
the traveling wave mode is the basic pattern, then the instability is of oscillatory
type with nonzero wave number.

In addition to the above described classification of the bifurcations, there
is another one which distinguishes between supercritical and subcritical transi-
tion. In Fig. 2.2 we sketch the bifurcation diagrams of a supercritical (forward)
bifurcation and of a subcritical (backward) pitchfork bifurcation. The super-
critical case, where the transition is continuous, is analogous to a second order
phase transition. When the reduced control parameter e passes through zero,
the homogeneous stationary state becomes linearly unstable and the system
continuously transits to a new stable state. This kind of bifurcation is observed
in the experiment [57] (presented in the next chapter) where the system bifur-
cates continuously from the homogencous state to a stationary periodic stripe
pattern.

SUPERCRITICAL BIFURCATION SUBCRITICAL BIFURCATION
Au ™ .
\ P
\
*t b €
P 4

Figure 2.2: The sketch [58] of supercritical and subecritical (pitchfork) bifurca-
tion. Stable state is represented by solid lines and unstable by dashed lines.

The subcritical bifurcation diagram, on the other hand, describes a different
situation. If the reduced control parameter ¢ is increased through zero, the u = 0
state loses stability and the system will jump to a new branch of solutions. Going
in the opposite direction and decreasing e, the system will jump back to the
stationary homogeneous u = 0 state, but at some different value of the control
parameter €; # 0. This hysteresis and discontinuous change of the amplitude
is similar to a first order phase transition. For the discharge in nitrogen, in
the experiments [11,12] also presented in the next chapter, a subcritical (Hopf)
bifurcation to a homogeneously oscillating state is found.






Chapter 3

Experiments

Discharges can form a variety of spatio-temporal structures [59]. The current
constriction in a normal glow discharge as well as the longitudinal striations
of a long positive column of a glow discharge [1,2,60] are some examples. In
general, gas discharge systems showing instabilities are often quite complex:
with complex external circuits or complex geometries, with gas mixtures and
usually driven by AC or pulsed voltage [61-66]. Extensive studies of a variety
of spatio-temporal patterns in short discharges can be found in [8-11,57,67-74].
Even a simple well-controlled setup, DC driven and with pure nitrogen, exhibits
similar phenomena. We focus on this case, since phase diagrams and systematic
and detailed studies are available. Therefore, in this chapter, the experiments
of Striimpel et al. [11,12] are discussed as an example of homogeneous temporal
oscillations, though oscillations of similar type in a different experimental real-
izations are observed in several other cases [16,18,19]. Experiments [11,12] show
a transition from a homogeneous stationary to a homogeneous oscillating and
further to a spatially structured oscillating state. As an example of stationary
spatial patterns, an experiment by Astrov et al. is presented [57].

3.1 Experimental setup and parameters

The system investigated in [11,12] is a sandwich-like structure composed of two
parallel layers. One layer is the gas gap which represents the nonlinear part of
the system, while the other one is the semiconductor layer that operates in its
linear regime. The semiconductor and the discharge layer are of the order of mm
thick, and the whole structure has a wide lateral aspect ratio. The experimental
setup is represented schematically in the Fig. 3.1.

The anode is formed by a glass plate covered with a transparent and conduc-
tive indium tin oxide (ITO) layer. It is adjoint to the gas discharge layer filled
with nitrogen. The gas pressure is of the order of 40 mbar and the width of the
gas gap can be varied from 0.5 to 1.5 mm. The semiconductor acts as the cath-
ode, therefore its outer plane is covered with thin gold film. Due to the small
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Figure 3.1: Sketch of experimental setup. It consist of two planar electrodes
enclosing the discharge gap. The diameter of the discharge area is 30mm and
the width of gas gap is typically 1mm.

thickness of only 40nm it is transparent to the visible light with a transmission
of about 10%. The resistance of the ITO layer and thin gold film is of course
negligible when compared with the resistance of the semiconductor layer. The
ITO and the gold electrode are connected to the external electric circuit con-
sisting of a DC voltage supply and a serial resistor that is included to measure
the global discharge current in the circuit. The voltage drop at the resistor is
negligible in comparison with the applied high voltage. Therefore, the voltage
at the electrodes of the semiconductor-gas discharge system is virtually equal
to the applied feeding voltage. Furthermore, different types of semiconductor
can be used. In experiments of interest to us, GaAs is used [11] or a silicon
plate that has been doped with deep impurities of gold or zinc [57]. Due to the
photo-sensitivity of the semiconductor, its conductivity can be controlled by ir-
radiation with light. The irradiation can lift the electrons in the semiconductor
from the valence to the conduction band. For gallium arsenide, which is a direct
semiconductor, the band gap is 1.42eV at room temperature. The conductivity
of the semiconductor increases monotonically when the intensity of irradiation
¢, is raised. The conductivity as a function of the irradiation intensity is shown
in Fig. 3.2. ¢y, is normalized to the maximum output of the used light source
(halogen lamp). Therefore, one of the primary control parameter is the con-
ductivity of the semiconductor layer which can be changed by one order of
magnitude. The dark conductivity (without irradiation) is 3.2-107% (€ cm)~'.
The width of the semiconductor layer is 1.5 mm and the dielectricity constant
of GaAs is 13.1. Another control parameter in the experiments is the applied
DC voltage. It is varied from the breakdown voltage up to the 600 V for the
smaller gas gap width of d = 0.5 mm, or up to 740 V for the gas gap of Imm
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Figure 3.2: Specific conductivity of the semiconductor layer as a function of the
intensity of the irradiation ¢. The quantity ¢;, is normalized to its maximum
value.

thickness. Higher voltages are excluded since they can permanently damage the
cell.

Although control parameter space is at least four dimensional (¢r,, Uy, p, d),
in the following we will mainly confine ourselves to an exploration of the oscil-
latory behavior of the discharge in the two dimensional projection of the phase
space given by ¢r and Uy. The behavior of the system depends on the gas
pressure p and width d rather weakly since there is a broad range of this param-
eters where the characteristics of oscillations change only slightly. However, for
larger gaps, while other parameters remain unchanged the frequency of oscilla-
tions diminishes. Also the amplitude of oscillations decreases when increasing
the width of the discharge gap d.

3.2 Overview over experimental results

When the applied voltage is high enough, a discharge will develop in the gas gap
and light will be emitted. Usually the light emission is not homogeneous and
some patterns are formed. The spatio-temporal behavior of this patterns can
be rather complicated. Our system can operate in a stationary homogeneous
mode, it can exhibit homogeneous oscillations, and the oscillating modes can
undergo a spatial instability leading to blinking filaments.

For low current density, a stationary and spatially homogeneous distribution
of the current is stable.

Increasing the current either by increasing the applied voltage Uy or by
increasing the irradiation ¢y, of the semiconductor, the system starts to oscillate
while staying spatially homogeneous.

Homogeneous oscillations exist in a broad range of experimental parameters,
see Fig.3.3, where the domain of their existence in the control parameter plane
(Uo, 0Gans) is shown. For Fig.3.3(a), the width of the discharge gap is d = 0.5
mm, whereas the bifurcation diagram in Fig.3.3(b) corresponds to d = 1 mm.
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The circles indicate the subcritical bifurcation, which destabilizes the homoge-

T

fa) S NN ]
- 25 —homogen.,'/ dynamische réumliche 1 - 2.5T ) i
stationar! % Strukturen B & ‘f M
o =St s % 20 gg [ & dynamische rdumliche 4
v 2.0r 4 /2( 1~ L 1 Strukturen
o g homogen oszillierend /[‘ o115+ @é X
( 1.5F ./\. 1 : T TT—
5 . e, / él 0 homogen oszillierend =
., X
= 1.0t * %/ 1 ° 05k ®ese®esev—o %/ i
500 520 540 560 580 600 640 680 720
u,/v U,/ Vv

Figure 3.3: Existence-domain of oscillations in the control parameter plane
(Uo, 0Gans) for two different system sizes (a) d = 0.5 mm and (b) d = 1 mm.
The circles denote the bifurcation from homogeneous stationary to homogeneous
oscillatory states. The crosses indicate transition to spatially inhomogeneous
structures. From [12].

neous stationary state in favor of the oscillatory state. A detailed description of
the bifurcation in the case of d = 0.5 mm [Fig. 3.3(a)] is given in Fig. 3.4, where
a typical example is presented. There, a hysteretic transition to the oscillatory
state can clearly be noted when the irradiation of the semiconductor is used as
a control parameter. A peculiarity of the system is that after the bifurcation
to the oscillatory state, a further increase of the control parameter ¢y, leads to
a transition back to the stationary state [Fig. 3.3(a)]. This transition shows
hysteresis, as well. The width of the hysteresis loops is approximately equal for
both cases that are shown in Fig. 3.4. The bifurcation points in Fig. 3.4 are
slightly shifted when compared to the corresponding ones in Fig. 3.3(a). This
shift is probably due to aging processes of the semiconductor cathode because
the two discussed measurements were not done at the same time.

When increasing either the applied voltage Uy or the semiconductor irradia-
tion ¢y, further, the system undergoes another bifurcation to a dynamic filament
structure where spatial structures emerge while temporal oscillations persist.

3.3 Homogeneous oscillations

Oscillations can be observed as the oscillations of the discharge current or the
oscillations of the intensity of light emitted from the glow discharge area. The
bifurcation to the oscillatory states creates a homogeneously oscillating state
whose frequency and amplitude depend on Uy and ¢r. In Fig. 3.5. a typical
time series of discharge current and emitted glow light are shown.

The general shape of the signals is similar. However, they are not exactly in
phase. The current reaches its maximum somewhat earlier than the discharge
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Figure 3.4: An example of bifurcations from a stationary to an oscillatory state
[with amplitude A(Ip)] when ¢y, is varied while the supply voltage is fixed at
Uy =510 V. Two subcritical bifurcations are observed. The directions of change
of the control parameter are indicated with arrows. The parameters are d =0.5
mm and p =40 mbar. The figure is taken from [11].
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Figure 3.5: Oscillations of the discharge current Ip (a) and of the intensity ¢g
of the light emitted by the gas discharge (b). From [11].
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glow, whereas the falling edges of emitted light peaks are less steep when com-
pared to the current peaks. This last phenomenon can be explained as the
afterglow of the discharge.

The frequency of the oscillation depends on experimental parameters. By
altering these parameters, the frequency is changed in the range between 100
and 600 kHz, and the amplitude A(Ip) of the oscillation of the current (the
difference between maximum and minimum values of the current) varies in the
range between 0.5 and 4 mA. In [11,12], the properties of the oscillating system
are characterized by the discharge current. Equivalently, the signal of the light
intensity emitted by the discharge could be used, because the amplitude of its
oscillation is proportional to that of the current when the control parameters are
varied. When the active area of the device is halved, the oscillation persists with
nearly unchanged frequency, while its amplitude decreases to approximately half
of its initial value. This gives an indication that the oscillation is actually
spatially homogeneous. The direct proof of the spatial homogeneity of the
oscillating state is given by making snapshots of the discharge glow at different
phases of an oscillation, presented in Fig. 3.6.
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Figure 3.6: Pictures taken with the intensifying camera during the rise and fall
of one peak [11]. The exposure times are 630 ns for picture (1) and 300 ns for
pictures (2), (3), and (4). The position and length of the corresponding pulses,
with which the camera is triggered, are marked in the oscilloscope trace for the
current. The frequency of the oscillation is fo=175 kHz. The parameters are
Uy = 583V, ¢y, = 0.42, d = lmm, and p = 40 mbar. From [11].

The obtained images are rather noisy because of the short exposure times,
and the low intensity of the emitted light. These data show that the discharge
oscillates quite uniformly across the active area. The last picture shown in the
sequence refers to a situation where the current has nearly reached its minimum
value. No significant emission of light could have been recorded with the applied
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technique, while measurements with a photomultiplier tube gave evidence of
light emission in this stage.

In the parameter range of the homogeneous oscillations, the dependence of
the dynamical characteristics of the oscillating state on the experimental pa-
rameters can be investigated. While it is difficult to give a full description of
the characteristics for the two-dimensional parameter space (Uy, 0, As) such as
that depicted in Fig. 3.3(a), examples of data for two cross sections of this space
are given in Fig. 3.7(a) and (b); and for the bifurcation diagram Fig. 3.3(b)
of the larger system (d = 1 mm), the corresponding examples are given in
Fig. 3.7(c) and (d). Profiles along parallel cross sections are similar. The hys-
teresis in the transitions is not shown; the data refer only to the increase in
control parameters. Increasing the supply voltage Uy at constant irradiation of
the semiconductor leads to a decrease in the frequency and an increase in the
amplitude of the oscillation as can be seen in Fig. 3.7(b). At a further increase
of the voltage, both the frequency and the amplitude tend to saturate. In the
case of the system size d = 1 mm, behavior is qualitatively the same, only that
the profiles f(Uy) and A(Uj) are saturating at lower levels.

The variation of the irradiation of the semiconductor at a constant value of
the supply voltage gives rise to an increase in the frequency of the oscillation
(see Fig. 3.7(a),(c) and (d)). This is the case for both system sizes and all three
different values of fixed applied voltage (Uy = 528 V, 605 V and 616 V). The
amplitude changes non-monotonically with the variation of the conductivity of
the semiconductor layer. For the smaller system size, just after the bifurcation
to the oscillatory state, the amplitude grows, and after passing a maximum, it
decreases until the transition back to the stationary state takes place, as can
be seen in Fig. 3.7(a). In the case of d = 1 mm, depending on the applied
voltage, oscillations may become harmonic. In Fig. 3.7(c), region of harmonic
oscillations is denoted by the crosses; The frequency increases linearly with the
increase of semiconductor conductivity og,as and at the certain moment, there
is a continuous transition from anharmonic to harmonic oscillations. For higher
values of o, there is a jump in frequency at the transition from harmonic to
anharmonic oscillations; and amplitude increases linearly, whereas the ampli-
tude of harmonic oscillations is basically constant and much smaller. For small
and increasing 0gqas, the amplitude grows, and after passing a maximum, it
decreases until the transition to the region of harmonic oscillations takes place.

For the slightly higher value of the fixed applied voltage, the functions f (o)
and A(o) are presented in Fig. 3.7(d). As it can be seen, in this case the
oscillations are always anharmonic.
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Figure 3.7: Frequency fy and the amplitude A(Ip) of the oscillations of dis-
charge current along the cross section of bifurcation diagrams for d = 0.5mm
figures (a) and (b); for d = lmm figs.(c) and (d). For case (b), irradiation is
kept constant and the voltage is increased. For cases (a), (c) and (d) voltage is
kept constant (correspondingly at 528 V, 605 V and 616 V) while intensity of
the irradiation is varied. From [12].
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3.4 Spatial patterns

The same experimental system in a different parameter regime can develop in-
stabilities of the Turing type, which means that the first bifurcation from a
homogeneous stationary state will lead to stationary spatial patterns [57]. The
experiment uses silicon doped with gold or zinc as a semiconductor material.
The thickness of the silicon wafer is of the order of 1 mm and the gas discharge
region has approximately the same dimension. The experiment is carried out
near liquid nitrogen temperature (7" ~ 90 K). The resistivity of the semiconduc-
tor is between 107 and 10° Q m. Further differences in a parameter regimes are
in the pressure of nitrogen, which is higher than before (p ~ 100 mbar), as well
as the applied voltage (which is now of the order of 2000 V). Though, a detailed
investigation of the parameter space is not done, some regularity in the be-
havior has been reported in [57]. Namely, increasing the control parameter (the
feeding voltage or the irradiation intensity), the first bifurcation from the homo-
geneous stationary state is always towards a stationary inhomogeneous pattern
(hexagons or stripes) and only then to some non-stationary state. Stationary
hexagon or stripe patterns emerge quite generally in two-dimensional pattern
forming systems [56] if the bifurcation is supercritical. One of the scenarios is
that hexagon pattern can evolve from the destabilization of low current homo-
geneous state, by increasing the supply voltage. Further increase of the voltage
is accompanied by the transformation of hexagon into the stripe pattern. This
example is shown in Fig. 3.8.

Figure 3.8: (a) Stationary hexagon and (b) stationary stripe pattern. Exper-
imental conditions: d = 0.8 mm, p = 120 mbar and the voltage over the gas
discharge and the averaged current densities are: (a) 1815 V, 9.3 uA /cm®; (b)
1935 V, 18.5 ,uA/cmS respectively for the hexagon and stripe distribution of
current. Pictures are taken from [57].
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The transition from a homogeneous state to a stationary stripe pattern is
accompanied by a continuous increase of the amplitude of the structure starting
at the threshold value of the control parameter. As explained in a previous
chapter, such a behavior is called a supercritical transition. It is found that
the wave length of the critical mode is comparable with the dimension of the
sandwiched system along the direction of the electric current (z direction). Also,
it has been observed that the wave length decreases when this dimension is
diminished. The amplitude of the critical mode is to a good approximation
increasing as a square root of the distance from the bifurcation point, which is
typical for a supercritical bifurcation [56].

3.A Appendix A

Paschen curves and the estimation of the
secondary emission coefficient

For the investigated experimental setup, experimentally obtained [12] Paschen
curves are given in Fig. 3.9. The plot is such that if the approximation (1.3)
for the Paschen curve would hold strictly, the curves would precisely lie on top
of each other. As they do not, there is some liberty in choosing the value of
secondary emmision coeficient y. On the one hand, from the minimum of the
Paschen curve, the expressions (1.4) and tabulated values of the coefficients
A and B [29], the secondary emission coefficient can be estimated. For the
discharge gap of 0.5 mm, it is y=0.03.
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Figure 3.9: Paschen curves for different values of the gas gap width. Conduc-
tivity of the semiconductor layer is fixed. From [12].
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On the other hand, the value of ( %)mm does not depend on the cathode
material. Therefore, measuring the breakdown voltage as a function of pressure
for fixed d (0.5 mm) as shown in Fig. 3.10, the constant B can be experimen-
tally determined. This procedure determines ~ as 0.08 which is the value used
throughout this thesis.
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Figure 3.10: Breakdown voltage as a function of pressure for two different values
of the conductivity of the semiconductor layer and for fixed d = 0.5mm. From
[12].

Furthermore, for the same fixed d, one can read from Fig. 3.9 either the
minimal voltage or the value of pd where the voltage is minimal. Inserting these
values into corresponding expressions (1.4), the resulting ’s differ considerably.

Therefore, this thesis concentrates on the longer system of 1 mm since the
results for this system are less dependent on the value of v as it will be discussed
in Chapter 6. Also, whenever it was possible, an investigation of the dependence
of discharge properties on the secondary emission coefficient has been performed
and results for different values of v are compared.






Chapter 4

Derivation of the model

In this chapter, a simple classical model is introduced for the experiments de-
scribed in the previous chapter. First, we separately discuss the relevant equa-
tions for the gas discharge and for the semiconductor layer. Then a dimensional
analysis is performed to identify the truely independent parameters of the sys-
tem. The complete model in dimensionless form that is analyzed in the remain-
der of the thesis, is summarized in the scheme on page 42. Furthermore, 1D
reductions are discussed that apply when the system is laterally homogeneous.

4.1 Gas gap

Modelling the gas discharge system we take two types of ionization processes into
account: the a process of electron impact ionization in a strong field in the bulk
of the gas, and the y-process, the creation of secondary electrons at the cathode.
We use continuity equations for electrons and ions coupled to Poisson’s equation
for the electric field. This ionization-field coupling is a nonlinear mechanism
that can cause pattern formation. More precisely, a sufficiently high electric
field leads to a multiplication of charge carriers by a local impact ionization
reaction. The generated charges drift in the electric field. If their density is
high enough, they will modify the field and hence change the local reaction
rates and drift velocities. This process is described by continuity equations for
the particle densities

One + V-T'e = source, (4.1)
ony + V-T', = source,

and the Poisson equation

V~E:§(n+—ne) , E=_Vo, (4.3)
0

where n, is the electron density, n, the ion density and E the electric field. We
assume here that there is only one non-attaching gas species like nitrogen in
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the system. The electric field can be described in electrostatic approximation
by the scalar potential ® because for small currents magnetic and relativistic
effects can be neglected. In the Poisson equation e is the absolute value of the
electron charge while ¢ is dielectric constant.

The particle current densities i.e., the fluxes of electrons and positive ions
I, and T'; can be described in a simplified representation as a sum of diffusion
and Ohmic friction (drift). This is true as long as the degree of ionization is so
small that dissipative heating can be neglected.

r. = —-nepe E—D.Vn, (4.4)
F+ = N4 Py E — D+ Vv ny . (45)

The drift velocity of electrons or ions is assumed to depend linearly on the field
strength with a coefficient that represents the mobility of electrons or ions fle/y,
respectively, and gy < fie, although the linear approximation is valid only in
the low-field limit [29]. Furthermore, we will also neglect diffusion De =0 = D
and concentrate on the drift contributions to the currents only.

In both continuity equations for electrons and ions, the source term is iden-
tical due to charge conservation, since there is only one type of simply ionized
particles. In local field approximation, the a process is modelled as a local
source term in the continuity equations (4.1) and (4.2)

source = |Tc| a(|E|) — Bneny , a(|E|) = a (%) . (4.6)

The efficiency of generation of free charges by impact ionization depends on
the product of electric field and mean free path of electrons. If this product is
large enough, electrons can gain kinetic energy exceeding the ionization energy.
Accordingly, there is a threshold field Ey and for E| 2 Ep, impact ionization
can occur, while for |E| < Ej the ionization process is mostly suppressed. This
behavior is modelled by the traditional Townsend approximation [29]:

a = exp(—Ey/|E])® . (4.7)

The function is characterized by the parameter s with typical values s = 1 /2
or 1 depending on the type of gas. All our numerical results are for the most
common value s = 1, since s = 1/2 is used only for inert gases.

Furthermore, in the source term we can neglect bulk recombination because
recombination processes at the boundaries dominate. Photoionization is also
neglected since the ionization crosssection due to photons is much smaller than
the one due to electrons. The model applies only to non-attaching gases (like
N, or He).

To summarize, in our model we have neglected diffusion: Dy = 0= D, and
we have used a number of assumptions and facts such as: There is only one
dominant neutral species (one background gas), only one type of ions, only a
simple one-step ionization of particles, no recombination, no photoionization,
no attachments. Then we arrive at the classical minimal model [13,22,29,75
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79] of reaction and drift of charged particles coupled to an externally imposed
electric field which applies to discharges in simple non-attaching gases with low
current densities. We will see in later chapters that this simple model is actually
sufficient to describe the complex patterns observed in the experiments semi-
quantitatively, and that the simplicity of the model actually allows a deeper
physical understanding of the pattern formation processes.

At this place, we finally introduce a generalized total electric current as a sum
of conductive and displacement current arising from the continuity equations
(4.1), (4.2) together with the Poisson equation (4.3)

e0E+e[T.+T,)=J , V-J=0. (4.8)

4.1.1 Boundary conditions

In order to complete our model for the gas discharge we have to add (initial
conditions and) boundary conditions. The boundary condition at the anode
(Z = 0) describes the absence of ion emission. Ions are created only in the bulk
of the gas and they travel towards the cathode. At the anode the electrons are
simply absorbed and if diffusion is neglected, the ion density vanishes

Ty(X,Y,0,6) =0 < n (X,Y,0,t)=0. (4.9)

The boundary condition at the cathode Z = dg describes secondary emission,
the y-process. At the cathode, an incoming positive ion will liberate an electron
with probability v, so we have without diffusion

T(X,Ydp )] = [T4(X.Y,dy8)] (4.10)
pene(X,Y,dg,t) = Yo+ (X, Y, dg, t)

where d, represents the thickness of the gas layer. The coefficient v can be
determined from the minimum of the Paschen curve as has been already ex-
plained.

Note that in contrast with most other literature, the anode is on the left
hand side at Z = 0. This has the advantage that the electric field in z-direction
is positive, and sign mistakes when evaluating E or |E| cannot occur. The
electric potential U between the electrodes is

U(X,Y,t)=<I>(X,Y,07t)—<1>(X,Y,dg,t)>0 , ER,t)=-V o[R,t),
(4.11)
where R=X 1 +Y Jj+ Z k and E,j’, k are unit vectors.

4.2 Semiconductor layer
In order to explain how the semiconductor is coupled to the gas discharge layer

and which processes are taking part there, I will make small digression and give
short introduction to electric fields in matter.
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Essential conclusions about electric fields in matter are: Matter can be po-
larized; its condition being described completely (so far as the macroscopic field
is concerned), by a polarization density P, which is the dipole moment per unit
volume. The contribution of such matter to the electric field E is the same as
that of a charge distribution gpound €xisting in a vacuum and having a density
Ghound = —V - P. In particular, at the surface of polarized matter where there is
a discontinuity in P, this reduces to a surface charge of density gsurface = -P,.
Add any free charge that may be present, and the electric field is the field that
this total charge would produce in the vacuum. In a dielectric, P is proportional
to E with the coefficient . called the electric susceptibility (x. = P/E). It is
useful to define the dielectric constant ¢ = 1+ x. as the characteristic of mate-
rial, since free charge immersed in a dielectric give rise to electric fields which
are 1/ times as strong as the same charge would produce in the vacuum.

To model dielectric response of ‘our’ semiconductor, we use Maxwell’s equa-
tions in macroscopic media. The most important is that we take the semicon-
ductor to work in a linear regime. The fields are weak enough that presence
of an applied electric field induces an electric polarization proportional to the
magnitude of the applied field. The first Maxwell equation (known as Coulomb’s
law) says that free charge is divergence of the vector quantity called D.

V-D=gq .

D is the electric displacement vector (D = oE + P) and is sort of an artificially
defined physical variable, since now it seems that D is the vector field whose
source is the free charge distribution in the same sense that the total charge
distribution is the source of electric field E. In general, that is not true since
V x D is usually not zero. Thus the distribution of free charge is not sufficient
to determine D, but boundary conditions (basically for E and P) at the dielec-
tric surfaces are playing an important role. At the boundary between the gas
discharge layer and the semiconductor, potential and tangential component of
the electric field are continuous, while the jump in the normal component of the
electric field is caused by surface charge. A way to deal with the semiconduc-
tor is to determine the charge and the current in the semiconductor, and then
to apply charge conservation law to the bulk of the semiconductor and at the
boundary surface.
From what has been said above, it is clear that:

g=¢e V-E, (4.12)

where ¢ is the electric permittivity of free space, while €, is the dimensionless
dielectric constant of the semiconductor (for GaAs is 13.1). Considering the
semiconductor layer to work in the linear regime, its (specific electric) conduc-
tivity s (quantities describing semiconductor will be labeled with ‘s’) is just
a constant that represents a coefficient of proportionality among the applied
electric field and the current density:

J,(t) = 7, Eq(t) - (4.13)
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In general, the conductivity of a semiconductor is a strongly nonlinear function
of the electric field, but we assume that we stay in the linear initial part.

To summarize, it is necessary to know the characteristics of the semiconduc-
tor as a material (its conductivity and dielectric constant). Besides, it is im-
portant to note that in the bulk of the semiconductor there are no free charges.
As a consequence, we can work with the equation A® = 0, since there are
no space charges within the semiconductor (or negligible). Finally, one has to
derive correct boundary conditions at the semiconductor surface using charge
conservation law and the free charge distribution.

Surface charge and boundary conditions

As it has already been mentioned, at the interface between different media
boundary conditions on D and E are derived from the full set of Maxwell equa-
tions. As a result the normal components of D and the tangential components
of E on either side of an interface satisfy:

(D2 —D1) - fz1 =¢s , (4.14)
(Ez — El) X ’fLQ] =0 N (415)

where 721 is a unit normal to surface, directed from region 1 to region 2, and ¢,
is the macroscopic surface charge density on the boundary surface (not including
the polarization charge).

Now, it follows that 7 - (e;e0E, — €gEy) = ¢5. For the sake of clarity (only
here), all the variables are having indexes - g for gas and s for semiconductor.
The way to actually calculate surface charge is to apply charge conservation
law at the boundary interface and integrate over the space, using divergence
theorem:

/&qdv = —/ vV-Jdv (4.16)
Vv 14
= —/J-fz da (4.17)
S
= Jpu—dez » (4.18)

where is dV' volume element and da an area element with unit outward normal
(from the gas to the semiconductor) 7 at da. J,, and J,, are z components of
the current at the point z = d4. Then the important condition which has to
be satisfied at the boundary interface z = d,, for all z components of the vector
fields is

t
es€oEs — eoEy = g5(t = 0) + / dt [(1+v)enyputEg — 65E;] . (4.19)
0

To this condition, from now on, we will refer as to ‘jump’ condition since
it tells that the z component of electric field across the internal border is not
continuous but it has a jump due to the existence of surface charge.
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4.2.1 1D reduction

We can reduce the problem to one spatial dimension Z transverse to the layers
as long as the system is laterally homogeneous. This is very well realized in
a substantial parameter regime of the experiments [11,12]. Therefore charge
conservation together with Eq. (4.12) can be rewritten as

atq+v~]s:0 :>V'(€S€08LE+JS):O’
and in 1D approximation we derive the conservation of the total current .J
es€0O E(t) + Js(t) = J() , 0.J=0, (4.20)

where the first term is the displacement current and the second is the con-
ductive current of the semiconductor, and the sum is constant throughout
the whole semiconductor layer. The total current in the gas discharge system
J(t) = 0B +e(ly —T.) , 0zJ =0 is the same as the total current in the
semiconductor layer J(t). Hence in macroscopic parameters, the semiconductor
solves!:

COU) + 1(6) = J(t) . Ust) = RJu(t) (4.21)
€€ - é
Cs - ds E: s 6'3

where C, is the capacitance and R, the resistance per area, d, is the thickness
of the semiconductor and the voltage applied to the semiconductor is simply:

UL(t) = E(t)d.. (4.22)

In general, there are three independent parameters describing the semicon-
ductor — namely dielectricity constant €,, conductivity , and width ds —, but
in 1D there are only two, namely its capacitance C and its resistance R.

T, is the Maxwell time and it is the intrinsic time scale of the semiconductor
dynamics

€s€0

T:=C; R, = (4.23)

Os

This time scale is independent of the thickness of the semiconductor layer al-
though it represents the time of the charge decay through the semiconductor
layer. The time scale of experimentally observed oscillations seems to be of this
order, and actually almost linear in T when &, is varied, as will be discussed
in Chapter 6.

IThe notation (4.21) is introduced to relate the analysis to the work of [24].
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4.3 Complete model in dimensionless form

By dimensional analysis, the independent dimensionless parameters of the model
are identified. It is convenient to start from the Townsend approximation of the
impact ionization coefficient in order to introduce the units for time, lengths
and fields, therefore oy and F are essential quantities for this analysis. First,
we introduce 79 = 1/ag so to measure all lengths in units of the ionization
length. Second natural unit is given by the characteristic impact ionization field
Ey and the electron mobility p. determining characteristic velocity vy = pe Egp.
Consequently the time unit is tg = ro/vg and the charge unit will be determined
by the Colombo’s law. Therefore, dimensionless lengths, times and fields are:

R t (R,
r= = ) T == ) U(T7T):en(Rt) )

To to 90

R,t E(R,t
p(r,7) = en+—() , E(ry7)= (R.?) ,  where : (4.24)
9 Ey
1 1

ro—=—, t() = and qo — EooéoE() -

(67} ao,ueEO

An effective field-dependent impact ionization coefficient «(E) =
Ap exp(—Bp/|E|), now in dimensionless units, reads

a(&) = e~ W/IED* (4.25)

where we use only s = 1 as has been already said. p is the gas pressure and
mobilities then scale with inverse pressure p. = f./p and py = g4 /p. It is
important to note that other characteristic properties scale with the pressure in
the following way:

o= — , EO = Bp ) (426)

vo = HeEO == ,aeB y 4o =

Further, we can rescale the total applied voltage as follows:

Ui
Wi =
"7 Eoro
and introduce the small parameter
_ B+
=
He

which is the ratio of ion over electron mobility, and state that neither of these
quantities depend on pressure. Here, we have also recalled the scaling properties
with pressure p, such that the pressure dependent similarity laws can easily be
identified in the represented dimensionless results.
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It should be noted that only bulk gas parameters have been used for the
dimensionless analysis. Therefore dimensionless properties do not depend on
the secondary emission coefficient.

The properties of the semiconductor are also rescaled:

Os

= 4.27
Heqo ( )

Os

while dielectric constant ¢, is already dimensionless.
The dimensionless lengths of gas discharge layer and the semiconductor are

L=2 , L, =-—"2, (4.28)

and they scale with the pressure as Apd.
That brings us to the point where we can sketch the complete system in the
dimensionless form schematically as:

anode (z = 0): b =w
boundary condition: p=0

GAS impact ionization
electrons: 0,0 — V-(0€&)=oc|E|exp(—1/|])
ions: O, p + puV-(p&) =ol€lexp(—1/|E])
electric field: V-&E=p—0o , E=-V¢
boundary conditions (z = L): Yup =0 secondary emission
at the cathode gs = (eef|p+ — Elp-) = % surface charge

linear
SEMICONDUCTOR

cathode (z = L + L): =0

The model consists of the continuity equations for electrons and ions, cou-
pled to the Poisson equation. The only processes taken into account are the
impact ionization in the bulk of the gas and the secondary emission at the cath-
ode. The semiconductor is easy to describe since it works in a linear regime.
This representation of our system is clear and simple, though we can use differ-
ent form of these equation for the numerical calculations and especially in 1D
approximation, elimination of some of the variables is advisable.
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4.3.1 1D representation of the full model

For further calculations, it is useful to note, that the one-dimensional approx-
imation of the above dimensionless equations (two continuity equations and
Poisson equation ) makes the total electric current homogeneous

J(r)=0-E+ppE +0€ , 0,j(r)=0. (4.29)

The dimensionless total current is defined as:

. J(t J(t J
qoro/to  peFo coaoEy  p

(4.30)

This identity (4.29) can be used to substitute either ion current or the elec-
tron current by j(7). After eliminating the ion dynamics by the total current
j(7), the equations of motion of the gas discharge becomes

Oro = 0:(je) +jear(€) , (4.31)
- = j(r)— (n+1)je — n€0.€ , (4.32)
where j. = 0& = —eJ./[qo ro/to] is the dimensionless conductive current carried

by the electrons.
The boundary conditions for the glow discharge are:

0:-£(0,7) = j(r) —o(0,7)E(0,7) , (4.33)
0, E(L,7) = §(r) — XV o(L, 7)E(L, ) . (4.34)

As the analyzed system is driven by the DC voltage, the total current is a
conserved quantity through the whole system. The applied (total) voltage U;
over the complete system is kept fixed (0,U; = 0):

dg
U =U@)+U,(8) , U@t)= / Bir, dr . (4.35)
0

If we now introduce the dimensionless potentials:

et . )—/Ls(z ) iz (4.36)
t_EOTO 9 T)= ! ) ) 2

from the equation (4.21) the total current can be expressed as:

1

i) = 2 (ut —u(r) — msBru(r) ) , (4.37)

with the dimensionless parameters

€ TS S
Ry= BN & peiie (4.38)

ro to 0s
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The voltage u(1) = fOL E(z,7) dz is related to the electric field £ and
potential ¢ in differential form as

E(z,7) = =0.¢9(2,7) , u(r)=¢(0,7) —¢(L,7), (4.39)
where gauge freedom allows one to choose
#(0,7) =0. (4.40)

Hence the dynamics of the complete system in one-dimensional representa-
tion is described by Eqs. (4.31)—(4.34), (4.37), (4.39) and (4.40). The system
is characterized completely by the independent dimensionless parameters p, L
and v for the gas discharge layer, 75 and R for the semiconductor layer and
the total applied DC voltage u;.

For a better physical insight, it might be instructive to rewrite equation

(4.37) as:
up —u — Rsj

O-u = (4.41)

Ts

The dynamics of the voltage at the gas-semiconductor interface is characterized
by the time scale 75 which is nothing less but the Maxwellian time

7o = RyCs , whereis Cy = Cy—2— . (4.42)
toeqo

The load line is u = u; — R4j and it is a stationary solution of the semiconductor
part of the system.



Chapter 5

Stationary solutions

As a first step of any further investigation, the behavior and the resulting
current-voltage-characteristics of the purely one-dimensional gas discharge sys-
tem have to be understood. In this chapter, the transition from Townsend to
glow discharge is investigated numerically in one space dimension in the full
parameter space within the previously described classical model: with electrons
and positive ions drifting in the local electric field, impact ionization by elec-
trons (« process), secondary electron emission from the cathode (y process)
and space charge effects. We also perform a systematic analytical small current
expansion about the Townsend limit up to third order in the current that fits
our numerical data very well.

Depending on the two determining parameters 7 and system size pd, the
transition from Townsend to glow discharge with growing current density can
show the textbook subcritical behavior, but for smaller values of pd, we also
find supercritical or some unexpected intermediate ‘mixed’ behavior. The term
’subcritical’ is used here to describe falling current-voltage characteristics i.e.,
decrease of the voltage with current grow, while ‘supercritical’ denotes increase
of the voltage. Our work shows the same qualitative dependence of U = U (I, pd)
for fixed v as the old experiments by Pokrovskaya-Soboleva and Klyarfeld [80].
Furthermore, the analysis lays the basis for understanding the complex spatio-
temporal patterns in short planar ‘barrier’ discharge systems.

5.1 Introduction

An investigation of the system [11] along the lines of the textbook [29] shows
that the pattern formation occurs at the space charge driven transition from
Townsend to glow discharge. The gas discharge layer is rather short, more pre-
cisely, the product pd of gas pressure p times electrode distance d is small. This
raises the question of the Townsend to glow transition for small pd. However,
despite a history of more than 70 years, we are not aware of any thorough and
complete study of this classical problem. Therefore, our aim in the present
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chapter is to develop a consistent picture of the Townsend to glow transition in
one dimension from analytical and numerical investigations, in particular, for
short systems.

Many authors focus on quite long discharges that have a clearly pronounced
subcritical characteristics, i.e., for fixed large pd and growing total current I,
the voltage first decreases from the Townsend limit towards the normal glow
regime, then it increases again in the abnormal glow regime as has been seen in
Fig. 1.2 of Chapter 1.The initial decrease of voltage from Townsend discharge
towards normal glow creates a regime of negative differential conductivity, and
some authors [19] believe that negative differential conductivity is generic for
this system.

However, already in the early 1940’ies, e.g., in the extensive review by
Druyvesteyn and Penning [75], it was suggested that this subcritical behav-
ior might not be the only possible one, but that also a monotonic increase of
voltage with current was possible. Such a behavior we will call supercritical, in
line with modern bifurcation theory. There are early experimental papers by
Pokrovskaya-Soboleva and Klyarfeld [81] and McClure [82] that clearly indicate
a supercritical transition for small values of pd in hydrogen and deuterium in
combination with metal electrodes. Later data by the same authors [80] is re-
produced in Raizer’s textbook [29], however, only for rather long systems with
subcritical characteristics.

Theoretical insight into the question of bifurcation behavior can be gained
by analytical or numerical investigation of an appropriate model. The classical
model contains the drift of charged particles in the local field, the a-process of
impact ionization in the bulk of the gas, the ~-process of secondary electron
emission from the cathode, and space charge effects.

Numerical calculations date back to the 50’ies [76], the first numerical evalu-
ations using an ‘electronic computer’ can be found in the early 60’ies in [77,78].
In particular, in the work of Ward [78], current-voltage characteristics with or
without a region of negative differential conductivity can be found for different
values of pd. However, computing power at the time was quite restricted and
hence only a few current-voltage-characteristics were calculated. The work does
not seem to have been extended significantly later on. We will take up the issue
in Section 5.4.

Analytical efforts were constrained to small current expansions about the
Townsend limit. The old German textbook of Engel and Steenbeck [13] contains
an elegant argument that the initial increase or decrease of the characteristics
from the Townsend limit depends on the sign of o”(Er) where a(F) is the
effective impact ionization coefficient as a function of the electric field E, and ”
denotes the second derivative (of a with respect to E) evaluated at Townsend’s
breakdown field Er. We recall this argument in Subsection 5.3.2. The book [13]
also gives an explicit expression for the coefficient c2 o & (Er) in the expansion
U(I) = Ur + c2I?, however, without derivation or reference. Exactly the same
statements can be found more than 60 years later in Raizer’s much read textbook
[29]. Kolobov and Fiala [22] assume that o/’ = 0 marks the point where negative
differential conductivity disappears. A similar small current expansion of the
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voltage about the Townsend limit has recently been performed in [19], but with
a different result — here the leading correction is found to be linear in the
current rather than quadratic. None of the two results has been compared to
numerical solutions. In the present paper, we will present yet another result for
the small current expansion and evaluate it to higher orders. Qur derivation is
a systematic expansion and in very good agreement with our numerical results.

In general, our aim in the present chapter is a consistent theoretical inves-
tigation of the simple classical model of these discharges treated by so many
authors [13, 18,19, 22,29, 75-79]. We will use both analytical and numerical
methods for the exploration of the full parameter space, extending and cor-
recting the previous literature. The exploration of the full parameter space is
possible, because the current-voltage characteristics in appropriate dimension-
less units depends essentially only on two parameters: the secondary emission
coefficient v and the dimensionless system size L o< pd.

Of course, various extensions of the model can be considered: particle dif-
fusion, attachment, nonlinear particle mobilities, a field-dependent secondary
emission rate or nonlocal ionization rates. However, e.g., Boeuf [83] has argued
that for the transition from normal to abnormal glow, nonlocal terms in the
impact ionization reaction should be taken into account through hybrid numer-
ical models [84], while in the subnormal regime between Townsend and normal
glow, a local fluid model is considered sufficient [22]. This supports the strategy
to first seek a full understanding of the predictions of the classical model as a
corner stone and starting point for any further work.

In the present work, we perform a systematic analytical expansion of the volt-
age about the Townsend limit up to O(I®), recovering the qualitative features
of the solution from [13,29]: in particular, we find that a linear term in current
I indeed is missing, and that the coefficient ¢y indeed is proportional to the
o' (Er), but with a different proportionality constant. In fact, our coefficient ¢y
does depend on the secondary emission coefficient v, while the expression given
in [13,29] does not depend on v at all. We compare our systematic expression
with the earlier result in the limit of small v. We also evaluate the next order
O(I®). Our analytical result fits our numerical solutions very well within its
range of validity. The stationary states of the pattern forming system [11] are
within the range of validity of this expansion.

Furthermore, we explore the current-voltage characteristics numerically be-
yond the range of the small current expansion in the full parameter space. We
show that within the classical model, there is not only the familiar subcrit-
ical bifurcation from Townsend to glow discharge for large values of pd, but
for sufficiently small values of pd, the bifurcation is supercritical, in agreement
with the scenario suggested by Druyvesteyn and Penning [75]. Furthermore,
for intermediate values of pd, there always exist completely unexpected ‘mixed’
bifurcations. This surprising finding implies that the negative differential con-
ductivity does not vanish when o”(Er) = 0 in the Townsend limit, as most
authors assume [22,29], but only for smaller values of pd. These statements are
true for all relevant values of secondary emission . Our three-dimensional plots
of the voltage as a function of dimensionless system size L o pd and current I
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for a given gas-electrode combination are done in the same manner as the old
experimental plots by Pokrovskaya-Soboleva and Klyarfeld [80].

The chapter is organized as follows: in Section 5.2, we reformulate the sta-
tionary one-dimensional problem as a boundary condition problem. In Section
5.3, we recall the Townsend limit and the classical argument of Engel and Steen-
beck on the qualitative dependence of the small current expansion on o', We
then perform a new systematic small current expansion up to third order in
the total current I°, determine the coefficients of the expansion explicitly and
compare it with earlier results in the limit of small . Section 5.4 begins with
our numerical strategy and a discussion of the parameters with their ranges.
The parameter dependence of the current-voltage characteristics on system size
L « pd and secondary emission coefficient 7 is first presented in the form of
(I,U, pd)-plots for fixed ~ as in [80]. We then present spatial plots of electron
current and field, and compare our numerical results to our analytical small
current expansion. Finally, we classify the bifurcation structure in the complete
relevant parameter space. Last Section contains a summary and an outlook onto
the implications of this work for spatio-temporal pattern formation in barrier
discharges. Two appendices contain the proof of the uniqueness of the solution
of the boundary value problem and details of the small current expansion in
order I3.

5.2 The stationary problem

For a given dimensionless total current j, mobility ratio u, secondary emission
coefficient v, functional form a(&) as defined in previous chapter Eq.(4.25) and
dimensionless system length L, the stationary solutions of Eq.(4.31) for electron
current density and Eq.(4.32) for electric field are determined by

dije = —a(&)je, (5.1)
pEd.E = j—(1+pje , (5.2)

together with the boundary conditions (4.10), (4.9) that conveniently are ex-
pressed by j as

je(0)=j and je(L)=je ™ (5.3)
where we recall that cathode is at z = L, and we define new constant L., as:
1
bo=In=" L (5.4)
Y

We assume that «(€) > 0 and da/d|E| > 0 within the relevant range of fields
£. We prove in Appendix A that this determines a unique solution for the two
functions j.(z) and £(z). Finally, the integrated field yields the potential

u = /OL E(z) dz, (5.5)

and hence the current-voltage-characteristics u(j).
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5.2.1 A global conservation law

a(&(z)) for all solutions (je(z),£(z)) is related to L., through the global conser-
vation law

L
/0 a(E(z))dz=Ly . (5.6)

This can be seen by formally integrating Eq. (5.1) with the boundary condition
Je(0) = j with the result

’

je(z) = j e~ Jo 2By dz" (5.7)

and by evaluating this solution with the boundary condition j.(L) = j e~ at
L. The identity (5.6) can also be found in [13,29)].

It follows immediately that for a bounded function with a(€) < 1 for all £
as in (4.25), the system size L needs to be larger than L.,

L>L, (5.8)

to sustain a stationary self-sustained discharge. This is true for arbitrary cur-
rents j and space charge effects.

The identity (5.6) also plays a prominent role in the small current expansion
about the Townsend limit, as we will see now.

5.3 Analytical small current expansion

5.3.1 The Townsend limit

The well-known Townsend limit can be understood as a consequence of (5.6): for
currents j so small that 9.€ ~ 0 in (5.2), the electric field is constant £(z2) = Ep.
Eq. (5.6) then reduces to the familiar ‘ignition condition’ [29]

al6r)L=L, <= = (e a(Er)L _ 1) =1, (5.9)

The Paschen curve relates the potential up = £rL in the Townsend limit to
the system size L through a(ur/L) = L. /L. In particular, for the form of Eq.
(4.25), the Paschen curve is

L
ur(L,y) = ———— 5.10
T( 7) lnl/s(L/L,Y) ( )
while the field is 1
Er(L,y)= ————— . 5.11
T( ’7) lnl/s(L/L,y) ( )

In dimensionless form, up and £r depend only on the secondary emission coef-
ficient v, system size L and the parameter s in (4.25). The Townsend field &
increases monotonically with decreasing system size L and diverges for L | L,.
The Paschen curve ur(L,v) (5.10) has a minimum at L = L. e!/* and diverges
both for L | L., and for L — oo.
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5.3.2 The argument of Engel and Steenbeck

In the old German textbook of Engel and Steenbeck [13], the following argument
for an expansion about the Townsend limit can be found: write the electric field
as the Townsend field £ plus a perturbation A(z), and note that the potential
is the integrated field:

L
ER)=E6r+A(2) , u=ur +/O A(z) dz . (5.12)

The local impact ionization coefficient can then be expanded about a(&7) as

"(ST)

> A*(2) +... . (5.13)

a(E(2)) = a(ér) + ' (&) A(z) + ——

For fixed system size L and parameter L., the global constraint (5.6) relates
different solutions £(z) to a(Er)L through

Ot(gT)L

/Oa(E(z))dz
= a(ST)L—I—a'(gT)/O A(z) dz

ne L

) / A2(z)dz+... , (5.14)
2 0

where the expansion of « was used in the second step This identity allows

to express fOL A(z) dz by the higher order terms fo A™(z) dz, n = 2,3,.

Insertion of this expansion into the definition of u yields

_ 2(
u=ur 2a ST /A )dz +. (5.15)

Since A? is positive and since « is assumed to be an increasing function of £, the
sign of the correction is determined by the sign of o”’. This statement from (13]
is recalled in the recent literature [22,29]. It should be noted that the estimate
(5.15) is valid as long as |a™ [ A"dz| < |o” [ A%dz| for all n > 3.

The question is now how to calculate fOL A?(z)dz. In [13], a result is quoted
referring to a long calculation without reference. The same result is given more
than 60 years later in [29] in Section 8.3 with a sketch of an argument and
again without reference. The argument assumes that |J,| > |Je| throughout
the discharge volume. This assumption is in disagreement with the boundary
condition (4.9). A somewhat different argument based on a constant space
charge through the whole system is given in [81]. In Ref. [29], the electric field
profile is assumed to be £(z) o< y/1 — z/29, while in Ref. [81] it is assumed to
be £(z) o« (1 — z/2p) where the length scale zy depends on the current j. In
both cases, the breakdown of the approximation is determined from the field
vanishing at the anode: &(L) ~ 0. This prescription yields no dependence
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on v at all, quite in contrast to our results below. The functional forms for
&(z) should be compared with our systematic analytical results (5.16), (5.32)
below (note that we reversed the order of anode and cathode), and with our
numerically derived field profiles in Figs. 5.4 and 5.5. They do not justify the
Ansatze given above.

Rather a consistent ansatz is chosen in [19], and the structure of their ex-
pansion in terms of e~ F and L., is quite similar to ours below. However, these
authors fail to incorporate the global conservation law (5.6), and get a correction
already in linear order, in contrast to the rigorous result (5.15) above.

5.3.3 A systematic expansion in small j

We now perform a systematic expansion in powers of j about the Townsend
limit. In principle, this expansion can be extended to arbitrary order. We have
evaluated it up to O(j%). We write the field correction as a power series in 7
namely A(z) = j &1(2) +j% E2(2) +. .., and use the same ansatz for the current

Je(2)

E(z)= &+ j&E(2)+52&(()+..., (5.16)
Je(2) = ju)+i%w)+..., (5.17)
and we introduce the short hand notation
a=aolr) , o =d'(&r) , " =a"&r), ... (5.18)
for the Taylor expansion of
a(l(z)) = a+a (j&i(2) +j%E(2) +...)
+ %ﬂ (j&1(2) + 2E2(2) +...) " + ... (5.19)

Insertion of the Ansétze (5.16), (5.17) into Egs. (5.1) and ordering in powers of
J yields

o@") : 0:t1(2) = —11(2) a (5.20)
0(;%) : 0zt2(2) = —12(2) @ — 11(2) & (2) 5 ... (5.21)

For Eq. (5.2), the same procedure gives

0(;°) : 867 =0, (5.22)
o@") : pErdEr =1— 1+ wu(z), (5.23)
o(5?) - pET0,E2 + p&10,E1 = —(1 4 p)ia(2), ... (5.24)

The boundary condition (5.3) at the anode (z = 0) yields

L1 (0) =1 5 L2(O) =i 5 Lg(O) =0 5 e (525)
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The boundary condition (5.3) at the cathode (z = L) most conveniently is
evaluated with the help of the global conservation law (5.6). Taking into account
that L. is independent of j, the expanded form reads

0(5°) : al =Ly, (5.26)
0@j") /OL £1(2)dz =0, (5.27)
0(5%) - /OL (a’ Ea(2) + o @) dz=0, (5.28)
0(j°) - /L (a’ E+ad E16 + ai—f) dz=0,

U (5.29)

where the first equation (5.26) reproduces the ignition condition (5.9). Finally,
the potential u from (5.5) is

L L
u = UT(L,7)+j/ &1(2) d2+j2/ &2(2) dz
0 0
E
+ f‘/ E(z)dz+ ... (5.30)
0

The lowest order ur(L,7) reproduces the Paschen curve (5.10). Eq. (5.27)
reveals immediately that the order j! in u has to be absent. For the order 4% in
(5.30), the function &;(z) has to be calculated. First,

1(z) =e ** (5.31)

is the solution of (5.20) and (5.25). ¢1(2) has to be inserted into (5.23) which
now can be solved analytically up to a constant of integration. This constant is
determined by (5.27). The result is

oz — LQ_‘Y +(1+p) (6_0‘z - I’Z;Lw)

(5.32)

81(2) = a'ugT

For the contribution in order j2 to the potential, the calculation of £; is sufficient
since with the help of (5.28):

L " L "
o o F(y,p)
d2 = — — 3(2)dz = —
/0 52(2) z 9 al~/() gl (Z) z 2a QSNZ&% ?

with the function

L3
Flr,p) = o +0+p)2-Ly—- 2e77 — Lye™ ™)

_ e—2Ly —e—L4)2
+(1+p)? (1 —= < I ) ) : (5.33)
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The function is plotted in Fig. 5.1. Within the interesting parameter regime,
it depends strongly on + and invisibly on p. Here we use the parameter range
for v suggested by [29] and the maximal mobility ratio p = p., /e = 0.0095 is
reached for the lightest molecules, namely hydrogen.

4

10 T

F(v.u)

Figure 5.1: Plot of F(v, u) as a function of 7 in a double-logarithmic plot. The
dependence on p for realistic values 0 < p < 0.0095 is too weak to be visible
in the plot. However, F(y,u) varies over almost 4 orders of magnitude as a
function of ~.

The small current expansion of the current-voltage-characteristics is in this
approximation

(3 Era” F(y,p) 3
U= ur (ﬂ) 20 ()’ +0(57) . (5.34)

The range of validity of this expansion can be easily estimated by inserting (5.32)
into (5.16): the correction to the field due to the current should not exceed half
of the Townsend field, so

1 Er Ly gl

Y max|&(x)]  2&(D) © L (5:98)

. < Er Y
J

A

In view of the very good fit of this expansion with our numerical results to
be presented below in Fig. 5.8, and in view of the interesting bending structure
of the numerically derived current-voltage characteristics in Fig. 5.11 below, it
seemed promising to calculate the next term of the expansion of order ;>

.\ 2 " .
u=up— (%) —‘ZT;“, —f(;’)ﬁ) + (%) £ +03*) . (5.36)
acr
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The function f3 can also be calculated fully analytically and along the same
lines: first t5(2) is derived from (5.21) and (5.25) and inserted into the o.d.e.
(5.24) for E(z). The equation is solved, and the constant of integration is
determined by (5.28). Then fOL £3(2) dz is derived from (5.29) and the explicit
expressions for £;(z) and £2(z) and inserted into (5.30). However, the result of
this calculation is still considerably longer than (5.33) and does not show any
simple structure. We therefore will not give the explicit form here. Rather, we
summarize essential steps of the calculation in more detail in Appendix B. The
final steps are done by computer algebra (mathematica). Some of the results
for fs are shown in Fig. 5.8 and compared with numerical solutions of the full
problem (5.1) — (5.5).

5.3.4 Discussion of the result

In order to compare our systematic second order expansion with earlier work
[13,29], it is useful to rewrite equation (5.34) in the following way:

u = ur—Asg 32 + 0(53), (5.37)
Er o F(y,p)
Asg = 1

where the current j is rescaled with the mobility ratio as j=3jlp.

The result agrees qualitatively with the one given by Raizer [29] and Engel
and Steenbeck [13]. In particular, the leading order correction is also of order
o/'(j/u)?. However, the explicit coefficient of j2 differs: while the coefficient
A in [13,29] does not depend on 7 at all, we find that the dependence on 7y
exists. In fact, F' is proportional to Lg in leading order, and the plot of F' in
Fig. 5.1 clearly indicates that within the relevant range of 107% < v < 10°, this
coefficient varies by almost five orders of magnitude. On the other hand, the
denominator (a&7)? in (5.38) has in leading order the same strong dependence
on 7, since "

1 L
(Er)p (Lv ln(L/Lfy)> , (5.39)
according to the Townsend breakdown criterion al = L, cf. (5.9)—(5.11).
Therefore the leading order dependence on L?, of the coefficient of 72 in (5.37)
is cancelled and replaced by a dependence on L3, while the term with o has
the classical explicit form
gT Cl” - 1-— 25T IH(L/L,\/) -2

= g 5.40
2a/ 2ET 2 ( )

In [13,29], another small current expansion was derived from (4.1)-(4.4),
assuming n > n, and n 4 (x) ~ const. This approximation was criticized in [85],
since it is in contradiction with the boundary condition that there are no ions
at the anode — however, for very small 7, it is a good approximation in a large
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part of the gap. The resulting equations (8.8) and (8.10) from [29] read in the
notation of the present thesis

Uy 1 =380 £ JX?
_ _Yr L 5.41
e Gz 48 2&r (JL) ’ (5-41)
_ cop+UF
Ju= L, (5.42)

(Here a misprint in [29] was corrected, namely the missing factor Uz in the
coefficient of J? in (5.41 is added), and the factor 1/(87) in (8.8) is substituted
by €9/2 in (5.42), since we here write the Poisson equation (4.3) in MKS units
rather than in Gaussian units, cf. (8.6) in [29].)

In (5.41), the physical current density J is compared to Jy,. Jp, is the current
density where deviations from the Townsend limit through space charges start
to occur; it explicitly depends on v through Ur (5.10).

Comparison of our results (SE) (5.37) and Engel/Raizer (ER) (5.41) show
that the coefficients Asg gr in the expansion (5.37) are related like

12 F(v, p) 1-267 L®
—————, Agr= : 5.4
L3 PRT e 1283 (5.43)

Asg = Agr

The coefficients Asp and Agr depend in the same way on L, and they are essen-
tially independent of j for realistic values of p. Therefore the ratio Asg/Agrgr
depends on v as shown in Fig. 5.2. For v — 0, the ratio tends to unity. For a
large range of v values, the deviation is not too large, approaching a factor 0.44
for v =101,

SE

ER
0.5¢

10 10 10 10 10

Figure 5.2: The ratio of the coefficients Asg/Agg in the small current expan-
sions derived here and by Engel/Raizer as a function of +.

In Fig. 5.3, we show that the factor Agr indeed strongly depends on v by
plotting

2 Asp(Ly) _ Asp (| 2+WL,\ (WL, ’ (5.44)
L3 In" L Agr InL In L :

as a function of v for a number of gap lengths L. In the limit of infinite gap
length In L. — oo, this ratio should reach the ratio Asg/Aggr. However, it should
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be noted that considering long gaps is not physical anymore, since in that case
a Townsend discharge would not occur, but rather streamer breakdown would
take place.

0.1

A

0.08f

0.061

0.04f

0.02

-0.02

Figure 5.3: The normalized coefficient A = 24 Agp/(L? In* L) as a function of
~ for gap lengths L = A pd = 15, 30, 60, 120, 240 (dashed and solid lines with
labels).

The strong dependence of Agg or Agr on v for a given short gap length
L means that we can obtain both negative and positive differential resistance
dU/dJ close to the Townsend limit for the same gap length. Therefore the
choice of v is important since it can change the differential conductivity and
therefore the stability of a Townsend discharge in a short gap.

Translating back from dimensionless to physical units, the result reads

F(y,p)
By (@ Er)?

J \? Ed%a
EoM+ 28EC_¥

J N\ f
+ Eon
<€0ﬂ+) (EGAp)®

with the dimensionless coefficient

Ed%a
2 O

U(J) = Up-— (

_ér o sEj—(s+ 1)E3.
2 o 2Es.

(5.45)

Er

The coefficient of J2 changes sign for &p = Er/Ey = [s/(s + 1)]'/¢. With the
help of (5.11), this transition at o’ = 0 can be located on the Paschen curve; it
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occurs at
Ly = B @ VPR (5.46)

This is always on the right branch of the Paschen curve, since the minimum is
at L= L, e/°.

Our ~-dependent analytical result also excellently fits our numerical solu-
tions, as we will show in the next section.

5.4 Numerical solutions

We now discuss our numerical results for the voltage v as a function of total
current j, secondary emission coefficient vy, mobility ratio u and system size L, as
resulting from Egs. (5.1)—(5.5). We will work with the Townsend approximation
a(€) = e /1€l (4.25) with s = 1 as the standard case [29].

5.4.1 The numerical method

In Appendix A, we showed that the solution u = u(j) is unique for fixed v, y and
L, and we proved the useful property that the system size L is a monotonically
decreasing function of the electric field £(0) at the anode, dL/d€(0) < 0 (5.50),
for fixed 7, p and j. The second observation lays the basis for our numerical
iteration procedure:

First the two o.d.e.’s (5.1), (5.2) are integrated from z = 0 with the known
initial value j.(0) = j and some guessed initial value £(0) towards larger z. The
equations are integrated until for some z = Z, we find the value j.(z) = j e =~
that should be assumed at the fixed system size z = L. If Z > L, a larger
value of £(0) is chosen for the next iteration step, and if z < L, a smaller £(0)
where a linear interpolation of dz/d&(0) is used. This iteration loop is continued
until the boundary condition (5.3) at L is obeyed with sufficient accuracy. The
potential ¢(z) is integrated together with j.(2) and £(z) by adding the third
o.d.e. 0,¢ = —& [86]. The voltage u over the system is u = ¢(0) — ¢(L).

For the numerical integration of the o.d.e.’s, we used the lsodar.f routine of
the ODEPACK package from the free-ware site netlib.org. It integrates initial
value problems for sets of first order o.d.e.’s and chooses automatically the
appropriate numerical method for stiff or non-stiff systems. At the same time,
it locates the roots of any specified function. We defined this function as j.(z) —
j eI~ which returns the value z for the next iteration loop with high precision.

5.4.2 Parameters L, v and u, and j/p-scaling

The problem depends on the following parameters: the first one is the system
size L which is proportional to pd in physical units. It can take arbitrary values;
we explore a continuous range of L on both the left and the right branch of the
Paschen curve.

The second parameter is the secondary emission coefficient v which is de-
termined by both the gas and the cathode surface. Increasing v decreases the
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minimum breakdown voltage which is at eL., as discussed after Eq. (5.46). This
mechanism can be used for improving performance in technical applications
like plasma display panels [87]. According to [29], v can take values between
1079 and 107, in extreme cases even larger. We show results either for the two
extreme cases 106 and 10~!, or we show one representative result for v = 1072

The third parameter is the mobility ratio p = p /p. of the charged species.
Since ions are much heavier than electrons, u is always much smaller than 1.
The largest value of 1 = 0.0095 [29] is reached for the lightest molecules, namely
hydrogen. As a standard, we use the value = 0.0035 for nitrogen.

The functional form of the defining equations (5.1)-(5.4) and of the small
current expansion (5.36) suggest that u in leading order does not depend on
j and p separately, but only on the scaling variable j /p and on the factor
(1 4+ p) ~ 1. This observation motivates our choice of the variable j/u in
the following figures. However, Fig. 5.9 will show that for large j /p in the
abnormal glow regime and for large systems L, there is some small y-dependent
correction to this scaling behavior. Reconsidering (5.1)-(5.4), this means that
the factor (1+p) can not simply be equated with 1 even for p < 1072, but yields
some correction. In physical terms, the substitution of (1 + p) by 1 means the
elimination of the field increase in the anode fall region, and we conclude that in
large systems in the glow regime, the anode fall yields some small contribution
to the current-voltage-characteristics.

5.4.3 General features of the current-voltage-characteristics

We now give an overview over our numerical results in the full parameter regime
of the current-voltage-characteristics u(j) from Townsend up to abnormal glow
discharge as a function of rescaled current j/u, system size L and secondary
emission coefficient . In Figs. 5.4 and 5.5, we plot u as a function of j/u and
L for v = 1076 and v = 107!, respectively. The plots follow the style of an
experimental plot in [80], which is reproduced as Fig. 1 in [22]. To the best of
our knowledge, our Figs. 5.4 and 5.5 for the first time present numerical results
in the same style.

Comparing the two figures for different vy, it can be noted that on the one
hand, the shapes look qualitatively similar, while on the other hand, the actual
parameter regimes of potentials, currents and system sizes vary by an order of
magnitude or more. Let us now consider the common features.

In the limit of small current j (i.e., in the foreground of the figures), the
curves saturate to a plateau value which actually reproduces the Paschen curve
u = ur(L,7) from Eq. (5.10).

Following u = u(j) along a line of fixed system size L, we get the current-
voltage-characteristics for this particular system characterized by the two pa-
rameters L and . For these curves u = u(j), two features can be noted.

First, for larger L, the voltage u first decreases for increasing current j. This
is the familiar Townsend-to-glow-transition with negative differential conductiv-
ity. For larger j, the voltage u increases again towards the regime of abnormal
glow. However, in the minimum of the potential, there is no plateau in con-
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Figure 5.4: w as a function of j/u and L for the small secondary emission
coefficient y = 107%. The parameter range is 3- 1077 /u < j/u < 5-1073/u for
#=0.0035 and 17.3 < L < 160.
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Figure 5.5: Plot as in Fig. 5.4, but now for v = 10~!. The parameter range is
107%/u <j/u<7-107%/p for p = 0.0035 and 3 < L < 28.
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trast to experimental plots. This is because we solve the purely one-dimensional
system without the possibility of a lateral growth of the glow discharge column.

Second, for smaller values of L, in particular, when starting from the left
branch of the Paschen curve, the voltage does not decrease for increasing current,
but it increases immediately. We will discuss this different bifurcation structure
in more detail at the end of this section.

5.4.4 Spatial profiles

It is instructive to study the spatial profiles of electron current j.(z) and field
£(z) for different system sizes. In Figs. 5.6 and 5.7, we plot such profiles for
L =eL, and for L = e3L., = eL¢ri;. The smaller system size eL., coincides with
the minimum of the Paschen curve, while L..;; = e*L., (5.46) is the system size
where o’ in (5.36) changes sign. So for L < L. the voltage increases initially
in the small current expansion around the Townsend limit, while for L > Ly
it decreases.

Note that in contrast to previous plots, e.g., in [29], our cathode is on the
right hand site at z = L, because we found it more convenient to work with a
positive field £. The electron current is normalized by the total current.

In each plot, the profiles for the two smallest current values are well described
by the small current expansion from Section 5.3. This is in agreement with the
range of validity of these expansions of j/p < 0.08 for L = eL, = Lepit/e or of
§/1 <1.3-1073 for L = eLcyit, resp., estimated according to (5.35).

1

0 2 4 6 8 10 12
X

Figure 5.6: Spatial profiles j.(z)/j and £(z) for system size L = eL, at the
minimum of the Paschen curve. Plotted are curves for j/u = 0.01, 0.1, 0.3, 1,
3. Other parameters: v = 0.01, p = 0.0035.
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Figure 5.7: The same as in the previous figure, but now for the larger system
size L = e*L.,. The current now explores the smaller values Jj/p=10"11073,
3-1073, 0.01, 0.03, 0.1, 0.3.

For larger currents, a separation into a resistive column on the left and
cathode fall on the right becomes pronounced. While in the smaller system,
both regions take about equal parts, in the larger system, the cathode fall takes
only a small part of the volume on the right hand side.

5.4.5 Comparison of numerical and analytical results

Let us now compare the current-voltage-characteristics corresponding with these
profiles with our analytical results from Section 5.3. In Fig. 5.8, the numerical
results for u(j) are plotted as a thick solid line, and the analytical expansions
(5.34) and (5.36) up to second or third order in j/u as thin solid and dashed lines,
respectively. For the calculation of the third order, the procedure described in
Appendix A has been followed. Fig. 5.8 shows that in particular the expansion
up to order (j/u)? gives a very good agreement at least within the range of
validity of j/u < 0.08 or 1.3 - 1073, resp., according to (5.35).

5.4.6 Corrections to j/u-scaling

Fig. 5.9 shows the current-voltage-characteristics for the same two systems, but
now up to larger values of the current than in Fig. 5.8. Actually, the same
current range is explored in each system as in the corresponding Figs. 5.6 and
5.7

In addition, in Fig. 5.9 we test the j/u-scaling by plotting u as a function of
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j/p within the physical range of pu-values, including the limit of u = 0. It can be
noted that for short systems or small currents, the p-correction is negligible; this
means that (14x) can be replaced by 1 in Eq. (5.2) without visible consequences.
In contrast, for large systems and large currents, there is a small, but visible
p-correction to the dominant j/pu-scaling.

14
u

13.5f

0 0.05 0.1 0.15

29
0

0.5 1 15 2
VH 0

Figure 5.8: u(j) for the systems from Figs. 5.6 and 5.7 in the small current
limit: upper plot L = eL., lower plot L = €3 L., both with v = 0.01. Numerical
result (thick solid line), analytical result (5.34) up to second order in j /u (thin
solid line) and analytical result (5.36) up to third order in j/u (dashed line).

5.4.7 Discussion of bifurcation structures

We now set the final step in the quantitative understanding of the current-
voltage-characteristics at the transition from Townsend to glow discharge. We
characterize the transitions as subcritical, mixed or supercritical and locate
them in parameter space.

Fig. 5.10 gives an overview over the different behaviors for v = 0.01. It
corresponds to different L-sections of plots as in Figs. 5.4 and 5.5, but now with
j/u plotted on a linear rather than a logarithmic scale. For the terminology of
sub- or supercritical bifurcations, it should be noted that j /i = 0 is a solution
for arbitrary u. So the complete u-axis is a solution, too.

In the case of I = 0.85L.,;;, there is a pure forward or supercritical bifurca-
tion: u increases monotonically as j/p increases. In contrast, for L = 1.05L ¢y,
the bifurcation is purely subcritical: with increasing j/pu, the voltage first de-
creases, and eventually it increases again. This subcritical behavior continues
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Figure 5.9: Current-voltage characteristics for the same two systems as in Figs.
5.6, 5.7, and 5.8 (upper plot L = eL., lower plot L = e3L7), but now for a
larger current range than in Fig. 5.8. Furthermore, besides the curves for the
nitrogen value for the mobility ratio u = 0.0035, also the curves for x = 0.0095
(hydrogen), = 0.001 and the limiting value & = 0 are shown.
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down to L = Leyriyy = Ly e2 where o' changes sign. So indeed, the sign change of
o' in the small current expansion determines the transition from subcritical to
some other behavior. However, for L < L, the system does not immediately
enter the supercritical regime, but some unexpected ‘mixed’ behavior can be
seen: for increasing j/u, the voltage u first increases, then it decreases and then
it increases again. We distinguish ‘mix;’ where the voltage minimum at finite
j/p is smaller than the Townsend voltage, and ‘mix;’ where it is larger.

17.5k

u

17F

16.5F

16} supercr.

0 0.05 0.1 0.15 0.2 . 0.25

j/u

Figure 5.10: The current-voltage-characteristics for fixed parameters vy = 0.01
and g = 0.0035 and different system sizes, measured in multiples of L¢pi; =
L, 2. Shown are all possible bifurcation structures from supercritical up to the
famlhar subcritical case for various values of L.

Fig. 5.11 shows a zoom into Fig. 5.10: a smaller range of current and of
system sizes. The form of an upwards parabola of the order (7/p)? next to the
u-axis is well described by the analytical small current expansion of Section 5.3.
However, in contrast to initial hopes, the turn-over of the curves at j i/~ 0.02is
not covered by the small current expansion up to order (j/p)® whose coefficient
even changes sign within the parameter range of Fig. 5.11. In fact, the range
of validity of the expansion breaks down at j/u < 0.017, just briefly before the
first interesting bending structure in the characteristics.

Finally, in Fig. 5.12, the bifurcation behavior in the full parameter range
of 7 is explored. The transition from subcritical to m1x1 always takes place
when o changes sign, i.e., at system size L¢pip = L, e2. The transitions from
mix; to mixy; and then further to supercritical occur at smaller relative system
sizes L/L¢riy when the secondary emission coefficient 7 is smaller. All transi-
tions occur on the right branch of the Paschen curve, since its minimum is at
Ei Ly =2 =1.368.
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Figure 5.11: Zoom into Fig. 5.10 with smaller values of j/u and system sizes
L. The range of validity of the analytical small current expansion (5.36) is
J/p <0.017.
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Figure 5.12: Complete overview over the bifurcation behavior of the current-
voltage characteristics as a function of secondary emission coefficient v and
system size L.
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5.5 Summary and Outlook

We have studied the classical minimal model that creates a Townsend or glow
discharge, in one-dimensional approximation. The dimensionless current-voltage
characteristics u = u(j/u) depends on essentially only two parameters, the sec-
ondary emission coefficient v and the dimensionless system size L o pd. (With
j/p-scaling, the further dependence on the small mobility ratio g = pi /e is
very weak and becomes visible only for long systems in the normal and abnor-
mal glow regime.) Numerically, we have fully explored the bifurcation structure
as a function of v and L. Besides the familiar subcritical bifurcation structure
of long systems, for decreasing system size L, there is a sequence of current-
voltage characteristics, that we have called mix; and mix, before the super-
critical transition is reached. This general sequence is the same for all relevant
values of v while the precise lengths where the transitions occur, depend on 7,
cf. Fig. 5.12. Analytically, we have calculated the small current expansion about
the Townsend limit in a systematic expansion. We found that the term of order
7/ is missing, and that the term of order (j/ 1)? indeed is proportional to the
second derivative of the Townsend coefficient o’ according to the old argument
from Engel and Steenbeck [13], but with a different, strongly ~v-dependent pro-
portionality constant. We also have calculated the term of order (j/u)3. These
analytical expansions are in very good agreement with our numerical results
within their predicted range of validity.

Of course, the study of this minimal model can only be a first step, and it
has been suggested to include a number of additional features. First, y might
not be constant; while the dependence v = (I,V) [18] on global parameters
seems unphysical, the local dependence v = y(E/p) has been suggested [21]
and experimentally tested [88]. Second, the particle mobilities might be field-
dependent p4 = p (F). Third, diffusion was neglected, the approach was fully
local, and only one ion type was considered. However, our aim was first to
settle the predictions of the classical model in full parameter space as a corner
stone and starting point for any future extension that simultaneously also will
increase the number of parameters.

The motivation for this work is the impressive variety of spatio-temporal
patterns formed in short barrier discharges [8-11, 24,67-70]. The nonlinear
element responsible for the spontaneous pattern formation is believed to be a
gas discharge in the parameter range of the present work. Parameter regions
with negative differential conductivity (NDC) are generally believed to play a
decisive role in the formation of the instabilities. Knowledge about NDC regions
and the bifurcation structure in the range of these experiments therefore are a
condition for their future investigation, and conversely, properties of the current-
voltage characteristics might be deduced from temporal oscillations or current
constrictions. These pattern formation processes will be subject of the next
chapter.
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5.A Appendix A

Uniqueness of the solution of the boundary value
problem

Here we prove that the boundary value problem defined by (5.1) — (5.4) for
fixed j, p1, v and L defines a unique solution (j.(z),& ()) and hence a unique

potential u = fOL &(z)dz. This lays the ground for our analytical as well as for
our numerical procedure. We will keep j, 1 and ~ fixed within this appendix,
and will discuss how £(z) is determined by L and vice versa.

First Eq. (5.1) for jc is integrated with initial condition j.(0) = j (5.3) and
inserted into (5.2):

PEDLE = j (1 — (14 p) e~ Jo o€ dZ) (5.47)
The boundary condition (5.3) at L amounts to
L
/ a(&(z))dz= L., , (5.48)
0
where we assume that
a(f)>0 and Oa/dE >0 forall £ >0. (5.49)

An initial condition £(0) defines a unique solution £(z) of (5.47) and hence a
unique system size L through (5.48). We will show below that L is a monoton-
ically decreasing function of £(0)

dL/dE(0) <0 for fixed 7, u,y . (5.50)

This statement has two immediate consequences: (i) it shows that £(0) and
therefore also £(z) and u are uniquely determined by L; and (ii) it lays the
ground for our numerical iteration procedure where £(0) is fixed, and the re-
sulting L is calculated and compared to the true L.

Why is statement (5.50) true? Compare two solutions &; 2(z) and suppose
that £(2') > &£ (') on some interval 0 < 2’ < 2. Then for the difference, we
get from (5.47) that

K 2 2
: 0,7 — 0,& 5.51
= e f()z a(gz(z)) dz — e foz a(é (z)) dz Z 0 5

where the bound ... > 0 is a direct consequence of (5.49). So when & is
above £ on some interval 0 < 2’ < z, then at the end of the interval, we have
8z512 > 62822, and &; stays above £. As a consequence

E1(2) > Ex(2) forall z >0 , if £(0) > E(0) . (5.52)
Inserting this into (5.48) and using (5.49), statement (5.50) results.
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5.B Appendix B

The correction of O(j*) about the Townsend limit

We here sketch the essential elements of the calculation of the third term 33 of
the expansion about the Townsend limit: first Eq. (5.21) is integrated. With
(5.31) for ¢1, (5.32) for &, and the boundary condition (5.25), we get

o) = Do [CE v aema-e)
—az (%— +(1+ u)l—%iﬂ (5.53)

This result allows us now to integrate &(z) in (5.24) with the rather lengthy
result

1 '€
&(2) = 202,263 [(1+N)—T'

{ _ (az)2efaz I (1 e /,L)(672a2 _ 2670‘2)

L 1—ebn
+2 —7~1+(1+u)—e— (az +1)e "
2 T

1 =g
—az|Ly—az+2(1+p)—F
Ly

L 1-L
+2(1 + p) (?” + (14 p) 7 T az> gr ¥
—f1 u)Qe*Q‘”} +C (5.54)
The constant of integration C' is determined through (5.28)

L "
o F(y,p)
Esydz = — — — . .55
/0 %6 2ol oPpPEs (5.55)

Finally, fOL &, dz is determined by & and & through (5.29) as

L o L o' L
/ 53 dz = — 7/ 5152 dz — -/ girj dz. (556)
0 o oy o Jy

Insertion of the result in Eq. (5.30) yields the third order expansion (5.36) with
an explicit expression for the function f3.

All integrals can be performed analytically. However, the results are lengthy
and exhibit no simplifying structure. Therefore, we rather have performed the
remaining integrals by computer algebra. Results are shown in Fig. 5.8.



Chapter 6

Oscillatory solutions

As has been explained in Chapter 3, experimentally it is possible to obtain the
domain of existence of the homogeneous oscillations in the parameter plane (ap-
plied voltage and conductivity of the semiconductor) for fixed values of pressure
(p) and gas gap width (d). The system spontaneously undergoes a transition
to temporal oscillations which are spatially homogeneous. This behavior is
reproduced by our full time-dependent numerical solutions of the model, in-
cluding the coexistence of stationary and oscillating solutions in certain param-
eter regimes. Furthermore, linear stability analysis of the stationary solutions
gives a result which is in excellent agreement with numerical predictions. We
find semi-quantitative agreement with experiment both for the bifurcation dia-
gram from stationary to oscillating solutions as well as for the amplitude and
frequency of the developing limit cycle oscillations. Apart from experimental
system (presented in Chapter 3), the results on these homogeneous oscillations
apply equally to a planar discharge in series with any resistor with capacitance
as shown in Fig. 6.1.

Wa'd

T +l>< ,,/ -

Figure 6.1: The effective electric circuit to which our results on homogeneous
oscillations do apply. The semiconductor with its resistivity and capacitance is
replaced by resistor R, and condenser Cj.
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6.1 Numerical solutions of the dynamics

In this section, the dynamical model in 1D (Chapter 4) is solved numerically and
the results are compared with experiments. The section is divided into 5 sub-
sections. In the first one, we discuss physical parameters and numerical details
in the second. In the third, qualitative features of experimental and numeri-
cal system are compared like the bistability between stationary and oscillating
state. In the next subsection, a quantitative comparison between theory and
experiment is performed, and the dependence of amplitude and frequency of the
oscillation as a function of u; and 1/R is determined numerically. Finally, in
the last one, the mechanism of the oscillations is explained and a comparison
with other model reductions given.

6.1.1 Physical parameters

In the experiments [11,12] from Chapter 3, nitrogen at a pressure of 40 mbar was
used in gaps with widths of 0.5 or 1 mm. The article [11] contains mainly data
for the 0.5 mm gap, while the Ph.D. thesis [12] also contains more data for 1 mm.
The gas discharge was coupled to a semiconductor layer of GaAs with a width
of d, = 1.5 mm and a dielectricity constant e¢; = 13.1. Through photosensitive
doping, the conductivity of the semiconductor layer could be increased by about
an order of magnitude; the dark conductivity was o5 = 3.2 10~8(Qcm)~!. For
the discharge gap of 0.5 mm width, voltages in the range of 500 to 600 V were
used; for the gap of 1 mm width, the applied voltages were in the range of 580
to 740 V.

Of course, the predictive power of the theory depends on the model approx-
imations as well as on the chosen parameters. Our simple classical model will
not give fully quantitative agreement. On the other hand, its simple structure
and few parameters give a chance of physical understanding and control.

For the gas discharge, we used the ion mobility p4 = 23.33 cm?/Vs and
electron mobility p. = 6666.6 cm?/Vs. For ap = Ap = [27.78um| ! and Ey =
Bp = 10.26 kV/cm, the value from [29] was used. The gap widths of d = 0.5
and 1 mm then correspond to dimensionless gap widths L = 18 and 36. For
~, we used the value 0.08 determined from experimental Paschen curves in [12]
as explained in Appendix of Chapter 3. It should be noted that our classical
model predicts that the Paschen curves (i.e., the breakdown voltage U of the
gas discharge as a function of pressure times gap width pd) for different system
sizes should be indistinguishable. In practice, they do not precisely fall on top
of each other.

It is interesting to note how sensitive the theoretical results are to small
changes of the secondary emission coefficient 7, in particular, for the short gap
with L = 18. This is illustrated in Fig. 6.2. The upper three solid lines show
the shape of the current voltage characteristics for v = 0.08 and gap widths of
L = 17, 17.5 and 18. As discussed in more detail in [85,89], the characteristics
can be supercritical (L = 17, positive differential conductivity for all values of
the current j), mixq (L = 17.5, Townsend breakdown voltage lower than the



6.1 Numerical solutions of the dynamics 71

9-
89F T~
Tteel__L=18
8.8} B ity
87 - . : :
0 0.2 04 06 038 1
J x10°

Figure 6.2: Current-voltage characteristics for v = 0.08 (solid lines) and v = 0.1
(dashed line) for the dimensionless gap widths L as indicated in the figure.

local voltage minimum for j # 0) or mixy (L = 18, Townsend breakdown voltage
higher than the local voltage minimum for j # 0). The dashed line shows the
characteristics for L =18 and v = 0.1. u then overall is considerably lower and
the characteristics is fully subcritical, i.e., the voltage has only one minimum as
function of current j and this occurs for a value j # 0. This subcritical behavior
corresponds to the classical textbook case where the characteristics bends down
from the Townsend breakdown voltage towards a voltage minimum in the glow
discharge regime — as we have discussed in [85,89] in detail, this requires a
sufficiently large system size. For v = 0.08, the characteristics becomes subcrit-
ical for system size L > L..;; = e21In [(1 + 'y)/'y] = 19.2 while the transition to
supercritical behavior is determined numerically [85] to the value of L = 17.2.

Data on the coefficient v of secondary electron emission are relatively scarce,
so it is quite common [90] to use it as an adjustable parameter as we do. The
tabulated data for oy = Ap and Ey = Bp from [29] together with the Paschen
curve for d = 0.5 mm from [12] would suggest v = 0.03, but that would mean
that the characteristics would be supercritical up to L = 24.9, then it would de-
velop some regime with negative differential conductivity, and it would become
subcritical only for L > L..;+(y = 0.03) = 26.1.

We conclude that the case of a gap with width of 0.5 mm (corresponding
to L = 18) is so sensitive to the not very well known parameter v that an
analysis of the experimental data would be rather uncertain. Furthermore,
the approximation of purely local interactions becomes worse in shorter gaps.
Finally, the electric fields in short discharges are higher and vary more; therefore
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the assumption that v does not depend on E becomes more restrictive. For this
reason, we chose to analyze the system with gap width 1 mm (L = 36).
To summarize, the following intrinsic scales

ro~27.78 um ,  to~40.6-107'%s,
Qo ~ 32.69-107% As/em® |,  Ep~10.26 kV/cm (6.1)

enter the dimensional analysis of equations discussed in Chapter 4.
The dimensionless parameters for a system with gap width of d = 1 mm and
applied voltages in the range from 500 to 740 V are in our simulations:

p=0.0035 , L=36 , v=0.08,
7, =0243 R, , 3-10° <R, <3-10°
17.5 < uy < 26. (6.2)

Here, the dimensionless capacitance of the semiconductor layer is C; = 0.243,
and its dimensionless characteristic time scale is 7, = CsRs. The lower value
of the semiconductor resistance corresponds to the dark conductivity when the
semiconductor is not illuminated at all, and the upper value of the resistivity
range corresponds to the fully photo-activated conductivity. The dimension-
less voltage range of 17.5 < u; < 26 corresponds to the dimensional range of
500 V<U, <740 V.

6.1.2 Numerical solution strategy

Equations (4.31)—(4.40) were solved numerically with an implicit temporal dis-
cretization, which makes the calculation numerically stable for arbitrary time
and space steps. After discretization, the dynamical equations (4.31) and (4.32)
have the form

ot — o (cE)7! — (o) -
A A e
A iy .
Ay J" = pé; Az *(1‘*‘#)(50)1' )

(6.3)

where ¢ parametrizes the spatial and m the temporal grid.
For known ¢™ and £™ at time step m, the boundary condition on the left
(4.33) determines
EP =&+ AT(j™ - (E0)T), (6.4)

then the other fields EimH are calculated successively from the left to right
(1=2,3,..,N) by the equation

gm (1 o EAdd . +H)Am;”) + Arj™

A
Ly ey

it (6.5)
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Here, once again we recall that the ‘left’ corresponds to anode, and ‘right’ to
cathode. For a;”“, the boundary condition on the right (4.34) determines

E0l g 1+
m+1 __ m __ YN N m—+1
oyt = (m - S (M 2gpen)), (6:6)

The remaining a{”“ can now be calculated successively from the right to left
(i=N-1,N-2,.,1) as
AT 1
. 0§"+A—Z(05)§'_ﬁ
' 1+ &zemtt — Areltla(ert!)

(6.7)

The total current ;™ in these equations is determined by

B 1
T R+ 7L

N

J

Uy~ U™ + 7, <’2‘ () - €m?)

+(1 4 p)Az Z(&);ﬂ)]. (6.8)

=1

This identity can be derived from (4.37) where 0, u is identified with fOL dz 0-&
through (4.39), and then for 0.&, the identity (4.32) is used.

The results presented in Figures 6.2 to 6.9 are derived on a grid with Az =
36/600 and AT = 180/600 which gives a sufficient numerical accuracy.

6.1.3 Qualitative features of experimental and numerical
oscillations: Hysteresis amd limit cycles

The experiments [11] show approximately periodic oscillations. They are quite
anharmonic with long phases of low current interrupted by a short current
pulse. Depending on applied voltage u; and resistance of the semiconductor
layer R, either the homogeneous stationary or the homogeneous oscillating
state are dynamically stable. In between, there is a regime of bistability where
it depends hysteretically on the previous state whether the system is stationary
or oscillating.

The same qualitative behavior can be observed in our numerical solutions.
First, the upper panel in Fig. 6.3 shows the current j(7) as a function of time
for the system with the parameters from (6.2) and Rs = 4 - 10° and u, = 19.5
(which corresponds to oy = 2.4 - 1077/(Qcm) and U; = 555 V). After some
transient, the current relaxes to periodic anharmonic oscillations. The lower
panel in Fig. 6.3 shows the voltage u(7) over the gas discharge; the voltage on
the semiconductor is correspondingly u; — u(7). In dimensional units, the peak
current density of the oscillations is about 9 mA /cm? and the frequency is about
120 kHz.

The same numerical data for current j and voltage u are shown as a phase
space plot in Fig. 6.4. The figure shows more precisely the approach to a
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Figure 6.3: The total current j(7) and voltage u(7) over the gas discharge as
a function of time 7, for the dimensionless parameters from (6.2), Ry = 4 - 10°
and u; = 19.5.

limit cycle. Fig. 6.4 contains two additional lines, namely the current voltage
characteristics of the gas discharge u = u(j) and the load line u = u; — Rj.
Their intersection marks the stationary solution of the system. In the present
case, it is located in the low current regime close to the Townsend limit, while
the peak current explores the regime of subnormal glow.

The system of Figs. 6.2 and 6.3 is actually in the bistable regime. For differ-
ent initial conditions that are a sufficiently small perturbation of the stationary
state, the same system relaxes to the stationary point. This is shown as phase
space plot in Fig. 6.5.

If the applied voltage u; becomes large enough, the stationary state becomes
unstable for any initial condition. The search for appropriate parameters was
guided by the stability analysis described in section 6.2 and section 6.3. We find
that u, = 24 (U; = 684 V) with all other parameters unchanged can be used as
an example of a system where the stationary solution is dynamically unstable,
and the system runs away from this initial state and eventually reaches a limit
cycle oscillation. This behavior is shown in Fig. 6.6 as j(7) and u(7), while
Fig. 6.7 shows the corresponding phase space plot.
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Figure 6.4: Phase space plot of the data from Fig. 6.3. After some transient time,
a stable limit cycle is reached. Also drawn are the current-voltage-characteristics
u = u(j) of the gas discharge and the load line v = u; — R,j. Their intersection
denotes the stationary solution.

q1 115 12 125 13 135 14 145 15 155

Figure 6.5: System with exactly the same parameters as in Figs. 6.2 and 6.3,
but for different initial conditions. The system now spirals inwards towards the
stationary point: intersection of he current-voltage-characteristics of the gas
discharge and the load line.
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Figure 6.6: j(7) and u(7) for the parameters from (6.2), R; = 4 -10° and

u; = 24. The stationary state now is linearly unstable and develops into a limit
cycle.

x 10

Figure 6.7: Phase space plot of the data from Fig. 6.6 with current-voltage-
characteristics and load line.
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6.1.4 Quantitative comparison: Amplitude and frequency
of oscillations

The qualitative agreement of numerical solutions and experiment now encour-
ages a more quantitative comparison. The thesis [12] contains diagrams on how
frequency and maximal current amplitude depend on the semiconductor con-
ductivity for a gas gap of 1 mm. These diagrams are presented in Chapter 3 of
the present study, in Fig. 3.7.

The same diagrams can also be derived from the numerically obtained limit
cycle oscillations, they are presented in Fig. 6.8. The figure shows the current
amplitude A and frequency f as a function of semiconductor conductance 1/R
for fixed voltage u, or as a function of w; for fixed 1/R,;. The notation of
Fig. 6.8 corresponds to the notation of the experimental Fig. 3.7 as follows
Wa'y:f = an Ut = U07 A= I, 1/Rs = 0GaAs-

We now compare the results for the gas discharge width of Imm, from the
simulation (Fig.6.8) and the experiment (Fig. 3.7). The upper left panel of
Fig. 6.8 shows that the maximal current amplitude A as a function of applied
voltage u; is increasing with decreasing slope. This agrees with the experimental
observations Fig. 3.7(b) lower panel. No attempt of quantitative comparison is
made, since the experimental result is for d = 0.5mm and the numerical is for
d = lmm. Nevertheless, qualitative comparison is possible since [12] says that
the frequency and amplitude for fixed conductivity depend for both system sizes,
in about the same way on the applied voltage. The upper right panel (Fig. 6.8)
shows that the frequency f is an almost linearly increasing function of applied
voltage w,; this is actually in contradiction with the statement in [12] that the
frequency would decrease (as seen in Fig. 3.7(b) upper panel).

The lower two panels allow some quantitative comparison since correspond-
ing experimental diagrams exist and are presented in Fig. 3.7. The experiments
explore the range of 0.6-10~7/(Qcm) < o, < 2.8:107/(f2cm) which corresponds
t00.62-107¢ < 1/Rs < 2.9-1075. The experimental diagrams for U, = 605 V -
Fig. 3.7(c) and 616 V - Fig. 3.7(d) show that the amplitude A is very sensitive
to this change while the frequency f is rather robust. The numerical results are
derived for u; = 21 which corresponds to U; = 600 V.

In detail, the experimental curve for the current amplitude for 605 V shows
an initial increase from 0.2 to 0.8 mA with a subsequent sudden drop to essen-
tially 0 from which the current suddenly jumps to values from 1.0 to 1.5 mA.
For 616 V, in contrast, an almost continuous increase from 0.2 to 2.7 mA is ob-
served for the same resistance range. Not too surprisingly, our numerical results
reproduce neither of these results. Rather, we observe an almost constant value
in the range of 5.5- 107 to 6.0 - 10~ in the lower left panel.

On the other hand, for the variation of the frequency f with conductivity,
experiments [12] both for 605 V and for 616 V observe nearly linear increase from
115 kHz or 125 kHz to 220 kHz (4.6-10~ % < f < 8.8-10~% in our dimensionless
units) in the range of 0.62-107% < 1/R, < 2.9-10~°. Our numerical results in
this range of 1/R show the same linear increase, from 1.5-107% to 6.5-107%. We
believe that this agreement is quite convincing, in particular, since no parameter
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fitting was tried.
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Figure 6.8: Amplitude A and frequency f of the current oscillations as a function
of applied total voltage u; (for fixed resistance R; = 4 -10°) and as a function
of conductivity 1/Rs (for fixed voltage u, = 21).

Summarizing, we find convincing agreement with experiment for A as a
function of u; as well as for f as a function of 1/R,. For the last, the available
experimental results allow to identify an almost quantitative agreement. The
sensitivity of the experimental results on A as a function of 1/R, does not allow
quantitative comparison, and our results for f as a function of u, deviate in
their functional form from the available statements about experimental results.
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6.1.5 Mechanism of the oscillations, reaction-diffusion mod-
els and surface charge

The voltage profiles u(7) in Figs. 6.2 and 6.5 show that there are two processes
involved in the oscillations.

The first process occurs on the slow time scale 75 of the semiconductor. It
describes the exponential decay of the voltage u; — u(7) — Rsj e~/ over
the semiconductor layer according to Eq. (4.37), as long as the contribution of
Rsj does not vary substantially. The decay time 7, is the Maxwell time due to
resistance and capacitance of the semiconductor layer. 75 accounts for the slow
rise of the voltage u(7) over the gas discharge layer to a value above the current
voltage characteristics of the gas discharge.

The other process is the electric breakdown of the gas discharge layer for
sufficiently large u(7) which leads to a current pulse and a rapid subsequent
decay of u(r).

It has been suggested by a number of authors that the current could be
approximated by a similarly simple equation of the type 0,j = g(u, j), where g
vanishes on the current-voltage-characteristics. This would bring the equations
into a reaction diffusion form.

However, as it will be seen in the next chapter (and in [91]), such an ap-
proximation of the underlying equations (4.31)—(4.34), (4.39) and (4.40) is not
possible, since it would not admit the period doubling events observed in [91],
and it would not allow the phase space plots in Figs. 6.3, 6.4 and 6.6 to intersect
the characteristics with a non-vanishing derivative, as they definitely do.

The physical reason for this behavior is the finite response time of the semi-
conductor, its “inertia” which doesn’t allow an instantaneous reaction of the
current. If ions are created by bulk impact ionization close to the anode, they
will cross the whole gap until they reach the cathode and possibly liberate more
electrons by secondary emission. The time that the ions need to cross the gap,
is therefore an important scale of internal memory of the gas discharge. It can
be approximated as Tio,, ~ L/(n€) ~ L?/(uu(r)) where |€| is some average field
within the gas gap. For the gap of L = 36 (d = 1 mm), the ion crossing time
is estimated as 2.6 - 10? for u(7) = 14 or as 1.5 - 10* for u(7) = 24 (which cor-
responds to 0.6 or 1 us in dimensional units). This time is of the same order or
larger than the duration of a current pulse, both in our numerical solutions and
in the experimental results of [11] presented in Fig. 3.6. (For the experiments
on the 0.5 mm gap of Fig. 3.5, the situation seems to be different.)

Finally, it has been suggested in [92] that the surface charge on the interface
between gas and semiconductor could play an important role, in a similar way
as in AC discharges. This is certainly true, but the surface charge ¢(7) is not
an independent variable. Rather it is fully determined by the solution discussed
above through
up — u(T)

L
The assumption that this surface charge is the only relevant charge in the whole
system doesn’t lead to a satisfactory description either, but the space charges

q(T) = €5 —&(L, 7). (6.9)
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in the gas discharge layer have to be taken into account, too.

6.2 Stability analysis: Method

The direct numerical solution of the dynamical problem is a time consuming
procedure, that does not allow the exploration of a wide set of parameter values.
We therefore have developed a linear stability analysis of the stationary state.
It determines whether the stationary state is dynamically unstable and how
small perturbations of such a state grow. In the present section, we present the
method, and in the following one the results.

6.2.1 Problem setting and stationary solutions

We recall the dynamical equations from the Chapter 4 in the following form

G = B:+3alf) 5 Jo =0t (6.10)

0.6 = §(r)— (1 +w)je — pEOE, (6.11)
T0-u(r) = w —u(7r) = Rej(7), (6.12)
0 = 0.0(2,7)+E&(2,7) (6.13)

with the boundary conditions

9-£(0,7) = j(7) —je(0,7), (6.14)
8.£(L,7) = j(r)— HT”je(L,T), (6.15)
¢(L,7) = —u(r) , #0,7)=0. (6.16)

The stationary solutions form the starting point of the perturbation analysis.
They solve the equations

8zjeO = —Jeo a(gO)v (617)
1€ 0:& = jo— (14 p)jeos (6.18)
0,00 = —E&o, (6.19)
ug = u; — Rsjo (6.20)
with boundary conditions
. . 14+ . .
Jeo(0) = Jo 77 Jeo(L) = jo, (6.21)
Q’)()(O) = 0 5 ¢0(L) = —Ug. (622)

Egs. (6.17)—(6.19) with (6.21) and (6.22) define the current voltage character-
istics u = u(j) of a stationary discharge in the regime between Townsend and
glow discharge [29,85,89]. Eq. (6.20) is the load line due to the external circuit.
The intersection of load line and characteristics defines a generically discrete
number of stationary solutions of the system as a whole.
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6.2.2 Linear perturbations

For linear perturbations about this stationary state, we use the ansatz

Je(z,7) Jeo(2) + jer(2) e)‘T7 (6.23)
E(z,7) = &(2)+ &1(2) M, (6.24)
¢(za T) = ¢0(z) = ¢1(Z) e)\Ta (6'25)

i(r) = Jo+gie. (6.26)

The lower index 0 denotes the unperturbed stationary solutions while the lower
index 1 denotes the linear perturbations about this stationary solution. The fac-
torization of the perturbation into a z dependent function times the exponential
e anticipates the eigenvalue problem of the solution.

In terms of the original variables, the explicit expansion in first order per-
turbation theory is a lengthy expression, but in terms of the variables

1€ +00€1 Jer(2) er

= d =& 27
g a0&o Jeo(z and g=tols (6.27)
the equations have a more compact form
A o (&) A
z = — - = 5 2
d.h zoh ( g ‘)9 (6.28)
jeO A jl
By = L3+l 2k g4t 6.29
g (1+p) p gty (6.29)
0.1 = 0, (6.30)
1
0.1 = o (6.31)
0
with boundary conditions
$1(0) = 0, (6.32)
A

1 = jo h :

= g 9O+ hO), (6.33)
A

= ——g(L jo h(L .34
Ji & (D) 9(L) + jo h(L), (6.34)

Here the equation 0,j; = 0 for the conservation of the total current is written
explicitly in order to bring the equations into the homogeneous form

A o’ A
& & (g+d) 00 f
1+p A 1
.| 9 |=| I g a0 g (6.36)
Ji 0 0 00 g
¢ 0 _1 0 0 ¢1
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The boundary conditions (6.32) and (6.33) at z = 0 can be written as or-
thogonality relations

j)? h 0 h
£(0) g —0 0 g =[], 6.37
) i : p i (6.37)
0 ), 1 b1/,

The general solution #(z) of (6.36) is therefore a superposition of two indepen-
dent solutions ) (z) and #(z) of (6.36) that both obey (6.37) in 2z = 0:

h(z)

i=| 99 |=c.a@+ane. (6.38)
J1(z)
$1(2)

As initial conditions, one can choose, e.g.,

1/jo 0

) 0 ) £0(0)

U1 (0) = 1 5 ’UZ(O) = i (639)

0 0

The components of the two solutions are denoted as @;(z) = (hi(2), gi(2), j1,i(2), ¢1,i(2))-
The boundary conditions (6.34) and (6.35) at z = L also have the form of
orthogonality relations

Jo h 0 h
A

mo || 9] 2o f 9| 2o 6.40
-1 J1 ’ —Rs n ( )
0 ¢ /g 1+ A, ¢/

Now each one of these two conditions determines the ratio C;/C> of the general
solution (6.38):

C [joh1(L) + fﬁ\f)gl(l’) - jl,l(L)j|

+C [joh:z (L) + ﬁgz(l/) = j1,2(L)} =0, (6.41)
Ci [-Rsjra(L) + (14 Are)r1(L)]
+Cs [-Ryjr2(L) + (14 A7) ¢1,2(L)] = 0, (6.42)

where ji1(L) = 1 = ji1,2(L), since these components have this value at z = 0
according to (6.39): j1.1(0) = 1 = j1,2(0), and since the equation of motion
for j; is D.j1 = 0. A nontrivial solution of both (6.41) and (6.42) requires the
determinant
A= (6.43)
johi (L) + ﬁgl(l/) -1 joho(L) + g'(\T)QQ(L) -1
_Rs + (1 + )\TS)¢1,](L) —Rs + (1 + )\TS)¢172(L)

to vanish. This condition leads to a quadratic equation for the eigenvalue A.
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6.2.3 Rescaling with x4 and numerical calculation

The eigenvalue A can now be calculated numerically.

First, it should be noted, that the equation of motion (6.36) has matrix
elements of very different size, since p is a very small parameter. However,
this apparent stiffness of the problem can be removed by introducing the new
parameters

, Ts = Rs,ua (644)
Ts =Tslb , S= —.

The introduction of rescaled current density and time scale and resistivity has a
direct physical motivation. Previous analysis of the stationary solutions [29,85,
89] as well as the dynamical solutions of section 6.1 show that velocities should
actually be measured on the time scale of the ions and not of the electrons. So
the time scale should be measured in units of ¢, = 1/(aopu+FEo) = to/p rather
than in units of o = 1/(aopeEo). The rescaling (6.44) directly follows from this
consideration.

Now the eigenvalue s can be calculated numerically as follows: First an
initial estimate so is chosen. Then the two initial conditions (6.39) at z = 0 are
integrated numerically with (6.36) up to z = L. Generically, the determinant A
(6.43) will then be non-vanishing. The request that the determinant does vanish,
fixes a new value for s that is used for the next step of the iteration within an
under-relaxation method that garantuees the stability of the convergence. This
procedure is repeated until an accuracy of

B o 58 (6.45)

Sk+41

is reached.

The eigenvalue s is in general a complex parameter whose real part de-
scribes the growth or decay of the oscillation amplitude while its imaginary
part describes the oscillation frequency. Since s is a parameter in the equation
of motion (6.36), also the vector ¥(z) has complex entries. Therefore 16 real
functions Re h(z), Im h;(z) etc. have to be integrated over z. It is convenient
to also integrate the two real functions j.o and & that enter the matrix (6.36)
together with the perturbations. The iteration program is written in fortran 90
with complex variables. For the integration of equations, a 4th order Runge-
Kutta method is used. The number of grid points used was 500, since 1000 or
2000 grid points give essentially the same result.

6.3 Stability Analysis: Results

In the present section, the validity of the stability analysis results are confirmed
by comparison with numerical solutions of the full dynamical problem. The
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stability analysis is then used to determine the phase diagram for the onset of
oscillating solutions.

6.3.1 The structure of the results

The stability analysis determines not only the complex eigenvalue A, but also
the whole linear correction

Rs + (1 —+ )\TS) ’U,1’2(L) .

b(z) = Cy |01(2) — Rt (15 0m) 0a(D) v2(2)] , (6.46)

up to the arbitrary complex constant C.
This #(z) determines the evolution of current and voltage in linear approxi-
mation about the stationary solution (jo, uo):

jtr) = jo+n e +ce, (6.47)
u(t) = w+u eV +eec, (6.48)

where c.c. denotes the complex conjugate. The ratio between u; and j; is fixed
through the boundary condition (6.35) to the value

jl i
O ey vy v kY A
Rs
where P e Y| and (6.50)
. 1+ Re Atg i Im A7
osa=— —————— , Sla= —————.
|1+)\7‘S| |1+/\Ts'
The final result is
i(r) = Jotecp eRe AT cos(Im AT + ay) , (6.51)
wr) = wp—cr eRe AT cos(Im AT+ a + ) (6.52)

where the amplitude ¢ and absolute phase «q reflect the arbitrary factor C; in
(6.46) and are adjustable while all other parameters are fixed.

6.3.2 Comparison with solutions of the full PDE’s

As a check of accuracy, these solutions are now first compared with numerical
solutions of the full PDE problem.

For the set of parameters from Figs. 6.2, 6.3 and 6.4, the stationary solution
is (jo,uo) = (1.49 - 107°,13.583), and the eigenvalue A\ has the complex value
A=—-2.913-10"5+4 4.822-1075. As 7, = 340/p and R, = 1400/p, the ratio
of current and voltage amplitude » = 295/u and the phase shift o = 98.69° are
determined through Eq. (6.50).

The comparison of these predictions from the stability analysis with numer-
ical solutions of the full PDE problem are shown in Fig. 6.9. Here the free
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Figure 6.9: Comparison of j(7) and u(7)) from the stability analysis (solid lines)
with the result from the simulation (dashed lines) for the parameter values of
Figs. 6.3-6.5.

parameters for the total amplitude ¢ and the absolute phase «g were chosen
such as to fit the PDE-data well.

This visual agreement can be tested in more detail. In particular, we used
the PDE-data in the time interval 5-10° < 7 < 6.5-10° to determine the phase
shift o between u; and j;. It is @ = (100 + 0.4)°, convincingly close to the
predicted value of o = 98.69°.

Increasing the total applied voltage u,, the real part of the eigenvalue A grows
until it becomes positive. This means that the stationary solution becomes
linearly unstable and perturbations will grow. An example of such behavior
occurs for u; = 24 with all other parameters as before. The stationary solution
is then (jo, uo) = (2.64-1072, 13.441), the eigenvalue is A = 2.493-10 %+ 7.375-
1072, the ratio of current and voltage amplitude is 7 = 192/u and the phase
shift is a = 99.83°.

Fig. 6.10 shows again the comparison between these results and the numer-
ical solutions of the full PDE’s. Again, the agreement is very convincing.

Of course, the predictive power of linear stability analysis is limited to small
perturbations with j; < jo and u; < ug. When the amplitude of the oscillation
from Fig. 6.7 increases further, nonlinear couplings set in and the system finally
reaches a limit cycle as shown in Fig. 6.8.
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Figure 6.10: Comparison of j(7) and u(7)) from the stability analysis (solid
lines) with the result from the simulation (dashed lines) for the parameter values
of Figs. 6.5-6.6 where the stationary solution is unstable.

6.3.3 Calculation of phase diagrams

The stability analysis now allows one to derive the bifurcation line where a
homogeneous stationary state looses its stability. Fig. 6.11 shows this bifurcation
line for the parameters (6.2) as a function of applied voltage u, and conductivity
1/R for three different values of 7. Besides the value v = 0.08 used everywhere
else in the paper, also results for v = 0.04 and 0.16 are shown to illustrate the
sensitivity of theoretical predictions from this parameter. For Re A < 0, the
stationary state is linearly stable, while for Re A > 0, the system is always in
the oscillating state.

Comparison with the experimental phase diagram for the gas gap with a
corresponding width of d = 1 mm [12] (given by Fig. 3.3(b) in Chapter 3) shows
qualitative and quantitative correspondences, but also deviations. Experiments
in the 1 mm gap for U, < 585 V (u; = 20.5) do not exhibit oscillations. In
detail, the raising phase transition line on the left hand side of the diagram is
straighter than in the 0.5 mm case from [11] (given by Fig. 3.3(a)), it raises
with positive slope from (U;,0,) = (585 V, 0.7-1077/(Q cm)) to (610 V, 2.0
10~7/(£2 cm)), where the slope has changed gradually to being parallel to the o
axis. The bifurcation line then continues with negative slope up to (600 V, 2.8-
1077/(Q cm)). In dimensionless units, these points on the raising bifurcation
line are (u, 1/Ry) = (20.5, 0.7-107°), (21.4, 2.1-107°) and (21, 2.9-10°°).
The upper part of this experimental transition line is rather well described by
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the theoretical curve for the somewhat large value v = 0.16. In the lower part,

the shape of experimental and theoretical curve deviate.

Furthermore, the experiment shows another bifurcation line almost parallel
to the U; axis at values of o, between 0.7-1077 /(€ ¢cm) and 0.5 -10~7/(Q cm)

that intersects with the raising line. In dimensionless units this corresponds to
a plateau at values of 1/R; between 0.7 - 107% and 0.5 - 1076

An approach
the theoretical curve crosses over continuously to this plateau, while the exper-

imental curve seems to show the intersection of two bifurcation lines with quite

to such a plateau can also be seen in the calculated phase diagram. However,
distinct slope. We have no explanation for this deviation.

It is remarkable that the bifurcation theory also covers the almost horizontal
bifurcation line for small 1/R,. Another explanation for this experimentally
observed feature of the phase diagram would have been a breakdown of the

continuum approximation: the recovery phase of the oscillation would have
be taken into account.

carried such a low current that the discreteness of the electrons would have to
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Figure 6.11: Bifurcation diagram for the parameters from (6.2) (where L = 36)
and 3 different values of 7. The lines separate regions with Re A < 0 where

the stationary state is linearly stable from regions with Re A > 0 where the
homogeneous stationary state looses its stability.

Finally, it was observed experimentally [11,12] that increasing the system
size L while keeping other conditions unchanged, the frequency decreases and
oscillations set in at higher voltages.

This agrees with our calculated phase
diagram in Fig. 6.12. Indeed, for u; < 22.5, the homogeneous stationary state
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is stable for L = 72.
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Figure 6.12: Bifurcation diagram for v = 0.08, L = 36 and L = 72.

6.4 Conclusion

The simplest model for a one-dimensional short gas discharge coupled to an
external circuit with resistor, capacitance and stationary voltage has been ana-
lyzed. This analysis is directly applicable to experiments performed in [11,12].

We have presented fully numerical solutions as well as a linear stability
analysis of the stationary state of the system which are in very good mutual
agreement. The numerical solutions reproduce experimental observations of
bistability and oscillations in a semi-quantitative manner, though the model
is minimal and no attempt of parameter fitting has been made. The stability
analysis allows us to derive bifurcation diagrams in a simple manner, they also
agree overall with experimentally obtained bifurcation diagrams.

It should be remarked that we have constrained the analysis to the gap of
1 mm wide; the gap of 0.5 mm is so sensitive to the actual value of secondary
emission v that quantitative analysis based on a fixed value of 7y seemed doubtful.

We have reproduced a number of experimental observations up to the de-
pendence of oscillation amplitude on applied potential and of the oscillation
frequency on the conductivity of the semiconductor layer, while discrepancies
of other observables will stay a subject of investigation. This opens up the way
to investigate now the spatial and spatio-temporal patterns in the next step.



Chapter 7

Period doubling cascade
and relation to reaction
diffusion models

Short planar glow discharges coupled to a resistive layer exhibit a wealth of
spontaneous spatio-temporal patterns. Similarities with other pattern forming
systems suggest to apply reaction-diffusion models, and several authors moti-
vated them from discharge physics. We investigate the temporal oscillations of
the discharge system and find a cascade of period doubling events. This shows
that the inner structure of the discharge is more complex than can be described
by a reaction-diffusion-model with negative differential conductivity. We even
find an example where an oscillation coincides with fully positive differential
conductivity, and we derive an alternative reduced model.

7.1 Introduction

The theory for the previously described experiments has largely focussed on
effective reaction-diffusion models in the two transversal directions, and on the
negative differential conductivity of the glow discharge as the driving force
of pattern formation. The similarity with patterns in other systems actually
suggests the use of such effective models. A number of authors [5,9, 15, 18,
19, 22, 26-28] actually have aimed at deriving such models from gas discharge
physics. On the other hand, the observation of unconventional patterns like
zigzag-destabilized spirals raises doubts whether reaction-diffusion models are
sufficient to understand the observed patterns.

In the present chapter, we examine the concepts of reaction-diffusion mod-
els and negative differential conductivity on the particular case of a short DC
driven glow discharge in a parameter range that exhibits spontaneous temporal
oscillations but no spatial structures transverse to the current [11]. In short, we
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find

(i) that a discharge on the transition from Townsend to glow discharge can
combine a positive local differential conductivity with a negative global
differential conductivity;

(ii) that a glow discharge in a simple electric circuit shows more complex
behavior than can be expected from the proposed reaction-diffusion mod-
els [5,9,15,18, 19, 22, 26-28] for voltage U and current J with (global)
negative differential conductivity dU/dJ < 0;

(i) in particular, that the system can show a cascade of period doubling bi-
furcations. Period doubling actually has been observed experimentally
in glow discharges, but in more complex geometries and in longer sys-
tems [61,62].

(iv) We derive a new effective dynamical model in terms of a parameter and a
function by adiabatic elimination of the electrons. There is no systematic
way to reduce this model to a simpler one [5,9,15,18,19,22,26-28] with two
scalar parameters like voltage U and current J. We draw this conclusion
both from direct analysis and from the occurence of period doubling in
the numerical solutions.

(v) Finally, we present an example where local and global positive differential
conductivity nevertheless allow for current oscillations.

7.2 Predictions of a reaction-diffusion model

In the experiments of [8-11,57,67-73], a planar glow discharge layer with short
length in the forward direction and wide lateral dimensions is coupled to a
semiconductor layer with low conductivity. The whole structure is sandwiched
between two planar electrodes to which a DC voltage U, is applied. Theoret-
ical predictions on how the different spatio-temporal patterns depend on the
parameters of the gas discharge, hardly exist. In [9,15,27,28], an effective
reaction-diffusion model in the two dimensions transversal to the current is pro-
posed. Roughly, it consists of two nonlinear partial differential equations for the
current J and the voltage U of the form

6tU($ayat) = ‘7:(U7 J) , 8tJ($’ y,t) = g(U7 J) ) (7'1)

where the nonlinear operators F and G contain spatial derivatives 0., 9, and
possibly also integral kernels. The model is of reactor-inhibitor form as studied
extensively in the context of chemical and biological systems in the past decades.
If applicable to gas discharges, this identification lays a connection to a realm
of analytical and numerical results on reaction-diffusion systems.

To test whether a model like (7.1) is applicable to the gas discharge system,
we will focus on its temporal oscillations that can occur in a spatially completely
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homogeneous mode [11]; hence a one-dimensional approximation is appropriate.
Similar oscillations have been observed in [16,18,19,23], and similar effective
models for current J and voltage U of the general form (7.1) have been proposed
in [5,18,19,22,26].

Why have different authors come up with the same type of model? The equa-
tion for U directly results from the simplest form of an external electric circuit:
a semiconductor layer of thickness d, linear conductivity oy and dielectricity
constant €, will evolve as

o,U = w (7.2)

Ts

where U, is the voltage on the total system, J is the total current, and U =
fodg E dz is the voltage over the gas discharge which is the electric field E
integrated in the z direction over the height d, of the discharge. For the exper-
iments in [11], Ry = ds/0, is the resistance of the whole semiconductor layer,
and T, = ese9/0s = Cs R is the Maxwell relaxation time of the semiconductor.
In other experimental systems, the quantities Rs and T can have different re-
alizations. Hence the form of the equation for U in a reaction-diffusion model
(7.1) is clear.

However, the equation for J in a reaction-diffusion model as (7.1) is based
on the plausibility of such a model due to analogies with other pattern forming
systems and on various attempts to derive such a form with ad hoc assumptions
from gas discharge physics. Different choices have been suggested by different
authors, but one feature is generic: to be physically meaningful, the current-
voltage characteristics of the glow discharge has to be a stationary solution, so
G(U,J) = 0 on the characteristics. Beyond that, there are different suggestions
for the functional form of G and the intrinsic time scale.

Let us investigate the predictions on oscillations within a reaction-diffusion
model in its simpliest form. Assume that the model is defined as:

U, —U—R,J
o,U el o b T ,

8tJ = a(U*Ucvc(J)) . (7.3)

I

T is the Maxwell time scale of the semiconductor layer, while 1/a is the other
time scale coming from gas discharge part. The stationary solution of (7.2) is
the load line, and the stationary solution of (7.3) has to be the current-voltage
characteristic of the gas discharge U = Ugy¢(J). The intersection of these two
lines is the stationary solution of the equations above. Linearizing about this
stationary solution, we find the stability matrix:

() () A (U EE). o

oUcve(J)
S
U= oJ

where
(7.5)

stat. point
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is a short notation of the first derivative of the current-voltage characteristic at
the stationary point.

The question that we would like to answer is: how does the stability of the
staionary point depend on the slope of load line and J-U characteristics; that
is: in which parameter range of R, and U’ can we expect to find oscillations.

First, the analysis of the stability matrix shows that the stationary point is
dynamically stable and does not exhibit oscillations, if U’ is positive. In other
words, negative differential conductivity is a necessary condition for the onset
of oscillations.

Second, in the case of negative differential conductivity U’ < 0, we restrict
the analysis to the case of the previous and present chapter where the charac-
teristics of the gas discharge in the intersection point has a larger slope than
the load line; this means that

U'+ R, >0. (7.6)

The stability of the stationary point then depends on

1
ol

sign (U'+71) , r (7.7)
If |U’| < r, the stationary point is linearly stable, while for |U’| > r, it is unstable
(and the character of the instability then depends on the sign of (|U’|+7)?/r —
4R,). For negative differential conductivity, the stability therefore depends
on the unkown time scale 1/a which would have to be determined from the
full model. However, we will see below that the full model gives results in
contradiction with a reaction-diffusion model of type (7.1) or (7.3).

If a model like (7.1) or (7.3) is applicable to oscillations in glow discharge
systems, then the following predictions apply:

1) an oscillation can only occur in a region of negative differential conduc-
tivity of the glow discharge characteristics,

2) only a single period can be formed, period doubling is not possible, since
this requires at least three independent parameters,

3) in a phase space plot in U and J, the trajectory of an oscillation can
intersect the load line U = U, — R,J only parallel to the J-axis (since
0,U = 0 and §,J # 0), and it can intersect the characteristics of the
glow discharge U = U(J) only parallel to the U-axis (since 9,U # 0 and
oJ =0).
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7.3 A period doubling cascade

We now return to our classical glow discharge model [13,29,85] from the previous
chapter, solve it numerically and confront its results with the predictions above.

Though our choice of parameters was guided by the experiments in [11], we
explored the parameter space beyond experimental limits.While the parameters
characterizing the gas discharge remained the same, system size and resistivity
of the semiconductor layer differ from the values of the previous chapter by a
factor 2 and by an order of magnitude, respectively. The explicit parameters
are: the secondary emission coefficient v = 0.08, the mobility ratio p = 0.0035
for nitrogen and the dimensionless system size L = 50 which amounts to 1.4
mm at a pressure of 40 mbar. The external circuit has Ry = 30597, 7, = 7435
and a dimensionless total voltage u; in the range between 18 and 20. This
corresponds to a GaAs layer with e, = 13.1, conductivity o5 = (2.6-10°Qcm)~!
and thickness ds; = 1.bmm, and a voltage range between 513 and 570 V.

16f
12f

8L, . . i
4.75 48 4.85 49 4.95 5
t X 106

U

Figure 7.1: Spontaneous oscillations of current 7 and voltage u as a function of
time 7 for v = 0.08, p = 0.0035, L = 50, Rs = 30597, 75 = 7435, and applied
total voltage u;, = 19.

Fig. 7.1 shows electric current j and voltage on the gas discharge u as a
function of time for a total stationary voltage u; = 19 applied to the complete
system of gas discharge and semiconductor layer. The system exhibits spon-
taneous oscillations with sharp current peaks: when the voltage u on the gas
layer becomes high enough, the discharge ignites. The conductivity of the gas
increases rapidly and produces a current pulse that deposits a surface charge
on the gas-semiconductor interface. Therefore the voltage u over the gas layer
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breaks down. Due to the low conductivity of the semiconductor, the voltage u
recovers only slowly. Eventually the gas dicharge ignites again, and the cycle is
repeated.

Note that the oscillations in Fig. 7.1 are not quite periodic. This is not
due to initial transients since the system is observed after the long relaxation
time 7 = 4.745 - 10°. The nature of this temporal structure becomes clear when
the trajectory is plotted in the plane spanned by current j and voltage u in
Fig. 7.2(c). The figure contains the data of the time span from 7 = 3 - 10° to
6- 108 which amounts to approximately 90 current pulses. The phase space plot
shows that the system is actually periodic, with a period of 8 current pulses.
Fig. 7.1 shows precisely one period.

This discovery raises the question whether our system actually follows the
well-known scenario of period doubling. Indeed, it does. Fig. 7.2(a) for u;, = 18
shows an oscillation where one current pulse is repeated periodically as observed
experimentally in [11]. For u, = 18.5, a period consists of two current pulses as
can be seen in Fig. 7.2(b). For u;, = 19, the period is 8 pulses as in Fig. 7.1 and
Fig. 7.2(c). For u; = 20, the systems seems to have reached the chaotic state as
can be seen in Fig. 7.2(d).

A more detailed comparison of the experiments in [11] with simple oscilla-
tions as in Fig. 7.2(a) has been given in previous chapter, and we only state here
that there is semi-quantitative agreement of several features. Here we emphasize
that period doubling events in glow discharges have been observed experimen-
tally in other systems [61-66]. However, this was always in systems with more
complicated geometries like long narrow tubes, and the authors allude to general
knowledge on nonlinear dynamics rather than to solutions of explicit models.
We state that period doubling can be a generic feature of a simple, strictly
one-dimensional glow discharge when coupled to the simple circuit (7.2). We
propose to search experimentally for a period doubling route to chaos in such
simple systems which would then allow quantitative comparison with theory.

7.4 Local versus global differential conductivity
and the validity of a reaction-diffusion ap-
proximation

Let us return to the initial question: is a 2-component reaction diffusion model
like (7.1) with negative differential conductivity appropriate for the present sys-
tem? At the end of section 7.2, we gave a list of predictions for the reaction
diffusion model (7.1) to be applicable. Prediction 2 is falsified by the observa-
tion of period doubling. Prediction 3 is also falsified by a simple check of either
of the four figures in Fig. 7.2: the trajectories definitely do not intersect with
the characteristics with the angle prescribed by (7.1) in the upper part of the
figures that represent the rapid current pulses.

There rests prediction 1: is negative differential conductivity required for
the oscillations to occur? First of all, we note that the characteristics is a global
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Figure 7.2: Phase space plots of the trajectories of the oscillations in the plane
of current j and voltage u. The time range is 3-10° < 7 < 6- 10 in all figures.
Shown are the orbits, the straight load line v = u; —R,j and the curved current
voltage characteristics u = u(j) of the gas discharge [28]. The intersection of
load line and characteristics marks the stationary solution of the system. (c)
represents the data of Fig. 7.1 with total voltage u, = 19, (a) is for u; = 18, (b)

for u; = 18.5, (d) for u; = 20.
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property of the whole discharge layer with its boundary conditions [85]. In our
model, negative differential conductivity (NDC) seems to exist only at the global
level while the local differential conductivity in our model is always positive: the
field dependent stationary ionization is n, = |pu.F |aoe_E°/ IEl /3 according to
(4.6); hence the local conductivity increases monotonically with the applied field
|E| (in the equilibrium state homogeneous solutions gives |E|a(|E])/B for the
conductivity). The global negative differential conductivity is due to electrode
effects being much stronger than bulk recombination 3. Anyway, the equilibrium
current is a monotonically increasing function of E (proportional to |E|*a(|E]))
and it is obvious that there is no NDC of the current-voltage characteristic
on the local level of description, so oscillations definitively coexist with a local
positive differential conductivity.

But the reaction-diffusion approximation (7.3) would predict that global
negative differential conductivity 9; U < 0 is required for the stationary state
to evolve into oscillations. In the next subsection, we give an example of the
oscillations emerging in the full gas discharge model in the presence of both
local and global positive differential conductivity.

7.4.1 Oscillations despite local and global positive
differential conductivity

Throughout this thesis, the system with the gas discharge region of 0.5mm was
not investigated, though experimentally it shows oscillations as well, and similar
behavior as the other - larger system of lmm. The reason for that lies in the
sensitivity of current-voltage characteristic on secondary emission coefficient, as
it has been already explained in Chapter 6.

We were interested to see if that system with current-voltage characteristics
of ‘mixy’ type (for ‘experimental’ ), can nevertheless give oscillations. Indeed,
it has been found that the system bifurcates to oscillatory regime, for the range
of parameters corresponding to experimental values, except for voltages which
are substantially larger. Physically, these voltages are high enough to destroy
the experimental cell. Nevertheless, this simulation (Figs.7.3 and 7.4) is very
important, since it confronts the established theoretical concepts.

For the set of parameters (y = 0.08, p = 0.0035, L = 18, Rs =5+ 103, 7, =
121500, and u, = 529.4), the stationary solution is (jo, uo) = (1.04-107%,9.406),
and the eigenvalue is the complex number A = 3.76 - 1076 4 71.19 - 107% with
the small positive real part. That implies that the stationary solution is linearly
unstable and that small perturbations will grow. Indeed, starting from the
stationary state the build up and growth of the oscillations with the slow rate
can be seen in Fig. 7.3 (solid line).

The dashed line of Fig. 7.3 represents the result of the perturbation theory
(Chapter 6) given by equations (6.51) and (6.52) where amplitude ¢ and absolute
phase o are adjustable while all other parameters are fixed (o = 90.84 and
r = 3449.3). The agreement between results of the linear stability analysis and
numerics is convincing.
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Figure 7.3: Spontaneous oscillations of current j and voltage u as a function of
time 7 for v = 0.08, = 0.0035, L = 18, Ry = 5-10°, 7, = 121500, and applied
total voltage u; = 529.4 (solid lines) compared to the stability analysis result
(dashed lines).

With the time, the amplitude of the oscillations grows and for 7 = 7 - 10°
the limit cycle is reached. The phase space plot of these oscillations is presented
in Fig. 7.4. It can be clearly seen that the load line intersects current-voltage
characteristic in the part where current increases with the voltage. So, despite
the positive differential conductivity of the current-voltage characteristics, oscil-
lations do exist so as the limit cycle. Therefore, this numerical example directly
confirmed that reaction-diffusion approximation is not applicable to our com-
plex system, and that oscillations are possible even in the presence of global
positive differential conductivity.
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Figure 7.4: Phase space plot of the data from Fig. 7.3 but for the longer time
7 = T7-10° and with current-voltage-characteristics and load line

7.5 A systematic model reduction

For the model reduction, we return to the model representation of Chapter 4.
The gas discharge is modeled as

0,0 = 0,(E0)+a€a(f), (7.8)
O-p = *.Uaz(gp) + Uga(‘e) ) (79)
p(0,7) =0, (7.10)

o(L,7) = yup(L,T) , (7.11)

p—o = 0,¢&, (7.12)

while the external circuit is described by

du(r) = B —Reil) (7.13)

L
u(T) :/0 E(z,7) dz (7.14)

with the Maxwell time of the semiconductor 7, = CsRs and with a spatially
conserved total current [which follows in the standard way from (7.8), (7.9) and
(7.12)]

§(r) = 8,€ + up€ + o€ , 8:j(1)=0. (7.15)
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7.5.1 Adiabatic elimination of the electrons

Now consider that in the stationary case, the total particle current is conserved,
but accordingly to the boundary condition (7.10), at z — 0 it is mainly carried
by the electrons and at z — L, it is mainly carried by the ions (7.11). The
electric field stays of order unity throughout the system. Therefore pup should
scale like o: O(up) = O(o). Now the field £ and the system size L are of order
unity, and therefore also 0, = p — 0. The conclusion is that p = O(1), and
hence o = O(u). Therefore we substitute s = o/u where s is now of order unity.
This expresses more clearly that the electrons contribute to the current in order
unity, but to the space charge only in order u. To focus on the dynamics of the
ions, a new time scale 7 = u7 is chosen. Then the model attains the form

nozs = 0,(€s)+s€a(f), (7.16)
O:p = —0,(Ep)+ s€alf), (7.17)
p(0,7) =0, (7.18)

s(L,7) =vp(L,7) , (7.19)

p—pus = 0,€. (7.20)

This rescaling now allows to take two essential approximations in the limit of
small p: First, s evolves on the short time scale 7 = 7/u while p evolves on
the long time scale 7. For small pu, the electrons therefore can be eliminated
adiabatically from the ion motion. Hence on the ion time scale 7, the electron
distribution is equilibrated or ‘slaved’ and we can approximate

(az + a(E)) [s€] ~ 0. (7.21)

Second, the contribution of the electrons to the space charge is negligible for

small p:
pr0E . (7.22)

This can also be understood as follows: electrons and ions are generated in equal
amounts, but the electrons rapidly leave the system while the ions move slowly
and therefore reach much higher concentrations.

As a consequence of the differential equation (7.21) and the boundary condi-
tion (7.19), the electron density at position z now can be completely expressed
by the instantaneous ion density at the boundary L and the field £ between z
and L as

[5€1(2) = [pE)(L) ef *(EED d= (7.23)

Using (7.17) and (7.21), the equation of motion for the ions becomes
dp = -0, <p5 4 sg) : (7.24)
p = 0, (7.25)

with s&€ from (7.23). The gas dynamics is now expressed only by the fields p
and £ that are related by p = 9,€.
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The equations for p can be integrated once to give 8:€ + p& + s€ = j(T)
with 0,j(7) = 0 so the complete system can be expressed in terms of £ as

2
0:€ + 82% +s€ = j(7) , (7.26)
2
0 [s€] = —al€)sE , [s€]|, = az% S (12
L
o w—u() - R
O-u(T) = s , (7.28)
L
u(F) = / Ele,) dz (7.29)
0 52
where (7)) =0:€|, +(1+7) 327 (7.30)

As the involved fields are related as p = 0.€, £ = 0.¢, where u(7) = ¢(L,T) —
#(0,7), we have the choice whether to express the equations by integrals over
p or by differentials of ¢ or by integrals and differentials of £. We choose £ as
the independent variable since the notation becomes the most compact.

The physical dynamics is the one of the ions, furthermore the complete
potential changes due to the external circuit. This dynamics can be accounted
for by splitting the field into its value

EL(r) = €(L,7) (7.31)

at the cathode z = L as the dynamically most relevant place and the correction
of the field due to the ions

E(z,7) = Ep(F)+e(z,7) withe|, =0, (7.32)

where the ion density can be recovered through 0.¢ = p. The equation of motion
for € becomes

Ore = gLazﬁlL — €106 — €0,¢ (7.33)
+v gLazﬁiL (1 — esz dy a(gL+6)) )

Note that if e(L,t) = 0 initially at ¢ = 0, then the equation of motion for €
conserves this property for all times. For the equation of motion for &£y, first
the potential u(7) has to be expressed in terms of £y, and €

L
w(f) = LE&L(T) +/ dz €(z,7) . (7.34)
0
In particular, the derivation of d-u in (7.28) requires to calculate
L €2,
/O dz Ore = - + Erel, (7.35)

0

L
+L ELpr (1 Sl B 7/ dfz el "“L“’)



7.5 A systematic model reduction 101

where we introduced the short hand notation
iz =Bty (7.36)
Introducing the small parameter k = Lut,/R, we find for &,

w — L& — [ dz €
(1+k) R,

k Ldz 2|, + 2€1¢|
IR 2 eodye  Z o T TPl )
+1+k<l,PL’Y/O T Z oL

The parameter k is actually the ratio of capacitance of semiconductor and gas
discharge layers. In more details:

0:&1, = —(1 +’Y) ELpr +

(7.37)

LT pidg  Cs
b= SPR e Fg 7.38
Re  “peds G, (7.38)
€0€s 7 (copsEo)™!
g = 2% =8 NP 7.39
ds TRy dg/(pego) (7:39)

When the thickness of gas discharge and semiconductor layer are of the same
order of magnitude dy/d; = O(1), the parameter k = es;ud,/ds is a small
parameter, since ¢, = 13.1, p = 0.0035, and therefore pe, = 0.046.

As aresult, the structure of explicit (but somewhat lengthy) equations (7.33)
and (7.37) is

07€(2,7) = F(e,&L) and 0:EL(T) = G(e,&L) .

So this is not a system of two scalars like previous authors have suggested, but
a system of the scalar £;, and the function e.

7.5.2 Comparison with a two-component reaction-diffusion
system

The electric field £, at the cathode z = L determines the local bulk ionization
rate o, and it is closely related to the potential u over the gas discharge. We
therefore take it as the first characteristic scalar variable for the state of the
system. A second such scalar variable could be the ion density p;, at the cathode,
since it characterizes the conductivity and therefore also the electric particle
current pr,Er, +[s€]|r = (1+7)pr&L at the cathode. A two-component reaction-
diffusion model could therefore consist of equations for the two scalars £, and
pr.- But can it be derived from the present equations?

Taking the spatial derivative of (7.33) at L, we find the equation of motion
for pg,

a;pL = —pi - & 8zp ; + 'prgLa(EL) . (7.40)
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The evolution of pz, depends on its local value, on the value of the local field
£, and also on the local derivative of p. If this derivative 0.p|r = 82¢|;, could
be neglected, we would have derived a two-component model.

However, it is not possible to neglect 0,p|r. This can be easily seen in the
Townsend limit of very small space charges where the term —p? in (7.41) can
be neglected. Whether pr, grows or decays, therefore depends on the sign of
ypra(€r) — .p|L, i-e., on the local balance of generation and transport of ions.

An equation of motion for d,p|y, in turn would depend on 0?ply, etc., so an
infinite hierarchy of equations would have to be considered. The observation
that a systematic reduction to a two-component problem is not possible, corre-
sponds to the fact that the state of the gas discharge has been characterized by
the full function €(z,7) or p(z,7) throughout the gas gap.

7.5.3 Summary of the derivation

To sumarize, we have derived an analytical approximation of the our full model
(7.8)(7.15) that can be confronted with the suggested form (7.1). Electron and
ion current in the gas are of the same order of magnitude. Since the electrons
are much more mobile, their density is appropriately lower. Rescaling this
density like s = o/p and time like 7 = u7, the electrons can be eliminated
adiabatically in the limit of g — 0. Space charges in the gas discharge are then
due to the ions only p = 9,&, and p can be expressed by £. Splitting the field
E(z,t) = EL(t) + €(z, 1) into the field on the cathode £, and a correction € with
€(L,t) = 0, the complete system for u — 0 can be expressed by two dynamic
equations

8:EL(t) = F(EL,e) , Ose(z,t) = G(Epye) - (7.41)

While the equation for the time dependent parameter £, corresponds to the
equation for U in (7.1), the space dependent field correction € within the gas
layer cannot be reduced to a single component like the current J in (7.1) or the
ion density at the cathode.

It is not justified to neglect all of € except for the dynamics of pr. In the
approximation of € < 1, the field at the cathode &y, is simply proportional to
the voltage u = L&, and the ion density py, is proportional to the conductivity
(1 + y)pr, at the cathode. But to neglect d.p is not systematic at all, and
obviously wrong, as can be seen from the results, presented previously.

Therefore, a two component reaction-diffusion equation for pr, and &y, could
result only from the completely unsystematic approximation (0.p)|r = 0. Rather
the transport of ions p from the bulk of the gas towards the cathode is a central
feature of the system. The field €(z,t) in (7.41) indeed accounts for the ion
distribution within the gas gap with its intricate dynamics.



Chapter 8

2D solutions:
Spatio-temporal patterns

In this chapter, the system is finally investigated in two spatial dimensions. This
means that next to the longitudinal direction through the layers, one transversal
spatial direction is included. This 2D setting is sufficient for a full linear sta-
bility analysis of states that are homogeneous and isotropic in the transversal
directions, since arbitrary 3D perturbations can be decomposed into 2D Fourier
modes. In full numerical calculations, the 2D results give a reasonable indica-
tion for the full 3D behavior. The main aim is, of course, to understand the
spatial and spatio-temporal patterns described in Chapter 3.

In Section 8.1, this is again done by linear stability analysis of the homo-
geneous stationary solution. Including transversal Fourier modes, and staying
within the same parameter regime as in the previous chapters, either the purely
temporal Hopf-bifurcation of Chapter 6 is preserved, or the bifurcation is of
Turing-Hopf type as discussed in Chapter 2. This means that a state with
some non-vanishing wave number grows more rapidly than the homogeneous
one while also oscillating in time. This transition from a Hopf- to a Turing-
Hopf-instability is in qualitative agreement with the experiments that show a
transition from homogeneous oscillations to ‘blinking filaments’.

Next to the stability analysis, also the full time dependent 2D behavior is
studied numerically. In Section 8.2, details of the numerical solution procedure
are given, and in Section 8.3, some preliminary results are presented. They
agree approximately with the stability analysis results during their linear growth
phase, and then exhibit new dynamical features in the nonlinear and saturating
regime. Finally, an outlook on open questions and possible future investigations
is given.
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8.1 Stability analysis

8.1.1 Formulation of the problem

The full model has been described in Chapter 4.3. To reduce the computational
effort for the 2D dynamical problem, the electrons are eliminated adiabatically,
as discussed in Section 7.5. In the limit of u — 0, the gas discharge part of the
system is described by the equations

0:(8E:) + 0,(sE.) = —sl€la(E), (8.1)
Orp + 0u(pEs) + 0:(pE:) = s|€|a(E) , »
Ap = —p, E=-Vo, (8.3)
with the boundary conditions for the glow discharge:
p(z,0,7)=0 , s(z,L,7)=~p(z,L,7) . (8.4)
For the semiconductor layer, the following equations apply:
A¢:o,js:%5,D:e35. (8.5)

Across the boundary between gas layer and semiconductor layer, the electric
potential is continuous while the jump in the z component of the electric field
is determined by the surface charge as discussed in Section 4.2. Therefore, on
the interface z = L, all z components of the vector fields from the left side L™
(gas discharge part) of the interface, and from the right side Lt (semiconductor
layer) have to satisfy the boundary condition (4.19) for all z, y and 7, that is

ESS(L+) - 5(L7)7: _Esaz¢|z:L+ + aqu‘z:L*
~ar =0+ [ ar [(1 - laBE T~ %sm] C(86)

In the numerical procedure as well as in the perturbation analysis, the time
derivative of this ‘jump’ condition is used:

on(utle, 51 - £ 177) = [+ (e 77 - T 17)|.
(8.7)

8.1.2 Linear perturbation analysis for transversal Fourier
modes
Linear perturbation analysis is again performed about the stationary solutions

which are obtained from the previous 1D calculations and denoted with the
index 0. Therefore the ansatz is:

s(x,z,7) = so(2) + s1(2) e**TAT | (8.8)
p(x,2,7) = po(2) + pa(z) €A (8.9)
E(x, 2, 7) = Eo(2) + &1(2) 5727, (8.10)
d(x,2,7) = go(2) + ¢1(z) eF=TA7 (8.11)
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The index 1 denotes a small linear perturbation about this stationary solution.
In contrast to the ansatz used in Section 6.2.2, the system is also extended
in the z direction. The wavelength of the distribution is characterized by the
wavenumber k.

After insertion of the ansatz into the equation for the gas discharge, the
system reads:

0,& s 0,s
o =~ (ate)+ %50 o1 - o (ot + 2520 + a0 €1
A+ po + 0,& 0, /
0.;m1 = a(&o)s1 — = I Lo P+ S—Oa(&)) = i + sp« (Eg)) &1z 5
&o &o &o
az:(c;lz = pP1— k2¢1 )
o0 = & (8.12)
The boundary conditions are:
p1(0) =0, #1(0) =0, s:1(L)=~p:(L), (8.13)

where z = L is the boundary between gas layer and semiconductor layer.

In the semiconductor layer, the equation A¢ = 0 with the boundary con-
dition ¢(L + L) = —u, at the position of the cathode z = L + Ly has to be
solved. For ¢, this means that we have to solve A¢; = 0 with ¢1(L + Lg) = 0.
This problem has the explicit solution for L < z < L + Lg:

¢1 (Z) = Cl s1nh(k(z — L — Ls)) N (814)

with the arbitrary amplitude C;.
The ’jump’ condition (8.7) can be expressed as

—Cikcosh(kLs)[A €5+ 05 /u] = [(1 + ) (po1z + Eopr) + )\Slz] L (8.15)

Using the fact that the potential (8.14) is continuous on the boundary of the
gas discharge region, we get

¢1(L) = —Cy sinh(kL,) . (8.16)

Now C; in (8.15) can be substituted by ¢;(L) through (8.16). The result is the
second boundary condition at 2 = L

(1 +7)(po€iz + Eop1) + A1, tanh(kL,)

¢1(L): A€3+0's/,u k

(8.17)
Now the semiconductor is integrated out, and we are left with four linear differ-
ential equations (8.12) and four boundary conditions (8.13), (8.17) that together
determine the eigenvalue problem \ = A(k).
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It is convenient to write the equations (8.12) again in terms of variables h
and g

and g=2& &1, - (8.18)

Now, we arrive at the compact form of the system:

o k?
z = T — i 5 Nl
9:h A ol (8.19)
A
0.9 = —Eosoh— o g+ iz~ k2 ¢, (8.20)
0
J
dji = —K A+ ) e, (8.21)
0
1
-=9. 22
3z¢1 80 g (8 )

In the limit of k — 0 these equations should reproduce the equations (6.28)-
(6.31) derived for the 1D case in the limit of 4 — 0. And indeed, they do.

One should take care here with the generalization of the total current. From
the charge conservation law, we have:

V - (0:€ + s€ + p€) = 0412 + 02512 = 0,
where the component in z direction is
J1z = A1z + 51€0 + 5012 + po&iz + p1&o
while the component in the x direction is
Jre = A1z + 50€1z + po€1z With E1p = —i k ¢1 .

The boundary conditions (8.13) and (8.17) can be rewritten as:

/(0 = 0, (8.23)
Jj12(0) = 50)(\0) g(0) + Jo h(0) , (8.24)
L) = gom o)+ Jo (L) (8.25)
) - (D) tanh(L) fa.26)

Aes +os/p k

where

J() = (50.90)(0) . (827)

Here, one should note that in the definition of all these currents, scaling with x is
already included since we work with s = o/p and on the ion time scale 7 = pu7.
In the limit of k£ — 0, the appropriate boundary conditions from Section 6.2 are
reproduced.
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8.1.3 Formal solution and numerical implementation

The final set of the equations can be written in the form

h h

o, 9 =M@ | ¢ : (8.28)
Jz J1z
é1 o1

where the eigenvalue A is a parameter and M) (z) is the matrix of the set of
equations (8.19)-(8.22):

a’ k2
0 -2 0 —&
—y = 1 —E*E,
My (2) = ¢« 7E ,
A(2) 00 0 —K(A+ L)
0 -£ 0 0

where Jy = 50&p.
The boundary conditions (8.23) and (8.24) at z = 0 can again be rewritten
as orthogonality relations:

Jo h 0 h
A
zo || 9 | 2o 0 9 | =o 8.29
. J1z ’ 0 Nz (8.29)
0 ¢/, 1 ¢/,

The general solution (z) of (8.28) is therefore a superposition of two indepen-
dent solutions 71 (z) and v>(z) of (8.28), that both obey (8.29) at z = 0:

h(z)
#(z) = jgl(é)) = ¢ T1(2) + 2 Ta(2). (8.30)
$1(2)
As initial conditions, one can choose, e.g.,
1/Jo 0
0 £0(0)
01(0) = 1 , U2(0) = i\ (8.31)
0 0

The components of the two solutions are denoted as ¥;(z) = (hi(2), gi(2), j12,i(2), $1,i(2))-
The boundary conditions (8.25) and (8.26) at z = L also have the form of
orthogonality relations

Jo h 0 h

A 0
oo || 9 —0 9 —0. (8.32
——1 Jz ’ 1 J1z ( )

kLs (14A7,)
0 ¢/ . tanh(kL,) ¢ /g
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Now, each one of these two conditions determines the ratio C'; /C5 of the general
solution (8.30):

C1 [jii)(L) - 5% g1(L) — Jo hi(L)

+

e [j{?(L) A g2(L) — Jo ho(L) (8.33)

&o(L)

{ A
I
o

.(1) B kLs (14 ATs) (1) |
Cl |:]lz (L) Ty tanh(kLs) 1 (L)- +
.(2) B kL, (1 + ATs) ) B
G [y - Ee LT 60wy = 0.

For the nontrivial solutions of (8.33), the determinant of the system
2
i) - 25 al) - o (D) I(L) = g2y 92(L) — Jo h2< )
(1 kL, ATS .(2 kL, AT
AL~ Siterg o (L) i) - SR o7 ()

(8.34)

A:

has to be equal to zero. This condition leads to a quadratic equation for the
parameter A.

Now the eigenvalue can be calculated numerically in the same way as in the
1D case. Again, we start with some initial estimate \g, solve the set of equations
(8.19)-(8.22) obeying conditions (8.23)-(8.26), and calculate the next estimate
of X\ as a solution determined by the condition that determinant (8.34) has to
be zero. This process has to be repeated until sufficient accuracy is reached.
Actually, the condition

)\ _
’ k41 — Ak < 10-5

Ak+1

is used in calculations to finish the iterations. For a faster convergence the
under-relaxation is used. The iteration program is written in fortran 90 with
complex variables; it is just an extension of the program used in the 1D case.
Therefore, for the integration of the equations, a 4th order Runge-Kutta method
is used. The number of grid points was usually 2000.

The solution of the set of the equations is now straightforward:

s)_

kL,(1+27,) (L)
s) - kLs(l + /\7_-3) ¢§2)(L)

re tanh(k
( ~va(2)]

Ui(z) —
1(2) rs tanh(k

L
L

where C' is a free constant.

An improved numerical strategy

Unfortunately, using the same numerical method as in Chapter 6, only a partial
result is obtained. For larger values of the wave number £ > 1, the program did
not give a result. Also, there was another problem: after the first bifurcation
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in the dispersion relation, only one branch was found (see e.g., Fig. 8.1), while
another one should exist as well. An explanation will be given later.

The reason why the previous algorithm did not succeed, was the poor ac-
curacy of the integration routine which results from two sources. There is first
the fact that the matrix of coefficients is poorly conditioned. This can be seen
by noting that one column is much bigger than another one. A more precise
measure of numerical ill-conditioning of a matrix is provided by computing the
normalized determinant of the matrix. When the normalized determinant is
small compared to one, the matrix is ill-conditioned. The normalized determi-
nant is obtained by dividing the value of the determinant of the matrix by the
square root of the product of the inner products of the vectors forming the rows
of the matrix.

The second source is the so-called ‘build-up’ error. The difficulty arises
because the resolution (8.30) requires combining numbers which are large com-
pared to the desired solution; that is @(z) and ¥;(z) were up to 3 orders of
magnitude bigger than their linear combination, which is the actual solution.
Hence significant digits are lost through subtraction. This error cannot be
avoided by a more accurate integration unless all computations are carried out
with higher precision. Godunov [93] proposed a method for avoiding the loss
of significance which does not require multi-precision arithmetics and which is
based on keeping the matrix of base solutions orthogonal at each step of the
integration.

A modification of Godunov’s method [94], which is computationally more
efficient and which yields better accuracy, is implemented in the new algorithm
[95] which now gives results for all values of k. The main difference from the
previous algorithm is that here we examine the base solutions (obtained by any
standard integration method) at each mesh point and when they exceed certain
nonorthogonality criteria we orthonormalize the base solution. We have to start
with the initial conditions which are orthogonal to each other and not only to
the boundary conditions:

-1 ho

-1 1
71(0) = by 5 v2(0) = A )
{(0) “w© o 20 &(0) gJOhZ

0

A A
5ot 5w)
1+ Jo(g57gy + Jo)

where hg =

Then using the method for the orthogonalization developed in [94] we are
able to calculate the eigenfunctions very accurately, which allows us to find
the eigenvalues. The correct eigenvalue is reached when the difference be-
tween ¢1(L) = ¢1,1 + cp1,2 obtained by the integration as a superposition
of two eigenfunctions, and the one given as the boundary condition ¢;(L) =
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%%)I) (8.26) is smaller than 10~%, where

i) - g2 91(L) = Jo (L)

iP) - 25 9a(L) — Jo ha(L)

C=

Otherwise, we could have used a slightly modified method for orthonormal-
ization, and calculate the eigenvalues from the condition that the determinant of
the coefficients vanishes, as before. Since we must solve equations (8.19)-(8.22)
several times for different values of A\, we must insist that the orthonormal-
ization is the same for all these solutions. In effect we must insist that the
determinant is uniformly scaled in order for the successive approximations to A
to be consistent. Numerically this can be accomplished by determining the set
of orthonormalization points and matrices to the solution corresponding to first
initial guess for A and thereafter applying the same matrices at the correspond-
ing points for all succeeding solutions.

The program is written in C, and the integration method is one-step simple
Runge-Kutta and on the domain L=36 the number of grid points is varied from
n=500 to n=18000 depending on k (k = 0 — 1000).

8.1.4 Results: dispersion relations

We now evaluate the dispersion relation A = A(k). For certain parameter values,
we expect to find some spatial structures. If they arise due to a linear instability,
they will manifest themselves in the dispersion relation: there will be a band
of Fourier modes with positive growth rate ReA(k) > 0, with maximal growth
rate for some non-vanishing wave number k, as already explained in Chapter 2.

The parameter sets at which the dispersion relation is evaluated, are chosen
from the bifurcation diagram (Fig. 6.11) obtained from the one-dimensional
perturbation analysis. Our aim here is to explore this range of parameters and
see what happens if a transversal spatial dimension is added. On the bifurcation
diagram given in Fig. 6.11, we choose three points in the upper, middle and lower
part of the y-axis (corresponding to R, = 2-10°, 4-10°, 2-10°) close to the line
separating stable and unstable states and then explore these parameter values
further, for higher values of the applied voltage.

Typically, we find that the dispersion relation function has a shape as pre-
sented in Fig. 8.1.

Here, we went to very large values of k, in a search for an instability for
small wave length in a range of voltages u; where the homogeneous k = 0 mode
is unstable. A logarithmic scale for the x-axis is used. For the same set of
parameters L, = 54, L = 36, R, = 2-10° (referred to as a position 1), but with
u; as a free parameter, the ¥ = 0 mode is always dominant; therefore no spatial
structures are to be expected. Investigating the position 2 (where R, = 4 - 10°
is the only difference) for different values of applied voltage, no essential change
in the dispersion relation was observed, and the most unstable mode stays the
homogeneous one with k& = 0. Further increase of the semiconductor resistivity
(Rs = 2-10° - position 3) led to a finite wave length instability.
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Figure 8.1: Real part of the dispersion relation for Ry = 2 -10° and u; = 23.
The system lengths L. = 36 and L, = 54 are kept fixed within the whole chapter.
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Figure 8.2: Real part of the dispersion relation for R = 2 -10° and u, = 40.
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Actually, for some non-vanishing, but very small value of k, a maximum of
the real part of eigenvalue appears (see Fig. 8.2).

So far, we were concentrated on the real part of eigenvalue only, but in
order to better understand the bifurcation of the dispersion relation we should
investigate what happens with the imaginary part of the eigenvalue at that
point.

x10™

oF

1 1 L 1

4 6 8 10 12 14
k

Figure 8.3: Real and imaginary part of the two branches of the dispersion
relation for the same parameters as in Fig. 8.2 (R = 2-10%, u;, = 40).

As can be seen in Fig. 8.3, up to some value of k; the eigenvalue is a complex
number (and since the complex conjugate is also a solution, there are always two
solutions), and then at k;, the eigenvalue becomes purely real. Since eigenvalue
branches should continue beyond k = k;, we still should have two solutions
for k > ks, therefore the dispersion relation bifurcates into two real branches.
The question is now whether a branch with purely real eigenvalues can become
unstable (i.e., with ReA(k) > 0) for some k. For the parameters of Fig. 8.1, that
does not happen as can be seen in Fig. 8.4.

For all parameter sets investigated, the branch with purely real eigenvalues
never became dominant. Eigenvalues tend to approach (up to the investigated
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x 10~

Re(n)
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Figure 8.4: Real part of the dispersion relation in the limit of k¥ — oo for the
same parameters as in Figs. 8.2 and 8.3.

k = 1000) most often some value below zero or zero as shown on Fig. 8.4 i.e,
they always stay negative. Furthermore, it has been observed (only twice) that
even if the branch would reach positive values, the growth rate has been a way
below the maximum value found for &k < 1.

Beside the analysis of these 3 different positions in parameter space of re-
sistivity and feeding voltage, where all other characteristics of the system were
fixed and the only free parameter was the voltage, the influence of other param-
eters has been investigated as well. We choose position 1 for this investigation
(corresponding to Fig. 8.1), therefore all parameters are kept fixed at the values
Ly =54, L =36, Ry =2-10°, jo =3-10"°, u, = 23 except for one that is
being varied.

The following conclusions have been drawn:

Dependence on L,: The most interesting observation is found when chang-
ing the width of the semiconductor layer. Increasing L, the k = 0 mode
stops being dominant and a maximum for very small values of the wavenumber
(k < 0.1) appears. In Fig. 8.5, the width of the semiconductor layer was changed
from 10 to 150 in equal steps. In physical units, the width was changed from
0.27mm to 4.16mm. Keeping the rest of the parameters fixed as the dielectric
constant €5 and resistivity R, and only varying L, actually means that the ca-
pacitance of the system is changed. So by decreasing the capacitance, long wave
length instabilities can appear. Also the bifurcation point where the eigenvalues
become purely real, moves considerably towards smaller k.

Dependence on R,: Increasing R, the real part of the eigenvalue grows,
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b
o

X

Re())

Yy ﬂ){‘)h

-3

—4}

Figure 8.5: Dependence of the real part of the dispersion relation on the width
of the semiconductor layer L, for fixed parameters L = 36, R = 2- 10° and
u; = 23, i.e., for the case of Fig. 8.1. The mode with maximal growth rate
moves away from k = 0 for increasing L.

though for this set of fixed parameters, the most unstable mode always stays at
k = 0. The bifurcation point for complex versus real eigenvalues on the disper-
sion relation moves towards bigger wave-numbers, if the resistivity is increased.

Dependence on L: L is varied from 18 to 72. For the system sizes bigger
then some critical value (approximately L = 30), the real part of eigenvalue is
positive and has a maximum for k£ = 0 and for larger systems, the bifurcation
point is shifted towards smaller wave-numbers. For the less interesting smaller
system sizes, the real part of eigenvalue stays negative all the time, but the
dispersion relation has a different form and up to k = 1, a bifurcation point was
not observed.

Dependence on jo: The current is varied by approximately two orders of
magnitude and the real part of the eigenvalue went from negative to positive
values, but always had a maximum at k = 0. The dispersion relation kept the
same typical shape as in Fig. 8.1. The bifurcation point moves towards larger
k, while decreasing the current. Physically, the increase of the current at the
stationary point of the system corresponds to an increase of the applied total
voltage.

A remark on stationary spatial patterns: The dispersion relation was
not evaluated in the parameter range corresponding to the purely spatial pat-
terns described in Section 3.4 (Chapter 3). If these patterns are described by
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our model, we would expect the branch of purely real eigenvalues at k > k;, > 0
to have a growth rate larger than the homogeneous k = 0 mode.

8.2 2D computations: the numerical procedure

The problem is fully formulated in Section 8.1.1. For the numerical solution of
these equations, a two-dimensional Cartesian coordinate system (z,z) is used,
with a rectangular computational domain, which consists of two planar layers
corresponding to the gas and the semiconductor layer.

8.2.1 Initial and boundary conditions

Computations are done in finite systems. Therefore lateral boundary conditions
are required. On the lateral boundaries x = 0 and = = L, either homogeneous
Neumann conditions can be applied

0:p(0,2,7) = 035(0,2,7) = 8,9(0,2,7) =0, (8.35)
Qo ol Lign 2,7} = Bielillin B7) = Dt Lot T) =1 (8.36)

or periodic boundary conditions

000, 2,7} = plLws 2;T) 3 8(0,2,7) = 8(Ly2,7) 3 $(0,2,7) = $(Ls, 2,7) ,
(8.37)
for the densities s and p and the potential ¢ .

When the system is considered infinitely extended in the z direction, Neu-
mann boundary conditions create an axis with left-right-symmetry at their po-
sition while periodic boundary conditions create a periodic repetition of the
structure. In both cases, the length imposed by these lateral boundary condi-
tions should be accounted for in the analysis of the data. Typically we choose L,
several times larger than the expected wave length, and we work with periodic
boundary conditions.

At the anode (on the line z=0), the ion density vanishes according to (8.4),
and the potential is set to zero as a gauge choice

p(x’077_—)207 ¢($’077‘-):07

and at z = L, (where L, = L + L, is a thickness of both layers together), we
have
¢($,Lz,?) = —Ut -

On the internal border between the gas and the semiconductor layer, we set
s(L,z,7) =vyp(L,z,7) (8.38)

according to (8.4). On the border z = L between the two media, we also have
to use the ‘jump condition’ (8.7)

61’- (Esaz¢|z:L+ - anglz:L‘) — (1 +'7) ,0($,L,’7‘) az¢|z:L* - % az¢|z:L+ g
(8.39)
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As we are using the time differentiated form of the full boundary condition (8.6),
we have to take care, that the full condition (8.6) is applied initially.

As the electrons are eliminated adiabatically, we need to specify the initial
conditions only for the ion density p(z,z,0) throughout the system including
the surface charge at z = L in (8.6). In principle, any initial condition can
be used like, e.g., any exponential function with a suitable choice of constants.
However, as the system cannot deal with the large amplitudes, it is better to use
the stationary solution as an initial condition. In this way, the program blow-up
after a short time of integration is prevented. Still, for large times, very often
£, becomes negative and then the program is terminated. More details about
properties and limitations of the numerical procedure will be given later.

8.2.2 The numerical procedure

All equations are solved numerically using a finite-difference technique. The
continuity equations are discretized in conservation form.

Grid

The computational domain is the rectangular region [0, L;] x [0, L.] in the two
dimensional Cartesian coordinate system (z, z). It consists of two planar layers
- gas and semiconductor (see Fig.8.6).

We use a uniform vertex-centered grid on the ’vertical’ z-direction with nodes

zj = jAz, Az=L,/N, j=0,1,2..-,N
and a uniform cell-centered grid with nodes

1
z; = (i— E)AJJ, Ar=L,/M, i=1,2,3,---,M

on the ’horizontal’ x-direction. The grid is spaced such that the internal border
between semiconductor and gas region lies exactly on the grid line.

The densities s and p and the electric potential ¢ are evaluated at the nodes
of the grids, while the z and z components of the electric field (£, and &,
respectively) are calculated at the edges of the computational cells.

Continuity equations

To obtain a finite-difference representation of equations (8.1) and (8.2), we first
have to integrate them over the cell volume z;_1/o < < Ziy1/2, Zi-1/2 S 2 <
Zi+1/2- Let us consider in detail only the equation for ions (8.2):

dpji €z p)jic12 — (Ex P)jit1/2 o (&2 P)ji-172 — (€2 P)jiv1/2

dr Az Az +fi -

(8.40)
Note that subscripts j and ¢ are related to ’vertical’ and "horizontal’ directions
respectively and f stands for the source term of the equation (8.2).
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Figure 8.6: Computational domain and computational cell.

The choice of p;11/2,i+1/2 at the corners of the computational cell determines
the concrete discretization method of the convective terms of the equation (8.2).
We used a third-order-upwind-biased scheme (see for example [96], p.83), which
in the case of z-direction has the form

Pj+1/2i = é {5;3-“/2,1'(—%71,1 +5pji +2pj41,i)+
€, ji1/2,i(2p4i +5pj41,6 — Pj+2,i)} ) (8.41)
where
g;j+1/2,i = max(0,&; jy1/2,4) 5
g;j+1/2,i = min(0,¢&, i+1/2,6) - (8.42)

The electric field components are calculated in the following way:

ii — Djti, bji — bji
&, jH+1/2,i = ]hA;L , & Git1/2 = ]ijﬂ . (8-43)
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For the numerical time integration, we used the extrapolated second order

BDF2 method (see for example [97], p.197)

3 1

§pm — B g §pm*2 = A7 F(Fm,20™ ' —p™ %), m>2, (8.44)
where the superscript m denotes the time level 7,, = mAT with a step size
A7 > 0. Here I contains the discretized convective terms and the source term.
Note that we have dropped spatial indices in Eq. (8.44). Since the two-step
method needs p° and p' as starting values, the explicit Euler method

p" = p™ 4 AT F(Tm, p™ ") (8.45)

is used in the first step. Because of the explicit time integration, we are restricted
by the standard CFL condition for the stability; see [96], Table 3.1.

The same space discretization technique (8.40)-(8.42) and the time integra-
tion method (8.44)-(8.45) are used also for the solution of the continuity equation
for the electron density (8.1). Note that in this case the z-direction plays the
role of time in (8.44) and (8.45), which is possible as long as £, > 0.

The Poisson equation

To obtain a finite-difference approximation of Poisson’s equation A¢ = —p and
A¢ = 0 we use the standard second order discrete scheme, so

A L 200+ A B — 200 + O
d)(miazjaTm) o (A:E)2 (Az)2

+ O((A2)?,(A2)?) . (8.46)

In the complete domain, we solve a single 'Poisson’ equation with vanishing
source term in the semiconductor and a source equal to p in the gas region

Tio1 — 205 + 9 T 207 95 [ 0, gaslayer,
(Az)? (Az)? Py, SC layer .

At the nodes which are lying on the border grid line between semiconductor and
gas, instead of the Poisson equation, we solve the discrete version of the ’jump’
condition (8.39). In every time step, we first solve the Poisson equation for the
present distribution of the space charge; second, we calculate the electric field
(hence, we find the source terms for the continuity equations - the ionization
rates); then we find the densities of p and s for the next time step, and finally,
the new value of the surface charge and induced jump of the field across the
boundary is determined by equation (8.39).

The system of equations is solved with a symmetrical successive over-relaxation
method (SSOR) (see for example [98], p.343). The iterations are stopped when
the desired accuracy is reached and that is when the relative error is less than
1077,
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8.2.3 Testing the 2D program

When testing the 2D program on the results of the 1D program, one should
keep the differences between 1D and 2D computations in mind:

e First of all, a 2D dynamical calculation is computationally more expensive
than a 1D one.

e Second, in the 1D calculation the semiconductor layer with A¢ = 0 was
completely integrated out and appeared only as a boundary condition u(L, 7)
for the gas discharge layer. In 2D, the computation A¢ has to be done through
both layers.

e Third, to reduce computation times, the electrons are eliminated adiabatically
in the 2D computations. Therefore the initial electron distribution is not free
which should be accounted for when comparing with programs without adiabatic
elimination.

Different versions of the 1D program were used in order to test the correct-
ness of the numerical results. The versions differ mostly in the form of the
equations (describing the same model) and slightly in the numerical procedures
which are applied. Here, a short overview of the programs, methods and results
is presented:
v1: The first version of the 1D program is without adiabatic elimination of the
electron dynamics. Therefore, the variables are not rescaled with mobility. The
Poisson equation is solved on the whole interval [0, L + L], and the jump con-
dition is used on the internal border.
vy: The second version of the 1D program differs in the fact that the Poisson
equation is solved only in the gas region, while the boundary value of ¢(L) is
determined by the semiconductor dynamics described by Eq. (6.12).

This program was actually used for the computations presented in Chapters 6
and 7.

v3: The third version is simply the 1D reduction of the 2D program: it uses
adiabatic elimination of the electrons and the Poisson equation is solved on the
complete domain.

The numerical methods used in the different versions are almost the same (in
spatial discretization and time integration), as the one already described above
for the 2D program. We recall that for spatial discretization the third-order
upwind-biased scheme is used for the convective terms. For the time integration,
an extrapolated second order BDF2 method [97] is used, where, because of the
explicit time integration, we are restricted by the standard Courant-Friedrichs-
Levy Condition for stability. This means that the time step is calculated from
step to step (adopting to the velocity of the particles £) by AT = vxAz/ max|€|,
where v < 0.46 guarantees the stability of our method.

Solving the Poisson equation requires a slightly different technique from the
2D case. The three-diagonal matrix which arises after the standard second
order discretization is solved using the Thomas algorithm, whereas in the 2D
case this problem is solved by an iterative method (SSOR). Of course, in the
case of v1 and v3, we solve a single "Poisson’ equation on the whole region (with
vanishing source term in the semiconductor), and using the discrete version
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of the jump condition on the boundary between gas and semiconductor. The
difference between v; and vs is the calculation of the electron density. In vz, the
electron density is determined instantaneously, we compute it in explicit form
by spatial integration.

As a first test, the 2D program was run with a planar z-dependent initial
condition and only 4 grid points in the transversal x direction. The results
coincided completely with the results of the vs program. This was not at all
surprising, but gave useful insight into which step size in z direction has to
be used. Some examples are presented with more details in the next section.
As we are using the (numerically derived) stationary solutions from Chapter 5
as a reference, all dynamical programs should reproduce these solutions. This
comparison is done gradually; comparing first vz with vy, which confirmed that
the adiabatic elimination is justified. Then v; and vy were compared, which
showed that the role of the surface charge is properly taken into account and
that the ’jump’ condition is correctly derived. One should keep in mind that
only starting from exactly the same initial condition (which was not obvious
and straightforward to achieve), the solution is the same at each time instant,
otherwise the system can end up in a different state if there are several stable
solutions. The agreement between v, and the stationary solutions from Chapter
5 was already tested in Chapters 6 and 7.

Since numerics is not the main topic of this thesis, all intermediate results
and details of these analyses are skipped.

8.3 Preliminary results of the simulations

In this section, some results of the computations are reviewed. As a starting
point, some properties of the numerical procedure are discussed. Furthermore,
an example of the full PDE simulation is shown. Some conclusion are drawn
both from the results on linear perturbation theory and a number of simulations
within experimental range of parameters (see bifurcation diagram Fig. 6.11).
The linearly unstable fastest growing mode is most often found only for £ = 0
or otherwise very small values of wave vector (k < 1). For parameter regimes
where k = 0 is fastest growing, the previous results of linear stability analysis
(developed for 1D case in Chapter 6) are applicable, and agreement 2D-1D
shows consistency. New results are for k # 0 fastest growing mode. Numerical
simulations are compared to the prediction of stability analysis. Development
of spatio-temporal structure is shown by one numerical example. In the last
subsection, outlook and ideas for further investigations are outlined.

8.3.1 Dependence on the numerical resolution

If the number of grid points is too small, this will influence the result, in par-
ticular, the amplitude of oscillations. For example, on a coarse grid of 200x90
points and for the complete parameter set R, = 2- 108, L =36, L, = 54, uy =
40, €, = 13.1, p = 0.0035, v = 0.08, the amplitude of oscillations decreases
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with time and the system relaxes to a state which is stationary in time and
homogeneous in space. On the other hand, stability analysis gives a positive
real part of the eigenvalue, so the system is not stable and small perturbation
should grow. Therefore, the conclusion is that the grid used for this simulation
is too coarse.

Fig. 8.7 shows this case. A word should be said about the presentation:
Just like in Figs. 8.11, 8.13 and 8.14, the ion density p(z,L,7) on the gas
semiconductor interface is shown as a function of transversal coordinate z and
time 7. A comparison with full 2D profiles at a fixed instant of time as shown
in Fig. 8.10 shows that the ion density on the boundary indeed represents the
relevant spatial information very well.

0.025"
002"
00154~

001"

Figure 8.7: Evolution of the ion density p(z,L,7) on the gas semiconductor
boundary for the parameters R = 2 -10° and u; = 40, i.e., for the parameters
explored previously in Figs. 8.2-8.4. The transversal length is L, = 400 and a
coarse numerical grid of 200x90 points is used.

Though the figure shows an erroneous decrease of the oscillation amplitude,
it is shown nevertheless, since it is the only numerical example that we have
found up to now where the system is initially completely homogeneous in the
transversal direction and spontaneously creates a spatial pattern as it should
according to its dispersion relation shown in Fig. 8.2. The computation shows a
wave length 100 emerging spontaneously while the dispersion relation predicts
the most unstable mode to have wave length 200. In all other cases, the theo-
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retically predicted wave length was included as a very small perturbation in the
initial conditions and then indeed amplified.

If the grid is fine enough (900x275), for the same set of parameters, the
amplitude of oscillations grows as predicted from stability analysis. Interest-
ingly enough, the temporal period of oscillations is the same in both cases and
coincides with the one calculated from stability analysis.

This parameter set is investigated further in Subsection 8.3.4, while we here
only emphasize the necessity of a sufficiently fine grid.

8.3.2 A limitation of the numerical algorithm

A major limitation of our numerical simulations is that the longitudinal electric
field £, has to stay positive everywhere. When the amplitude of oscillations
becomes too large, the field becomes negative at some points and the computa-
tions break down. Physically, this scenario is possible, but it leads to numerical
problems in our present program. The way to avoid this is to start with sta-
tionary solutions and to choose the parameters in such a way that nonlinear
saturation sets in at low values of the amplitude.
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Figure 8.8: Potential as a function of time for Ry = 2 - 10% and for applied
voltages u; = 53.5, 46.4, 42.6, 40.0, 38.9.
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The consequences of different parameter choices are shown in Fig. 8.8. The
figure shows the evolution of the potential ¢(x, L,7) on the internal border at
z = L as a function of time. The potentials are actually plotted for all values
of x, but the homogeneous oscillations are so predominant that the oscillations
look similar to the 1D case. Nevertheless, we can observe the formation of
spatial structures since on top of these temporal oscillations there is a spatial
modulation, and one example will be discussed later in more detail.

It can be seen in Fig. 8.8 that for high values of the applied voltage u;, the
numerical procedure is terminated. This occurs when £, < 0 somewhere in the
system, as discussed above. The reason for the negative fields still remains an
open question. It could be physical, but it could be of numerical nature as well:
The growth of the variation of £ then would lead to the growth of numerical
error and, finally, to the wrong £. Indeed, by refining the grid, the electric field
changes sign somewhat later, but the sign change can not be completely avoided.
Even in the 1D rescaled case (called v3 previously), the electric field still changes
sign (only that in 1D this does not impose a numerical problem). To keep the
sign of the electric field fixed everywhere during the evolution constrains the
physical situations that can be analyzed. But within this constraint, valuable
physical solutions can be obtained.

It seems worth mentioning at this point that we have tested two versions of
the commercial software package FEMLAB, but that the performance is much
worse than that of our own program.

8.3.3 Analysis of numerical results and comparison with
stability analysis

In spite of these numerical constraints, the obtained results can be analyzed:
An increase of the total applied voltage u; leads to

o a decrease of the wave number £ of the leading mode,
e an increase of Im(\) — a decrease of the oscillation period,

e an increase of Re(A\) — an increased growth rate of the oscillation am-
plitude.

These conclusions are drawn from the stability analysis and confirmed by the
simulations.
In all these simulations, the initial condition is taken as

p(z,2,0) = po(2) + C pi(z) e*® (8.47)

where k is the wavenumber of the leading mode, po(z) is the stationary solution,
p1(z) is the eigenfunction of the linearized problem treated in Section 8.1, and
the parameter C is chosen such that the perturbation Cp; is only about 1% of
initial ion density py. The transversal modulation of the initial condition grows,
when Re()\) is positive with maximum for some k # 0, and spatial structures
emerge. An example for u, = 40 is shown in Fig. 8.12a).
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As can be seen in Fig. 8.8, the initial state of the simulation is not precisely
the stationary state as oscillations with finite amplitude can be noted from the
beginning. We have encountered similar effects of a non-ideal initial condition in
Chapter 6. As the homogeneous k = 0 mode is excited initially, it continues to
grow. As long as the perturbations are within a linearizable regime, the spatially
structured mode with k # 0 grows independently with its own speed. The
growth rates of the homogeneously oscillating state and the spatially periodic
structure are investigated in the Fig. 8.9.
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Figure 8.9: Analysis of the growth rates of homogeneous and pattern forming
modes as described in the text for Ry = 2-10% and u; = 46.4. Time ¢ is on the
horizontal axis.

The analysis is done for U, = 46.4. For this value, the stability analy-
sis gives the leading mode for k = 0.0267 and complex eigenvalue (k) =
4.615 - 1074 + 0.0119 4. Accordingly, the period of temporal oscillations is
27 /Tm()\) = 527.55. The oscillation period in the computations is practically
the same (approximately around 500). According to the stability analysis, the
spatially structured oscillating mode grows at a quicker rate than the homoge-
neously oscillating mode (Re[A(k)] > Re[A(0)]), which has to be tested on the
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full pde simulation. Therefore two functions of the field &,(z, L,t) on the gas
semiconductor interface are studied: the transversally averaged field

L,
ghom(t) — / i_x SZ(L,.’E,t) ) (848)
0 2

and the spatial modulation of the field
Espatial(t) = (max &, (L, z,t) — min&, (L, z,t)) . (8.49)

Plots of these functions can be seen in the upper two panels of Fig. 8.9. In
the lower two panels of the figure, the evolution of log|Epom(t) — E0(L)| and
log |Espatial(t)| is plotted. The line through the maxima of the logarithms is
approximately a straight line, which means that the growth is exponential. The
slope of the line through log|Espatiai(t)| is slightly steeper which implies that
dominant mode has non-vanishing wave length. Therefore Re[A(k)] > Re[A(0)]
is confirmed. Of course, this is only a first indication that numerical results
behave as stability analysis predicts.

8.3.4 Spatio-temporal patterns

Further investigation of the results in Fig. 8.8 shows that for some lower values
of the applied voltage, temporal oscillations seemed to reach a limit cycle, and
fully developed spatio-temporal structures can be observed. A closer look into
the spatial structure for one of those parameters (u, = 40) is represented in
Fig. 8.10.

The result of the stability analysis is that at k = 0.03 there is a maximum
value of the real part of the eigenvalue. Consequently, the characteristic length
scale is 27 /k ~ 200 and indeed one can see that there are three peaks equally
distributed over the length 600. Actually, initially we started with the small
perturbation of that wave length. But the perturbation is not smeared out. On
the contrary, the amplitude is growing (Fig. 8.11). In Fig. 8.10a) only one instant
of time (t=19840) is shown, though that mode is selected from the beginning
and preserved until the time of approximately 20000. Let us first focus on the
regular structure of these three localized peaks.

Fig. 8.11 shows the evolution of temporal oscillations with the small spatial
perturbation. Both temporal oscillations and the amplitude of the spatial mo-
dulation are growing as can be seen in the first part of that figure (Fig. 8.11a))
which shows evolution until the time 6000. The second part of the figure shows
evolution from time 7600 up to 12000. There, one can notice that temporal
oscillations are still growing but at a slower rate, while on top of them there is
a periodic spatial modulation, which seems to persist with the same amplitude
during these few periods. The spatial amplitudes of ion densities always remain
the same and profiles behave as a standing wave. There are three maxima and
at some other instant of time, there are three minima at the same points of
space. To see that more clearly, it is instructive to plot the evolution of the ion
density within a larger time interval. That has been done in Fig. 8.12a) for the
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time interval 14000-26000, which is a continuation of the previously shown time
evolution in Fig. 8.11. Fig. 8.12a) shows that there is indeed analogy with the
standing wave with the only difference that the amplitudes corresponding to
minima and maxima of ion density concentrations are increasing with the time.
Furthermore, one can notice that disturbance of this regular structure starts to
appear around time 2000. Then non-linear effects lead to the selection of two
times bigger k-mode (see e.g. Fig. 8.10b). Different view point of Fig. 8.12a),
given in Fig. 8.12b) shows clearly that behavior, as well.

From what has been said above, one can conclude that there are temporal
oscillations with small spatial distribution. But for the ion density at some
later stage this is not correct anymore, since then the homogeneous mode stops
being dominant. Fig. 8.12b) shows that the temporal oscillations of p approach
a limit cycle while the amplitude of spatial modulation grows until it becomes of
the same order of magnitude as the amplitude of temporal oscillations. At this
point the wave length of the spatial mode tends to double. Unfortunately, due
to the above mentioned limitation of the numerical code, the further evolution
of the spatio-temporal structure is not studied.

Nevertheless, the program was successful for a sufficiently long time to ob-
serve the formation of some spatial structures. This pattern Fig. 8.12a) is pe-
riodic in both time and space. The amplitude of spatial oscillation seems to
grow, while temporal oscillations reached a limit cycle according to Fig. 8.8.

To summarize, what we have observed in this (Figs. 8.10-8.12) and a number
of other simulations is that the wave number of the dominant mode is very small
kmae < 1, so that the growth rate of this mode is similar to the growth rate
of the homogeneous mode k = 0. That implies that the k¥ = 0 mode can easily
be excited, as well. Due to the imperfect initial condition, that is exactly what
happens. On top of the homogeneous oscillations there is a spatial modulation
and with the time the amplitude of the spatial structure becomes comparable
with the amplitude of the temporal oscillations. As an initial condition we use
a stationary state obtained as a solution of ODE’s and then we import this
data file into the program solving full PDE’s. Doing that we are bound to
insert a numerical noise sufficient to excite the homogeneous mode. Initially,
for the small amplitudes, results are in agreement with the stability analysis
predictions, while for larger amplitudes, results are showing new and interesting
features.
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== Uil

Figure 8.10: Profiles of the electron and ion densities in the discharge region
and the potential in the whole system at two instants of time for the previously
investigated parameters R, = 2 - 10% and u, = 40. Shown are 3D plots above
with the corresponding contour lines in the zz plane below. The transversal
dimension is L, = 600.
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a)

600

Figure 8.11: 3D visualization of the evolution of ion density. a) From the
beginning, with the initial spatial modulation of the same wave length as the
leading mode. b) Few periods of time at some later stage.
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Figure 8.12: Two different plots of the same evolution of the ion density in two
slightly different time intervals. a) Formation of the spatio-temporal pattern.
b) Increase of the spatial amplitude of ion density distribution.
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8.3.5 Outlook

The numerical example of spatio-temporal structure discussed in Figs. 8.10-8.12
can be related to experimentally observed blinking filaments (see Chapter 3,
Fig. 3.3). The spatio-temporal dynamics of these filaments is rather complicated
and not very well studied. The characteristic wave length of these filaments [70]
is found to be much smaller than the wave length of our numerically observed
structure. However, in Fig. 5.2(a) and (b) of the thesis [12], a spatio-temporal
structure called ‘band structure’ has been observed as some transient structure
towards smaller blinking filaments. The wave length of this ‘band structure’
turns out to be of the same order of magnitude (=~ 300) as our numerically
observed structure (=~ 200). This agreement shows once again, that our simple
model captures all relevant physics and is able to explain (qualitatively and
to some extent even quantitatively) complicated spatio-temporal dynamics of
experimentally observed structures.

Furthermore, it should be noted that the parameters used in these simula-
tions were not suited for the investigation of stationary spatial patterns. Actu-
ally, stationary stripe patterns [57] were found experimentally in the completely
different parameter range than the one investigated here. Anyhow, logical con-
tinuation of the research done in this thesis, includes investigation of these
parameters in two dimensions, as well; and indeed, spatio-temporal structure
corresponding to experimental ‘band’ structure i.e., blinking filaments has been
found and discussed.

The main point is that within our parameters we have competition between
purely Hopf and Hopf-Turing bifurcation. The best would be to have purely
Turing bifurcation from the base homogeneous stationary state and then the
stationary spatial structure could be expected. A way how to find Turing bi-
furcation might be in more extensive investigation of the previous parameters
space (Subsection 8.1.4), so as to find a combination such that the branch of
the purely real eigenvalues would first become unstable.

Another way is to follow experimental observations. An experimental in-
dication where to search for stationary stripe pattern is: L = 86 — 90, L, =
108, R, = 107 — 10°, C; = 0.1, €, = 11 — 12 and for the applied voltage ap-
proximately around u; = 65. Stationary hexagon structures should be searched
for in the similar range of parameters. For the simulation, these parameters are
computationally more expensive. Anyhow, the next step is certainly to explore
the wide range around these parameters and to obtain the bifurcation diagram.
Furthermore, to really see hexagons or stripes numerically, the third spatial
dimension has to be included as well.
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Summary

Experimental observations and theoretical problem setting:

A layered planar structure of a short gas discharge gap and a high ohmic semi-
conductor cathode exposed to a DC voltage can spontaneously generate a wealth
of spatio-temporal patterns. Such a system with a wide lateral aspect ratio has
been investigated extensively in the past years in the group of prof. H.-G.
Purwins at the University Miinster, Germany, in collaboration with scientists
from St. Petersburg and Moscow. Next to detailed experimental studies, their
theoretical investigations concentrated mainly on phenomenological models of
reaction-diffusion type for the two transversal directions of the system. Such
models are not derived systematically from the underlying gas discharge physics,
but are inspired from the investigation of similar structures in chemical, biologi-
cal, and semiconductor systems. With appropriately adjusted parameters, they
qualitatively describe the observed patterns. In contrast, the subject of this the-
sis is to understand these patterns starting from the underlying gas discharge
physics, and to examine to what extent phenomenological reaction diffusion
models are applicable. The thesis contains numerical and analytical results on
the stationary, homogeneously oscillating, and pattern forming solutions of the
system and comparison with the experiment.

Model:

The gas discharge system operates at the transition from Townsend to glow dis-
charge. We describe it by the classical minimal continuum approximation that
takes drift and space charge effects of electrons and positive ions into account, as
well as impact ionization in the gap and secondary emission from the cathode.
The semiconductor layer is treated in linear approximation. All details of the
model are given in Chapter 4.

Stationary solutions:

Parameter reduction by dimensional analysis allows studies of the full parameter
space of 1D stationary solutions on the transition from Townsend discharge to
the space charge dominated glow discharge regime. In Chapter 5, we present
the full numerical results as well as a systematic small current expansion about
the Townsend limit up to third order in the current, thereby revising previous
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results. For large pd (pressure of the gas times distance between the electrodes),
the current-voltage characteristics shows a textbook subcritical behavior. For
smaller pd, it does not immediately reach a supercritical characteristics, but for
any value of the secondary emission coefficient ~y first exhibits an unexpected
'mixed’ behavior. Furthermore, we state that the transition from Townsend to
glow discharge strongly depends on v, and we show that the earlier result of
Von Engel and Raizer on the small current expansion about the Townsend limit
actually is the limit of small v of our new systematic expression. The chapter
is based on the publications [85,89].

Oscillatory solutions:

The gas-discharge-semiconductor system exposed to a stationary voltage can
spontaneously attain a mode of temporal oscillations while staying spatially
homogeneous. In Chapter 6, this behavior is reproduced by our numerical solu-
tions, including the coexistence of stationary and oscillating solutions in certain
parameter regimes. Furthermore, we have investigated the linear stability of
the stationary state. The obtained results of the analysis are in agreement with
the numerical solutions of the full model. Therefore, they have been used to
determine bifurcation diagrams for the transition from stationary to oscillating
solutions. Despite the minimal model and uncertainty about the precise internal
parameters, the results qualitatively (and to some extent even quantitatively)
reproduce experiments. This chapter is based on the paper [99].

Period doubling cascade and relation to reaction-diffusion models:

Investigating the parameter space of temporal oscillations numerically, we found
a cascade of period doubling events. This shows that the inner structure of the
discharge is more complex than can be described by a two-component reaction-
diffusion model with negative differential conductivity: The main point is that a
system with global negative differential conductivity due to space charge effects
in the gas gap cannot be treated as a system with local negative differential
conductivity. We also derived an alternative reduced model. Furthermore, we
have found an example where oscillations coexist with global positive differen-
tial conductivity of the current-voltage characteristics (Chapter 7) while any
reaction-diffusion model would require negative differential conductivity. These
results on spatially homogeneous and temporally oscillating solutions apply to
any gas discharge operated in sequence with a resistor with capacitance. The
results of this chapter appear in [91], except for the one on oscillations coexisting
with global positive differential conductivity that will be submitted elswhere.

Spatio-temporal patterns:

The system is investigated in two spatial dimensions i.e, one transversal spatial
dimension is added next to the previously investigated longitudinal direction.
Therefore, the stability analysis of the stationary state is extended to Fourier
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modes with a transversal wave vector k. The resulting dispersion curve deter-
mines whether a spatially homogeneous or a spatially structured pattern can be
expected to emerge from a perturbation of the homogeneous stationary state.
Staying within the same parameter regime as in all previous chapters, it is found
that either purely Hopf bifurcation or Turing-Hopf bifurcation takes place. One
example of Turing-Hopf bifurcation has been investigated in more detail. In
parallel, the two-dimensional dynamical gas-discharge-semiconductor system is
solved numerically using a finite difference technique. Some preliminary results
are presented and within their linear growth phase, they are in agreement with
stability analysis results. Further development of the spatio-temporal structure
exhibits new dynamical features. Our numerical results can be related to the
experimentally observed blinking filaments regime. Furthermore, it is found
that the wave length of the spatial structure directly corresponds to the wave
length of the experimental ‘band’ structure [12]. The paper based on this last
chapter is in preparation.






Samenvatting

Experimentele waarnemingen en formulering van het theoretische
probleem

Ons systeem bestaat uit twee smalle parallele lagen; een laag waarin de gasont-
lading plaatsvindt en een halfgeleider met een grote weerstand. Wanneer men
over deze structuur een gelijkspanning aanlegt, kan een gasontlading plaatsvin-
den en een grote varieteit aan patronenen spontaan optreden. Een dergelijk
systeem, dat veel breder is dan hoog, is de afgelopen jaren intensief bestudeerd
in de groep van prof. H.-G. Purwins in de Universiteit van Miinster, Duitsland
in samenwerking met wetenschappers uit St. Petersburg en Moskou. Naast
gedetailleerde experimenten richtte hun theoretische onderzoek zich vooral op
phenomenologische reactie-diffusie modellen voor de beide transversale richtin-
gen van het systeem. Dergelijke modellen zijn niet systematisch afgeleid uit de
onderliggende gasontladingsfysica, maar worden veel meer geinspireerd door het
onderzoek aan gelijksoortige structuren in biologische, chemische en halfgeleider
systemen. Deze methodes beschrijven de geobserveerde patronen kwalitatief, als
men de parameters juist kiest. Het onderwerp van dit proefschrift is daarente-
gen, de patronen te begrijpen startend vanuit de onderliggende gasontladingsfys-
ica. Ook willen wij onderzoeken in hoeverre phenomenologische reactie-diffusie
modellen toepasbaar zijn. Het proefschrift bevat numerieke en analytische re-
sultaten over de oplossingen van het systeem. Deze kunnen naast stationaire
en homogeen oscillerende patronen ook patronen vormen die in ruimte en tijd
oscilleren. Daarnaast zullen we de resultaten vergelijken met de experimenten.

Het model

We bekijken een gasontladingssysteem dat zich bevindt in de overgang van
de Townsend ontlading naar de glimontlading. We beschrijven het met een
klassieke minimale continuum benadering, waarin rekening gehouden wordt met
drift en ruimteladingseffecten van de elektronen en positieve ionen. Ook nemen
wij botsingsionisatie en secundaire emissie van elektronen van de kathode in het
model mee. Alle details van het model worden gegeven in hoofdstuk 4.
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Stationaire oplossingen

Reductie van de parameters door dimensionele analyse maakt het mogelijk het
volledige parameter regime van 1-dimensionale oplossingen van de overgang van
de Townsend ontlading naar het door de ruimtelading gedomineerde glimont-
lading regime te bestuderen. In hoofdstuk 5 presenteren we zowel de volledige
numerieke resultaten als een systematische expansie in kleine stroom rond de
Townsend limiet tot derde orde in de stroom. Hierin herzien en becommen-
tarieren we oude resulaten. Als de parameter pd groot is, heeft de stroom-
spanningskarakteristiek het subkritische gedrag dat bekend is uit de leerboeken.
Voor kleinere waardes van pd bereikt het niet onmiddellijk superkritisch gedrag,
maar vertoont voor elke waarde van de secundaire emissie coefficient v eerst
een onverwacht gemengd gedrag. Verder tonen wij aan dat de overgang van
Townsend- naar glimontlading sterk afhangt van -, en dat het eerdere resultaat
van Von Engel en Raizer van de expansie voor kleine stroom rond de Townsend
limiet eigenlijk de limiet is van onze systematische expansie voor kleine ~. Het
hoofdstuk is gebaseerd op de artikelen [85,89)].

Oscillerende oplossingen

Het systeem dat bestaat uit een gasontlading die gekoppeld is aan een halfgelei-
der kan spontaan een toestand met oscillaties in de tijd aannemen, wanneer
het wordt blootgesteld aan een stationaire spanning, terwijl het homogeen in
de ruimte blijft. In hoofdstuk 6 wordt dit gedrag gereproduceerd door onze
numerieke oplossingen. Ook zien wij bepaalde regimes van de parameters waar
beide toestanden (stationair en oscillerend) tegelijk optreden. Wij hebben ook
een lineaire stabiliteitsanalyse van de stationaire toestand uitgevoerd. De re-
sultaten hiervan tonen overeenstemming met de numerieke simulaties van het
volledige model. Daarom kunnen deze resultaten gebruikt worden om het bi-
furcatiediagram van de overgang van stationaire naar oscillerende oplossingen
te bepalen. Ondanks het gebruik van een minimaal model en onzekerheid over
de interne parameters reproduceren de resultaten de experimenten kwalitatief
en tot op zekere hoogte kwantitatief. Dit hoofdstuk is gebaseerd op artikel [99].

Een cascade van verdubbellingen van de periodes en de relatie met
reactie-diffusie modellen

Na het numeriek onderzoek van de parameterruimte van tijdelijke oscillaties
vonden we een cascade van verdubbellingen van de periodes. Dit toont aan dat
de structuur binnenin de ontlading complexer is dan een systeem dat beschreven
kan worden door een reactie-diffusie model met twee componenten met negatieve
differentiele geleiding. Het belangrijkste punt is dat een systeem waarin een
globale negatieve differentiele geleiding ontstaat door effecten van de ruimte-
lading, niet behandeld kan worden als een systeem met locale negatieve differ-
entiele geleiding. We hebben ook een alternatief gereduceerd model afgeleid.
Verder hebben we ook een numeriek voorbeeld gevonden van de oscillaties wan-
neer de stroom-spanningskarakteristiek een positieve differentiele geleiding heeft
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(hoofstuk 7). Aangezien elk reactie-diffusie systeem voor een stabiele oscillatie
negatieve differentiele geleiding vereist, kan het ons systeem niet beschrijven.
Deze resultaten over oplossingen, die homogeen zijn in de ruimte en oscillaties
vertonen in de tijd, beperken zich niet tot ons systeem, maar zijn eveneens
toepasbaar op elk gasontladingssysteem dat in serie werkt met een weerstand
en een condensator, die parallel aan elkaar geschakeld zijn. De resultaten zijn
grotendeels te vinden in [91], een artikel over oscillaties in het geval van positieve
differentiele geleiding is in voorbereiding.

Patronen varierend in ruimte en tijd

Om ruimtelijke patronen te begrijpen, doen we de stabiliteitsanalyse van de
stationaire toestand met Fourier modes met transversale golfvector k. De dis-
persiecurve die we hieruit verkrijgen, bepaalt of een patroon met ruimtelijke
structuur kan ontstaan door een verstoring van de homogene stationaire toe-
stand. We blijven in hetzelfde parameterregime als in alle voorgaande hoofs-
tukken en vinden dat ofwel pure Hopf-bifurcaties ofwel Turing-Hopf bifurcaties
plaatsvinden. Een voorbeeld van een Turing-Hopf bifurcatie is tot in meer detail
bestudeerd. Parallel hieraan is het tweedimensionale dynamische gasontladings-
halfgeleider systeem numeriek opgelost met behulp van een eindige-differentie
methode. Enkele voorlopige resultaten worden getoond en zijn in overeenstem-
ming met de analytische resultaten van de lineaire stabiliteitsanalyse binnen
het gebied waar deze geldig is, de fase van lineaire groei. Verdere ontwikkeling
van de structuren, die ruimte- en tijdafhankelijk zijn, toont nieuwe dynamische
eigenschappen. Onze numerieke resultaten kunnen gerelateerd worden aan het
experimenteel geobserveerde regime met flikkerende filamenten. Verder von-
den wij dat de golflengte van de ruimtelijke structuur correspondeert met de
golflengte van de experimentele bandstructuur [12]. Het artikel gebaseerd op
het laatste hoofdstuk is in voorbereiding.






Rezime

Eksperimentalna postavka i teoretski model

Slojevita struktura sacinjena od gasnog sloja i visokoomskog poluprovodnika,
tretirana jednosmernim naponom, moze generisati raznolika prostorno-vremenski
zavisna elektricna praznjenja, pracena pojavom svetlosti. Slicna struktura,
sa dominantnim planarnim karakteristikama, se ve¢ duze vreme intenzivno is-
trazuje u grupi prof. H.-G. Purwins-a sa univerziteta Munster u Nemackoj u
saradnji sa naucnicima iz St. Petersburg-a i Moskve. Uporedno sa eksperimen-
tima, njihova teoretska razmatranja se uglavnom fokusiraju na fenomenoloskom
modelu reakciono-difuzionog tipa po transverzalnim pravcima strukture. U biti,
taj model ne proizilazi iz bazne fizike gasnih praznjenja, veé¢ se vise oslanja
na rezultate dobijene u fenomenoloski slicnim i dobro prou¢enim strukturama,
ali hemijskim i bioloskim, u kojima se, posle pazljivog uskladjivanja param-
etara, mogu dobiti kvantitativni rezultati koji odgovaraju eksperimentalnim. U
ovoj tezi ¢e se, nasuprot izlozenom modelu, krenuti od osnovnih mikroskopskih
procesa fizike gasnih praznjenja ka objasnjenju i kvantitativnom opisu posma-
tranih fenomena, tokom kojeg ¢e se dobijeni rezultati porediti sa rezultatima
reakciono-difuzionog modela. Ova teza se sastoji od numerickih i analitickih
rezultata dobijenih za stacionarno i homogeno-oscilatorno stanje sistema (kao i
za stanje sistema koje je periodi¢no i u vremenu i u prostoru), koji su analizirani
i uporedjeni sa eksperimentalno dobijenim rezultatima.

Model

Gasni deo sistema ¢e se posmatrati u rezimu prelaza sa Townsend praznjenja
ka praznjenju prac¢enom svetlosé¢u. Opisan je minimalnim modelom sa kontin-
ualnom (fluidnom) aproksimacijom. U model su ukljuceni efekti povrsinskog
i prostornog naelektrisanja, koje potice od elektrona i pozitivnih jona, kao i
efekti udarne jonizacije u gasnom prostoru (« proces) i sekundarne emisije elek-
trona sa katode (y proces). Poluprovodnicki deo sistema se opisuje linearnom
aproksimacijom. Vise o samom modelu se moze naé¢i u Poglavlju 4.

Stacionarna resSenja

Redukcija parametara u dimenzionalnoj analizi omogucava proucavanje celog
parametarskog faznog prostora u jedno-dimenzionalnom stacionarnom resenju,
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koje je u prelazu sa Townsend praznjenja ka dominantno svetlosnom praznjenju.
U Poglavlju 5 prikazani su potpuni numericki rezultati kao i sistematski razvoj
slabe struje u okolini Townsend limita, treceg reda, koji su doveli do revizije
prethodnih rezultata. Jedni od parametara faznog prostora su pritisak pod
kojim se gas nalazi u kapsuli (predstavljen sa p) i udaljenost elektroda na kra-
jevima kapsule (predstavljen sa d). Za dovoljno veliki proizvod pd, strujno-
naponska karakteristika pokazuje karakteristicno subkriticno ponasanje, dok se
za dovoljno mali proizvod pd ne dostize odmah superkriticno ponasanje, ve¢ se
za bilo koju vrednost koeficijenta sekundarne emisije v prvo ulazi u neocekivano
‘miksovano’ ponasanje. Dalje se pokazuje da prelaz sa Townsend praznjenja ka
svetlosnom praznjenju snazno zavisi od v, i da prethodni rezultati, dobijeni od
strane Von Engel-a i Raizer-a o razvoju male struje u okolini Townsend limita,
u stvari predstavljaju limit od malog v u nasem novom sistematskom prikazu.
Rezultati Poglavlja 5 su objavljeni u radovima [85,89)].

Oscilatorna resenja

Gasno-poluprovodnicki sistem pod konstantnim naponom moze spontano dobiti
vremenski oscilatorna praznjenja pra¢ena luminiscencijom koja su prostorno ho-
mogena. U Poglavlju 6 se takvo ponasanje reprodukuje u numerickom resenju
i prosiruje sa dodatnim stanjem u kojem koegzistiraju stacionarno i oscilatorno
reSenje u odgovarajuéem rezimu parametara. Prikazana je takodje i analiza lin-
earne stabilnosti stacionarnog stanja. Dobijeni rezultati su u potpunoj saglas-
nosti sa numerickim rezultatima i stoga se mogu koristiti za odredjivanje faznog
dijagrama prelaza iz stacionarnog ka oscilatornom rezimu. Uprkos minimal-
nom modelu i neodredjenosti koja je uneta usled prirode internih parametara,
dobijeni rezultati kvalitativno i do neke mere cak i kvantitativno odslikavaju
eksperimentalno dobijene podatke. Poglavlje 6 se bazira na publikaciji [99].

Odnos bifurkacije sa udvostruéenjem perioda i reakciono-difuzionog
modela

Numericko istrazivanje parametarskog prostora vremenski zavisnih oscilacija
je otkrilo pojavu umnozavanja perioda oscilacija. Uvazavajuci ¢injenicu da u
dvo-komponentnom reakciono-difuzionom modelu to nije moguce, zakljuceno
je da je unutrasnja struktura praznjenja mnogo kompleksnija nego sto se to
do sada mislilo. Fizicko objasnjenje lezi u ¢injenici da se sistem sa global-
nom negativno-diferencijalnom provodljivoscéu, usled efekata prostornog naelek-
trisanja u gasnom delu sistema, ne moze predstavi kao sistem sa lokalnom
negativno-diferencijalnom provodljivoséu. Longitudinalna dimenzija sistema
igra vaznu ulogu i efektivni 2D modeli nisu adekvatni za nas sistem. To je
nametnulo potrebu da se sistematski izvede i alternativni, redukovan model sis-
tema. Pronadjen je primer u kome su oscilacije prisutne cak i sa pozitivno-
diferencijalnom provodljivoséu strujno-naponske karakteristike (Poglavlje 7),
§to je u potpunoj suprotnosti sa reakciono-difuzionim modelom koji zahteva
negativnu-diferencijalnu provodljivost. Takvi rezultati, za prostorno homogena
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1 vremenski oscilatorna resenja, se mogu primeniti za bilo koja gasna praznjenja
koja funkcionisu u rednoj vezi otpornika sa paralelnim kondenzatorom. Rezul-
tati prikazani u Poglavlju 7 su bazirani na [91], izuzev dela koji se odnosi na
postojanje oscilacija pri globalnoj pozitivno-diferencijalnoj provodljivosti, koji
jos nisu objavljeni.

Prostorno-vremenski oblici luminiscencija

Prethodni sistem se sada istrazuje u dve prostorne dimenzije, tako da se jedna
transverzalna prostorna dimenzija dodaje na prethodno istrazivani longitudi-
nalni pravac. Stoga se analiza stabilnosti stacionarnog stanja prosiruje Fourier-
ovim modom sa transverzalnim talasnim vektorom k. Rezultirajuéa disperziona
kriva odredjuje da li ¢e se, posle promena iz homogenog i stacionarnog stanja,
formirati prostorno homogeni ili prostorno strukturirani oblici. Zadrzavajuéi isti
rezim parametara, kao i u prethodnim istrazivanjima, pronadjeno je da se mogu
ocekivati jedino cista Hopf bifurkacija (razdvajanje) ili Turing-Hopf bifurkacija.
Jedan od primera Turing-Hopf bifurkacija je detaljno istrazen. Paralelno sa tim
istrazivanjem, numericki je resen gasno-poluprovodnicki sistem u dve dimenz-
ije, uz koriscenje diskretizacione metode konac¢nih zapremina. Deo preliminarnih
rezultata je predstavljen i oni se slazu sa rezultatima analize stabilnosti u okviru
njene validnosti. Dalji razvoj prostorno-vremenskih struktura je doveo do novih
dinamickih svojstava. Interesantno je da se numericka reSenja mogu povezati sa
eksperimentalno uo¢enom pojavom trepéucih filamenata u gasu. Povrh svega,
pronadjeno je da je talasna duzina takvih prostornih struktura direktno pro-
porcionalna talasnoj duzini eksperimentalne ‘trakaste’ strukture [12]. Izlozeni
rezultati se nalaze u Poglavlju 8 i u pripremi su za publikovanje.
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