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I

Tweemaal differenticerbare, enkelvoudig samenhangende spicgeloppervlakken die in
combinatic met een puntbron als lamp geen oneindige intensiteiten in het gereflec-
teerde licht opleveren, worden in dit proefschrift geclassificeerd op grond van de
kromming van het golffront van het gereflecteerde licht. Convexe en concave golf-
fronten corresponderen met wat men in de praktijk convergente en divergente stralen-
gangen noemt.

[ Dit proefschrift, Hoofdstuk 6, Stelling 6.5.4.]

II

Dét we zoveel klassificeren, is 'n gevolg van ons weinig weten en beperkt verstand.
Om over 't weinige, dat onder ons waarnemingsvermogen valt, te heersen, hebben wy
de toepassing van 't divide et impera nodig.

[ Multatuli, Ideeén, Derde Bundel (1871), uit Idee 600.]

I1I

Voor hyperbolische stralengangen is er geen gangbare term in de verlichtingswereld.
Dit illustreert het feit dat dit type oplossingen daar nog onbekend is en nauwelijks
gebruikt wordt. Voor optisch ontwerpers liggen hier mogelijkheden tot vernieuwing.

IV

Laat 6: [f;, ] = R cen gladde, niet-dalende functie zijn, en laat f een gladde, on-
even functie zijn met een convexe, niet-negatieve afgeleide. Wat is dan de maximale
waarde van de functionaal J(0) = f,j’ f(s 4+ 6(s))ds over alle 6: [t1, 1] > R die
‘rearrangements’ zijn van 07 Als [|60'||s < 2 enals 6/(1) = % voor slechts een eindig
aantal waarden ¢, dan is de optimale 6 analytisch te beschrijven. Deze functie is dan
V-vormig, en continu op de linker vleugel van de V.

[ Dit proefschrift, Hoofdstuk 4.]



Vv

Laat een bolvormige lichtbron gecentreerd geplaatst zijn op de symmetrie-as van ecn
kegelvormige reflector. Afhankelijk van de hoek waaruit men in de optiek kijkt, is het
deel van de reflector dat licht weerkaatst hetzij één ringvormig gebied, of het bestaat
uit twee, onderling niet met elkaar verbonden, enkelvoudig samenhangende gebieden.

[ Dit proefschrift, Hoofdstuk 5.]

VI

Het in de praktijk gangbare gebruik van vierhoekige facetten bij het ontwerpen van
reflectoren, is zeer ongeschikt wanneer er geen sprake is van rotatic- of cylindersym-
metric.

VII

Een vuistregel in de straatverlichting is dat de maximale afstand tussen twee lantaarn-
palen 6 maal de hoogte bedraagt. Theoretisch is die afstand 277 maal de hoogte.

VIII

In de studie van topologische eigenschappen van digitale beelden, heeft men gepro-
beerd topologieén op digitale beelden te definiéren, zodat samenhangende verzamelin-
gen in de topologische zin samenvallen met verzamelingen pixels die via buurpixels
aan elkaar verbonden zijn. De resultaten in [1] en [2] behandelen speciale gevallen
van de vraag: voor welke grafen kan men een topologie op de verzameling hockpun-
ten definiéren zodanig dat de samenhangende verzamelingen in graaftheoretische en
in topologische zin samenvallen? Dit zijn precies de ‘comparability’ grafen, d.w.z.
grafen waarvan de zijden transitief oriénteerbaar zijn [3]. Uit deze stelling volgen de
resultaten van [1] en [2] onmiddellijk.

[ (1] Solution to Problem 5712, The American Mathematical Monthly 77, 1970, p. 1119.

[2] J.-M. Chassery, Connectivity and Consecutivity in Digital Pictures, Computer Graphics and Image

Processing, 9, 1979, pp. 294-300.
[31 M.J.J.J.B. Maes en H.D.L. Hollmann, niet gepubliceerd manuscript, 1991. ]

IX

Anything is a work of art, if you take the time to frame it.

[Jack Hardy, from the album “Through”, 1991.]

X

The front row is not for the fragile.

[ Nick Cave, Groningen, 1982.]
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Chapter 1

Introduction

1.1 Reflector Design in Practice

This thesis describes some of the results of a long-term research project on reflec-
tor design, carried out within Philips Research Laboratories. A basic problem in
lighting technology is to design an optical system that illuminates a certain object
in a prescribed manner. In many lighting systems, the proper design of a reflector
is essential to obtain a required lighting effect. The reflector design problem is that
of finding a reflector which, in combination with a known light source, produces a
required light distribution, under several additional conditions such as geometric
constraints.

For Philips Lighting, reflector design has applications in a wide variety of
products such as road or playground lighting systems, but also e.g. in Liquid Crys-
tal Display back-lighting and in Projection TV.

Practical reflector design has long been a matter of craftsmanship. Presently,
computer tools are more and more used to speed up the design process, and to
come to new or better reflectors. Let us have a look at the practical design pro-
cess, and see where exactly computer tools based on mathematical methods can
contribute. The overall design process generally consists of the following four
steps.

The first step is that of the problem specification. The requirements of a cus-
tomer are translated into a problem formulation for the designer. The requirements
will always consist of a desired lighting effect and of geometrical constraints on
the lighting system. Additionally, economic, aesthetical, and even strategic or le-
gal considerations may be important. The designer’s role starts with translating
these requirements to the choice of a light source, and to a more formal specifica-
tion of geometric constraints and of a required illuminance for the system.

1



2 1. Introduction

The second step is that of a simplification of the problem. In its most general
form, the reflector design problem is too difficult to handle. So reflection is usually
assumed to be specular and light sources are assumed to be geometrically simple.
For instance, in the case of Low Voltage Halogen or UHP lamps one can safely
assume the light source to be a point source. Also, in initial stages the problem
is often treated two-dimensionally. Very often, designers choose for reflectors
consisting of planar facets.

The third step, and this is the most difficult step, is to achieve a correspon-
dence between facets and parts of the required light distribution, such that all the
contributions of the facets add up to the required distribution, while the facets
form a connected surface satisfying the prescribed geometric constraints. Usu-
ally it is attempted to do this in such a way that multiple reflections do not occur
and that reflected rays do not re-enter the light source. Typically, this step is very
time-consuming, and is usually one of trial and error. In this third step, mathe-
matical insight and computer tools based on mathematical methods can contribute
significantly.

The fourth step is that of verification, which may either be done on a computer
(e.g. by ray-tracing), or at a later stage by prototyping and measuring. For ray-
tracing, many computer programs have become available in recent years.

1.1.1 The Aim of our Research and of this Thesis

The aim of our research project has been to assist the optical designer’s design
process by a better theoretical understanding of the subject, as well as by imple-
menting new design methods in computer tools. Our research project has resulted
in dedicated computer tools for 2D and 3D problems with small light sources.

We have focussed on contributing to the third design step, by a mathematical
approach to the problem, rather than by trial and error. To allow mathematical
treatment, we too have had to make several simplifying assumptions, usually quite
similar to those of the designers. Most importantly, we have assumed light sources
to be very small. Our assumptions will be discussed in more detail in Section 2.3.

In this thesis, I give an overview of the mathematics behind the methods we
employed. A mathematical understanding of the problem is in my opinion crucial
in order to discover successful heuristic methods to actually solve the problem. In
the 2D case, I give a complete overview of our method, as well as of practical and
mathematical issues which play a role. In the 3D case, this thesis is restricted to
results that give a better insight into the problem, and which formed the basis for
our heuristic approach, but our actual method had to be excluded here.

As the readers of this thesis will notice, various mathematical disciplines are
being applied to reflector design. I have attempted to write this thesis such that



1.2. Other Approaches; Literature Overview 3

it is accessible to readers with a general mathematical background. Whenever
more specific knowledge is required, necessary definitions as well as references
are included.

1.2 Other Approaches; Literature Overview

Literature on reflector design for non-imaging optics is relatively sparse. Optical
design for lighting applications has always been, and still is, a speciality that is
mainly exercised by practical craftsmen. The scientific world has always had little
interest in non-imaging optics, as compared to that in imaging optics.

When it comes to literature on reflector design, we can distinguish between
articles dealing with specific solutions for practical problems, and those dealing
with more general design methods for a wider range of applications. We are
interested in the latter. We can then distinguish between the literature which deals
with the direct problem and that which deals with the inverse problem. The direct
problem is the problem of calculating the achieved light distribution for a given
source and reflector, while the inverse problem concerns computing the reflector,
given the lamp and the required light distribution. Examples of articles dealing
with the direct problem are [5, 31, 32, 40]. We will however mainly be concerned
with the inverse problem.

General methods for the inverse problem can be subdivided into the following
three categories:

e optimization methods,

e heuristic methods that attempt to formalize or automate the divide-and-
conquer approach for facetted reflectors,

e approaches based on a mathematical description in terms of partial differ-
ential equations of the problem for point sources and smooth reflector sur-
faces.

These categories will be discussed in more detail below. Let us first mention two
older publications that give an overview of the state of the art at the times they
were written.

An early standard work for optical designers is the book by Elmer [7]. This
book is very much written from the practical viewpoint, and does not really have
a mathematical approach to the problem. Weis [41] gives an overview of what
is known in the field by the late 70s. It appears that for 2D problems with point
sources, the basic solution is well-known, and published several times, e.g. in [1,
15, 45]. For 3D problems with point sources, Weis mentions some work that had
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been done mainly in the USSR. The more important developments in the 1970s,
published by Schruben [34] and by Westcott et al. (see below) are not mentioned.
For area sources, the inverse problem has only been dealt with for special, mostly
spherical or cylindrical sources, and usually for rotationally symmetric reflectors.
For more general cases, only the direct problem is considered.

It needs no explication that computer technology has had a big impact on
optical design methods. For the direct problem, fast methods based on ray tracing
or the calculation of view factors have become available. This in turn has opened
opportunities for methods based on optimization. When we have a description of
a class of reflectors by a limited set of parameters, we can try to find an optimal
set of parameters by doing many tests (i.e. direct calculations) while changing the
parameters in a clever way. This has proven to be feasible for 2D problems, see
e.g. [20,27]. In the 3D case, this approach has not yet been very successful. The
direct methods usually are not yet fast enough to get reasonable computing times.
Suitable parametric descriptions of reflectors are not obvious, and the difficulty to
provide good initial guesses for new problem classes is another bottleneck.

The availability of computers has also led to methods that try to automate the
time-consuming divide-and-conquer approach, see e.g. [26]. It is relatively easy
to automatically direct individual facets of a facetted reflector in such a way that
the sum of the contributions of the facets resembles the required distribution. The
hard part however, is to do this in such a way that a nicely shaped connected
reflector surface is obtained, especially if certain geometric constraints have to be
satisfied as well. What is usually lacking in heuristic approaches to achieve this,
is an understanding of what sort of light distributions or ray paths can actually
be realised by connected surfaces. This understanding can only come from a
more analytical, mathematical approach. For point sources, the fundamentals in
this field have been established in the literature that we will discuss in the next
section.

1.2.1 Literature on the Monge-Ampére Approach

The Monge-Ampere equation first appears in relation to reflector design for point
sources in an article by Schruben [34] in 1972. In that article, the near field
problem is considered: the required distribution is defined as an illuminance on
a plane, as opposed to the far field problem, where required intensities are de-
fined on angles. Schruben derives the non-linear partial differential equation that
describes the problem, thus expressing it as a singular elliptic Monge-Ampere
boundary-value problem. In the second half of the 1970s, Westcott and others at
the University of Southampton study the far field problem, having applications to
microwave antenna design in mind.
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Westcott and Norris [44] apply techniques of differential geometry to derive
the Monge-Ampere equation. Elliptic and hyperbolic solutions are being distin-
guished, and related to the number of caustic surfaces that may occur. As a special
case, even azimuthal symmetric fields are considered and numerical solutions for
this class of problems are presented in [28]. The hyperbolic case is further studied
in [3,43]. A derived set of quasi-linear equations is solved by a numerical finite
differences method.

Later, complex coordinates are used [2,4]. These simplify notation, but do
not seem to help in finding actual solutions to the problem. From the theoretical
viewpoint, questions of existence and uniqueness remain unanswered. For practi-
cal purposes, a bottleneck is the unavailability of good initial data, as pointed out
in the conclusions of [3].

In 1981, a first uniqueness result for 3D far field problems is obtained by
Marder [24]. It is shown that in the elliptic case, there are at most 2 solutions,
provided that either the incident of the reflected ray cone satisfies a convexity
condition. This condition is always fulfilled if one of the cones is circular. When
both cones are circular, and luminous intensities are close to radially symmetric
(in some Holder norm), then the existence of solutions can be proven, as was done
by Oliker [29] in 1987.

1.3 The Contents of this Thesis

Let us now summarize the contents of this thesis.

In Chapter 2, we introduce some Lighting terminology, and we define the
3D reflector design problem. We make several simplifying assumptions, such
that the problem allows a mathematical formulation that gives hope to find actual
solutions of the problem. The most important assumption is that we consider the
light source to be a point source. The Law of Reflection, and Conservation of
Energy are formulated.

If the 3D problem as sketched in Chapter 2 has rotational symmetry, then it
allows a 2D treatment. The same applies to a cylindrically symmetric problem
with an infinite line source. Chapter 3 deals with 2D problems. It will be shown
that in 2D, when we consider reflectors which produce smooth ray paths, then
there are at most two solutions corresponding to convergent and divergent ray
paths. However, when reflectors are allowed to be only piecewise smooth, then
infinitely many solutions may exist. We may then consider practically relevant
constraints, such as constraints on the size of the reflector.

This has led to the study of smallest and largest 2D reflectors that solve a
given problem. Chapter 4 is completely dedicated to this optimization problem.
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We have slightly generalized the optimization problem that we consider, and con-
sequently this chapter is to a large extent independent of the others.

The same holds for Chapter 5 which is the only chapter that deals with the
direct problem: that of computing the achieved light distribution for a given source
and reflector. In this chapter we consider 2D facetted reflectors with spherical and
cylindrical area sources. We show that in these cases intensities and illuminances
can be computed analytically, so direct calculations can be done much faster than
by straightforwardly using ray tracing methods.

It is not until Chapter 6 that we return to the actual 3D problem that we started
with. Rather than directly trying to solve the actual problem — which boils down
to solving a non-linear partial differential equation of the Monge-Ampere type —
we will classify the types of solutions that may occur. These types correspond to
hyperbolic and elliptic ray paths, where in the elliptic case we can further distin-
guish between convergent and divergent ray paths. Some fixed point properties of
these ray path types will be deduced. These results give insight in the geometry
of the ray paths, and have proven to be helpful in finding actual solutions to the
problem.

Finally, in Appendix A, we present a few examples of reflectors that have been
designed by heuristic methods, based on the theory in this thesis.



Chapter 2

3D Mathematical Problem
Statement

2.1 Introduction to the 3D Problem Statement

This chapter introduces the 3D reflector design problem for point sources that we
will consider. It is limited to the formulation of the problem and the basic laws
that play a role in reflector design. The 2D problems of the following chapter may
refer to a rotationally symmetric special case of the problem sketched here. In
Chapter 6, we will return to the 3D problem in more detail.

2.2 Lighting Terminology

We recall the basic notions of Lighting Theory that we will use. The terminology
in Lighting Theory can easily lead to confusion. This is partly due to the fact that
it has changed in the course of time, so different books may use different symbols,
names or units in the same context. We adopt the terminology used by Keitz [14],
unless indicated otherwise. For more details we refer to this book.

The luminous flux ® of a light source is the radiated energy per second, where
the energy is evaluated on the basis of the impression which it induces in the eye.
The usual unit of luminous flux is the lumen (Im).

For a point source, the luminous intensity, or just intensity I is the luminous
flux per solid angle. So the total intensity of the source and the intensity in a
certain direction are given by

D do
110, - E and 1 = E. (2])



8 2. 3D Mathematical Problem Statement

respectively, where d<2 is an infinitesimal solid angle. The unit of intensity is the
candela (cd).

The luminous flux received per unit area of an illuminated surface is called the
illumination (as it is called by Keitz and many others) or the illuminance (as it is
called in more modern books on Lighting standards). The symbol for illuminance
is E. The total illuminance of a surface S, and the illuminance at a certain point
of the surface, are given by

E i d E i 22
or = 75 an = s’ (2.2)
respectively. The unit of illuminance is lux.

Now, for point sources, it follows from (2.2) and (2.1) that E ds = 1d9.
Consequently, illuminance and intensity are related by the inverse square law,
which is

E— [ cosa 2.3)
= )
where E is the illuminance in a point on a surface at a distance d to the source,
and « is the angle between the normal to the surface at that point, and the line
joining the point and the source.

For area sources, the brightness of the source is given by the quotient of the
Iuminous intensity divided by the apparent surface of the light source. This used
to be called brightness and denoted by the symbol B, but the modern term is
luminance, denoted by the symbol L. The standard unit of luminance is the stilb,
but several other units are used as well. For a plane surface or a surface element
S, we find the luminance in direction « given by

Iy
Scosa’

o

where 1, is the intensity in direction a. The source is said to be a uniform diffuser
or a perfect diffuser if L, is constant (and thus L, = Lo for all o). This is the

case if for all o we have 7
o

cos o

= Iy,

where I is the intensity of the source in the direction perpendicular to the surface.
This latter equation is known as Lamberts law. A perfect diffuser is also often said
to be a surface radiating in accordance with Lamberts law. For a surface element
or a plane surface that is perfectly diffuse, the relation between /o and the flux
emitted by that surface is given by

7T10:d).
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There is one more definition that we need. Note that we have defined the in-
tensity distribution for point sources only. To define the intensity for area sources,
it makes sense to define it in such a way that the inverse square law holds in the
limiting case that the screen is moved infinitely far away from the source. So we
define I by

. Ed?
I = lim ,
d — o0 COs

where d and o may be measured relative to any fixed point on the source (the
choice of this point has no effect).

While 7 is the symbol we will use for the luminous intensity of the source,
we will write G for the required or achieved far field intensity of the source in
combination with a reflector. In Chapters 3 and 4, we will consider 2D problems,
and the 2D analogues of /, G and E, will be denoted Z, G and £.

2.3 Problem Simplification; Restrictions

As already indicated in the introduction, the reflector design problem in its most
general form cannot be modelled or solved by mathematical methods. We there-
fore have to make several assumptions that simplify the problem. We now give
a more detailed overview of these assumptions, which may differ from chapter
to chapter. In the introduction to each chapter we will be more precise about the
specific assumptions we make.

The Light Source. In the 3D case, we assume that the light source is a point
source with an arbitrary intensity profile. In the 2D case of Chapter 3, the 2D point
source of arbitrary intensity represents either a 3D point source with a rotationally
symmetric intensity, or it represents a line source of infinite length and homoge-
neous intensity. When studying the direct problem for area sources in Chapter 5,
we also consider infinite Lambertian cylinders, and Lambertian spheres as light
sources.

The Reflector. The reflector is assumed to be a specularly reflecting surface,
with a fixed reflection coefficient p. In the 3D case, this surface is assumed to be
smooth and simply connected. In the 2D case, we consider reflectors represented
by piecewise smooth curves.

The Required Light Distribution. The required distribution can either be an
intensity distribution defined on angles (the far field problem), or an illuminance
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on the screen (the near field problem). In both cases, we do not consider infinite
intensities. In the 3D case, we only consider far field problems. When we have a
screen in the 2D case, this screen refers to a planar disc or strip in 3D.

Other Constraints. We generally do not bother with multiple reflections, or
with reflected light re-entering the light source, although in the 2D case we do
give this subject some attention. Geometric constraints get special attention in
the 2D case, in the 3D case these are not really considered. Practical matters as
aesthetics, manufacturability, heat problems etc. are not considered here.

2.4 Notation for 3D Point Source Problems

In this section we define and introduce the notation for the 3D model problem.
Since we are dealing with a point source, it is natural to define the design problem
in spherical coordinates relative to this source.

Suppose we have a rectangular xyz-coordinate system in R?, with a point
source located at the origin. Rays that are emitted from the source and incident on
the reflector are represented by unit vectors

v :=v(t,u) ;= (cost,sint cosu, sint sinu), 2.4)
fort € [0, w] and u € [0, 27]. The reflector surface r(t, u) is given by
r:=r(t,u) = f(t,u)v(t, u), (2.5)

where f is twice differentiable, strictly positive, and where f(t,0) = f(z,2m)
for all t. The function f and the surface r are defined on some fixed ¢, u domain,
usually of the form ¢ € [r1, ;] and u € [0, 27r]. Note that the representation (2.5)
is well-defined for r = 0 only if f, = %f(t, u) =0att = 0,ie f(O,u)is
constant.

A reflected ray is denoted by the vector w (of unit length), which is often given
in spherical coordinates 6, ¢ as follows,

w:=w(d, ¢) := (—cos b, sinf cos ¢, sin 6 sin @), (2.6)
for® € [0, 7] and ¢ € [0, 27].

2.5 The Law of Reflection

The reflector surface r(¢, u) = f(t, u)v(t, u) has normal

r, Xr,
n=n,u) = 2.7)

r; x ru|’
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where r, = %r(t, u)andr, = %r(t, u).
According to the law of reflection, incident and reflected rays form equal an-
gles with the normal to the surface in the point of incidence. So we have

V.n = —Ww.n, (2.8)

or equivalently any of the following three expressions

w = v-—2(v.n).n, 2.9)

v = w-—2(w.n).n, (2.10)
. el 2.11)
N V2=2(v.w) )

2.6 Conservation of Energy; Problem Statement

Now let G be a required far field intensity pattern for the reflected light, let I be
the luminous intensity of the point source and let p be the reflection coefficient of
the reflector. We will consider the problem of finding a specular reflector that in
combination with the source produces the far field intensity G. Let the reflector
surface be described by a function f as above on a given 7, u domain.

Let us assume we have a one-to-one correspondence between incident and
reflected rays. Then the reflector produces the required intensity if and only if for
all v and corresponding w, we have

GwW)|dQ2| = pl (v)|dY|, (2.12)

where dQ2" and d2 are solid angles corresponding to incident and reflected ray
cones, respectively. We have

dQ = [v,v;,v,]dtdu = sint dr du, (2.13)
dQ = [w.wy. ws]d0dp = —sin6 do dg, (2.14)

where the scalar triple product [a, b, c] for vectors
a=(aj,az,a3), b= (b1, b2, b3) and ¢ = (cy, 2, ¢3)

is defined by
a) b] Cl
[a,b,c]:=a.(bxc)=|a b,
az b3y c3
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So [v, v;,v,] and [w, wy, wg] are Jacobians. When we evaluate these, we can
write the energy conservation equation as

G(w)sin6dod¢ = pl(v)sintdtdu. (2.15)

Now, for a given function f, we have the reflected rays w given by (2.9), and
f is a solution to the design problem if (2.15) holds in al directions. Of course,
such a reflector can only be found if the condition of global conservation of energy
is satisfied. So we should have

// G(w)sin0d6 dp = // ol (v)sint dt du. (2.16)

where the integration is over the appropriate domains.



Chapter 3

2D Problems with Point Sources

3.1 Introduction to 2D Problems

In this chapter we will see that the rotationally symmetric special case of the
3D problem of the previous chapter allows a 2D simplification, and it can be
solved easily. Also, cylindrically symmetric problems with line sources are treated
similarly. We consider both near and far field problems.

When we restrict ourselves to reflectors which produce smooth ray paths, then
there will usually be exactly two solutions to the problem: those with convergent
and divergent ray paths, respectively. However, when we allow the ray paths to
be only piecewise smooth, then infinitely many solutions can be found, and one
can pay attention to other conditions such as the absence of multiple reflections,
or geometric constraints.

In our study of 2D problems, we will give many examples and consider a few
specific problems, such as the uniform illumination of a circular disc.

3.2 2D Problem Statement

3.2.1 The Rotationally Symmetric Case

In this section we describe the rotationally symmetric 3D near field problem which
allows a 2D treatment. Consider Figure 3.1. Suppose we have a Euclidean xyz-
coordinate system in R?, with a point source located at the origin with a lumi-
nous intensity / (¢, u) in direction (cos?, sint cos u, sint sin #) which is rotation-
ally symmetric around the x-axis, i.e. it does not depend on u and we can write
I(¢) instead of 1 (¢, u).

Furthermore, suppose we have fixed angles t1, 1, € [0, 7) with t; < t, (often

13
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Figure 3.1: The rotationally symmetric case.

we will have t; = 0). Then a rotationally symmetric reflector around the x-axis
between angles #; and t can be described by a surface in R? with parametrization

r(t,u) := f(t)(cost,sintcosu,sintsinu), 3.1

where t € [t], 2] and u € [0, 2], and f is a continuous positive function.
Now, suppose that we have a screen that is represented by a disk S of the form

S:={(x,y.2) €R* | x = —h, y* + 2% < y3} (3.2)

for a fixed distance 4, and for fixed radius y,. We first derive a formula for the
direct illumination on the screen.

Proposition 3.2.1. The direct illumination E\ on S, caused by the source
of intensity 1(0), in direction (—cos 8, sin6 cos ¢, sin 6 sin ¢) (again I does not
depend on ¢) is given by

cos3 0

Ei(y,2) =1(0) = 1(9)—’12—. (3.3

(2 + 22 + h2)32
where 0, ¢ and y, 7 are related by y = htan cos ¢ and z = h tan 6 sin ¢.

Proof. A ray from the origin in direction (— cos®, siné cos ¢, sin 6 sin ¢)
intersects S in a point (—#, y, z) if and only if

y=htanf cos ¢ and z = htan 0 sin ¢,
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Figure 3.2: The cylindrically symmetric case.

o)
)

0 = arctan Lhﬁ 3.4

The proposition is now a consequence of the inverse square law (2.3). O

Now let E be a required illumination on S which is constant on circles in S
with center (—#, 0, 0), so E is of the form

E(y,z) =e(y*+7°) (3.5)

for some function e : [0, y,] — R™. We assume that e is a non-negative, integrable
function. We may assume that E is the required illumination for the reflected light
only: the direct light is known by the above proposition and can be subtracted. We
will consider the problem of determining a reflector of the form (3.1) that realizes
this required illumination E. In Section 3.2.5 we will show that this problem can
be solved by solving a corresponding 2D problem.

3.2.2 The Cylindrically Symmetric Case

We now describe the cylindrically symmetric 3D near field problem which allows
a 2D treatment. Consider Figure 3.2. Suppose that we have a rectangular xXyz-
coordinate system in R?, and that we have a linear, infinitely long light source /
that coincides with the z-axis, of uniform radiation. This means that a line ele-
ment d/ at position (0, 0, s) can be seen as a point source with intensity /;(6, x)
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in directions (— cos 6 sin x, sin@ sin x, cos x) of the screen, and with intensity
Ly (t, x) in directions (cos?sin x, sint sin x, cos x) of the reflector. The unifor-
mity of / implies that this intensity distribution is independent of s.

Furthermore, suppose we have fixed angles #;,7, € (—=m,m) with 1y < 1.
Then a cylindrical reflector for [ between angles #; and #, can be described by a
surface parameterized by

r(t,z) = (f(t)cost, f(t)sint, z), 3.6)

where f is a continuous positive function of t € [t1, 1], and where z € R.
Now, suppose that we have an infinite strip S (representing the screen) given
by
S:={(x,y.2) R’ |x=—h, y1 =y =} 3.7)

for fixed distance h and heights y; and y,. We first derive a formula for the direct
illumination on the screen. The following proposition was shown by Kruijer [17,

p- 15].

Proposition 3.2.2. The direct illumination E, on S, caused by the source |
as described above, equals

cosZ 6

h *
E\(y,2)=——3110)=

T I:(0), (3.8)

for any z, where 0 and y are related by y = htan0, and where

If(6) = / 10, x)sin x dx.
0

Proof. Consider a point (—h, y, z) € S and take an infinitesimal line element
dl at position (0, 0, s). A ray from dl in direction

(—cos @ sin x, sin @ sin x, cos x)

intersects S in (—h, y, z) if and only if

y = htan0,
h
Z = —_—
cos 6 tan x
SO
Y
g = arctanz. 3.9)
2 h2
5 — aretandd Y (3.10)

z—Ss
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where in (3.10) we have x = /2 if z = 5. Then the element d! contributes
a(y, 2)
a, x)

to the illumination in the point (—A, y, z). Therefore, the contribution of the whole
line equals

]
h
_ .3 0w
ds = 11(0, x)sin” x (2 + h2)3/2 g

dEi(y.2) = 11(9,x)sinx‘

h o0 .3
El()’,Z): mv/;ooll(e, X)Sll'l de

From (3.10) it follows that this equals

h b/
Ei(y,2) = —— [ 166, x)sinx dyx.
1y, 2) y2+h2/0 1(0, x) sin x dx
O

Now suppose we have a required illumination E on S which is independent
of z, so E is of the form
E(y,2) = e(y) (3.11)

for some function e : [y}, y.] > R". We again assume that e is a non-negative,
integrable function. We may assume that E is the required illumination for the
reflected light only: the direct light is known by the above proposition and can be
subtracted. We will consider the problem of determining a reflector of the form
(3.6) that realizes this required illumination E. In Section 3.2.5 we will show that
this problem can be solved by solving a corresponding 2D problem.

3.2.3 Geometry of the 2D Near Field Problem

We now introduce some notation for the 2D problem; see Figure 3.3. We assume
that a point source is located in the origin of a rectangular xy-coordinate system.
The directions of the rays that are emitted from the source are given in radians.
As in Section 2.4, there is a subtlety in the notation we use. Those rays that are
incident on the reflector are denoted by Arab letters, usually # or s, and they are
measured clockwise relative to the positive direction of the x-axis. Reflected rays,
and those emitted rays that are not incident on the reflector, are denoted by Greek
letters, usually 6 or ¥, and they are measured counterclockwise relative to the
negative direction of the x-axis.

We can describe the reflector by a function f : [t;,1,] — R, where the
reflector is located between angles ¢ and t,, with t; < t,, and where f(t) is the
distance from the source to the reflector in direction 7. The corresponding reflector
point is denoted r(z), i.e.

r(t) = f(t)(cost,sint), (3.12)



18 3. 2D Problems with Point Sources

........................................... Y2

t f(t) v(t) = (f(t) cost, f(t) sint)

t

4

........................................... Y1

Figure 3.3: The geometry of the 2D problem.

Figure 3.4: Illustration of the law of reflection.

so the reflector corresponds to the curve r : [f}, 1] — RZ. In the case of a near
field problem, the screen is represented by a segment of the line x = —h between
heights y; and y2 (y1 < y2)-
The direction of a ray that is reflected from the point r(t), is denoted 6(t).
Consider Figure 3.4 in which the 2D law of reflection is illustrated. As was
found by Keller [15], it can be formulated conveniently as
[ t+0(t)
—— = tan(
f@) 2
where we assume that the derivative f (1) exists.
The height at which the reflected ray enters the screen is denoted y(t). The
relation between y(r) and 6(¢) in terms of ¢ and f is as follows:

y#) — foysmt _ 6. (3.14)
h+ f(t)cost

Xs (3.13)
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Combining (3.13) and (3.14) gives y(¢) expressed in terms of # and f- We get

L(t_) = tan (i + 1arctan(y(t) —f@® Sint)) ‘
f® 22 h+ F(f)cost

(3.15)

3.2.4 The Direct Problem and Infinite Intensities

In this section we consider the so-called ‘direct problem’, i.e. the problem to de-
termine the intensity distribution G (or the illuminance £) when the reflector fis
known.

We first consider the far field case. Suppose we have a reflector described by
a function f which is twice differentiable in all but at most a finite number of
points. Then we find from (3.13) that

6(t) = 2arctan(§%) —t, (3.16)
and . i s
: 2ff=3f"-Ff

0(t) = : 3.17

1) 7 (3.17)

where we write f instead of f(1), etc.
Suppose that 6 is increasing on an interval § = [s1, s2]. Let the contribution
of that interval to the intensity distribution be called Gg. We have

0(1r) t
/0(51) Gs(¥)dy = f“ I(s)ds (3.18)
forall € S. Differentiating (3.18) with respect to ¢ gives
Gs(O(1))6(1) = I(1), (3.19)
) G50 = 20, (3.20)
6(t)

Similarly, we find G5(0(¢)) = —I(t)/é(t) if 6 is decreasing on S. Note that if
Z(t) = 1forall ¢, i.e. if the source has a uniform distribution, then

Gs(@(1) = 6(r)|~". (3.21)

It follows that if (z) — 0, then Gs(6(t)) — oo. Consequently, we find that if 0
is differentiable, and if infinite intensities are not allowed, then 6 must either be
strictly increasing or strictly decreasing.
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Note that from (3.16) it follows that the ray path 6(t) is not influenced by
scaling of the reflector: replacing f by cf for a positive constant ¢ gives the same
function 6(z), and therefore the same far field intensity.

An obvious example of a reflector which (theoretically) produces an infinite
intensity is a parabola. The parabola with focal distance p, and with axis in direc-
tion 6y is given by the equation

2p

T = T cos+00)

(3.22)
It is easily verified that in this case 0(t) = 6p and 6(t) = 0 for all t. The cor-
responding intensity distribution is then described by the Dirac function dg, :
R — {0, oo}, given by

oo if ¥ = 6,

S0 (V) = { 0  otherwise. (3:23)

In the near field case, we have a similar situation as in the far field case. Rewrit-
ing (3.15) gives
[ .
y(t) = (h + f(t)cos t) tan(2 arctan m — 1)+ f(t)sint. (3.24)
Now if y is monotonic on some interval S, we find that this interval realizes an
illumination
(1)

Iy
It follows that if y(t) — 0, then E5(y (1)) — o0. Like parabolas in the near field
case, now ellipses with focal points (0,0) and (—h,y) correspond to reflectors
that produce an infinite illuminance in (—=h,y).

Esly()) = (3.25)

3.2.5 Problem Statement

In this section we describe the general 2D problem that we are interested in. It
is formulated such that it covers both cylindrically and rotationally symmetric
problems as described above. Consider again the situation of the previous section.

Let & : [y1, 21— R+ be a non-negative integrable function which describes
the required illumination for the reflected light on the screen that is represented
by the interval [y;, y2] on the vertical x = —h. Also, let Z : [t;, ] —> R* be a
non-negative integrable function which describes the intensity of the light source
in the directions of the reflector. We may assume that Z accounts for the reflection
coefficient p of the reflector material as well, assuming that this coefficient is



3.2. 2D Problem Statement 21

constant (and not a function of e.g. the angle of incidence of a ray at the reflector).

Indeed, a source of intensity / and a reflection coefficient p will have the same

effect as a source of intensity p/ and a reflection coefficient equal to 1.
Furthermore, we assume that we have

2 15
/ Ey)dy =/2I(t)dt. (3.26)
y

1 141

This condition is that of conservation of energy, and it is necessary for the problem
that we will consider to have a solution. Now, informally speaking, the problem
that we consider here is the following.

Problem 3.2.3. Consider the situation described in Section 3.2.3, and let £
and T be as defined above, satisfying (3.26). Given a point source of intensity
distribution Z, find a reflector f(t) between angles t| and t, such that it produces
the illumination £ on the interval [y, y2].

3.2.6 From 3D to 2D

In this section we illustrate how the two 3D problems of Sections 3.2.1 and 3.2.2
can be solved in the 2D framework of the previous two sections. We start with the
rotationally symmetric case.

We have a required distribution for the reflected light on the disk S given by
(3.2), of the form E(y, z) = e(y2 + z%). The intensity distribution of the source
in the directions of the reflector is given by the function / (¢, u), and we may
assume, as in the previous section, that this function has already been corrected
for the reflection coefficient of the reflector material. The design problem has a
solution only if

/E(y.z)dya'z=/ I(t,u)dw. (3.27)
S Q

Here 2 is the set of directions of those rays that meet the reflector r (given by
3.1)),s0 Q2 = {(t,u)|t € [t;, 1], u € [0, 27]}. We have dw = sint dt du. After
substituting y = r cos ¢, z = r sin¢, such that dy dz = r dr d¢, we find

2n y2 2n n
/ f e(rHrdrd¢ = / / I(t,u)sint dt du, (3.28)
0 0 0 n

Y2 n
/ e(rz)rdrz/ [(t)sinz dt. (3.29)
0

n

SO

The following result is a consequence of this relation.
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Proposition 3.2.4. Consider the 2D problem of Section 3.2.5 (using the vari-
able r instead of y) with

Er) =e(r?)r forallr € [0, y;], and
IZ(t)=1(t)sint forallt € [t), t2].

Now if f(t) is a curve that solves the 2D problem for this £ and I, then the
reflector surface

r(t,u) = f(t)(cost,sintcosu,sint sinu)
solves the 3-dimensional problem for E and I as defined in Section 3.2.1.

Proof. It suffices to prove this theorem for the case that y(¢) is strictly increas-
ing. Let a ray in direction (cost?, sint cosu, sint sinu) meet the plane x = —h
in the point (—#, y, z) after reflection. Because of the rotational symmetry, and
because y(t) is strictly increasing, we have a relation (y, z) = (y(t, u), z(t, u))
that is invertible. Then we have
E(y.2) = I(’t, u)sint

9(y.2)
Jat,u

For the increasing function y™ (¢) in the rotationally symmetric case, we have

(y,2) = (y"(t)cosu, y* (1) sinu)

SO

I(t,u)sint
E(y,2) = i
yr)
which proves the proposition, as follows from (3.25). O

For the cylindrically symmetric case of Section 3.2.2, conservation of energy
per unit length is easily seen to be equivalent to

y2 n
/ e(y)dy = / I*(¢)dt, (3.30)
» n
where 1*(t) := fon 1(t, x) sin x d x, and we obtain the following result.
Proposition 3.2.5. Consider the 2D problem of Section 3.2.5 with

Ew) =e(u) forallu € [y, y21, and

I(t) = [y 1(t, x)sin x dx forallt € [t 1].
If f(t) is a curve that solves the 2D problem for this £ and I, then the reflector
surface

r(t,z) = (f(t)cost, f(t)sint, z)

solves the 3-dimensional problem for E and I as in the cylindrically symmetric
case of Section 3.2.2.
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3.2.7 From Near Fields to Far Fields

It may happen that the distance / from the light source to the screen is much larger
than the dimensions of the reflector to be designed. (Street or playground lighting
are typical applications in which we have such a situation.) In that case we usually
may describe the required illumination as an intensity distribution on the angles
of the reflected rays. This intensity distribution can then be defined in such a way
that, if all light would come directly from the light source, the correct illumination
would be accomplished. Since the dimensions of the reflector are small compared
to h, we may expect that the required illumination is approximated sufficiently
accurately when the rays are reflected from the reflector rather than directly from
the source. The reason why we would want to consider the far field problem is
that the computation of the reflector and the description of some of its properties
is easier for far than for near field problems.

For both rotationally and cylindrically symmetric problems, we can formulate
the 3D far field problems, and then deduce a corresponding 2D problem. We may
also start with the general 2D near field problem, and then deduce the correspond-
ing far field problem. This gives the same result, and is somewhat easier.

Consider the required illumination £ (y) on the interval [¥1, y2] on the vertical
at distance A. On a small line element dy on this interval, an amount of light
€(y)dy is required. Now, we may write y = htan, and dy = h/ cos? 6 d6, so

EW)dy = E(htanb) dé (3.31)

cos?f
Let 6) = arctan(y;/h) and 6, = arctan(y,/h). Then if the illumination £ were
to be realized by a light source located at the origin, it would have to produce the
intensity distribution

G@O) =E(htanh) h2 ! (3.32)

cos- 6

So we can prescribe the intensity distribution (3.32) for the reflected light. Note
that we still have conservation of energy:

()

5]
Q(Q)dézf I(s)ds. (3.33)

6, n

In the rotationally symmetric case, we have

h?*sin @
G(0) = e(h’ tan® ) ——— (3.34)
cos’ 0
and in the cylindrically symmetric case, we have
G(#) = e(htan®) (3.35)

cos26’
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3.3 Monotonic Solutions for Far Field Problems

3.3.1 The Main Strategy

In this section we will consider the main strategy to solve the reflector design
problem for far fields. We have a required intensity distribution G that is defined
on angles, let us say on an interval [0}, 62] with 6, < 6. Also, we have a function
T : [, 2] — R describing the luminous intensity of the source in the directions
of the reflector. In practice one will often have 1} < —m — fpandt, > m — 605,
because then no light is ‘lost’: each ray is either directly emitted in the required
interval, or it will meet the reflector. It is much more convenient however, to
consider as well the case that t; > —r — 6, and t, < 7 — 6>, and we do not bother
about the light that is emitted into irrelevant directions.
The problem of designing a reflector between angles , and 1, for the above
problem can of course only be solved if there is conservation of energy, ie.if
62

G©)do =/ZI(t)dt. (3.36)

0, n
In order to present the global strategy to solve the problem, let us first assume
that we have a reflector that realizes the required distribution. For each emitted
ray t, let 6(¢) be the direction of the reflected ray. We may describe this relation
by a function 6 : [}, 1] — [0, 62]. From (3.13) it then follows that the reflector
is described by the function

! s+ 60(s)
fo(t) = fo(t1) exp (/ t2111(———2 )ds). (3.37)
n

Here we write fy() to emphasize that f depends on the choice of & (and we will
see later on that many feasible 6’s may exist).

Now, consider an angular interval [y}, ¥2] C [61. 62], with ¥, < Y. The
required amount of light within [y, ¥2] equals

Y2
G dy.
12

Let Sg[¥1. ¥2] be the set of directions of emitted rays that are reflected into the
interval [y, Y], 1.e.

Sel¥r1, Y2l = {t | Y1 = 0(1) < Y2} (3.38)

The corresponding amount of reflected light is equal to

/ Z(s)ds.
Sol¥1.92]
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So we find that

(2]

| owrav = T(s)ds (3:39)
1 Sol¥1.¥2]

for all ¥y, V.

We see that if there is a reflector f () that solves the problem, then the corre-
sponding relation 6 between incident and reflected rays satisfies (3.37) and (3.39).
But the converse is also true: each function 6 that satisfies (3.39) for all | and ¥,
defines a relation between incident and reflected rays that will produce the re-
quired luminous intensity distribution, if there is a reflector that accomplishes this
relation. Now, by (3.37) there is a function f(¢) that suits our purposes in the
sense that the corresponding reflector reflects the rays into the required directions,
provided that multiple reflections do not occur.

In the following sections we will see how to find functions 6 that satisfy (3.39).
The choice of 6 is an important design step, because it will influence the shape of
the reflector. Moreover, it may be used to avoid reflected rays re-entering the light
source (if, in practice, the finite dimensions of the source are taken into account)
or to influence the angles of incidence on the screen, which may be important for
near field problems.

From (3.13) it follows that if 6 is continuous, then f is continuous, i.e. the
reflector is smooth. In the following sections we will see that usually there are two
(and only two) solutions such that € is even differentiable: the unique increasing
and decreasing 6’s which correspond to divergent and convergent ray bundles,
respectively.

3.3.2 Monotonic Solutions

In Section 3.2.4, we have first seen the relevance of the monotonicity of the func-
tions describing the ray paths. In the figures in Section 3.3.3, monotonic ray paths
are illustrated. The monotonic solutions have the advantage that they are easily
computed and that the corresponding reflectors are smooth. To see how they can
be found, let us first assume that we have such a solution, and then deduce the
conditions it satisfies.

We start with the increasing solution, i.e. with an increasing function . Note
that if 6" is increasing, then 67 (¢;) = 0, and 6 (1,) = 65, and no two reflected
rays intersect, so the ray bundle is divergent. Since 67 realizes the required dis-
tribution, we have for all ¢

a0) !
/ G dy :/ I(s)ds. (3.40)
6 n
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Because G is integrable and positive, it has a strictly increasing anti-derivative
P on [0}, 6;] with P(6;) = 0. Also, Z has an anti-derivative Q on [r;, 1] with
G(t;) = 0. So we can write

P@O* (1) = Q0®). (3.41)
Now, since P is strictly increasing, it has an inverse P!, and we find
0% (1) = P~1(Q)). (3.42)

This uniquely defines 0% in terms of G and Z.
The decreasing case, corresponding to a convergent ray bundle, is treated sim-
ilarly. Let us say we have a decreasing solution 6. We then find

6, t
f Gy dy = / I(s)ds, (3.43)
0 (1) n

SO
P(62) — PO~ (1)) = Q). (3.44)
By (3.36) and by definition of P and Q, we have P(6,) = Q(t2), so

6= (1) = P71(Q(1r) — (1), (3.45)

and this uniquely defines 6~ in terms of Gand 7.

We can summarize the mathematical steps of the design process by the fol-
lowing diagram, where (a) and (d) are integrations, (b) is an inversion, and (c) is
a simple substitution.

(d)
g p O pi | @ | 07— for
(a) —> @ (3.46)
T—0 6= —> fo-

In the following section, we give some examples.

3.3.3 Examples

In general, we may have to use numerical methods for the integration or inver-
sion steps of (3.46) but we have chosen the examples such that the solutions can
be found analytically. The examples do not only serve the purpose of illustrat-
ing the method of the previous section, but they also draw attention to particular
properties of reflectors and special difficulties that may occur. Therefore, we have
chosen examples that are relatively simple. In all examples we will assume that
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0.4¢4

~0.44
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Figure 3.5: Straight line and circle segments are the two monotonic solutions to
Example 3.3.1.

Z(t) = 1forallt € [11, 1,]. This corresponds to a cylindrically symmetric case
with a uniform light source. In that case, we have Q(¢) = r — t) forallt € [1, 1],
so0t(t) =P '(t—1,), and 6~ (t) = P~ (ty—1). Also, the far field problems are
not presented as approximations to near field problems, but simply as problems
on their own.

In each example, figures of the two monotonic solutions are shown. Incident
and reflected rays are drawn at fixed angular intervals. Note that the increasing
and decreasing solutions are not plotted on the same scale here, so the actual
shapes are somewhat difficult to compare. In Section 3.4.1 however, the reflectors
corresponding to both increasing and decreasing solutions for all examples will
be plotted in one figure, along with several other solutions, such that their shapes
can be compared.

Example 3.3.1. In this first example we require a uniform distribution of
the reflected light. The two solutions will turn out to be the obvious ones. See

Figure 3.5.

Problem:
t-range: [n.0]  =[-m/4 7/4]
f-range: [61,62] =[-m/4 /4]
required distribution: G(¥) =1 for all ¥
boundary condition: f(—m/4) =1

Solution:

PW) = v+n/4
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Figure 3.6: The monotonic solutions to Example 3.3.2.

P_'(s) = s—mn/4
0% (1) P lt+m/4) =t
0=(t) = P l(m/4—1)=—t

t

for(t) = exp( tans ds) = %«/E/cost

—m/4
fo-() = 1
rg+(t) = (%\/—i %«/Etan 1)
rp-(t) = (cost,sint)

O

Example 3.3.2. Again we require a uniform distribution of the reflected
light, but this time with other 7- and 6-ranges. Explicit expressions for fy+, etc.
have been omitted. See Figure 3.6.

Problem:
t-range: [t1, 2] = [—27/3, 21 /3]
6-range: [61, 6] =[—m/6,7/6]
required distribution: G = 4 forall ¥
boundary condition: f(=2n/3)=1

Solution:

P) = 4y +27/3

P ') = s/4—m/6

0" (1) Pt +2m/3) =1/4
0=(t) = —t/4
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Figure 3.7: The required distribution G of Example 3.3.3.

Figure 3.8: The solutions to Example 3.3.3.

O

Example 3.3.3.  This time the required intensity distribution G, sketched in
Figure 3.7, is not uniform. In Figure 3.8 the two solutions are shown.
Problem:

t-range: [t1, 2] = [n/4, m/2]
0-range: [61, 6-] =[—mn/8, /8]
required distribution: G(Y) = ﬂ—zngw:
boundary condition: f@@/4) =1

Solution:

P(y)

Pl = im@s— Ly
8 4

% arctan(8yr/m) + /8
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Figure 3.9: The left reflector realizes the required step function distribution of
Example 3.3.4; the right reflector does not because of multiple reflections.

I I I I
T T T T

=1.5 =1 -0.5 0.5 1 1.5

Figure 3.10: The step function distribution of Example 3.3.4.

ot) = “anr— 5
T8 4

0= () = —607(1)
0

Example 3.3.4. The required distribution in this example is a step function,
as shown in Figure 3.10. The two monotonic solutions illustrate two phenomena
that can occur: reflectors being convex and multiple reflections, see Figure 3.9.
The decreasing solution is incorrect because some reflected rays meet the reflector
twice, and the effect of the second reflection is ignored.

Problem:

t-range: [11. 1] =[—n/4, 7 /4]
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0-range: [61, 6] =[—n/2, /2]

6/7 ify e[—n/2, —m/4]
2/7 ify e[—n/4, /4]
4/7 ify € [n/4, /2]
boundary condition: f(=m/4) =1

required distribution: g)

Solution:
6v/7+43n/7T ify €[-n/2,—m/4]

PW) = { 2y/7+2n/7 ify €[—-n/4, /4]
4y /T +3n/14  ify € [n/4, 7/2]

75/6 — /2 ifs € [0,37/14]
Pls)y = {7s/2—n if s € [3/14, 57/14]
7s/4 —37/8 ifs e [57/14, 1/2)
71/6 — 5m/24  ift € [-7/4, —7 /28]
0Tty = { Tt/2—n/8  ifte[—n/28,3m/28)
Tt/4+7/16  ift € [37/28, /4]
—~Tt/4+7/16  ift € [-7/4, —37/28]
0-(t) = | —Tt/2—n/8  ifte[-3m/28,7/28]
—71/6 —57/24 ift € [n/28, w/4]

3.3.4 Existence of Solutions

In this section we briefly discuss two complications that can occur. It may happen
that we have a correct problem statement, in the sense that we have conservation
of energy, but that still there is no solution to the problem. One obstacle for
existence of real solutions is that of multiple reflections which may occur (in the
case of decreasing solutions). Another obstacle may be the following.

It is easily seen that when 7, +6, < —m orthatt, +6, > =, then an increasing
solution does not exist. But what happens if ¢, + 6, approximates — or if H+6,
approximates 77 We then have a problem as well, because in the cases that 7, +
6y = —m or that t, + 6, = 7, the problem has no increasing solution. In order
to see why, suppose for instance that 1, + 6, = 7. For the increasing solution
we then should have 0(r,) = 6,, which means that the reflected ray proceeds into
the same direction as the incident ray, in other words, it is tangent to the reflector.
Practically, this is impossible of course. Theoretically, it means that the curve
representing the reflector is tangent to the line through the origin in direction 7.
This also follows from (3.13): if t, + 6, = 7 then tan((6(r;) + n)/2) = oo
SO f () = oo. In other words, the line through the origin in direction t, is
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asymptotic to the curve r(¢), and the reflector will be infinitely large. The other
case that ¢t; + 8; = — is similar.

As for multiple reflections, we have seen that Example 3.3.4 has no decreas-
ing solution because some reflected rays meet the reflector more than once. One
can easily prove that this can never happen with increasing solutions. It would
be pleasant when we could tell whether multiple reflections will occur in the de-
creasing case, from a simple criterion based on the knowledge of G, Z, ty and 1p.
Unfortunately, it seems that exact knowledge of fy- is required. Mathematically,
the problem is to find out when the reflected ray from angle ¢, i.e. the half-line

cost —cos8(1)
f® ( sint ) T A( sin (1) ) (BAT)

with A > 0, intersects the reflector
r(s) = f(s)(coss,sins)

forans € [1), 1] with s # t. A.J.E.M. Janssen suggested the following approach.
Without loss of generality, let us concentrate on multiple reflections on the upper
part (s > 0) of the reflector only. Now, suppose the halfline (3.47) intersects the
line through the origin and the upper endpoint in the point j(r)(cos t2, sintp). It
is then easily seen that we have multiple reflections if and only if u(t) < f(22)
for some t with t < t» — 7w or u(t) > f(t) for some t witht > 1, — . So, we
only have to investigate the function
u(t) = fn S0

sin(r2 + 6(1))

We end this section with an example relevant to both the above phenomena.
Suppose we have a cylindrically symmetric situation, with a uniform light source,
and we want to obtain a uniform distribution between angles [—6-, 6;] by a re-
flector between angles [—1;, 1,]. Now, if o + 6, > 7, we ask for a reflected ray
bundle of a wider angle than the aperture of the reflector. We know that this can-
not be accomplished by an increasing solution, but the decreasing solution may
exist if multiple reflections do not occur. Below we give two surprising examples
of what is possible; see Figure 3.11. In the left picture, we have 1 = 0.7364m and
6, = 1 /2 (so with an aperture of about 95°, we have a bundle of 180°), and in the
right picture, we have 1, = 117/12 and 6, = /4 (so with an aperture of 30°, we
have a bundle of 90°).

3.3.5 Caustics

In this section we give a formula for the caustic of a ray bundle. Although this
is only interesting for the decreasing solution, the formula below holds for the
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Figure 3.11: Two examples of reflectors with reflected bundles that are wider than
the apertures.

virtual caustic of an increasing bundle as well. The following proposition shows
that caustics are easily expressed in terms of 8(¢) and f (¢).

Proposition 3.3.5. The caustic of the ray bundle corresponding to 0 is given
by the parametrization

cost + 280
t— f() ( sin() ) ; (3.48)

sint — (1)

Proof. Mathematically, the collection of rays can be seen as a line bundle,
parameterized by

sint sin 6@

(t,A)—)f(COSt)+A(—COSQ>, (3.49)

The caustic of the ray bundle is now precisely the singular locus of this mapping,
i.e. the collection of points where the determinant of the Jacobian of this mapping
equals zero. So in these points we have

fcost — fsint + Afsinf —cosb

fsint + fcost + A6 cos 6 sin 6 ’:O’

which is equivalent to

(costsin9+sintc059)f+(—sintsin&+costcos€)f+k9 =0.
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Using f =f tan(’—g—q—), we obtain

t+0

5 )sin(t + 6) + cos(r 4+ 0)) f + A6 = 0.

(tan(

Now tan(%) sin(t 4+ ) + cos(t + 0) = 1, so we finally get
f+210=0.

Hence A = — f/6, which after substitution into (3.49) proves the proposition.
O

3.4 General Solutions for Far Field Problems

3.4.1 Other Solutions

In the previous section, we have introduced and discussed the monotonic solutions
to the reflector design problem. The applicability of the method we have discussed
so far would have been very limited if the two monotonic solutions were the only
ones that could be found this way. In this section we will see that the monotonic
solutions can be used as the ‘building blocks’ to (infinitely) many other solutions
which might be more suitable to meet all kinds of practical requirements.

It is easily explained how such an approach works: Suppose we have a cylin-
drical problem with Z = 1 on [ty, #2] (again for convenience only!) and that we
have a required distribution G defined on [6;, 6] as in the previous sections. Then
we can subdivide the interval [, 1] into n parts, as follows. Let

H=s5)<S51<...<S$—1<S=Dn
and let
Si = [si—1, 8il {3.50)
Then US; = [t;, t2]. At the same time, we might ‘subdivide’ the required distri-
bution into n parts. Let Gy, ..., G, : [0;,6:] > R be integrable functions such
that
G=G +...+Gn. (3.51)
Now suppose that forall i € {1,...,n} we have
6, Si
[Cainay = [ Twds =55, (3.52)
0 Si—1

then each part S; of the reflector can realize the contribution G, to the total re-
quired distribution. So, for fixed n, S; and G;, we may consider solutions 6 such
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Figure 3.12: The twelve 0’s corresponding to the disjoint (first column), the cross-
ing (second column) and the overlapping (third column) subdivisions.

that 6 is smooth (and thus monotonic) on each open interval (s;_i, s;) and such
that S; realizes the contribution G; to G. Since on each interval we can choose
either the increasing or the decreasing solution, this generally leads to 2" possi-
ble solutions for this particular choice of the intervals S; and the functions §G;.
Needless to say, there are infinitely many ways of choosing these. In order to
investigate subdivisions in more detail, let us consider subdivisions into 2 parts
only. Note that any n-part subdivision can be obtained by repeatedly using these
subdivisions. In order to subdivide the reflector, we must specify the subdivision
direction s; € [f1, 1;]. The functions G| and G, should then be chosen such that
(3.52) holds. Again, there are infinitely many possible choices, but there are some
straightforward ones which are easily computed and practically relevant. These
will be described below and illustrated by the corresponding solutions to Exam-
ple 3.3.2.

(i) The disjoint subdivision. In this subdivision, we let the lower and upper
part of the reflector realize the lower and upper part of the required distribution,
respectively. To that end, we have to find a direction o such that

GWdy =s1 —1. (3.53)

0
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The twelve reflectors corresponding to the disjoint (first column), the

crossing (second column) and the overlapping (third column) subdivisions.

Figure 3.13:

Then we can set

(3.54)

if Y <o,
otherwise,

Gg()

0
0

|
|

Gi1(y)

ity <o,

(3.55)

G(y¥) otherwise.

Ga(¥)
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Figure 3.14: The twelve solutions to Example 3.3.2.

(i1) The crossing subdivision. In this subdivision, we let the lower and upper
part of the reflector realize the upper and lower part of the required distribution,
respectively. Again, the two parts of the reflector realize disjoint parts of the
required distribution, but this time the two ray bundles cross. To subdivide the
intensity distribution correspondingly, we have to find a direction t such that

} g(l[/) d}[/ =1t —s5]. (356)
Then we can set
_ 0 ify <,
Giy) = { G(¥) otherwise, W37
[ ew) ify <t
Go(¥) = { 0 otherwise. (3.38}

(i11) The overlapping subdivision. In this subdivision, we let the lower and
upper part of the reflector both take care of proportional parts of G, as follows.
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disjoint crossing overlapping
t < sy, incr. || 0F() 0t (ty —s1 +1) 9+(;2]—:'I‘]—(t —1)+1)
t <sy,decr. | 07t +s1 =) || 0Tt +0—1) 9+(g—:'”L(s1 —t)+1)
t > sy, incr. || 0F(t) Ot —s1+1) || 0T (=Lt —s1) +11)

n—s)

t>s,decr. | 0T (s1+0—0 || 0Tt +n—1) || 0TCEEE@m -1+ 1)

Iy—8]

Table 3.1: Subdivided solutions expressed in terms of 0.

Let
S1— NI
Gi(y) = G, (3.59)
h — 1
Bt = ——Lgiy, (3.60)
L —1

When we apply all these subdivisions to Example 3.3.2 with s; = 0, we obtain
the 12 corresponding functions 6 and reflectors as shown in Figures 3.12 and 3.13.
In these figures, the disjoint, crossing and overlapping solutions are shown in the
first, second and third columns, respectively. In the first row, both lower and upper
parts yield increasing ray paths; in the second row, the lower and upper parts yield
increasing and decreasing ray paths, etc.

We see that the two monotonic solutions are present here as well, and that
there are two more smooth reflectors corresponding to the symmetric overlapping
subdivisions. In two solutions, we see that no reflected ray goes through the origin.
Such solutions may be important when one wishes to take the finite dimensions
of real light sources into account and when one wants to avoid that reflected rays
re-enter the source. Note furthermore that the shapes of these reflectors, which
all have a fixed lower endpoint r(z)), differ significantly. In Figure 3.14 all 12
reflectors are drawn. In Section 3.6 we will discuss shape and dimensions of
reflectors in more detail.

We conclude this section with Table 3.1 which shows how the 6’s correspond-
ing to the above 12 solutions can be expressed in terms of the increasing solution
6*. For instance, to find the 6 corresponding to the overlapping case with an
increasing bundle on the lower part and a decreasing one on the upper part, we
should take the first and fourth expressions in the overlapping column for 7 < s,
and r > sy, respectively.
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3.4.2 The Rotationally Symmetric Problem Revisited

In this section we will reconsider the reduction of a 3D rotationally symmetric
problem to a 2D problem. In Proposition 3.2.4, this restriction was in fact ac-
complished by restricting the 3D problem to the half-plane H := {(x,y,2) |z =
0, y > 0}. By doing so, we unnecessarily restricted ourselves to a smaller class
of solutions! Keeping in mind the crossing, disjoint and overlapping solutions of
the previous section, we may note that there is no reason why the rays that are
emitted into the ‘upper’ part of the reflector should also realize the ‘upper’ part
of the illumination. Indeed, when we restrict the 3D situation to the whole plane
P :={(x,y,2) |z = 0}, we see that the restriction proposed in Proposition 3.2.4
only covers disjoint solutions. Obviously, we can generalize it as follows.

Proposition 3.4.1. Suppose we have a 3D rotationally symmetric problem
as in Section 3.2.1, with intensity 1 and with required illumination E(y, z) =
e(y2 + z2) on the disk S = {(x,y,2)|x = —h, y2 +722 < y22}. Now let £ be an
integrable function on [—y,, y,] such that

EG) +E(=y) = ey (3.61)
for all y, and let
Z(t) = I(¢t)sint forallt € [t1, 1]

Then, if f(t) is a function that solves the 2D problem for this £ and I, then the
reflector surface

r(t,u) = f(t)(cost,sint cosu, sint sinu)

fort € [t1, ]l and u € [0, 2], solves the 3-dimensional problem for E and I as
above.

In analogy with the previous section, we will speak of the disjoint, crossing
and overlapping restriction if

_ 0 ify <0,
= = { e(y?)y  otherwise, (3.62)
_ [ —ekPDy ify<o,
=t = { 0 otherwise, and (3.63)
1
E(y) = Ee(yz)lyl forall y € [—ys, y2], (3.64)

respectively. Similar definitions hold for the corresponding far field problems. An
example will be given in Section 3.6.2.
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3.5 Near Field Problems

The design method for near field problems is very similar to that for far field
problems. For far fields the method consisted of two steps. In the first step, one
chooses and computes the function 6(t), and then f(t) follows immediately from
(3.13), which we can write explicitly in the form (3.37). For near field problems,
our approach is similar. First we choose and compute a function y(t), and then
we determine f (¢) from (3.15). The major difference with the far field problem is
this second step. First of all, we generally cannot express f () explicitly in terms
of y(t) and ¢. Secondly, we do not have scale invariance in the near field case.
This means that different begin points will lead to reflectors of different shapes.

Since the first step, i.e. that of determining y(t), is similar to the far field case,
we will not go through all details again. Instead of this, we give an example of
the solution of a near field problem in the following section, and we only briefly
discuss the similarities and the differences of near and far field problems.

3.5.1 An Example of a Near Field Problem

Let us consider a 2D problem as sketched in Sections 3.2.3 and 3.2.5. The interval
to be illuminated is at a distance & = 1, and between heights 0 and 2. We assume
we have a source of intensity Z = 1, and a reflector between angles 0 and 7/2.
The required illumination for the reflected light is given by & = m /4. Note that
(3.26) is satisfied, so there is conservation of energy. Now, consider the function
y* : [0, 7/2] — [0, 2], defined by

yr) !
f E(y)dy :/ Z(s)ds. (3.65)
0 0

This function can be written explicitly as y*(¢) = 4t /. It describes the ray paths
for the increasing solution. Note that, although no two reflected rays intersect
before they reach the screen, it does not necessarily imply that the reflected ray
bundle is divergent. Indeed, it may as well be convergent, unlike the situation
in the far field case. The decreasing solution, given by the function y~ (1) =
2 — 4t /m, produces a convergent bundle, as in the far field case.

In order to determine the reflector that realizes the above ray paths, we must
find the function f that satisfies

fo (11 () — f(@)sint
o oo (2 Rl L P —" )>

for y(t) equal to y*(¢) or y~(z). Generally, this differential equation cannot be
solved analytically, so we have to use numerical methods; a Runge Kutta method

(3.66)
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Figure 3.15: Two increasing solutions to the same problem, with f(0) = 0.1 and
f(0) = 2, respectively.

will do. The solution of (3.66) requires a boundary condition, i.e. some initial
value, say f(0). In Figure 3.15, we see two increasing solutions with different
starting values. In Figure 3.16, the reflectors of the increasing and decreasing
solutions are plotted for various starting points, as well as the two monotonic
solutions to the corresponding far field problem. Note that the solution looks
more like that of the far field problem as the starting point f(0) of the near field
problem approaches zero, while the solutions look more circular as the starting
point f(0) is larger.

From the above example we see that the main strategy to solve the problem
is similar for near and far field problems. First of all, the monotonic solutions are
found roughly in the same way as sketched in (3.46). For the near field problem,
the basic steps are as follows:

(d)
e p O pa| o | vy e
(a) —_— (3.67)
77— Q - @
y — f)‘

Here (a) is an integration, (b) is an inversion, (c) is a substitution and (d) is solving
a differential equation. The form of this differential equation implies that the
solutions are not scale-invariant in the near field case. In other words, the choice
of the starting point of the reflector will influence the shape of the reflector.

The two complications that were mentioned in Section 3.3.4 may occur in the
near field case as well. In addition to these complications, there is a third one
that may occur in very proximate lighting tasks (like LCD back-lighters), when
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T

Figure 3.16: Several monotonic solutions to the same problem, with different start-
ing points, and the two monotonic solutions to the corresponding far field prob-
lem.

one wants the reflector to ‘fit onto’ or to ‘touch’ the screen. In the mathemat-
ical description of that case, we might have problems, because the denominator
of (3.14), which also appears in (3.15) equals 0 in a point where the reflector meets
the screen. This is particularly annoying when that point is the one we would like
to choose as a starting point for solving (3.15). We have to be careful in that case.

Finally, considering the other solutions, we can completely analogously define
disjoint, crossing and overlapping subdivisions.

3.5.2 Uniform Illumination of a Disk

In this section we consider a special class of practically relevant rotationally sym-
metric problems. It is not our aim to present the complete solutions to these prob-
lems, but to illustrate the method for this class of problems. Indeed, we have
not yet seen any example of the application of the theory we presented to a more
or less realistic rotationally symmetric problem. This section provides such an
example.

Assume we have a disk S = {(x,y,2)|x = —h, y* + 22 < y%} which we
want to illuminate uniformly, by means of a uniform light source with intensity
I = 1 in all directions, combined with a reflector of the form

r(t,u) = f(t)(cost,sint cosu,sint sinu)

fort € [0,1;] and u € [0,2n], and with reflection coefficient p. The direct
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illumination E} on S follows immediately from (3.3), which gives
h
(yz + Z2 + h2)3/2'
The total illumination E = E; + E, should be constant, let us say E(y,z) =k,
so the required illumination for the reflected light equals
h
(V2 + 22+ h2)32
Of course, E, should be positive, so since E, is minimal for y =z = 0, we must
have

Ey(y,2) =

Ey(y.20) =k — (3.68)

1
k > ok (3.69)
The precise value for k can be obtained from the energy conservation condi-
tion (3.28), which here gives

2 V2 h 2n t )
/0 : (k e m)r dr d¢ = /(; A psmta't dI/l, (370)

so after integration we find

| h
Ekyz + ————1=p(1 —cosh).
Vs +h?

Writing h/,/y3 + h? = cos 6, we get

2
k:—2(1 —cosbr + p(1 — cos)). (3.71)
Y2
Now before we continue with the solution of the design problem, we give the
following result.

Proposition 3.5.1. A disk at distance h from a uniform point source can only
be illuminated uniformly if it has a radius smaller than 2h.

Proof.  One way to prove this is as follows: in an ideal situation, where no
light is lost, we have p = 1 and 6, = 7 —t,. Then (3.71) gives k = 4/y22, and the
result follows from (3.69).

In fact, we didn’t have to calculate (3.71) to obtain this result. The following
way to obtain it is more stralghtforWdrd The total amount of light, emitted by
the source of intensity / = 1, equals fo o sintdt du = 4. The direct illumi-
nation in (—h, 0, 0) equals l/h2 So if a disk of radius y, has this illumination
everywhere, then we must have 7ry22 - 1/h* = 4, from which the proposition
follows as well. a
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Let us now try to solve the corresponding 2D problem for the disjoint restric-
tion. In order to find the monotonic solutions, we have to find an anti-derivative
of

Er) = (k— ) (3.72)

(r2 + h2)3/2
with P(0) = 0. We find
Py =14+ KC P
ry=— — t —.
2 /h? + r2
The next step towards the solution of the problem would now be the inversion
of this function. In principle, this can be done, even analytically! However, it
involves the solution of a polynomial equation of degree 3, and computations tend
to get long. And then, if we have an analytical expression for y*(t), we perhaps
still have to proceed numerically in order to compute f from y*. The same holds
for the crossing and the overlapping solutions.
The corresponding 2D far field problem is similar; we have

(3.73)

h h¥siny  kh*siny
= (k— . = — sin Y. 3.74
G = (h2tan? ¥ + h2)3/2"  cos3 ¢ cos3 Y smy. B
The anti-derivative P of G with P(0) = 0 is given by
1
P(Y) = Ekh2 tan’ ¥ +cos ¥ — 1. (3.75)

Again, inversion of P requires the solution of a third degree polynomial.

3.5.3 Uniform Illumination of a Strip

In this section we consider the cylindrically symmetric analogue of the example
in the previous section. Assume we have a strip

S={(x,y,2)|lx=—h, =y2 <y < y2} (3.76)

which we want to illuminate uniformly, by means of a uniform linear light source
which at each position has an intensity / = 1 in all directions, combined with a
reflector of the form

r(¢t,z) = (f(t)cost, f(t)sint, z)

fort € [—12, 1] and z € R, and of reflection coefficient p. The direct illumination
on S follows immediately from (3.8), which gives

El()’,Z):

y2+h2'
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The total illumination £ = E;| 4+ E, should be constant, let us say E(y, z) = k,
so the required illumination for the reflected light equals

2h

Ex(y,2) =k - R

3.77)
Of course, E; should be positive, so since E; is minimal for y = 0, we must have

k > (3.78)

SN

The precise value for k can be obtained from the energy conservation condi-
tion (3.30), which here gives

X2 2h n
k————dy= / 2pdt, (3.79)
»/;yz (yz + hz) —n

so after integration we find

e 2pty + 2arctan 32

(3.80)
Y2

The following result is the equivalent of Proposition 3.5.1. Its proof is similar.

Proposition 3.5.2. A strip S, given by (3.76), can only be illuminated uni-
formly by a parallel linear source of uniform illumination combined with a cylin-
drical reflector if y» < mh.

3.6 Shape and Dimensions

We now investigate shape aspects of reflectors in more detail. In the previous
sections we have seen how to find many different reflectors that all produce ex-
actly the same illumination. In practical situations, we usually do not aim at an
exact illumination, but rather at one that resembles an ideal illumination closely
enough. At the same time however, we may have very strict restrictions on the
shape and the dimensions of the reflector. Usually, small, compact reflectors are
to be preferred, for both aesthetic and economic reasons.

3.6.1 The Area of a Reflector Surface

A good measure for the size, or the compactness of a reflector is its surface area.
For cylindrical and rotational surfaces, this area can easily be computed from the
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descriptions (3.1) and (3.6). Let us first express the length L of a curve r(t) =
f(t)(cos(t), sin(z)), for t € [t1, t2]. This length is given by

L= /ttz k(1) dt. (3.81)
So here we have .
:f V2 + f2@) dr. (3.82)
Using (3.13), we find ) o
L_—_/l md:. (3.83)

Now, a (finite length) cylindrical surface of the form

r(t,z) = (f(t)cost, f(t)sint, z)

fort € [, 2] and z € [z], 22] has an area A equal to
S
= (22— Zl)/ t+9(t))

A rotationally symmetric surface of the form (3.1) has area

2 f2(t)sint

A=2n z+0(r))

n cos(——

3.6.2 Examples and some Observations

To get an idea of the impact of the choice of 6(¢) or y(r) on the shape of the
reflector, we will present some examples in this section. We usually consider
the 12 reflectors that are obtained by the disjoint, crossing and overlapping sub-
divisions. Unless indicated otherwise, the subdivision direction is chosen to be
s;1 = (11 + 1)/2. We present three sets of examples, and then we draw some
general conclusions. Let us first consider the far field examples of Section 3.3.3.
In Figure 3.17, the 12 solutions to these 4 problems are shown. (These are drawn
such that the axes do not necessarily coincide with the lines x = 0and y = 0, so
the position of the light source is not visualized.) Next, considering the near field
problem of Section 3.5.1, we find reflectors as in Figure 3.18 (where the solutions
are not drawn on the same scale). The figure illustrates how the situation depends
on the starting point of the reflector. The third set of examples we consider is
one that illustrates the different subdivisions possible for the restriction of a 3D
rotationally symmetric problem to a 2D problem.



3.6. Shape and Dimensions 47

Figure 3.17: The twelve solutions to the examples in Section 3.3.3.

Example 3.6.1. In this example we assume a situation as in Section 3.4.2,
with a uniform required illumination for the reflected light, so e(y) = k for all
y € [0, y], and a uniform light source with intensity I(t) = 1 for all ¢ € [0, t,].
Conservation of energy implies

y2 n
f kydy = / sint dt,
0 0

2 —2cost
p 2080
Y2

The disjoint, crossing and overlapping monotonic solutions lead to 6 different
reflectors for a given starting point. The functions y() according to these are the

so we should have
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Figure 3.18: The twelve solutions to the example of Section 3.5.1, with starting

points f(0) equal to 1/10, 1 and 10, respectively.

following,

+
Ydisj )
y(;isj(t)
Yeros(t)

Yeros(?)

2
,/E(l — cost),
5 2
A= E(] —cost),
2 2 —
—a | ¥ = E(] — COoSt),
2
—,/E(l — Ccost),

(3.84)

(3.85)

(3.86)

(3.87)
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™
1Y

Figure 3.19: Solutions corresponding to different restrictions of rotationally sym-
metric problems of Example 3.6.1.

+ I S .
Yover(t) = sign(y; k(l Ccost)) 5% k(l cost)|, (3.88)

. 4 4
Yover() = sign(y} — L (1= cosn)) - \/|y§ — (I =cosn]. (3.89)

where sign(0) := 0 and sign(x) := x/|x| for all x # 0. These functions describe
the ray paths of the ‘upper’ parts of six different reflectors.

In Figure 3.19, some solutions to two special cases of this example are shown.
In all four pictures, the intervals to be illuminated are drawn as well.

In the upper two pictures, we have h = 1, y, = 1/2 and t, = 2m/3. For
endpoints f(t;) = 1/2 and f(;) = 1, the six solutions are shown in the left
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picture, while in the right picture, we have the six solutions with f(0) = 1/5 and
f(0) = 1/2, respectively.

In the lower two pictures, we have h = 1, y, = 2and f, = 7 /2. For the
endpoint f(t;) = 3/2, the six solutions are shown in the left picture, while in the
right picture, we have the six solutions with f(0) = 1. O

Note that not all reflectors shown above are correct solutions. Multiple reflec-
tions may occur in most reflectors of the fourth picture in Figure 3.17, as well as in
some of the rotationally symmetric examples. Note also that we have to be care-
ful when we try to say what type of solution will lead to more compact reflectors.
This strongly depends on which point of the reflector one keeps fixed: consider
the lower two pictures of Figure 3.19. In the left picture, the increasing disjoint
solution gives the most compact reflector, and one of the crossing solutions gives
the least compact reflector. However, in the right picture, one of the crossing so-
lutions gives the most compact reflector, and the non-increasing disjoint solution
gives the largest reflector.

An interesting observation from the above examples is the following. The
convex hull rule of thumb: if one endpoint is fixed, then all solutions lie approxi-
mately within the convex hull of the two monotonic solutions. It should be noted
that this observation is not based on this set of examples alone, but on many others
as well. Also, although in the above examples the subdivision direction is chosen
to be s; = (f; + t2)/2, this observation holds for other subdivision directions as
well.

Further research is needed for a thorough analysis of this observation, and of
other consequences of the subdivision choice. In particular, we would like to know
how to choose the subdivisions in order to meet certain constraints on the shape
of the reflector. In Chapter 4, we will discuss one such constraint for a limited
class of problems. This will already illustrate how very difficult these problems
are. On the other hand, with the various subdivision strategies as design tools, a
designer will soon have an intuitive idea what constraints can or cannot be met in
a certain problem.

3.6.3 Convex and Concave Reflectors

In Example 3.3.4, we have seen that convex reflectors can also occur as the in-
creasing solution to the design problem. Let us investigate the precise conditions
under which this occurs. The notion of convexity or concavity of plane curves
can be made precise by introducing the curvature of a curve. See any textbook on
the geometry of (plane) curves for details on the notion of curvature. Here we re-
strict ourselves to introducing, for any curve of the form r(t) = f(t)(cost,sint)
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0 6 intensity G | curvature K | reflector
decreasing 6 <0 any concave
constant =0 36, K <0 parabola
0<6 <1 g>1 concave
increasing 6 =1 G=1 K=0 plane
6> 1 g <1 K >0 convex

Table 3.2: The relations between intensity and convexity properties in the cylin-
drically symmetric far field case with I(t) = 1 for all t.

defined by a function f(¢) which is twice differentiable, the curvature K (t) by

ff—2f*—f?
(f2+ f32

K@) = (3.90)

It can be shown that the geometrical meaning of K (¢) is the following: |K (t)]~!
is the radius of the ‘best fitting’ circle to the curve at the point r(t).

Now, a curve is concave (‘when viewed from the origin’) if K (1) is negative
forall 7, it is convex when K (¢) is positive for all ¢, and for straight lines we have
K(t) =0.

In the far field case we can relate the curvature to the function 6: note that
from (3.17) and (3.90) it follows that

2 2+ K@) =6@1) — 1. (3.91)

Furthermore, if Z(¢) = 1 for all ¢, then the relations between K, 6 and G are now
easily derived from this equation and from (3.19). In the Table 3.2, the possible
situations are listed. Remember that this analysis holds for differentiable 6’s only,
which we have shown to be strictly decreasing or strictly increasing.
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Chapter 4

An Optimization Problem in 2D
Reflector Design!

4.1 Introduction

In this chapter we consider a special topic associated with the design of 2D reflec-
tors, namely that of finding ‘smallest’ and ‘largest’ reflectors that solve a given
2D far field problem.

For a large part, this chapter is independent of the others. The problem we con-
sider is formulated as a more general optimization problem. Its solution requires
some dedicated mathematics. We also use some notation which is specific for
this chapter. Because the mathematics becomes somewhat involved, we present
a flavour of the results in the following section. Next, we present the problem
formulation and a summary of the results at the end of the introduction.

4.1.1 Designing a Reflector Between Fixed Endpoints

In the previous chapter we have seen some examples of the variety of shapes of
reflectors that all produce the same required intensity or illumination. Choosing
the function y(t) or 6(¢) so as to meet certain requirements on the shape of the
reflector is, however, a very difficult problem. In this section we will consider a
special constraint: we investigate the problem of designing a reflector under the
additional constraint that rwo endpoints are prescribed. This is likely to occur in
practical situations. For instance, in the rotationally symmetric case, the ‘depth’

"This chapter has resulted from joint work with A.J.E.M. Janssen, and it has been published in
an almost identical form in [13].

53
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£(0) and the radius f(t;) sint, of the opening of the reflector may be prescribed,
or at least they will usually have to lie within certain bounds.

Since for a fixed endpoint f(t), there are usually infinitely many reflectors,
we are led to ask: what possible values for f(;) can occur, and how do we choose
y(t) or O(t) in order to obtain a certain value for f(z,)? In this chapter we will
thoroughly study this problem for a limited class of situations, viz. cylindrically
symmetric far field problems with light sources of uniform radiation (i.e. 7 is
constant). The considerable mathematical effort that is needed to obtain the results
for these cases indicates that the problem for e.g. rotationally symmetric cases will
be very hard to solve exactly. On the other hand, in these cases we can solve the
problem adequately by discretizing the problem; see Section 4.2. Also, knowledge
of the results for the cylindrically symmetric far field case may be helpful in other
cases. For a summary of the results that are obtained, we refer to the following
section.

Here we restrict ourselves to an example and the following theorem.

Theorem 4.1.1. Assume we have a cylindrically symmetric far field problem
as in Section 3.3.1, with required distribution G and with Z(t) = 1 for all t.
Because of the scale invariance property, we only have to consider solutions to
this problem with f(t)) = 1. Now, if ty + 6; > 0, then we have the following.

(a) For all solutions f(t), the endpoint f(t;) is bounded by those of the mono-
tonic solutions, i.e.

fo-(12) < f(r) < for(2). 4.1

(b) For each value f, between these extreme values fg-(12) and fy+(t2), there
exists a solution with f(t;) = f>.

(c) The extreme values fy-(t2) and fy+(t2) can be expressed in terms of P as

follows (where P(y) = fé{’ G()de)

cos?(g) g — P(Y) 41
fo-() = Mexp( : tan(——z——

cosz(%) 2 Y+ P +n
exp(/ [——————

—— —| tan
g
cos?(242) o, 2

ydy), (4.2)

for(2) = ydy). (4.3)

Proof.
(a) See [22], or the proof of the more general case in the next section.
(b) Consider the disjoint subdivision, with subdivision direction sy, that is decreas-
ing for 1y <t < sy, and increasing for s; <t < 1. Let 0, be the function that
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describes the corresponding ray paths. From (3.37) and from Table 3.1 it follows
that

+ _ n +
s+6 (112+SI s))ds+/ tan(s+02 (s))ds)
51

fa,, (12) = exp( / tan(
n

depends continuously on sy. Since for s; = #; and for 51 = 1, the function 6,
coincides with the increasing and the decreasing solution, the result then follows
from the mean value theorem.

(c) We will only prove (4.3), the other equality is proved similarly. We know
0t (t) =PIt —1),s0

+ P (s —1)

15}
Jor(12) = eXP(f tam(s——z—)a'S)-
n

We now substitute ¥ = P~ !(s —t;),s0s = P(y) +t; and ds = P’ (Yy)dy,
which gives

h -1 — 6
/ L ) f anXE LW T,y ay.
n 91

2 2
The rest of the proof is calculus. We can write

v+ PY)+1
S T R

v+ PW)+1
an( >

t )P'(Y) =

P’ 1 + P
<w2>+ _anc? <2vf>+n)’ s

2t

)

and integrating the first term of the right-hand side of (4.4) gives the result in a
few steps. a

Some remarks about this theorem should be made. First of all, we assumed
that all reflectors we considered above had endpoint f(z;) = 1. Because the far
field problem is scale invariant, this actually means that the above results tell us
something about the ratio f(t;)/f(t;). Note the condition t; + #; > O in the
theorem above. This condition implies that both reflector and all rays lie within a
half-plane with the origin on its boundary. This is essential for the result of (a). If
we replace this condition by #, 4+ 6> < 0, then the inequality signs in (4.1) should
be reversed.

The result of (b) can be generalized in the following way: if two different
endpoints can be realized, then so can all endpoints that lie between these two.
This result holds for all 2D problems discussed here. The proof of the general
case is much more involved than the one given above (which specifically used
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+ +
2 -1 2
-0.24
-0.4F

Figure 4.1: The function O,y that maximizes f(t2) in the problem of Exam-
ple 3.3.2.

that the two endpoints were those of the monotonic solutions). Also, it should
again be noted that some endpoints can only be reached by reflectors that suffer
from multiple reflections.

Note that in the proof of (c) we didn’t use the condition t; +6; > 0. The result
of (c) can be used to determine the endpoints of the monotonic solutions quickly,
without actually computing the reflector. This cannot be done for near field tasks.

We conclude this section with an example of the solution of the above problem
in the case that the condition #; + 6; > 0 is not satisfied. From the results of
the present chapter it can be shown that, in the case of Example 3.3.2, f(r) is
maximum and minimum for 8(t) equal to

—t/3—7/9 ifte[—2m/3,7/6].

Omax(t) =4 t —m/3 ift € [/6,4m/9], 4.5)
t/4 ift € [47/9, 21 /3],
and Opmin () = —Omax (t), respectively. The function 6,y is shown in Figure 4.1.

Note that it is obtained by a disjoint subdivision in direction 47 /9, followed by an
overlapping subdivision of the lower part in direction 7/6. In Figure 4.2, the two
reflectors with extreme endpoints are drawn in one picture, together with the two
monotonic ones. Also, their ray paths are shown.

4.1.2 Mathematical Problem Formulation and Summary of Results

Please note that from now on in this chapter, notation is different from other chap-
ters. In particular, f refers to the function to be optimized, and not to that describ-
ing the reflector surface.

In strict mathematical terms we will consider the maximization and the mini-
mization of the functional

5]
J(0) ::/ f(s+6(s))ds (4.6)
n
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Figure 4.2: The two reflectors that achieve extreme values for f(t;) in the problem

of Example 3.3.2, and their ray paths. In the bottom, these reflectors are plotted
together with the reflectors corresponding to the monotonic solutions.

over all measurable functions 6 : [t], ;] — R that are equimeasurable with a pre-
scribed smooth function 6 : [f;, 12] = R. Here f is a smooth, odd function with
convex, non-negative derivative f’, such as f(r) = tan(z/2) on (—m, ). The
condition of equimeasurability means that for all ¢, ¢, with ¢; < ¢, the sets
of all t with ¢; < 6(t) < ¢, and with ¢ < 0(t) < ¢> have equal Lebesgue
measure. For definiteness we always take 6 to be non-decreasing and thus ask for
the extreme values of J (/) over all 6 having 6 as their common non-decreasing
rearrangement. We refer to Hardy, Littlewood and Pélya [12, Secs. 10.12-16] for
more details concerning rearrangements.

We shall concentrate on the maximization of (4.6); the minimization of (4.6)
is easily transformed into a maximization problem of the considered type by re-
placing t; by —t;, t; by —#,, and 0(t) by —B{—1) ToF =15 £ 1 £ =ty

The answer to the maximization problem is particularly easy in two special
cases, viz. when 1, + 6(1;) > 0 or 1, + 6(r;) < 0. We will show that when
11 + 6(r)) > 0, then we have

5] L -
/ f(s+0(s))ds < / f(s +6(s))ds, 4.7
1] n
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and that when 7, + 6(t,) < 0, we have
15) 5] _
/ f(s+0(s)ds < / f(s+6( +1—ys))ds 4.8)
n n

for all allowed 6. Hence the non-decreasing rearrangement 6(s) and the non-
increasing rearrangement 6 (t; + t, — s) solve the respective maximization prob-
lems. In the reflector design context, these solutions correspond to the monotonic
ray paths. In [22], a proof for the special case that f () = tan(t/2) is presented.
In Section 4.3.1 we derive a similar result for more general functions f.

Unfortunately, the results for the case that #; + 0(1)) <0<t + 6(tp) are not
so easy to state, and the proofs are in keeping with it. Firstly, it may very well
happen that the maximization problem does not admit a solution in the space of all
measurable functions 6 having 6 as their common non-decreasing rearrangement.
Also, in the cases that there does exist a solution, it may be discontinuous at many
places and its actual form, which can be rather complicated, usually depends on
f. (If @ has n discontinuities, then the corresponding reflector will consist of n+1
smooth facets.)

On the other hand we have certain not too restrictive conditions under which
we can show the optimal 6’s to be reasonably well-behaved (what this means will
be explained below). These conditions are that 0'(t) < 2forallt € [t), 1], and
that 6'(t) = 1 /2 for only finitely many points ¢ € [f1, 1;]. In reflector design
applications, both these conditions are usually satisfied.

Let us summarize the results of this chapter. In Section 4.2 we consider the
discrete version of the maximization problem. That is, given increasing sequences
S1,...8, and 9_1, iE g 9_,,, together with a smooth, odd function f for which f’is
(strictly) convex and non-negative, then we want to maximize

J0) =Y flsi +0(s)), (4.9)
i=l

over all bijections 6 : {sj,...,s,}— {9_1, R é,,}. This problem can be seen
as a matching problem, and it is solvable in O(n?) time. However, due to the
conditions on f, several properties of optimizers can be deduced. For instance,
denoting 6; = 0(s;), it will be shown that for any maximizer 6 and any k, m with
1 <k <m < n we have

{6k, 0} N { min 6;, max 6;} # 2. (4.10)
k<l<m k<l<m
Furthermore, when
max (41 —6;) < min (siy2 — si), (4.11)
1<i<n—1 1<i<n—-2
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it turns out that for any maximizer and any k, m with 1 <k < m < n we have

{6k, O} N { max 6} # 0. (4.12)

The latter property is equivalent with 6 being V-shaped: there is an no with 1 <
no < n, such that

01 > By > v s 2 Opy1 > Oy =0, < Onpt1 < ... <Oy_1 < 0,. (4.13)

(If 6 has the converse property, i.e. if —6 is V-shaped, then 6 is usually said to be
unimodal.) Also, the deviation of the maximizing 6 from being V-shaped in the
general case can be quantified in terms of the extent to which (4.11) is violated:;
see Proposition 4.2.7. Finally we show that under the condition that

max (042 —6;) < min (siy) —s,), (4.14)
I<i<n-2 1<i<n-—1
we can even solve the discrete problem by a greedy O (n) algorithm.
In Section 4.3.1 we present existence results for the maximization of

n
Jp(0) :=/ f(@(s) +6(s))ds, (4.15)
n

over all measurable € having 6 as their common non-decreasing rearrangement.
Here ¢ is a given bounded function. We shall show the result announced in con-
nection with (4.7) and (4.8) for the case that ¢(r), 6(t) > Oforallt e [t1, 1]
Furthermore we show the following. Let the variation Var(9; t,, 1) of 0 over
[21, 1] be defined by

n—1
Var(0; t;, 1) = sup{Z 10 (sk+1) — Ol |t1 =81 < ... <s, =tr;n € N}.
k=1
(4.16)

Then we show that for any V > 0(r) — 6 (1) there exists an allowed 0y with
Var(Oy; t;, 1) <V

such that J,(0y) > Jy(0) for all allowed 6 with Var(0; t;,1,) < V. Although in
actual reflector design problems the restriction to mappings 6 of finite variation
is quite natural, this existence result is unsatisfactory in the sense that it does not
exclude (and indeed, it happens) that Var(fy; 1, 1) — oo as V — 0o. A further
result that we present in Section 4.3.1 is that supy qu ®) = sup, Jy(¢), where
the suprema are over all  and ¢ with common non-decreasing rearrangements



60 4. An Optimization Problem in 2D Reflector Design

6 and ¢, respectively. This result is useful when one of the optimizations is easier
than the other. Finally, a result is presented showing that the continuous problem
can be considered as a limit case of the discrete problem, so that the results of
Section 4.2 can be carried over to the continuous problem.

In Section 4.3.2 we consider the case ¢(s) = s forall s in (4.15) in more
detail, and we analyze the optimizers 6 under the condition that their variation
(4.16) is finite. For instance, it is shown that these optimizers are V-shaped.
Also, with the aid of Section 4.3.1 it is shown that there exist optimizers of fi-
nite variation whenever 8'(s) < 2foralls € [t;, 1;]. Furthermore, it is shown
that V-shaped optimizers are continuous on the left leg of the V and that the num-
ber of discontinuities of 6 on the right leg is bounded from above in terms of
the number of s with 8’(s) = 1/2, if that number is finite. For instance, when
9'(s) < 1/2foralls € [, 1,], we find that the optimizer 6 is continuous. Also,
the form of 6, both on the left leg and between the discontinuities on the right leg,
is determined analytically in terms of the discontinuities of 6 and the values of
§ assumed at #; and t,. This allows us to express J(0) as a finite series of inte-
grals involving known functions, with integration bounds that are to be chosen so
as to yield the highest possible value for J(6). The latter problem can get quite
complicated.

In Section 4.4 we present, again under the condition that the optimizers are of
finite variation, analytical results for the case that there is at most one point s with
6'(s) = 1/2. (In reflector design problems, this will often be the case.) Finally,
in Section 4.5 we present examples, both for the discrete and the continuous case,
some of which are relevant to the reflector design problem. These examples also
serve to illustrate a curious duality between the existence of non-injective solu-
tions of the continuous problem when 0'(s) < 1/2 for all s, and the non-existence
of solutions of this problem when 6'(s) > 2 is allowed to occur.

4.2 The Discrete Problem

4.2.1 The Discrete Problem Seen as a Matching Problem

In this section we consider an increasing sequence si, ..., Sn and an increasing

sequence 0y, ...,0,, together with a smooth, odd function f for which f’ is
(strictly) convex and non-negative, and we want to maximize

JO) =) flsi +000), (4.17)
i=1

over all bijections 6 : {sy,...,s,} = {6y, ..., 6,). This problem is a special case
of a well-known matching problem. In order to formulate this matching problem,
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we briefly recall some notions from graph theory. For more details, we refer to
Lovasz and Plummer [21].

A graph G = (V, E) is called bipartite if V. = A U B for two disjoint non-
empty subsets A and B of V such that all edges in E join a vertex of A to a vertex
of B. A bipartite graph is called complete if each vertex in A is adjacent to each
vertex in B. A subset of edges M C E of a graph G is called a matching of G if
no two edges in M have a vertex in common. A matching M is called perfect if
each vertex is covered by an edge in M. If the graph G is weighted, i.e. if each
edge e € E has a weight w, € R associated with it, then the weight of a matching
M is defined to be )", we. A maximum weight perfect matching is a perfect
matching that has the greatest weight among all perfect matchings.

It is easily seen that maximizing (4.17) is precisely the problem of finding
a maximum weight perfect matching in a weighted complete bipartite graph.
Specifically, let A = {s1,52.....5:}, B = {01,602, ...,0,}, E = {(5:,0;) | si €
A, G_j € B},and w, = f(s;i + 0_]-) for e = (s;, 9_1-). This problem is solvable in
polynomial time: Gabow [10], Lawler [18], and Cunningham and Marsh [6] have
developed algorithms which take O(]V|?) time. In our problem however, the
‘weight function’ has some special properties. From this we can deduce several
properties of optimal mappings 6 (i.e. optimal matchings). It might be interesting
to investigate whether these properties may lead to a faster matching algorithm
for these special weight functions. This topic, however, is not addressed here.

What is more important here is that the results of this section provide us with
insight as to when the continuous problem is solvable (and when not), and what
the optimal 6(r) looks like. It is also for this reason that the problem above is
formulated as that of finding an optimal mapping, rather than one of finding an
optimal permutation, another way to present the problem which would have em-
phasized the symmetry of the problem (in the sense that the s;’s and the 6;’s play
similar roles). Finally, the restriction to increasing sequences is for convenience
only; the results of this section can be applied to non-decreasing sequences as
well.

4.2.2 Basic Properties of Maximizers

From now on, we assume that 6 is a bijection that maximizes (4.17), and we will
write ; = 0(s;) foralli € {1, ..., n}. In this section we will see that & maps at
least one of the extreme points sy, s, onto one of the extreme points 6y, 6,. We
will also investigate conditions under which any of these situations may occur.
The following result is basic to the remainder of this section.
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Proposition 4.2.1. Let1 < k <[ < n. Then we have

(a) O < 6 = —(Ok +6)) < sk + 51,
(b) O > 0 = — (6 +60) = sk + 5.

Proof. By optimality of 8, we have
FGk+6) + f(s1+60) > fse +0)+ f(s1+6p). (4.18)
The assumptions on f (see the beginning of Section 4.2.1) imply that the function
Gnc(s) =f(s+n)— f(s+ 1), s € R, 4.19)

is even, i.e. it is symmetric about the point s = —(n + t)/2. Furthermore, ¢, ; is
positive and strictly convex when n > t, while it is negative and strictly concave
when n < t. Hence (4.18) together with s; < s; imply that

—(s1+ Ok +61)/2) < s+ (O +6,)/2 (4.20)
or

—(s1+ Ok +61)/2) = s + (6 +601)/2 (4.21)
according as 6y < 6; or 6, > 6, as required. g

The next result involves three different points; we only present the most sig-
nificant conclusions that one can draw concerning three points.

Proposition 4.2.2. Let1 <k <[ < m < n. Then we have

(a) Ok > O > 6 = & —0 = s — 5,
(b) 0 > 6 > 6, = Ok — O = Sy — Sk
(c) 6 > 6,, > 0, does not occur.

Proof.

(a) Because 6 > 6, and 6,, > 6; it follows from Proposition 4.2.1 that
—(6k +6) = sk + sm and — (6, +6,,) < s+ Sm - (4.22)

By combining these two inequalities, implication (a) follows.
(b) Because 6; > 6 and 6; > 6,, it follows from Proposition 4.2.1 that

—(Ok +01) < sk + s and — (61 + On) = 51 + 5. (4.23)

By combining these two inequalities, implication (b) follows.
(¢) In the proof of (b) it was not used that 6, > 6,,, but this follows already from
the right hand side of (b). Hence 6, > 6,, > 6; does not occur. O
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The next result is an important characteristic of a maximizing 6. It says that
0 maps at least one of the extreme points s;, s, onto one of the extreme points
9_1 ’ éﬂ *:

Theorem 4.2.3. For a maximizing 6 we have
{61,60,} N {61, 6,) # D (4.24)

Proof. Suppose that (4.24) is not true. Then there are i, j with 1 < i, j < n
such that
6 =60, <6 and0; =6, > 6,. (4.25)

It follows from Proposition 4.2.2(b) and (¢c) withk = 1, [ = j, m = n that

0 — 6, > s, — 1. (4.26)
Next it follows from Proposition 4.2.2(a) withk = 1, [ =i, m = n that

01 — 6 <s; —s1. 4.27)

However, s; < s, and 6, > 6, and this shows that (4.26) and (4.27) yield a
contradiction. O

An immediate consequence of this proposition is the following.

Corollary 4.2.4. Let1 <k < m < n. Then we have

{6k, 0} N { min 6;, max 6;} # @. (4.28)
k<l<m k<l<m

Now that we know that an optimal 6 ‘matches’ at least one pair of extremal
points, we can investigate necessary and sufficient conditions under which any of
these matchings occur. The following proposition gives some of these conditions.

Proposition 4.2.5. For a maximizing 6 we have

(a) ~O1+6) < s+ = 6,=0,
(b) _(0_71—1 'i’gn) > 51+ 8, = 0= e_nv
(c) —(9_1 + 0_,,) > Sp-1t8Sn = O = 9_1,
(d) ‘(9_1 +0n)_ < 81+ = O, = Qn,
(e) —(Q_n—l 'j‘ O) < s1+s2 = 0 # O_n,
0y, —(61+6) > sitsn = 6 #6.

Proof.  'We will only prove (a) and (b). The rest is proven similarly. (a)
Suppose that the left member of the implication (a) is valid, and that 6, > 6, = 6;
for some k > 1. Then by Proposition 4.2.1(b) we have

—O1+62) > —(01 +6;) = 51 + 5 > 51 + 52, (4.29)
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a contradiction.
(b) Suppose that the left member of the implication (b) is valid, and that 6; <
6, = 6y for some k > 1. Then by Proposition 4.2.1(a) we have

—(Bn1 +0n) < =01 +6k) < 514 5k < 51+ 5, (4.30)
a contradiction. O

We conclude this section with the discrete analogue of the result in [13], which
is generalized in Proposition 4.3.1.

Corollary 4.2.6. If si + 52 + 20, > O then 6, = 6; foralli € {1,...,n}. If
Sp + Sn_1 + 20, <Othen 6; = Opy1—; foralli € {1, ..., n}

Proof. Repeatedly apply Proposition 4.2.5(a) and (c) for the first and second
statement, respectively. a

4.2.3 V-Shaped Maximizers

In the previous section we have seen that 6 satisfies condition (4.28). From this
one can deduce that the number of mappings

0:{s1,....5u} = {61, ....64)

that can possibly be a maximizer, is reduced from n! to [%(2 + ﬁ)”‘l‘l. Unfor-
tunately, this is the best one can do: for each function f and for each mapping ¢
that satisfies condition (4.28), one can find numbers

St,...,spand 0y, ..., 0,

such that 6 is a maximizer (the proof uses Proposition 4.2.5 and induction).
Nevertheless, there is a tendency of the 6’s towards being V-shaped. By V-
shaped we mean that there is an ng with 1 < ng < n, such that

01 > 60> ... > Opy1 > Oy =01 <Opg1 < ... <bp1 <06y (4.31)

Note that 6 is V-shaped if and only if for all k, m with 1 <k <m < n, we have
(compare with (4.28)),

kmlax 0, € {6k, O }. (4.32)

We will now show that the deviation from being V-shaped puts strong restrictions
on the sets {sy,...,s,}and {61, ....6,}). To this end, first note that if 6 is not
V-shaped, then there is an / with 1 <[ < n such that 6, > 6;_y and 6, > O4.
From Proposition 4.2.2 it then follows that 6, > 6,—; > 64+1. The following
proposition is formulated, mainly for convenient graphical display in Figure 4.3,
for the case s; = i for all i. The generalization to the case of arbitrary increasing
s; is straightforward.
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Figure 4.3: In the case that 6 is not V-shaped, its graph is restricted to the shaded
regions.

Proposition 4.2.7. Lets; = i foralli € {1,...,n}. Assume that 0 is not
V-shaped, so that there is an | with 1 < | < n such that 6, > 6;_; > 6;,1. Let i
and j be such that

0, +i= min (6 +k), and 0] = min 6. (4.33)

k<l,6,<6; k<l
Note that, by definition i < j. Now put « = 6; + i — ;. Then the graph
{(k,0k) | kK € {1,...,n}} of 6 is restricted to the shaded regions in Figure 4.3.

More precisely, we have
\

(a) k <« = 0 <6 <6 +a—k,
(b) a<k<l = 6 >6>max{0,6, +a —k},
(c) | <k = O>060r O <6 +oa—k.

Moreover, we have
(d Il <k<m; 0>06 and 6, >0,, = 6 > 6,.
Finally, 0 is increasing between j and |, and decreasing before a.

Proof.
(a) Let k < «. Suppose that 6, < 6;. Then

Ok +k <O+a=0+6+i—6, <6; +1i, (4.34)

violating the definition of i. So 6; > 6;. Now assume 6; > 6,. Then 6, > 6, > 6;,
so that 6y — 6; < i — k by Proposition 4.2.2(a), i.e. 0y < 6, + o — k.
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(b) Let « < k < I. By definition of i and j, we have 6y > max{6;, 6, + o — k}.
This leaves us to show that 6, < ;. To this end, first suppose that we have a k
witha < k < i and 6, > 6;. Then 6, > 6, > 6;, so that by Proposition 4.2.2(a)
we have 6y —0; <i —k,ie. 0, <6+ a —k < 6, acontradiction. Next, suppose
we have a k with i < k < [ such that 6; > 6; > 6;. Then by Proposition 4.2.2(b)
wehave §; — 0 <l —i,i.e. 6, < 6, +a — | < 6, a contradiction.
(c)Let! < k. When 6; < 6;, we have by Proposition 4.2.2(b) that §; — 6 > k — i,
ie. Oy <O +a—k.
(d)Let! < k < m with §; > 6, and 6; > 6,, , and suppose that 6y < 6,,. Then we
have by Proposition 4.2.2(a) that 6 — 6y < k —1l,ie. 6 > O+l —k > 6+ o — k,
which contradicts (c). This proves monotonicity of 6 in the region to the right of
1, below 6;.

Finally, monotonicity in the region between j and [ and before « are proved
similarly, by applying Proposition 4.2.2. O

In the situation of the Proposition 4.2.7 it follows that either 6 is increasing
from j onwards, or that the sequence 6, exhibits a gap of at least/ + 1 — j > 2.
Also, when ny is such that 6, = 6,, we have that 6 is increasing from ny onwards
(so this holds for any optimal 6, V-shaped or not). An immediate consequence
of the existence of the gap for non-V-shaped maximizers is that 6 is V-shaped

whenever B B
max (Ojy] —6;) < 2. (4.35)

I<i<n-1

For arbitrary s;, the analogue of this is given by the following corollary. Its proof
is the same as for the case that s; = i for all i.

Corollary 4.2.8. The maximizer 0 is V-shaped if

max (041 —6;) < 1 min 2(s,-+2 —5i). (4.36)

I<i<n-—1

In the remainder of this section we shall analyze optimal V-shaped 6’s a bit further
for the case that s; = i, for all i. This special case arises naturally when the
continuous problem of Section 4.3 is discretized. So assume that 6 is V-shaped
and that ng is such that 6,, = 6. The following proposition tells us something
about how the points on the left and right leg of the V are relatively situated.

Proposition 4.2.9. Let k < ng. There is at most one | > nq such that
9k > 91 > 0k+l- (437)
When such an | exists, then we have for allm > k

Om — 6 = —(m — k), (4.38)
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in particular, O — 0y < 1. Furthermore, when p is such that
91( b 9[ > 9k+l b PR 9k+p > 9[_1 > 0k+p+l’ (439)

then we have

1 1 1 1
‘2'1’ b '2‘(9k + Oy 1) — 5(9k+p + Okt p+1) < EP- (4.40)

Proof. Letl > ng be such that (4.37) holds. It follows from Proposition 4.2.1
that

—G+Kk) =0 +1= —Ocr1 +hk+1) > —(6c+k)— 1. (4.41)
Now since
O +U-D+1=<+1<61+1+1)-1, (4.42)
we see from (4.41) that
O+ —-1)=<—-(c+k)—1,and O +(U+1) > - +k). (443)

Hence (4.41), and therefore (4.37), is not satisfied when [ is replaced by / + 1.
The validity of (4.38) follows from Proposition 4.2.2(a).
To show (4.40) from (4.39), we observe that Proposition 4.2.1, together with
Ok > 0 > Oy, and Oy p > 01— > Opypyy imply that

k+1 <=k +611) <k+1+1, (4.44)

and
k+p+l—1<—Oryp+ipr1) <k+p+L. (4.45)
Combination of these two inequalities yields (4.40). O

We will complete this section with a special case in which a greedy O(n)
algorithm solves the matching problem.

Proposition 4.2.10. Assume that

i max l(9,+| —6) < . mm (s,+2 —5i). (4.46)
Then - _ -
(a) _(Q_n—l +9_n) > s1+s, = 0= 9_,,,
(b) —Op_1+6,) < s1+s, = 6,=0.

Proof. The implication (a) is the same as 4.2.5(b). To prove (b), assume that
—(6p— 1 +6,) <51 +s, and that 6, < 6,, s0 6, = 6,_x for some k > 1. Note that
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(4.46) implies (4.36), so 6 is V-shaped, and consequently, we have 6y = _,,_k+1.
From Proposition 4.2.1(b) it then follows that

—~Op—irt + Oni) = sk + 5. (4.47)
On the other hand, we have

—Opti1 + ) = = +0) + O —0p2) + Onr = Op3) + ...
+ On—tr2 — On—s)
< (Sp+s)+(s2—s1)+ (53 —52)+ ...+ (5 — k1)
= sk + S, (4.48)

by (b) and (4.46). This contradicts (4.47). a

Note that, in the proposition above, in the case that —(Op1 + 0,) = s1 + Sn,
we get {0}, 0,} = {61, 6,,}; both possible assignments yield the same value of the
functional. It is clear that the above proposition can be applied repeatedly, and we
get the following result.

Corollary 4.2.11. If

max (G —0;) < min (siv2 = 50). (4.49)
<i<n—

1<i<n-—1

then we can find a maximizer in O(n) time.

4.3 The Continuous Problem

We consider in this section the maximization of
n
J(@©) = f f(s +0(s))ds. (4.50)
n

Here f is a smooth, odd function with non-negative, convex derivative f ', and
9 is equimeasurable with a given, smooth, non-decreasing function ¢ defined on
[t1, 12], 1.e. the sets

Se(a,b) :=={t|a <06(t) <b} and Sz(a,b) :={t|a < 0(t) < b} (4.51)

have equal measure for all a, b € R. The set of all functions 6 equimeasurable
with & will be denoted ®. In solving this problem we are strongly inspired by
the results of Section 4.2 on the discrete problem. However, there are also con-
spicuous differences between the two problems, the most important one being the
non-trivial matter of the existence of maximizers in the continuous problem.
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The continuous problem can be discretized so that a discrete problem of the
type dealt with in Section 4.2 is obtained. For instance, when n € N, then let

s — L—1n

: 4.52
o (4.52)

and let foralli € {1, ..., n}
s =1 + @i —1)8™, and 6 = 6(s™). (4.53)

That is, the interval [t1, ;] is divided into n equally sized subintervals, and the
midpoints of these intervals are chosen as si("). We can now consider the cor-
responding discrete optimization problem (4.17). If 6" is a maximizer of this
problem, we can associate with it a step function

n

A=y o, (4.54)

i=1

where 91'(") = 0(”)(si(")), and where Ii(") is the indicator function of the interval
(si — 8™, s; + 8™ foralli with1 <i < n, and 11(") is the indicator function of
[s; — 8™, 51 + 6™]. Now we can hope that

J(Q(n)

step

) — sup{J(0) | 6 € B}, (4.55)

and that (a subsequence of) 95([:'::, converges to a & maximizing J(0) as n — 0o,

when such a 6 exists.

This section is subdivided as follows. In Section 4.3.1 we present the solution
of the problem in case that 0 ¢ (t; + 6(t)), t; + 6(t2)), which is a generalization
of the result in [13]. Furthermore, we show existence of a maximizer among all
functions 6 € ©, whose variation

n—1

Var(0; 11, 1) := sup{Y_ [0(sie1) — Ol |1 =51 < ... <5, =1}, (4.56)

neN k=1

does not exceed a prescribed threshold. We will denote by @y the set of all 6 € @
with Var(; t;,) < V. Also, a statement concerning the convergence of the
solution of the discretized problem is given and special attention is paid to the
case that 6'(1) < 2, forallz € [11, 12].

In Section 4.3.2 we assume that there is a 6 with finite variation Var(0; ;, t;)
such that J(0) > J(n) forall n € ©. Then we present the basic properties of this
6 such as being V-shaped, and continuity on the left leg of the V. We conclude it
with a more detailed analysis of these 6’s, and we attempt to describe them and
their functional value J(6) analytically.
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4.3.1 Some Existence Results

We present in this section some existence results for the slightly more general
problem of maximizing (over 6)

Jp(0) := / f(@(s) +6(s))ds, (4.57)

where ¢ has a smooth non-decreasing rearrangement ¢, see Hardy, Littlewood
and Pélya [1_2, Sec. 10.12]. The set of all functions ¢ equimeasurable with ¢ will
be denoted ®.

Proposition 4.3.1. Let f : [0, 00) — [0, 00) be a non-decreasing, smooth,
convex function with f(0) = O, and let ¢ and 6 be two bounded, measurable
non-negative functions defined on [0, 1]. Then

1 1 1
/ f(@(s)+0(s)) ds < f f@(s)+6(s))ds < fo f(@(s)+6(s))ds. (4.58)
0 0

Here O(s) = 6(1—s) and Q(s) = d;(l —s) are the non-increasing rearrangements
of 6 and ¢, respectively.

Proof. Forallt > 0, we have
f@ = / £ (u) max(0, t — u)du + tf'(0). (4.59)
0

We can assume that f/(0) = O since there is equality in (4.58) for linear f’s, and
then we get by Fubini’s theorem

1 00 1
/ f(@(s)+0(s))ds = / f"(u)(/ max (0, ¢(s)+6(s)—u)ds)du. (4.60)
0 0 0
Since max(0, x — u) = max(u, x) — u, it suffices to show that
1
/ max(u, ¢(s) + 0(s)) ds <
0

1 1
fmax(u.¢(s)+9(s))ds§/ max(u, ¢(s) +0(s))ds (4.61)
0 0

for any u > 0.
We shall first prove (4.61) for functions ¢ and 6 of the form

¢(s) =Y dulx(s), 0(s) =Y Oklx(s), (4.62)
k=1 k=1
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where I; (s) is the indicator function of [(k—1)/n, k/n]. In this case the inequality
to be proved reduces to

Yomax(u, g +0,) <Y max(u, gy +6) < Y max(u. g +0;)  (4.63)
k=1 k=1 k=1

for any u > 0, where ¢, ... ¢, is the non-decreasing ordering of the sequence

b1, ... ¢Pn, etc.
The elementary inequality

a<b and c<d
U (4.64)
max(u,a +c) +max(u,b+d) > max(u,b+ c) + max(u,a +d)

for u > 0 gives what is required for proving (4.63). To show (4.64) we just note
that for all y, u € R, we have

1
max(u, y) = 5(y+u+|y—u|), (4.65)
and that the function x — |c+ x| — |d 4 x| is non-increasing in x € R when ¢ < d.
The proof of (4.61) for the general case can now be completed as follows. We

can find sequences of functions ¢, 6" of the form (4.62) such that as n — oo,
we have

1 1
/ lp(s) — p™(s)|ds — 0, and / 16(s) — 0™ (s)|ds — 0. (4.66)
0 0

Now for any two integrable functions f and g defined on [0, 1] and for any a €
R, € > 0 we have

1 1
ns | F&) 2 a, gs) <a—e)) < ;fo f(5) —g()ds.  (467)

This implies that as n — 0o, we have

1 1 -
/ |p(s) — dpM(s)|ds — 0, and / 16(s) — O™ (s)|ds — 0, (4.68)
0 0

and then the result follows in a few lines. g

The following is an easy consequence.
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Corollary 4.3.2. Let f satisfy the properties that were required in connection
with (4.50). Then

L _ B 15} _
/ f+0(t+1n—1)dt < / f@+6@)dt < f f@+06(@))dt (4.69)
n n n

when t; + (1)) > 0, and the inequality signs are reversed when t; + 0(t;) <O.

Proposition 4.3.3. LetV >0 aild assume Oy # (. Then there is a 6 € Oy
such that J4(8) = Jg(n) for all n € Oy.

Proof. Let M = sup{Jy(n) | n € Oy}, and let (0™ en be a sequence in Oy
such that J, (%)) — M, as k — 0o. We can write
9P (5) = 0% (s) — 6% (s), forall s € [11, 1], (4.70)
where 9;" )(s) are non-decreasing in s, and
0" (1) — 6L (1) + 6% (1) — 6% (1)) < V. 4.71)

By Helly’s theorem, see Loeve [19, Sect. 11.2], we can find subsequences (de-
noted by 6®  etc.) and non-decreasing functions 6. (s) such that Oj(tk )(s) — 04+(s)
in all but countably many points s € [t, 2]. At the same time it can be arranged
that

01 (12) —04(1) +6-_(r2) —6_(t) =V, (4.72)

just by taking care that f; and 7, are among the points s with Qf_Lk)(s) — 04(5).
When we let 0(s) = 0, (s) — 6_(s), we thus see that Var(6; 11, 1) < V, and, by
dominated convergence, that

/2 f(@(s)+06(s))ds =M. (4.73)

Finally, for any a, b € R, we have that
wis |a <0® @) < b)) = ulls|a<6(s) <b)) (4.74)

when k — oo, again by dominated convergence. Since the numbers at the left
hand side of (4.74) are all equal to u({s | a < 6(s) < b}), we thus see that
0 € Oy, as required. O

The two following results, whose proofs are omitted, can be shown to hold by
employing the same sort of arguments that were used to prove Proposition 4.3.1.
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Proposition 4.3.4. We have

B n

sup | f(¢(s) +6(s))ds = sup f(p(s) +0(s))ds. (4.75)
0e® 1 ped v

We now return to the case that ¢ (s) = s for all s (for convenience only).

(n) 9(") 9(")

Proposition 4.3.5. Letn € N, and let §, s; and 6., be defined as in

(4.52), (4.53) and (4.54). Then we have

n
sup [ f(s +6(s)ds = lim J(O5). (4.76)
96(:‘) t n—oo

Note that in this last proposition, there does not have to be a 8 such that J(6) =
lim, o0 J (65({6':},) Although Proposition 4.3.4 shows that within the set Oy there
is a maximizer, say Oy, it may well happen that Var(8y; t|, t) - oo as V — oo.
See also Example 4.5.5.

From Proposition 4.3.5 it follows that the continuous problem has a well-
behaved solution when

max 0'(s) < 2. (4.77)
)
To see this, note that in this case we have foralln € N
n(n) n(n) (n) (n)
l<rlr1<anx l(9hLl 6,7 < 1<rlrL1’111 z(s,+2 ), 4.78)

see (4.36), whence the optimal 6™ are all V-shaped. It thus follows that the
step functions QS,CP have uniformly bounded variation, they are asymptotically
equimeasurable with 6, and
lim J (64
n—o0

step

) = sup J(0). 4.79)
0ed

Now proceed as in the proof of Proposition 4.3.1 to conclude the existence of a
maximizer # € ®. Summarizing, we get the following.

Corollary 4.3.6. Ifmax, 6'(s) < 2, then a V-shaped maximizer exists.

4.3.2 Maximizers with Finite Variation

In this section we assume that ¢(s) = s for all s, and that we have a 0 € O, of
finite variation such that J(#) > J(n) for all n € © of finite variation. As we
see from Proposition 4.3.1 this may occur without condition (4.77) being satis-
fied. Such a 6 is continuous at all but at most countably many points. We can
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redefine 6 so that it is continuous from the right on [t;, t;) and continuous from
the left at t,, without violating the condition of being equimeasurable with 6 or
changing the value J(6) of the functional. We start by establishing versions of
Propositions 4.2.1 and 4.2.2 for the present case.

Proposition 4.3.7. Lett; < u < v < t5. Then we have

(a) O(u) < 6(v) = —OW)+6w) <u+v,
(b) 0(u) > 0(v) = —OWw)+60(w) =>u+v.
Proof.

(a) Suppose that (1) < 6(v), and that —(6(u) + 6(v)) > u + v. We can find
two non-overlapping closed intervals /, and /, of equal length contained in [z}, 2]
such that u € I, v € I, and such that for all s € [, and t € I,,, we have

0(s) <O(@)and — (O(s) +6(t)) > s +1. (4.80)
Denoting I, = [a,a + 8] and I, = [b, b + 5], we have

/aﬂs+Mﬂﬂh+j~ﬂs+mgym=
lu [v

8
/ fla+x+0@+x)+ fb+x+60b+x))dx. (4.81)
0

Now because of (4.80), compare with the proof of Proposition 4.2.1, we have
fla+x+0@+x)+ fb+x+60b+x)) <
fla+x4+6(B+x)+ f(b+x+6(a+x)) (4.82)
for all x € (0, §). Hence

)
/ fla+x+0@+x)+ fb+x+60(b+x)dx <
0

s
/ fl@a+x+0b+x)+ f(b+x+06(a+x))dx. (4.83)
0

This shows that @ is not a maximizer since interchanging the values of 6 on the
intervals /, and I, increases the functional J. Contradiction.
(b) is proved similarly. |

Proposition 4.3.8. Lett) <u <v < w < t;. Then we have

(a) 0(u) > 0(w) > 6(v) = O(u) —0(w) <v—u,
(b) O(v) > 6(u) > 6(w) = O(u) —0(w) = w —u,
(c) O(v) > 8(w) > O(u) does not occur.

Proof. The proof is the same as that of Proposition 4.2.2. o



4.3. The Continuous Problem 75

We are now ready to prove the following result.
Theorem 4.3.9. If the maximizer 6 is of finite variation, then it is V-shaped.

Proof. First note that it suffices to prove the following:
Lett) <u <v < w <. Then we have

O(v) > 0(u) = 6(w) > 0(v). (4.84)
To prove (4.84), suppose that 6(v) > 0(u) and 8(w) < O(v). Let
0p ;= inf{f(x) | x < v}. (4.85)

Since 6 is right-continuous at v, there is a § > 0 such that
0(z) > 6y, forallzwith0 <z —v < 6. (4.86)

We shall show that 6(w) < 6y — 8. This implies that 6, and therefore 6, does not
assume values between 6y — § and 6, which contradicts smoothness of 8.

To show that 6(w) < 6y — 6, we let € > O and y < v be such that (y) <
0o + € < 6(v). By Proposition 4.3.8(b) and (c) we see that

O(w) <0(y)—(w—y) <byp+e€—(w—0). 4.87)
Hence, by letting € | 0, we get that
O(w) <6y — (w —v). (4.88)

From (4.86) it then follows that w — v > §, so that indeed 6 (w) < 6y — &, which
completes the proof. o

So, the opEimal 0 is V-shaped, ansi consequently there is a vy € [t;, £] such
that 6 (vo) = 6(ty) or lim;y,, 6(r) = 6(t;). The following theorem proves conti-
nuity of 6 on the left leg of the V, provided that there is a left leg.

Theorem 4.3.10. If vy > 1, then 0 is continuous on [t), vo).

Proof. Letu € (1, vg) be such that

0(u) < ltle 0(t). (4.89)

By Theorem 4.3.9 and by smoothness of 6 there is a v > vy, such that

0(y) > liTm 0(t) > 0(v) > O(u), forall y suchthats; <y < u. (4.90)
tTu

But then by Proposition 4.3.8(a) we get that
0=<6(y)—6u) <y—u, forall ysuchthatt; <y < u, (4.91)

showing lim;4, 6(t) = 6(u), a contradiction. Hence 6 is continuous on (¢, Vo).
Since 6 is right-continuous at 7, the proof is complete. O



76 4. An Optimization Problem in 2D Reflector Design

We continue the analysis of 6 by studying its behaviour on the right leg of
the V. In order to simplify the analysis somewhat, we assume that 6 is strictly
increasing on [f1, 12]. As a consequence, 6 is strictly decreasing on [t1, vo) and
strictly increasing on [vo, 1;]. The following result then follows immediately from
Proposition 4.3.7.

Corollary 4.3.11. Let 0 be strictly increasing on [ty, 2] and let u and v with
fy < u < v <t be such that 6(u) = 0(v). Then we have O(u) = 6(v) =
—%(u + v) whenever u > t| or when 0 is continuous at v.

From now on, we assume that #; < vy < f; other cases are trivial. In or-
der to formulate the forthcoming results, it is necessary to introduce some more
notations.

Firstly, let

. { inf{z € [vo, 12] | () = O(1)}. i O(r2) > O(11) 4.92)

153 otherwise.

So, if O(t,) > (1)), then we have 6(d) = 6(v;) and it follows that 6(v) = 0(v)
for all v > 0. Now, let

A

6, = 0(D), 6_ :=lim O (v), (4.93)

v

and let /i and ii_ be the unique solutions u € [t} vo] of the equations 6 (1) = 6.,
and 6 (u) = 6_, respectively. (So iy = t; when 0(r2) > 6(11).)
Secondly, set

6o+ = 0(vo), Bo.— = lim O(v) = 6(1)), (4.94)

v1vo

let ug ;. be the unique solution u € [t;, vol of the equation 0(u) = 6p 4 and let
Up,— = Vo.

Finally, let (vx)x>1 be an enumeration of the discontinuities of € in (vo, V), let
forall k > 1

Ok + = 0(wr), Ok — := lim 6(v), (4.95)
vk

and let u;_, and uy _ be the unique solutions u € [t1., vo] of the equations 6 (u) =
Ok + and O (u) = Ok _, respectively.

In Figure 4.4 we have plotted a case where 6 is discontinuous at v < tp, at vg
and at two other points vy, v2 € (vo, V). Of course, all sorts of degeneracies can
occur in the definitions of v, i, vk +, etc.
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0, =6()

A
u V. VvV v, v t
ll - u2,+ uz,r u1,+ ul,- u0,+ 0 1 2 2

Figure 4.4: The graph of a V-shaped 0, illustrating some definitions.

Theorem 4.3.12. We have

—Op - = %(uk,_ + vg), forallk > 1, (4.96)
G = gW++wy forallk > 1, (4.97)
—bo+ = %(MO,Ar + o), (4.98)
-0 = %m_+m. (4.99)

Furthermore, we have —6y — > vo > ——%(90'_ +6y.+), and, if0(t2) > 6(ty), then

—0(t)) = —0(v) < %(Il + 9). (4.100)

Proof. First we prove (4.100), which follows from Proposition 4.3.7(b) by
taking v | v in the inequality

—(@(n) +6)) =1 +v. (4.101)

Similarly, one proves that —6p — > vy > —%(90,_ 4+ 60.+)-
Now (4.96) and (4.97) follow immediately from Corollary 4.3.11. This leaves
us to show that

A
—0- = 5@ +9). (4.102)
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because (4.98) is proved similarly. Let e > O and take au € (u_, u_ + €) such
thatd_ —e < O(u) < o_. Next, take av € (v —¢€, D) such that 8 (1) < 0(v) < o_.
Then Proposition 4.3.7 shows that

A 1 A 1 1
—0_ > —5(9_ +06(v)) — g > 5(12_ +v) — % > 5(12_ +10)—€, (4.103)

= 2 2 = 2 2‘ ( )

Now let € | 0 to obtain (4.102). O

Note that if t; < vy < t, and if 0 is continuous, then it follows that vy =
—0(t1). Another consequence of this theorem is the following.

Corollary 4.3.13. For each k > 1 there is at least one u € (uy 4, ug )
such that 6'(u) = —1/2. Consequently, the number of discontinuities of ) is finite
whenever the number of points t € [ty, t,] with 0’ (t) = 1/2 is finite.

Proof. Note that 8 is smooth on each interval (uy , uy _), and that

1
O ) — Olug,+) = —5 (o — — ug4), (4.105)

so that the result follows from the mean value theorem. 0

Now that we know the conditions on the boundaries of the intervals into which
(11, 12] is divided, we will describe 6 in more detail in terms of 6 on each of
these intervals. From now on, assume that the number of points ¢ € [t), 1] with
0'(t) = 1/2 is finite, so that we have discontinuities at, say, vy, ... vk, with v} <
V2 < ... < vk. (Here vg may or may not be equal to v, if ¥ < £,.)

It is straightforward to express 6 on the intervals

(s g ), (o4, t0,—), (B, 12), (g, @) or (11, 4) (4.106)

in terms of 6, and so is their contribution to J(#). This is not true for the remain-
ing intervals (u4) —, ux +) and (vk, vky+1), which will be treated as pairs, and for
which the following result is relevant.

Proposition 4.3.14. Let U = (u;,u,), V = (vy, vy) be one of the above
mentioned pairs of intervals, and let S = (s;,s,), where s, and s, are the so-
lutions s of9_(s) = O(vr)(= 0(u,)) and 0(s) = 0(v,)(= 0(uy)), respectively.
Define functions u : S — U and v : S — V by (see Figure 4.5)

0(u(s)) = 0(v(s)) = 6(s), foralls € S. (4.107)
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u, u(s) u,

Figure 4.5: [llustration of the intervals (uy, u,) and (vy, v,) of Proposition 4.3.14.

Then we have for all s € S

u(s) = —%(s—tl)—é(s), v(s) = %(s—tl)—é(s). (4.108)
Furthermore, for all s € S we have 0'(s) < 1/2, and
/ —9_/(5‘)
6 = — ——, 0], 4.109
b= s SE5:0 (4.109)
and _
’ el(s)
0’ (v(s)) = % —56) € [0, oo]. (4.110)

Finally,

1 =
/ fu +9(u))du+/ fw+6(W))dv= —2/f(5(s—t1))9/(8)d3- (4.111)
U v s

Proof. We have for any two points u € U and v € V with 0(u) = 6(v) that

—0(u) = —0(v) = %(u + v). (4.112)
Hence u(s) and v(s) of (4.107) satisfy
u(s) + v(s) = —26(s), (4.113)
for all 5. Furthermore, since [u(s), v(s)] = {u | O(u) < 6(s)}, we have
(4.114)

v(s) —u(s) =s —1.

Now (4.108) follows from these two equalities.
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} To show 6'(s) < 1/2, we note that v(s) is non-decreasing and is related to
0(s) by the second formula in (4.108).
To show (4.109) and (4.110), we note that

Bl(els) = —— 4 lows)) = =) € [-=.0] (4.115)
= u’(S) ds - %+0_’(s) i .
and _
, 1 i _ 0'(s)
0'(0(s) = s T OOEN] = 00 € [0, oo]. (4.116)

Finally, to show (4.111), we note that by the substitutions u = u(s), v = v(s),
we get

/ fu+6)du = ——f fu(s) +0(s)u’(s) ds, 4.117)
U S

and

/f(v+9(v))dv=/f(v(s)—l—é(s))v'(s)ds, (4.118)
Vv S

respectively. Adding these two equalities, and using (4.108) and oddness of f we
get the required result. O

A further result is the following. Suppose there is an interval (uy 4, uyx ) as
above. Then 6 has at least two points s where 6’(s) = 1/2. This is seen as follows.
From (4.105) it follows that there are s, and s, such that

6(sy) —O(sp) = %(sA —5,); and 0/(sy), 0'(sp) < 1/2, (4.119)

where for the last two inequalities Proposition 4.3.14 has been used. Therefore,
in the cases that ' (s) = 1/2 for only one s, there is at most one interval to which
the analysis of Proposition 4.3.14 applies. These cases are worked out further in
the next section.

4.4 Analytic Results for the Continuous Case

In the previous section we have indicated how we can express J(6), in case of
finitely many points s with 6'(s) = 1/2 and under the assumption that the op-
timizers are of finite variation, as a series of integrals involving f and 6, with
integration bounds (determined by the discontinuities of #) satisfying certain con-
straints. Hence the problem has been reduced to a finite-dimensional constrained
optimization problem. However, this problem can get quite involved since the
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v
[I 0 (2

Figure 4.6: The optimal 0 for the case that 6’ (s) > % for all s.

constraints are not so easy to deal with. In this section we present analytic re-
sults for the case that 6'(s) = 1 /2 for at most one s € [t1, t,], again under the
assumption that the optimizers are of finite variation (which is for instance true
if 6'(s) < 2 for all 5). This already shows that analytic solution of the problem
quickly gets cumbersome.

4.4.1 The Case6'(s) > 1/2 for all s

Suppose that 0'(s) > 1 /2 for all s € [t;,]. Then 6 can have at most one
discontinuity: at vy. Furthermore, 6 must be injective, otherwise there would
be two intervals to which the analysis of Proposition 4.3.14 applies. This would
imply that 6’(s) < 1/2 on a certain interval, contradicting our assumption on
6. Therefore, the optimal 6 is of the form as depicted in Figure 4.6; where the
degenerate cases vy = t; or vy = t, may also occur. In this subsection, we will
write v instead of vy. The value of J(0) is given by

v _ 15) _
Y(v) = f fti+v—s5s+6(s))ds +/ f(s+6(s))ds (4.120)
n v
where v is constrained so as to satisfy (see Theorem 4.3.12)
= 1
—0(v) < 5(11 +v), (4.121)

unless v = t; or v = 1. Hence we should maximize ¢ (v) over v € [t1, fp]
satisfying (4.121).

We shall show that ¥/”(v) < O whenever v € (¢, 1) and —0(v) < %(tl + v).
To that end we note that we have

V() = f(t1 +0@) — fv+6(v)) +/ fl(=s+1 +v+0(s))ds (4.122)
n
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(a) (b)

Figure 4.7: In the case that 0'(s) < %for all s, discontinuities at vy will not occur.

and
v (v) = /tv F'(ti+v—s40(s))ds +
(1 +é/l(v))<f’(t1 +6() — f' (v +6)). (4.123)
So
Y (v) = /f f(ti+v—s5+0(s)ds —
(14 6'(v)) /tv F(t +v—s+6(v))ds. (4.124)
Now, by (4.121) and the fact that f” is increasing,
/”U 't +v—s+6@w)ds > /“U f”(%(tl +v)—s)ds=0.  (4.125)
Therefore, since 6’ (v) > 0, we have

v (v) < / i +v—s+60@)—f(n+v—s+0@)ds. (4.126)
n

Finally, 6(s) < 6(v) for s € [t;,v) and f” is increasing, whence ¥"(v) < 0, as
required.

It follows that the optimal & has v = 1} or v = 15, unless there isa v € (11, 1)
with ¥/(v) = 0. (To see whether there is such a v, first solve —B(w) = %(tl + w).
Then for this w we have ¥'(w) > 0. Now also check whether ¥/'(12) < 0.)

4.4.2 The Case 6'(s) < 1/2 for all s

Suppose that 0'(s) < 1 /2 for all s € [z, 2]. Note that in this case the condition
of the optimizer being of finite variation is automatically fulfilled. Then, as in
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(b)

Figure 4.8: Two possibilities for the optimal 0 for the case that 0'(s) < % foralls.

the previous section, 6 can have at most one discontinuity: at vy. We will show
that 6 has no discontinuity at all. To this end, consider the situations depicted
in Figures 4.7(a) and (b). We will show that none of these situations can occur,
so that & must be of the form as depicted in Figure 4.8(a) or (b), where, again,
the degenerate cases vgp = f; or t, may occur. We will consider the situation of
Figure 4.7(a) only; the other case is treated completely similarly.

Let us introduce some notation. Let, as in Section 4.3, uo , be such that
O(ug.+) = 6(vo). Also, let s, be such that 6(s;) = 0(vp), and let s, be such
that 6_(5,,) = 6(r1). Then Proposition 4.3.14 applies to the intervals (u;, u,) =
(t1,uo,4+) and (v, v,) := (vp, ). It follows from Proposition 4.3.14 that then
J(0) can be written as

Sp 1 _ Sx -
¥ (s1) :=C—2/ f(i(s—t1))9'(S)ds+/ f+v(sn) —u+6w)du,
Sx n

4.127)
where C does not depend on sy, and where v is the function (see (4.108)) defined
by

v(s) = %(s — 1) —0(s). (4.128)

We will show that ¥'(sy) < O for all 5, < Sp, so that s, = t; yields the
maximum value for (4.127), which implies that the optimal  is continuous at vy.

Lemma 4.4.1. We have ¥/'(s)) < O.
Proof. Differentiating (4.127) gives

¥is) = / P+ () — u + B (s2) dut
4]

1 -
2f(5(5/\ —1))0' () + f (1 + v(sp) — s+ 0(s2)). (4.129)

It follows from the definition of v and from the oddness of f that this equals

/ 1 N’ 1 % / n
Yisy) = —(5 -0 (SA))[2f(5(SA — £)) —/ f+v(sy) —u+60u))dul.
" (4.130)
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We will show that the expression in (4.130) between square brackets is positive.
Define for all u € [t, s)]

o) = —(t +v(sy) —u +6u)) (4.131)

and let 1
a:=w); b= E(s)‘ — 1) = w(sy). (4.132)

Then, since f’ is even, we get by substituting x = w(u),
Si _ b
/ i +vuis) —u+0w)du = / f'(x)h(x)dx, (4.133)
n a

where h(x) = [a)’(a)_l(x))]_'. Since % < w'(u) <1, wehave —b < a < 0 and
1 < h(x) < 2forx € [a,b]. Also

b
/ h(x)dx = 2b. (4.134)

From the properties of f’ (even, increasing on [0, 00)) it then follows that

b b 1
/ fOh(x)dx < fbf/(x)dx =2fb) = 2f(E(SA = I ))s (4.135)

as required. O

So the optimal 0 is of the form as depicted in Figure 4.8(a) and (b), where the
degenerate cases vy = 1] or vp = t, and U = 1, or i = t; should be expected to
occur. Note that vo = —6(1}).

The points v, & are found by solving v, u from

- 1 — 1
—0v) =5+ v), 0t —uw) =+ ), (4.136)

respectively. At most one of these equalities has a solution. The precise situation
can easily be read off from a picture of 6: the first equation in (4.136) has a
(unique) solution v € (t;, r2) if and only if

- _ 1

0(t)) < —t; and 6(r) > _5(“ + 1), (4.137)
and the second equation in (4.136) has a (unique) solution it € (f, ;) if and only
if

_ _ 1

O(t;) > —t, and O(n) < _E(tl + 1). (4.138)
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(b)

Figure 4.9: Two possibilities for the optimal 8 for the case that 0'(s) < 1/2 for
s <85 0(s) >1/2fors > 5.

(b)

Figure 4.10: Two possibilities for the optimal 6 for the case that 0'(s) > 1/2 for
s <5 0(s) <1/2fors >5.

Note that at most one of the conditions (4.137) and (4.138) can be fulfilled. If none
of these conditions is fulfilled, we have the following. If (1) = —5 (11 +12), then
we get the degenerate solution u=rn.lIf 0(tr) > —%(tl + 1) and 0(t)) = —t,
then we get the degenerate solution v = f;. Finally, if 0(t) < —%(tl + 1) and
6(t;) < —tp, then we get the degenerate solution u=t.

4.43 The Case of One Point § with 6'(5) = 1/2

We distinguish two subcases.

Case 1. Suppose 0'(s) < 1/2fors < § and 0'(s) > 1/2fors > 5.
In this case the optimal 6 has the form as depicted in Figure 4.9(a) and (b) or
several degeneracies thereof. For instance in Figure 4.9(a), for given v the point
ii_ is determined as the solution u of

_ 1
-0ty +tr —0+4u)= §(u+f)), (4.139)
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or i_ = v when no solution exists. Then the corresponding value of the functional
J should be maximized as a function of v, using pretty much the same methods
as in the previous sections.

Case 2. Suppose 0'(s) > 1/2fors < §and 6'(s) < 1/2fors > 5.
In this case the optimal 6 has the form as depicted in Figure 4.10(a) and (b) or
several degeneracies thereof. For instance in Figure 4.10(a), the point i _ is deter-
mined as the solution u of

- 1
-0+ —u) = E(u +1). (4.140)

To determine the points uq 4 and vy, we should use the approach of Section 4.4.2.
To that end we consider for s, > §, see (4.130),

1 " -
P (sy) == 2f(§(sk — 1)) —/ ft+v(s) —u+6))du. (4.141)
n
As in (4.127-4.135) it can be shown that ¢ (5) < 0, and that for s > s we have

1 5 _
P’ (s)) = (5 = 9’(s;\))/ "t +v(s) —u+6w)du > 0. (4.142)
n

It is then easy to see that —(% — é’(s,\))qb(s,\) has at most one zero s, > s, and
that we should set ug . = ; + vo — s, if such an s, exists and ug =1, + vg — §
otherwise.

4.5 Examples

In this section we present some examples that exhibit a number of features we
have shown the optimal 6 to possess, both for the discrete and the continuous
maximization problem. It turns out that the cases of uniform reflected angle dis-
tribution (i.e. such that 6'(¢) or 6, — _,,_1 is constant) already provide a good
picture of the various phenomena. These cases can be treated analytically, and are
of practical relevance to the reflector design problem.

_ Example 45.1. Let0 < @ < 1/2, let b > 0, and consider the function
0y : [—b, b] > R, defined by

Oy (s) = a(s — b). (4.143)

Considering (4.136), note that we have —0(b) = %(—b +b),s00 = b = n.
Furthermore, we have vo = —0(#;) = 2ab. Now (see Proposition 4.3.14), we
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have

u@) = —3s—1)—=0() =-(G+a)s+(—3+a)b, (4144)
vs)= Is—t)—0() = G —a)s+(+ab. (4.145)

It easily follows from (4.107) that

—fjr"‘;(u +b) forallu € [—b, 2ab],
— 2 .
Oar () T (u—b) forallu e [2ab,b] (4.146)
2
For the functional we get
b 1 b
J(6y) = —2/ f(z(s +b))ads = —4a/ fu)du. (4.147)
—b 0
Note that i
lim6,(u) = —=(u +b) = él(—u), (4.148)
011‘% 2 z
forall u € [—b, b]. O
The more general case, where, instead of 6,, we consider
Ou.p(s) = as + B (4.149)

with 8 € Rand 0 < o < 1/2, can be reduced to the one above, but we shall not
work this out in detail here.

Example 4.5.2. Letl # o > 1/2, 8 € Rand b > 0, and consider 9_(,,,3 :
[—=b, b] — R, defined by (4.149). In case o > 2, it may happen that there does not
exist a maximizer of finite variation; we come back to this point in Example 4.5.5.
When we assume, however, the existence of such a maximizer, we can apply the
analysis of Sections 4.3.2 and 4.4.1, and this we do below. Stated differently, we
determine the maximum of J(8) over all V-shaped 0 equimeasurable with 6, B-
When

—ab+B—b>0o0r ab+B+b <0, (4.150)

the maximizer is given as 6 (u) = _a,ﬁ(u) orf(u) = _o,‘ﬁ(—u). ‘Otherwise, that is,
when
Bl < (1 +a)b, (4.151)

we should look for a solution v of the equation

—fW+06W)+ f(=b+6w) + / f'o—b—s+0(s))ds =0, (4.152)
—b
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or, in the present case, of
fw—ab+pB)=af(ev—>b+B)+ 1 —a)f((1+a)v+B). (4.153)

Here v is constrained by
- 1
—0(v) < i(v - b), (4.154)
so, in the present case, by
sh=p
% +«a

v > (4.155)

There is at most one such v; if such a v exists we have vy = min(v, b), and
otherwise vg = b, see Figure 4.6. Note that the “obvious” solution v = —b of
(4.153) does not meet the constraint (4.155) when (4.151) is valid. Having found
vo, we get for the functional

Vo b
J =/ f((A—-—a)s+ B +av0—ab)ds+/ f((+a)s+ B)ds. (4.156)
—b v

0

We note that the limiting case « = 1/2, B = —b/2 (see Example 4.5.1) hasv = b
as a solution of (4.153) satisfying the constraint (4.155) with equality. This agrees
with (4.148). m|

Example 4.5.3. Leta = 1, 8 € R and consider 9_1,,3 : [=b, b] > R, defined
by .
O15(s) =5+ B. (4.157)

The analysis of this case is the same as in the previous example, except that (4.153)
has to be replaced by

fRu+B) =flo—b+B+W+bf(v-b+p). (4.158)
For instance, in the case 8 = 0, f(s) = 53, Equation (4.153) reads
(b —2v)(b+v)* =0,

so we have vy = b/2, and we find

7
J(61,0) = Zb“. (4.159)

0O

Now before we consider a case with 8’(s) > 2 for some s, we consider a
discrete problem.
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Figure 4.11: Graphs of the optimizers of Example 4.5.4 for k = .

Example 4.5.4. Letn =2k + 1, and let
-1
si=i—1—k, By = Z(i —n). (4.160)

Then it can be shown by Proposition 4.2.10 that the optimal 6 is as plotted in
Figure 4.11(a). When we exchange the roles of the s;’s and the 6;’s, i.e. if 6; =
i—1—kands; = %(i — n), then the optimal 6, depicted in Figure 4.11(b), is of
course the inverse of the one above. O

Example 4.5.5. Let b > 0 and consider 9_4._1 : [=b/4,b/4] — R, defined

3

by
_ _ 1
0(s) =6, _1(s) :43'2' (4.161)
We wish to calculate
b/4
sup / f(s+6(s))ds. (4.162)
6@ J—b/4
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To that end, let ¢ : [—b/4, b/4] — R be defined by
d(s) =, (4.163)

and we get by Proposition 4.3.4 and Example 4.5.1 that

b/4 b/4
sup f(s+0(s))ds = sup fds +¢(s) —b/d)ds =
0@ J—b/4 ped J—b/4
1 b 1 rb
= SUP/ fG+é(s/4) —b/d)ds = ——/ fu)du. (4.164)
4 pedJ-b 4 Jo

Here, sup, is assumed by ¢ given by

¢ (s/4) —b/4=9%(s); (4.165)
see Example 4.5.1. For instance, in the special case that b = 1, f(s) = s°, we
find that the supremum in (4.164) equals —0.0625 while the value of (4.156), the
supremum of J(#) over all V-shaped 6’s, equals —0.0664. It should be noted
that this optimal ¢ is not injective. Hence the measure preserving mapping m =
¢~ o ¢ of [—b, b] onto itself is not injective. This explains why the supremum
in (4.162) is not assumed: the only possible candidate would be 6 (1 (s)), but
this is not properly defined as a one-valued function. In Fig. 4.12 we have plotted
9% on [—b, b], ¢ on [—b/4, b/4], the two-valued inverse ¢_'of¢ on[—b/4,b/4],
and the two-valued “optimal”

0(s) = 4n = (s) —b/4 =49~ (s) —b/4 (4.166)

on [—b/4, b/4]. If one denotes by 6y an optimal element of @y, see Proposi-
tion 4.3.3, one would observe that fy goes back and forth between the two straight
lines in Figure 4.12(d) at a rate that tends to infinity as V — oo. O
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Figure 4.12: Illustration (d) of the ‘two-valued’ optimizer of Example 4.5.5, and

three auxiliary ‘functions’.
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Chapter 5

2D Light Distributions of Area
Sources

5.1 Introduction

In this chapter we consider special cases of the direct problem in reflector design:
i.e. the problem of computing the light distribution for a given source and reflector.
Consequently, this chapter is more or less independent of the other chapters.

In Chapter 3 we have seen that in the 2D case, the design problem can be
solved by solving an ordinary differential equation, and therefore this allows a
very fast implementation. When designers work with a computer tool for reflec-
tor design, an implementation of the forward computation is very important as
well. Fast verification of the validity of computed reflectors, possibly with more
realistic features taken into account, adds to the credibility of a tool which would
otherwise seem like a black box. Therefore, the direct problem was considered for
rotationally and cylindrically symmetric problems with area sources: Lambertian
spheres and cylinders respectively (cf. Section 2.2).

We restrict ourselves in this chapter to rotationally or cylindrically symmetric
reflectors that are represented by 2D curves consisting of straight line segments.
The contents of this chapter is as follows. In Section 5.2, the general expressions
in terms of integrals are given for the illuminance on a screen or the intensity dis-
tribution for arbitrary perfectly diffuse light sources, and arbitrary specular reflec-
tors. In Section 5.3, we consider cylindrically symmetric problems with a circular
cylindrical light source and facetted reflectors. It turns out that very simple, closed
formulae for the required light distributions can be given. In Section 5.4, we con-
sider rotationally symmetric problems with a spherical light source. It is shown
how a double integral can be reduced to a single one, and some typical geometric

93
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features of the ray bundles of these reflectors are illustrated.

5.2 Light Distributions for Non-Point Sources

5.2.1 Illuminance and Form Factor Calculation

We will consider perfectly diffuse light sources only. For a perfect diffuser, the
fraction of the flux that leaves the source that is incident on another surface—
usually called the form, configuration or view factor—depends only on the shape,
size, position and orientation of the two surfaces involved. In other words, it only
depends on their geometrical features. There is a close relation between form
factors (as we will call them) and illuminances, to be explained below.

Let us consider the situation with two surface elements AS; and AS,, where
AS) is a perfectly diffuse light source with luminance Ly. We will compute the
illumination of AS,. Let us denote the distance between the elements by d, and
the angles between the normals to the elements and the line joining them by «
and ay, respectively. Then the luminous intensity of AS) in the direction of AS;
is given by

L()AS 1COosSay,

and it follows from the inverse square law that the illuminance E(AS;) of AS;
equals

LoAS| cosaj cosar
d? '
The total flux incident on AS; is therefore equal to

E(AS) = S.1)

LoAS|AS)cosay cosar
d? )
Since the total flux emitted by AS| is equal to 7 LyAS|, we find that the fraction

of the emitted flux that is incident on A.S,, in other words the form factor denoted
Fas,—as,, 1s equal to

AS, cos oy cosar
nd?

For a curved, uniformly diffuse surface S, we then find for the illuminance E of
AS,, and for the form factor Fis,_ x5, the expressions

FE — Lo/ COS ] COS (2 ds,. (5.3)
S

Fas,—as, = (3.2)

d2
AS; / COS | COS &)
S

3 7 ds,. 5.4

Fs,_as, =
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S

—a

e

AS,

Figure 5.1: Form factor computation in 2D scenes.

The relation between form factors and illuminances that we will use is

JTL()Sl
E(AS)) = ———Fs,_as,, 5.5
(AS?) As, [simas (5.5)
or equivalently,
)
E(ASy) = —Fs, _ps,, 5.6
(AS2) As, Si-as, (5.6

where @ is the total luminous flux of S;. Form factors are often used in Heat
Transfer and also in 3D Graphics. There are many papers and books devoted to
the calculation of form factors for the cases where geometrically special surfaces
(like planes, spheres or cylinders) are involved. The calculation of form factors is
very easy in cylindrically symmetric (and thus 2D) scenes. In Section 5.3 we will
use the following result which can be found in [36][Appendix C]. (We changed
the notation.)

Lemma 5.2.1. Given an area AS; of infinitesimal width and any length, and
a cylindrical surface S\ generated by a line of infinite length moving parallel to
itself and parallel to the plane of AS»; see Figure 5.1. Then we have

sin ¢ — sin ¢
Fypg = ————AS;.

35, 6.7

We will use this formula for the calculation of illuminances in the cylindrically
symmetric case.

5.2.2 General Formulas

In this section we present the general formulas for illuminance and intensity dis-
tributions for both the direct and the reflected light of a uniformly diffuse light
source. We do not yet restrict ourselves to facetted reflectors here. Let us first
introduce some notation that we use throughout the chapter.
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Figure 5.2: The vectors u, v and w.

We assume that the light source is a convex, smooth surface L. A point on L
is denoted x; , and the (outward) normal to L in X, is denoted n; . The luminance
of the source is denoted L. The reflector R is also a smooth surface, and a point
on R is called xg, with normal ng (where the proper normal should be taken).
The reflection coefficient of the reflector is denoted p. Also, when we want to
calculate the illuminance on a screen S, a point on S is called xg, and has normal
ng.

It turns out to be convenient to introduce the following vectors of unit length,
that represent the directions of light rays. Let

X — X

uxLX) = (5.8)
XR — X,

vV(XL, XR) = P‘I;TLl’ 5.9)
Xg — X

W(XR, Xs) —|xz = x;il' (5.10)

We usually simply write u for u(xy, Xs), and likewise for v and w. Figure 5.2
illustrates these vectors.

We are now ready to present the formulas for four relevant light distributions.
The formula for the direct light has been derived in the previous section. The
expressions for the intensity distributions follow easily from those for the illumi-
nance by taking limits when the screen is moved to infinity.

In the remainder of this chapter, we will write cos(a, b) for the cosine of the
angle between vectors a and b.
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The direct light contribution to the illuminance on a screen.
Let xs be a point on S. Then the illuminance E; caused by the direct light in Xg
equals

cos(u, nz) cos(—u, ng)

EI(XS)ZLO_/I: KEl(XL,Xs)dL. (5.11)

Ix; — Xs/|?
Here K, (XL, Xs) is 1 or 0 according to whether x; and xg ‘see each other’. More
formally:

1ifun; > 0and u.ng <0,

0 otherwise. (5.12)

Kg, (X1, Xs) = {

So the factor K, actually describes the integration bounds, which usually depend
on the point Xs.

The reflected light contribution to the illuminance on a screen.
Let xg be a point on S. Then the illuminance E; caused by the reflected light in
Xs equals

cos(w, ng) cos(—w, ng)

E>(xs) = PLO/ KEg,(Xg, Xs)dR. (5.13)

R Ixg — xs/?
Here Kg,(Xgr, Xs) is 1 or O according to whether a ‘back-traced’ ray from Xxg to
xg would meet the light source L after reflection. Note that the integration is
to be done over the reflector surface, and that all geometrical information of the
light source is incorporated in the factor K g,. Formally, this factor can be defined
as follows. We have Kg,(xg,Xs) = 1 if there exists a point x;, on L such that
v.n; < 0 and such that the law of reflection holds, i.e.

v=w—2(W.ng)ng. (5.14)

If no such point exists then Kg, (Xg, Xs) = 0.

Contribution of the direct light to the intensity distribution.
Let @ be a unit vector (a direction). Then the intensity /| caused by the direct light
in this direction equals

I (w) = LO/ cos(w,ny ) K (x, w)dL, (5.15)
L

where K, (X1, @) is given by

lifon, >0,

0 otherwise. (5.16)

K (XL, w) ={
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Figure 5.3: The cylindrically symmetric case.

Contribution of the reflected light to the intensity distribution.
Let w be a unit vector (a direction). Then the intensity I, caused by the reflected
light in this direction equals

hL(w) = pLo/ cos(w, np)K, (Xg, w) dR. (5.17)

R
Here K, (Xg, @) is 1 or 0 according to whether a ‘back-traced’ ray coming from
direction —o and meeting the reflector in xg would meet the light source L after
reflection. Formally, this can be defined as follows. We have K, (xg, @) = 1 if
there exists a point x; on L such that v, n; < 0 and such that

Vv=w — 2(w.ng)ng, (5.18)

and K, (Xg, w) = O if no such point exists.

5.3 The Cylindrically Symmetric Case

In this chapter we consider the special case of a cylindrical light source and re-
flector, both of infinite length and parallel to each other. In this case the problem
is equivalent to a 2D problem, and we can use the result of Lemma 5.2.1. Let us
first present the geometrical situation and introduce some notation. Suppose that
we have a rectangular xyz-coordinate system in R3, and that we have an infinitely
long circular cylindrical light source L with axis coinciding with the z-axis, and
with radius r.

Furthermore, suppose we have fixed angles t1,t, € (—m, w) with 1} < 1.
Then a cylindrical reflector parallel to L between angles ¢, and #, can be described
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by a surface of the form

r(t,z) = (f(@t)cost, f(t)sint, z) (5.19)

fort € [t1, 1], where f is a smooth positive function. In the case that we consider
here, the reflector consists of straight facets. It then suffices to concentrate on one
facet only, and we may assume that the function f describes a straight line, i.e. it
is of the form

f (&) = fo/cos(t — 19), (5.20)

for some positive constant fy (which is the distance of the origin to the line
through the facet) and angle 7 (which is the direction of the normal to this line).
With this choice for f(t), the description (5.19) only makes sense if t) — 7 /2 <
H<th<ty+m/2.

Finally, if there is a screen, then it is represented by the plane

S ={(x,y,2) | x =—d}, (5.21)

for a fixed distance d.

Now, in order to present the light distributions corresponding to this situation,
we do not use the formulas of the previous chapter, but instead we will profit from
existing knowledge from radiation heat transfer. Indeed, the result for the direct
light is well-known, and that for the reflected light is easily calculated once it is
realized that any cylindrically symmetric scene is equivalent to a 2D scene, and
we can use standard methods for the calculation of the form factors that determine
the light distributions.

In a similar fashion as in Chapter 3, the following 2D situation can be consid-
ered. The source is the circle

L :={(rcosu,rsinu) | u € [0, 2]}, (5.22)

the reflector is given by
r(t) = f(t)(cost,sint) (5.23)
with f as in (5.20) and the screen S is represented by the line x = —d. From
now on, we write f1 := f(¢;) and f, := f(t2). We will also use the Cartesian

coordinates of the endpoints of the segment:

xy = ficosty, (5.24)
y1 = fisinty, (5.25)
Xy = facosty, (5.26)

y» = fasint. (5.27)
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We assume that the total flux of the source equals 1. So ® = wLpS; = 1,
where we have to be a little careful about the exact meaning of this: we use the 2D
equivalents of the notions that were defined in a 3D context, so S is the perimeter
of the 2D source. (The equivalent assumption on the 3D source would be that
® = LS = 1 for any part of the source of unit length in the z-direction.) Also,
the reflection coefficient is chosen without loss of generality equal to 1.

The formula for the direct light is well-known. After some erroneous results
had been published, Feingold and Gupta [9] gave the correct formula as follows.
In a point (—d, y) € S (or a point (—d, y, z) € S in the 3D scene), we have

&Ei1(y) = (5.28)

2r(y2 +d?)’
Note that this formula is independent of r, and it is similar for a line source (with
r =0).

For the intensity distribution, we again measure the directions 6 of outgoing
rays clockwise relative to the left (negative) side of the x-axis. It is obvious that
in the 2D-situation, we have for all 6

7,0) = 2L (5.29)
b4

For the reflected light, things are a little bit more involved. When the light
source is reflected in the segment, the image of the reflected source has centre

X2y1 — X1y2
(x1 —x2)2+ (y1 — »)?

Now consider the image of the source when reflected in the segment, and imagine
the line through the segment to be a wall with a gap at the position of the segment.
Then the light distribution caused by this scene is equal to that of the reflected
light we are looking for. (When we ignore interaction of reflected light with the
lamp.)

It is more convenient to consider this new scene, and we shift the coordi-
nate system to the centre C of the reflected source. Relative to the reflected
source, the screen is at a distance d = d + ¢y, and the endpoints of the gap are
(X1, y1) and (X2, ¥2). It is from this scene that we will calculate the illuminance
and intensity distributions in the next two sections.

C = (Cl, C2) =2 (y1 — ¥Y2,X2 —xl). (5.30)

5.3.1 The Illuminance by the Reflected Light

In order to calculate the illuminance on S, we can determine the form factor from
the source to the screen, taking into account the obstacles around the gap. The illu-
minance is easily calculated when we use Lemma 5.2.1 in combination with (5.5).
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Figure 5.4: Visibility types for illuminance calculation.

It follows that all we have to do is to determine the directions of the lines that
bound the visible part of the source. To do this, we must distinguish between
different situations that can occur; see Figure 5.4. The areas on the screen drawn
here illustrate various different visibility types. These are the following.

e Type 1: The source is completely visible and the bounding lines of interest
are the tangent lines to the circle.

e Type 2: Both lines through the point on the screen and the endpoints of
the gap intersect the source. The directions of these lines determine the
illuminance. (Either type 1 or type 2 can occur, depending on the relative
sizes of the source and the gap, as well as the position of the screen.)

e Type 3: Only the line through the point on the screen and the lower endpoint
of the gap intersects the source. The other line relevant for the illuminance
is the upper tangent line to the source.

e Type 4: Only the line through the point on the screen and the upper endpoint
of the gap intersects the source. The other line relevant for the illuminance
is the lower tangent line to the source.

e Type 5: The source is not visible and has contribution 0.

Now, the areas on the screen on which the visibility type does not change, are
bounded by the values y; nin and y; max for i = 1, 2. These values are obtained
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Figure 5.5: Illustration of the angles relevant for the form factor calculation for
visibility types 3 and 4.

by taking the intersection with the screen of the tangent lines to the circle through
the endpoints of the gap; see Figure 5.4. On each of these areas, we can give
explicit analytical formulas for the illuminance. Before we give these, we need a
few elementary results.

Lemma 5.3.1. Let (—ci: y) be a point on S. Let Y; be the angle with the
x-axis of the line through (—d, y) and (X;, y;) for i = 1 ori = 2. Then we have
Yi—Yy _ Yi =Y
Jd+ir+G-gp YA+ + 6w

siny; = (5.31)

Lemma 5.3.2.  Let Y1 be the angles with the x-axis of the tangent lines to
the circle through the point (—d, y). Then

—5\d>+ 32 —r*xrd
— ) (5.32)
d2 + y2

Proof. Consider Figure 5.5, and note that sin ¥+ = sin(§ & y). Then note

sin Y =

that § = — arctan(§/d) and that y = arcsin(r/ ,/&2 + 92). The rest is elementary
calculus. O

We are now ready to apply Lemma 5.2.1 and (5.5) to each visibility type. For
a point (—d, y) on S, we find that
sin ¢ — sin ¢

E(y) = -

(5.33)

where the angles ¢; should be chosen appropriately:
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e Type 1: Note that this type only occurs if yj max < Y2.min- For a point
(—d, 5’) with Y1i,max < 5’ < Y2,min W€ have ¢, = ¥ and ¢1=vY_,s0

sin ¢, — sin ¢

4mr
1 [—3Jd*+572—r24rd -5 d®+35*—r2—rd

&) =

4r a2 + 32 42 + 32
1 d
2w g2 4%

which is precisely the formula for the direct light contribution (5.28)!

e Type 2: Note that this type only occurs if yy uax > Y2.min- For a point
(—d’ y) with Y2.min < 5) < Y1,max W€ have ¢2 = 1112 and ¢l = 1/f1, SO
sin Y, — sin )

E:(y) = -

e Type 3: In this situation we have

sin ¥, — sin ¥

E209) = -

e Type 4: In this situation we have

£2(5) = sin 1/124— sin ¥_ .

Tr

5.3.2 The Intensity of the Reflected Light

As in the previous section, there are several cases to be considered, when we wish
to calculate the intensity in a certain direction; see Figure 5.6. The range of all
directions can again be subdivided in ranges of different visibility types.

e Type 1: The source is completely visible from directions in this range.

e Type 2: Given a direction in this range, then the two lines through the end-
points of the gap in this direction both intersect the source. The source is
not completely visible. (Either type 1 or type 2 can occur, depending on the
relative sizes of the source and the gap.)

e Type 3: For a direction in this range, only the line through the the lower
endpoint of the gap intersects the source. The upper part of the source is
completely visible.



104 5. 2D Light Distributions of Area Sources

’/'91 min

Figure 5.6: Visibility types for the calculation of the intensity distribution.

e Type 4: For a direction in this range, only the line through the the upper
endpoint of the gap intersects the source. The lower part of the source is
completely visible.

e Type 5: The source is not visible from directions in this range.

It is clear from the figure that the directions that bound the various ranges of a
given visibility type are determined by the tangent lines to the source through the
endpoints of the gap. Let us introduce, for i = 1, 2 the angles

Y; = arcsin L, (5.34)

i
Oimn = i —2t0— Y, (5.35)
Bimax == i — 2ty + ;. (5.36)

Then 6; min and 6; max are the smallest and largest angle of the rays that pass
(xi, yi), respectively. Visibility type 1 occurs if and only if

Gl,max < 92,min- (5.37)

This means that from all angles between 6} max and 6> min, the whole source is
visible. The total intensity distribution is then as sketched in Figure 5.7.
Similarly, type 2 can only occur if and only if

01, max > 62, min- (5.38)

The total intensity distribution is then as sketched in Figure 5.8.
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0 min 01 ma 02 min 05 max

Figure 5.7: Sketch of a typical intensity distribution when visibility type I occurs.

6l min e’) min el‘. max 62. max
Figure 5.8: Sketch of a typical intensity distribution when visibility type 2 occurs.
It may happen that the radius r is such that the lower tangent line through

(x1, y1) to the circle and the upper tangent line through (x2, y») to the circle are
parallel. Then we have

1. max = 62,min, (5.39)
or equivalently,
r r
) + arcsin — = t, — arcsin —. (5.40)
fi f2

This is approximately the case if

- fifalta —11)
h+fH

Then type 2 and 3 do not occur and the distribution is ‘triangularly’ shaped; see
Figure 5.9.

Finally, analytical expressions for the intensity on the ranges of constant visi-
bility type are easily given. For visibility type 2, we have

(5.41)

(¥2 — y1) cos @ + (X, — X1) sinf
drr ’

L 0) = (5.42)
Note that (y, — 1) cos6 + (X, — X1) sin@ is precisely the width of the bundle
through the gap in direction 6. For visibility type 3 and 4, we find

—y1cos6 —x;sinf +r

I1,(0) = , (5.43)
drcr
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By  BimerBigs ‘o

Figure 5.9: Sketch of a typical intensity distribution when visibility types 2 and 3
both do not occur.

Figure 5.10: The rotationally symmetric case.

and

= 0 + % sind
T(0) = y2 COS 6 + X7 SIn +r’ (5.44)
4rr

respectively.

5.4 The Rotationally Symmetric Case

In this section we consider a problem that has rotational symmetry. We have a
spherical light source, and a reflector that is rotationally symmetric around a line
through the centre of the sphere. If there is a screen, then this is perpendicular to
this line.

More precisely, we have a rectangular xyz-coordinate system in R?, and the
light source is given by

L:={(x,y,2) | X*+y*+22=r?}, (5.45)

for a fixed radius r. The reflector is a surface that is rotationally symmetric around
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the x-axis, and can be described as
r(t,u) = f(t)(cost, sint cosu, sint sinu) (5.46)

fort € [t;, ] and u € [0, 2], for fixed angles #),1, € [0, m) with #; < . If
there is a screen, it is again of the form

S:={x,y,2) | x =—d}, (5.47)

for a fixed distance d. Because of the rotational symmetry, it is convenient to
introduce polar coordinates on S, so a point (—d, y, z) is written as

(—d, pcos¢, psing),

where p is non-negative, and ¢ € [0, 27).

Since the geometry of the 3D scene is completely determined by the intersec-
tion with a plane through the x-axis, we may hope that the calculation of the light
distributions can be done in an equivalent 2D scene as well. In the special case
that we consider here we will indeed see that the computation can be reduced from
a double integral to a single one. This special case is that the reflector is facetted,
or more precise: that the intersection of the reflector surface with a plane through
the x-axis is facetted, i.e. it consists of straight line segments. So f is of the same
form as before in (5.20) and consequently we must have 1, < ty + /2.

The expressions for the direct light are well known. In [9] it is shown that the
form factor from the sphere L to a differential area AS in S located at

(—d, pcos¢, psing)

equals
d
Fr_as = 4—(d2 + pH32As. (5.48)
v/ 4

So if the total flux @ of the source equals 1, we find
d
E\(—d, pcos¢, psing) = 4—(d2 + p*) 732, (5.49)
5/

Note that this formula is independent of ¢, and of the radius of the source. Fur-
thermore, for the intensity in a direction

w = (—cos 6, sin6 cos ¢, sin 6 sin ¢) (5.50)

we obviously have

1
I (w) = o (5.51)
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5.4.1 The Intensity of the Reflected Light

In this section we will use the formulae of Section 5.2 to calculate the intensity
distribution of the reflected light. We will write K for K;,. Let @ be a direction
as in (5.50). We restrict ourselves to directions in one hemisphere, so we let
6 € [0, r/2). We now recall formula (5.17):

L(w) = pLO/ cos(w, ng) K (xg, w)dR.
R

For notational convenience, we take pLo = 1 in this section. In terms of the
coordinates of the parametric description (5.46) for R, we have the following.

Xgp = —ﬂ——(cost, sint cos u, sint sinu), (5.52)
cos(t — ty)

ng = —(costy,sintycosu,sintysinu), (5.53)

2 .
sint

dR = —fo——dudt. (5.54)

cos3(t — ty)
It is easily calculated that
cos(w, ng) = cos  cos ty — sin O sintg cos(u — @). (5.55)

When we substitute all this in (5.17), we find

L(w) = //(cos@ cos ty — sin O sintgcos(u — ¢)) K (Xg, )
2 cos

(5.56)
So this is the expression that it is all about in this section. It is a double integral,
containing a discontinuous factor K. We will show that this double integral can
be reduced to a single one. Since the factor K equals O or 1, we can remove it by
choosing the proper integration bounds. Once these are determined, the integrand
is integrated with respect to u. The rest of this section is completely dedicated to
the further investigation of this. First the precise condition for K being equal to
1 in terms of the coordinates is derived. The result follows in Proposition 5.4.2.
Then from this result, the integration bounds for « in terms of the other parameters
are derived. This latter part is rather involved, since various cases have to be
distinguished. Although this investigation is mathematically somewhat involved,
it is interesting to see that it provides the basis for a complete understanding of
which parts of the reflector will reflect light into which directions. For instance,
it will be shown that, when looking from a certain direction to the reflector, the
enlightened part (if there is one) may consist of one or two connected areas. We
now turn to the investigation of the factor K.
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Lemma 5.4.1. Let L be the sphere given by (5.45), and let a be a point
outside the sphere. Let b be a vector of unit length. Then the half-line | in R3,
given by the parametric description » — a + Ab for A € R” intersects L if and

only if
ab < —|a? -r2. (5.57)

Proof. The angle between the line through the origin and the point a and any
tangent line to the sphere through a equals

LT
arcsin —.
|a|

So the half-line a + Ab intersects the sphere if and only if

. r
cos(—a, b) > cosarcsin —.

|a|
and the result follows. o

We can now apply this lemma to the current situation where a = Xg, and b is
the direction of the back-traced ray after reflection; so we get from (5.18)

b =—-v=2(w.ng)ng —o. (5.58)
Thus we find
K(Xp,w) =1 < Q@ng)ng —o)xg < —/|xg|? —r2. (5.59)
In order to work this out further in coordinates, we note that
2(w.ng)ng — w) Xg = 2(w.ng)(Ng.Xg) — W.XR,

and we have

wng = cosbcosty—sin6sintgcos(u — @),
wXxg = —f(t)(cosBcost —sinfsintcos(u —@)),
ng.Xxg = —fo.

Using f(0) = f(t)cos(t — tp), we then find

2(w,ng)(ng, Xg) —wXg = —2fo(coscosty— sin@ sintgcos(u — ¢)) +
f(t)(cosOcost —sinf sint cos(u — ¢))
= f(t)cos6 (—2cos(t — tpg) costy 4+ cost) +
f(t)sinf (2cos(t — ty) sintyg — sint)
= —f(t)(cosOcos(t —2ty) +
sin O sin(t — 2ty) cos(u — ¢)).
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It follows that condition (5.57) is equivalent to the inequality

2
cos 0 cos(t — 210) + sin @ sin(r — 2tp) cos(u — ¢) > |1 — f;t)z’ (5.60)

So we have proved the following.

Proposition 5.4.2. For the ‘visibility’ factor K we have

Kxp.0) =1

/ 2
cos 6 cos(t — 2ty) + sin @ sin(t — 2tg) cos(u — ¢p) > |1 — f’(‘t)z 5.61)

The rest of the section is devoted to the further analysis of this condition in
order to deduce the integration bounds for u to further calculate the integral (5.56)
analytically. But it will also give us a geometrical insight in the situation. To start
with, note the geometric meaning of the occurrence of the angle t — 2t in (5.61):
for a point source, we have that a ray in direction f(¢)(cost, sint cosu, sint sinu)
is reflected in direction (— cos(t — 2ty), sin(t — 2tg) cos u, sin(t — 2tg) sinu).

Now, we want to deduce the bounds for u. Since 6 is assumed to be non-
negative, it is clear from (5.61) that the sign of sin(t — 2ty) and thus of r — 21y is
important. We therefore distinguish various cases below.

But let us first consider a sketch of the situation in Figure 5.11. In this figure,
the intersection of a reflector with #; = 0 and #y = /4 with a plane through the x-
axis is sketched. Let us assume this is the plane given by the equation z = 0. Then
note that the upper part consists of the points with ¢+ > 0 and u = 0. The lower
part corresponds to points with # > 0, but now u = 7. Similarly, all reflected rays
have non-negative angles 6, but the rays ‘going down’ have ¢ = m. This should
be kept in mind in the discussion below. When we speak of ‘the upper part’ of the
reflector, then this is the part where u = ¢, while ‘the lower part’ of the reflector
is the part with u = ¢ + . It is clear from the figure that, given a direction ,
this direction may receive light from both the upper and lower part (relative to the
direction). Let us return to a more formal description of these features.

Case 1. If t = 21.

If + = 21, then for a point source all reflected rays would have 8 = 0; see
Figure 5.11 which also illustrates the following. We find that (5.61) is equivalent
to

2

)

r . r
= cos arcsin(

KXg,w) =1 < cos6 > [1— 7010 7010)
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In other words, K (xg, ®) = 1 if and only if

1
e Y (5.62)

6 < arcsin(
0
Note that this condition is independent of u. We see that for relatively small
values of 8, the whole ‘ring’ t = 2¢; reflects light in direction 6, while for larger
values such that condition (5.62) does not hold, no part of that ring does. It will
be clear that condition (5.62) now occurs naturally in the further investigation of
the various cases.

Case2. Ift < 2tpand 6 < arcsin('cj'c—st").
If t < 219, then sin(z — 2¢9) < O (for relevant values of ¢), so we find the following

condition _
cos arcsm(ﬁ) — cos B cos(t — 2tp)

cos(u — @) < (5.63)

sin @ sin(t — 2tp)

So if ¢ is such that the right hand side of (5.63) is less than —1, no u can be found
such that the condition holds. Also, if the right hand side is larger than 1, all u
satisfy. For values between —1 and 1, the condition is satisfied for u in a fixed
interval around ¢ + m. (Note that this is the lower side of the reflector relative to
the view direction.)

To investigate this further, we consider the following lemma, which is also
useful for the other cases.

Lemma 5.4.3. a) For the right hand side of (5.63) we find the following
condition for the occurrence of the critical values +1,

cos arcsin(ﬁ) — cos 6 cos(t — 2tg)

=1 <
sin @ sin(t — 2tp)
F
0 =t — 2ty £ arcsin(——), (5.64)
’ £
cos arcsin(ﬁ) — cos @ cos(t — 2ty)
. =—-1 <
sin @ sin(t — 2tp)
-
0 = 2ty — t £ arcsin(——). (5.65)
’ f@®

b) The function t — t + arcsin(#) is increasing on [0, to + 1), and the function
t— —t+ arcsin(ﬁ) is decreasing on [0, t) + 7).

The proof of this lemma is elementary calculus. Let us return to the above
analysis. Combining (5.63) and (5.64), we find that the smallest z, < 2¢, for
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which all u satisfy (5.63) is determined by

,
f(ta)

Note that of the two possibilities () in (5.64), only this one (+) is relevant if
t < 2ty, since 6 is positive by definition.

Combining (5.63) and (5.65), we find that the largest ¢, such that no u satis-
fies (5.63) is determined by

6 = t, — 2ty + arcsin(

). (5.66)

.
ftn)

Summarizing Case 2, we find that the segment [0, 2¢9] can be divided into
[0, 1,,], [tn. ta] and [t,, 2to], consisting of rings on which no, some or all u sat-
isfy (5.63), respectively. (If the only 7, would be negative, the first interval does
not occur.)

6 = 2ty — t, — arcsin( ). (5.67)

Case3.Ift < 2tpand 6 > arcsin(ﬁ%f’“).

Having done most of the work in the previous case, we can now present the results
to this case much faster. First of all, if 6 > arcsin(%ﬁ—’g), then no value of t < 21y
can be found such that all u satisfy (5.63). This is easily seen in Figure 5.11, and
it can be proved by combining a) and b) of Lemma 5.4.3. The boundaries of the
t-range for which at least some u satisfy (5.63) are given by (5.65). One or both

of these boundaries may be negative, and can be ignored (i.e. set to t = 0) then.

Case 4. Ift > 2tpand 0 < arcsin(ic—;fﬁ).
If t > 210, then sin(t — 2tp) > O (for relevant values of ), so we find the following

condition
cos arcsin( f{t)) — cos 6 cos(t — 2tp)
cos(u — ¢) > : - . (5.68)
sin @ sin(t — 2tg)

So all u satisfy (5.68) if the right hand side of this inequality is less than —1. The
largest ¢, for which this holds is given by

r

6 = 2ty — t, + arcsin( ). (5.69)
‘ £ ()
Also, no u satisfies (5.68) if ¢ is larger than the critical value t, given by
r
6 =t, — 2ty — arcsin( ). (5.70)
! ()

Sofort > 2ty and 6 < arcsin(fi‘;si), the different ranges of interest are [21o, t,],
and [t,, t,]. "
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Case5.Ift > 2tpand 6 > arcsin(":;—;’o).

As in Case 3, if # > arcsin(252L), then no value of ¢t > 2ty can be found such
that all u satisfy (5.68). The boundaries of the z-range for which at least some u
satisfy (5.63) are given by (5.64).

The above five cases completely describe how the integration bounds for u are
determined in terms of the other parameters involved. So at this point, we have all
the knowledge needed to carry out the integration with respect to u analytically.
The very lengthy and complicated expressions then obtained are integrals with
respect to t. Whether these single integrals allow an analytical solution as well, is

not yet known.

5.4.2 The Illuminance by the Reflected Light

We now calculate the illuminance on S by the reflected light. In this section we
write K instead of Kg,. Let X5 be a point on S. We have seen in the Section 5.2
that

cos(w, ng) cos(—w, ng)

E>(xs) = pLO/ K (xg,xs)dR. (5.71)

R Xz — Xs|?

For convenience we take oLy = 1. By definition of w, we find

Ey(xg) = ((xs —Xg).nR)((Xg — Xg).Ng) K (xz. xs) dR. (5.72)

R Ixg — xs|*

In terms of the coordinates that were introduced above, we have

Xs = (—d, pcos¢, psing), (5.73)
ng = (1,0,0), (5.74)
XR = L(cos t,sintcosu,sintsinu), (5.75)

cos(t — tp)
ng = —(costy,sintycosu,sintysinu), (5.76)

f3sint
dR = ————dud:t. 5.77
cos3(t — tg) " (5.77)
We find

Xs.ng = dcosty— psintycos(u — @), (5.78)
Xgng = —fo, (5.79)
Xs.ng = —-d, (580)
Xg.ng = f(t)cost, (5.81)

XR —Xs| = \/dz+p2+f(t)2+2df(t)cost—2pf(t)sintcos(u—qb).
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Substituting these identities into (5.72) gives the following expression for E3(xs):

dudt.

/‘ (fo+dcosty — psintgcos(u — @))(f(t)cost +d) f02 sin?
o (d2+ p2 4 f(1)2 +2df(t)cost — 2pf(t)sint cos(u — ¢))?  cosP(t — 1)

Again, this can be worked out further analytically, once we know more about the
factor K. Indeed, in terms of u, the inner integral is of the form
a —bcos(u — @)
e
« (c—dcos(u—¢))?

K du, (5.82)

and
a—bcosa

(c —dcosa)?

has anti-derivative (with respect to o)

(bc — ad) sina 2(ac — bd) - (c+d)sina )
arc .
(2 —d?)(dcosa—c)  (c? —d?)3? Ve —d? (1 + cosa)

So again we should investigate the factor K. This can be done along the same
lines as in the previous section, and we can then deduce an inequality which is
quadratic in cos(u — ¢). Thus, in principle, the integration bounds of « in terms
of the other variables can be calculated.
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Figure 5.11: [llustration of ray paths in the rotationally symmetric case.
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Chapter 6

3D Problems With Point Sources

6.1 Introduction to 3D Problems

In this chapter we take up the 3D far field reflector design problem formulated
in Chapter 2. We will see that the problem can be formulated in terms of a non-
linear partial differential equation of the Monge-Ampere type. We will not try to
solve this differential equation as has been done in the literature (see Section 1.2).
Rather, we will focus on trying to understand the problem geometrically in terms
of ray paths. We will classify the sorts of ray paths that can be achieved with
smooth reflectors, and deduce some properties of these ray paths that have proved
to be very helpful in heuristic approaches to solve 3D problems.

6.2 The Basics of Smooth Reflector Design

In this section, we will present some basic formulas and we will have a closer look
at the two laws that a solution of a reflector design problem has to comply with:
the Law of Reflection and Conservation of Energy. We will look at this from two
different viewpoints. The first approach is that we consider the reflector surface,
described by a function f, and we will derive the exact conditions f has to satisfy
in order to represent a reflector that solves our problem. The second approach
is to look at the problem in terms of the mapping between incident and reflected
rays, which we will also call the ray path. This approach is equivalent to the above
one, but has the advantage that it gives more insight in geometrical features of the
problem.

117
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6.2.1 Some Basic Formulas

Let us recall the notation from Chapter 2. Suppose we have a Euclidean xyz-
coordinate system in R, with a point source located at the origin. Outgoing rays
are represented by unit vectors

v:=v(t,u) := (cost,sintcosu, sintsinu), 6.1)

fort € [t),1,] C [0, 7] and u € [uy, us] C [0, 2r]. The reflector surface r(z, u)
is given by
r:=r(t,u):= f(t, u)v(t, u), (6.2)

where f is twice differentiable, strictly positive, and where f(z,0) = f(z,2m)
for all t. The function f and the surface r are defined on some fixed ¢, ¥ domain,
usually of the form ¢ € [11, 2] and u € [0, 27]. Note that the representation (6.2)
is well-defined for t = O only if f, =0atr =0, i.e. f(0, u) is constant.

A reflected ray is denoted by the vector w (of unit length), which is often given
in spherical coordinates 6, ¢ as follows,

w:=w(0, ¢) := (—cosb,sinb cos ¢, sin 6 sin @), (6.3)

for6 € [61,6,] C [0, 7] and ¢ € [¢1, ¢2] C [0, 27].

Furthermore, we have given a luminous intensity / (¢, u) of the light source, as
well as a required far field intensity distribution G (6, ¢) for the reflected light (we
may assume that the direct light contribution has already been subtracted). Both
these intensities are positive functions (infinite intensities are not considered). We
also assume that the intensity / is corrected to account for the reflection coefficient
p of the reflector.

Finally, we assume that there is global conservation of energy, i.e.

6> 1) uz n
[ / GO,¢)sinfdOdep = / / I(t,u)sintdtdu. (6.4)
0 Jo¢ up Jn

The problem is then to find a reflector, given by a function f, such that for the
given source, the required light has the prescribed intensity pattern. We limit our-
selves to solutions where there is a one-to-one correspondence between incident
and reflected rays. In the further modelling of this problem, we neglect multiple
reflections, and we don’t go into boundary conditions and constraints on the di-
mensions of the reflector. Rather, we will focus on what types of solutions we
may expect, in case there are any solutions at all.
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Some basic expressions involving v and w. We have the following expressions
for the partial derivatives of the vector v(t, u), where we abbreviate expressions
like %v(z, u) by vy,

v, = (—sint,costcosu,costsinu), (6.5)
v, = (0, —sintsinu,sintcosu), (6.6)
Vi = -V, (6.7)
Vou = — sin’t v — sint cost vy, (6.8)
V¢ = Vi =V,/tant. (6.9)

Note that for t = 0, some of these vectors vanish. Because of this, we will
sometimes need to treat the case t = 0 separately in forthcoming expressions and
results. The following formulas for inner products will be used,

vv=v.v, = 1, (6.10)
vy, =vv,=v.v, = 0, (6.11)
V..V, = sin’t. (6.12)

Next we have the following expressions for the cross products,

VXV, = vVv,/sint, (6.13)
VXV, = =—sintv;, (6.14)
V; XV, = sintv. (6.15)

The scalar triple product [v, v, v,] = v.(v; X V,) is given by
[v,Vv;,v,] =sint. (6.16)

We will need the following expressions concerning w:

wy = (sin@, cosé cos ¢, cosb sing), (6.17)
wy = (0, —sinfsing,sinb cos@), (6.18)
WX Wy = —Wg/sinb, (6.19)
WX Wy = sinf wy. (6.20)

The normal to the reflector surface.
The reflector surface r(t, u) = f (¢, u)v(z, u) has normal

o, ) 8 6.21)

|r; X Tyl
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For t # 0 we have

Xt = (fiv+ fv) x (fuv+ fvw)
= SHVXVut ffave x V4 2V x v,
= f(fsintv— f;sintv, — f" Vi), (6.22)
sint
and therefore
v rl = LY (2 + f2)sin? s + f2. (6.23)
Since f > 0 we obtain
5 s fu
_ fsintv— f;sintv, —mVu' 6.24)
U2+ fDsinte + £

6.2.2 The Law of Reflection; Existence of Reflectors

Suppose we have a mapping R of vectors v to vectors w, for instance in terms
of a mapping of the coordinates (¢, u) — (0, ¢). Such a mapping can be seen
as a mapping between incident and reflected rays, and will be called a ray path.
Not every ray path can be realized by a reflector. In this section we will give the
conditions for the existence of a reflector that realizes a certain ray path. If a ray
path can be realized by a reflector, then it will be called a feasible ray path or a
reflector mapping.

The law of reflection. The law of reflection relates the incident ray v and the
reflected ray w in terms of the normal to the surface. We recall from Chapter 2
that

w=v—2(v.n).n. (6.25)

Using (6.25), we can express w in terms of the reflector surface and the incident
ray v. From (6.24) it follows that

fsint
v.n =
JU2 A+ fDysind i + g2
and that
w = v-—2(v.n).n
fsint fsintv—f,sintv,—s-i’%vu

= Vv

-2
\/(f2+f,2)sin2t+f,,2 \/(f2+f,2)sin2t+ i
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2 2
_ (S VARSI 2 Ve oo

(f2+ f2)sin’t + f2

So, if we have the ray path defined by prescribing w in terms of ¢ and u, it is
feasible if and only if there is a function f such that (6.26) holds. An alternate
formulation of the reflector existence condition will be given in the next para-
graph.

Reflector existence for w as a function of r and u. Given the mapping w(z, u),
the question is whether there exists a surface r(t, u) = f (¢, u)v(t, u) with normal

n = (v —w)/+/2 — 2(v.w). This is the case precisely if
r,.n=r,n=0.

By definition of r this is equivalent to the two equations

(vn)f, = —(v,.n)f,
(vm) f, = —(v,.n)f,
which can be written as
—(lo = = , .
ot & v.n 1—vw
d —V,.n vV, W
a—(log f = = . (6.28)
u v.n 1—vw

By differentiating these two equations with respect to u and ¢ respectively, we
obtain

Jd v,.n d v,.n
Pl T,
or equivalently,
W
E(l—vw :i)t(l—vw)’ (6.29)
which can be reduced to
(VW) (Vi W) — (V. W) (V.W) + V,. W, = (6.30)
VW) (v, W) — (v, W) (V.W) + v, . W,. (6.31)

Using cross products, this can be written in the form

(V; X V).(W X W,) + V. W, = (V, X V).(W X W)+ V, . W,. (6.32)
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Reflector existence in terms of a mapping (r, u) — (0, ¢). Suppose the ray
path is given as a mapping (¢, u) — (6, ¢). Using the known expressions for the
cross products involving v, we can rewrite equation (6.32) as

1
V,.(W, —sint (WX W) =Vv,.(W, — — (WX W,)).
sint

We have
90 + 9¢ (6.33)
W, = Wyp— + Wy —, .
! Y P,
i + o¢ (6.34)
W, = Wg— + Wy —. .
! "au ¢8u

Using this and writing out all cross products gives

sint . .
Vi.(Woby, + Wy, + Si—ng—w¢9, — sint sin @ wy,) =
sin @
Vu.(Wob; + Wy + snrsing e T mwe%)

By writing out the inner products and some basic calculus we eventually find

0 = 6,(—sintsinf + (1 4+ costcosB)cos(u — ¢)) +
0, (sint (cost + cos @) sin(u — ¢)) +
¢ (—sint sin@(—sint sinf + (1 + cosz cos ) cos(u — ¢))) +
¢, (sinf (cost + cosO) sin(u — ¢)), (6.35)

which we can also write as

0 = (6, —¢;sintsinf)(—sintsind + (1 + costcosb)cos(u — ¢)) +
(6, sint + ¢, sinf)(cost + cos O) sin(u — ¢). (6.36)

Note that if we have a mapping that satisfies this equation, then we can also find
the corresponding reflector surface by integration, using (6.27) or (6.28).

6.2.3 Conservation of Energy

Let us recall from Chapter 2 that, under the assumption that we have a one-to-one
correspondence between incident and reflected rays, the required far field pattern
is realized if in all directions v with corresponding reflected ray w we have

GwW)|dQ| = I (v)|d], (6.37)
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where d2" and d2 are solid angles corresponding to incident and reflected ray
cones around v and w, respectively. We have
dQ' = [v,v;,v,]dtdu = sint dt du, (6.38)
dQ = [w,wg, wy]dOdep = —sin6 db de. (6.39)

So we can write the energy conservation equation as
G(w)sinfdfd¢ = I(v)sint dt du. (6.40)

Now suppose we have a mapping (¢, u) — (0, ¢), then

30,
do dp = |b((t—f))|dtdu,

S0 (6.40) becomes
sint I(v)

sind G(w)
If a reflector surface is given by the function f, then we can express w in terms of
t and u as shown in (6.26), and we find the far field distribution by

01y — Oupr = £ (6.41)

sint I (v)

G =
i Tp——

(6.42)

The Monge-Ampere equation. In the literature, the design problem is often
described in terms of the so-called Monge-Ampére equation, which is a non-linear
second order partial differential equation. The highest order term of this equation
in terms of the function f is of the form

k(fuufir — f2) (6.43)

where k is a function of 7, u, f, f; and f,. This term arises when the vector triple
product [w, w;, w, ] is evaluated in terms of f. We will return to this expression
in more detail in Sections 6.4.4 and 6.4.5.

6.3 Types of Ray Paths

In this section we will look at reflector mappings in more detail, and will distin-
guish three types of mappings for a certain class of reflectors. The definition of
these types as given here shows very well what is going on in terms of the ray
path, but is inconvenient to extend to a broader class of reflectors. Therefore, the
following sections will give a more mathematically sound classification, based on
the shape of the wave front of the reflected light. Later on, we will show that the
two definitions are in fact equivalent.
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6.3.1 Special Cases of Reflector Mappings and Examples

In this section, we consider an example which illustrates the three types of ray
paths that we distinguish later on. We consider mappings of the form 6 = 6(r)
and ¢ = ¢(u). For these mappings, the Energy Conservation and the Reflector
Existence equations read

0 _isintl(v) (6.44)
T T sinh G(w) '
and
(6, sint + ¢, sinf)(cost + cos ) sin(u — ¢) =0, (6.45)
respectively.

Rotationally symmetric ray paths. It follows from (6.45) that a ray path is
feasible if ¢ (u) = u or ¢ (u) = u+m. These mappings are realized by rotationally
symmetric reflectors and they produce rotationally symmetric far fields.

Example 6.3.1. Suppose we have a required far field distribution for the
reflected light that is given by G(w(0, ¢)) = 1 for all 6 € [0, /4] and ¢ €
[0, 27]. Let the intensity of the source be given by /(v(t,u)) = 1 forall 7 €
[0, 7/4] and u € [0, 27r], and let the reflector be located in this 7, u range. Then
we have the following solutions.

(i) The mapping 0(t) = t, ¢(u) = u. It is easily verified that this mapping
satisfies both conditions (6.44) and (6.45). The reflector surface can be found
from (6.27) or (6.28), and is given by

f(t,u) =c/cost

forall 7 and u and any constant c. The reflector is a flat disc, and the corresponding
reflected ray bundle is divergent.
(ii) The mapping 6(t) = t, ¢ (u) = u + . The reflector surface is now given by

ft,u)=c

for all # and u and any constant c. The reflector surface is part of a sphere, and the
corresponding reflected ray bundle is convergent. O

Non-rotationally symmetric ray paths. The following example shows that ro-
tationally symmetric far fields can also be realized by reflectors that lack this kind
of symmetry.
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Figure 6.1: A cylindrical reflector surface.

Example 6.3.2. Consider the same required far field distribution as in the
previous example. This time we will consider two types of non-rotationally sym-
metric ray paths that would produce the required distribution, provided that they
are feasible.

(i) The mappings of the form 6(t) = t, ¢ (u) = ¢o—u, for any constant ¢. Again
it is easily verified that these mappings satisfy conditions (6.44) and (6.45). Now
consider the case that ¢g = 0. For the reflector surface, we then have

b (log f) v,.n — sin’ ¢ sin 2u
—_— (0] b4 =
ou & v.n 1 + cos2t — sin’ 1 cos 2u
which gives
c
[, u)=

V1 —sin®tcos2u

for all t and u and any constant c. The corresponding reflector surface is part of
the circular cylinder given by the equation

X+ 7"=c".

See Figure 6.1. Note that the reflector surface is not rotationally symmetric.
(i1) A mapping that satisfies the energy conservation condition but which is not
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feasible is the mapping 6(t) = t and ¢(u) = ¢ + u for any ¢ not of the form
km for an integer k. Indeed, the feasibility condition (6.45) gives

4sint cost sin¢g = 0,

which proves the assertion. g

Let us now look at the reflector existence condition (6.45) in more detail. The
following analysis has been done by Brickell and Westcott [3, p. 118]. It follows
from (6.45) that if we don’t have ¢ (1) = u or ¢ (1) = u + m, then we must have

0, sint + ¢, sinf = 0. (6.46)

Suppose we have t € [0, ;] and u € [0, 27]. Then it follows from the above
equation that 6(0) = 0. We can rewrite (6.46) as

P sint -

‘sing "

We can solve this equation by separating variables and we obtain

(1) = 2arctan(ctank(%)), (6.47)
o) = —ku+ ¢y, (6.48)

where ¢ and ¢ are to be determined from boundary conditions, and k should be
a positive integer, as follows from 6(0) = 0 and from the periodicity of ¢ as a
function of u. From (6.48) and from (6.44) it follows that all required far fields
are rotationally symmetric, while the ray paths are not. For k = 1, we obtain
ray paths that are generalizations of the one in (i) in Example 6.3.2. Let us now
consider the case that k = 2, ¢ = 1 and ¢y = 0. Note that in this case we do not
have a one-to-one correspondence between incident and reflected rays, which we
generally have assumed in this thesis.

Example 6.3.3. Consider the mapping defined by

t
o) = 2arctan(tan2(5)) = /2 — 2arctan cos?,
o) = —2u.
Then we obtain
V,.W B sint sin 6 sin(¢ — u)
l—vw 1+ costcosf —sintsin6 cos(¢p — u)

—sin3usin’t

4 — 3sint — sin’ £ cos 3u



6.3. Types of Ray Paths 127

Figure 6.2: The reflector surface defined by (6.49).

By integration with respect to # we find the following expression for the reflector
surface
f(t,u) = (4 —3sin® 1 — sin’ 1 cos 3u) ~'/3. (6.49)

See Figure 6.2.
The corresponding far field is given by

1
2sin@(1 +sinf)’

G(w(0,¢)) =

and has an infinite intensity in direction & = 0. Note also that if we restrict (6.49)
to adomain ¢t € [1, /2], u € [0, 27], with O < t; < 7/2, so we have a hole in
the back of the reflector, then we obtain a far field pattern with a hole, where each
reflected direction corresponds to two different incident directions. a

6.3.2 Different Types of Reflector Mappings

In the 2D case, ray bundles belonging to smooth reflectors are locally either con-
vergent or divergent, and these notions can be defined either in terms of the mono-
tonicity of the mapping between incident and reflected rays, or in terms of the
curvature of the reflector curve. We would like to classify feasible ray paths in the
3D case in a similar way. Example 6.3.2 (i) shows a reflector that produces a ray
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O=u+m

Figure 6.3: A decreasing function ¢, corresponding to a hyperbolic ray path, has
two fixed and two antipodal points.

path that is convergent in one direction, and divergent in the other. We will see
in this section that under certain restrictions we can distinguish three types of ray
paths. In Example 6.3.2 (ii) we have also seen an example of a rotated ray path
that was not feasible. The following lemma shows that we have a stronger result
about the impossibility of ‘rotating’ a ray bundle.

Lemma 6.3.4. (Fixed Point Lemma) Let (¢, u) — (0, ¢) be a reflector map-
ping. Then for each t # 0 there exist at least two angles u such that

sin(u — ¢ (t,u)) =0. (6.50)

Proof. Let f be the function that describes the reflector surface that realizes
the mapping. For fixed t # 0, the function f(t, u) is periodic in u, so there are at
least two angles u such that f, (¢, u) = 0. From (6.24) it follows that

fu=0&v,n=0<%v,.w=0 <& sintsindsin(u — ¢) = 0.

So we have sin(u — ¢) = 0 at these points. This proves the lemma. O

In order to see what this means, let us consider a fixed ¢ # 0, and consider ¢
as a function of u only, so we write ¢ («) instead of ¢(z, u). We can then regard
the mapping ¢ as a mapping from the unit circle into itself, by associating the
point (cos u, sin u) with u. The angle u (or the pair (¢, u)) is called a fixed point
of ¢ if ¢ (u) = u, and it is called an antipodal point of ¢ if ¢p(u) = u + 7.

Now suppose we have a reflector surface such that for each r # 0, the map-
ping ¢ corresponds to a one-to-one mapping of the unit circle onto itself, i.e. as a
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0 =u+n 0= u+m
2n o=u 2 o=u
|
|
|
|
|
Oo=u-n : Oo=u-n
|
|
|
I
|
|
0 @ 2n 0 ® 2n

Figure 6.4: (a) An increasing function ¢ corresponding to a divergent ray path
has fixed points only. (b) An increasing function ¢ corresponding to a convergent
ray path has antipodal points only.

mapping ¢ : [0, 2r) — [0, 27r). It follows from the above lemma that this map-
ping has at least two fixed or antipodal points. We will distinguish several types
of mappings below, but let us first explain the corresponding figures.

In Figures 6.3, 6.4 and 6.5 examples of periodic functions ¢ are plotted on
the [0, 27 ] domain. The heavy straight lines correspond to the loci of fixed and
antipodal points. Note that there is also a fixed point in (0, 27r) = (27, 0). The
examples are chosen such that there is a fixed or antipodal point for u = 0, except
for Figure 6.5(a) which shows a function without fixed points.

We now distinguish the following cases.

1. The case that ¢’(«) < O for all u. Then it is easily seen that ¢ has precisely
two fixed points and two antipodal points. See Figure 6.3. If we have a
reflector mapping such that for each r # 0 the mapping ¢ is of this type,
the ray bundle is called hyperbolic.

2. The case that ¢'(«) > O for all u. If we have a reflector mapping such that
for each t # 0 the mapping ¢ is of this type, the ray bundle is called elliptic.
In the elliptic case, we can have the following situations.

e If ¢ has fixed points but no antipodal points, as in Figure 6.4(a), the
ray path is called divergent.

e Conversely, if ¢ has antipodal points but no fixed points, then we call
the ray path convergent, see Figure 6.4(b).

e Note that the case that ¢ has neither fixed nor antipodal points, as in
Figure 6.5(a), does not occur, as follows from the Fixed Point Lemma.
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G =u+r 0 =u+m
2n o=u 2 0=u

»

(@ 2r Y (b) 2n

0

Figure 6.5: (a) An increasing function without fixed or antipodal points (not feasi-
ble as reflector mapping). (b) An increasing function with both fixed and antipodal
points.

e Finally, we have the case that ¢ has both fixed and antipodal points, as
in Figure 6.5(b). It is not known whether this may occur as a reflector
mapping. It cannot occur locally, as we’ll see in Section 6.5.4.

Example 6.3.5. A class of hyperbolic ray bundles is given by

@) = 2arctan(ctan%), (6.51)
dpu) = ¢o—u, (6.52)

for ¢ € (0, 1]. The corresponding reflector surface is (up to a constant scale factor)
given by
1

f@u)=

\/(1 +¢2)(1 4 cos? 1) +2(1 — c2) cos t — 2c sin’ 1 cos(2u — ¢y)
(6.53)
For ¢ = 1 and ¢ = 0, this is exactly the cylindrical surface of Example 6.3.2 (i),
while for ¢ = 0 this expression describes a paraboloid. For ¢ = 1/3 and ¢p = 0,
Figure 6.6 shows the reflector. o

It should be noted that the above definitions are only made for reflectors such that
for each  the mapping ¢ (u) is a one-to-one mapping of the unit circle onto itself.
Of course, this is only valid for a limited class of reflectors. For instance, the
reflector of Example 6.3.3 does not satisfy this condition, and neither does a tilted
parabola. In the following section we will present a more general definition, and
in Section 6.5 we will show that the definitions are equivalent for the mappings
we considered here.
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Figure 6.6: A reflector surface that produces a hyperbolic ray bundle.

6.4 Ray Path Types and Curvature of the Wave Front

We have seen in the previous section that we can distinguish hyperbolic and ellip-
tic ray paths, and that elliptic ray paths can be further subdivided into convergent
and divergent ray paths. In this section we give a more general definition for these
types. We will first recall the 2D case, and then summarize the basic notions of
curvature properties of surfaces. In particular, we will derive the curvature of the
reflector surface in spherical coordinates. Next, we will introduce the wave front
of the reflected light, and define the various types of ray paths in terms of the prin-
cipal curvatures of the wave front. We will then show some relations between the
curvatures of the wave front and those of the reflector. Throughout this section,
various examples will illustrate the definitions and results.

6.4.1 2D Ray Paths and Curvature

In this section we recall some results from Chapter 3, in particular from Sec-
tion 3.6.3. Assume we have a point source in the 2D plane, where as usual emitted
rays are represented by unit vectors v(¢) = (cost, sint), and the reflector surface



132 6. 3D Problems With Point Sources

is represented by the curve r(t) = f(¢t)v(¢). This curve has normal

. (fsint+fcost,—fcost+fsint)

\/f—2+—f7 (6.54)
The reflected ray w is then given by
w = f2—j_f.2-((f'2 — f2ycost —2f fsint, (f* — f2)sint +2f f cost) (6.55)
which can be written as
w = (—cosd(t),sinb(1)), (6.56)
where .
6(t) = —t + 2 arctan § (6.57)

The intensity of the reflected light is inversely proportional to 6, i.e. if the intensity
of the source is uniform then we have

Iw)=3< (6.58)
6

for some constant ¢c. We have
g2 =311
f2 + f2
Now, consider the curve r(z) = (x(¢), y(t)) = (f cost, fsint). This curve
has curvature

(6.59)

iy -y _ff-212-f
G232 (24 2

6 =142+ f2K. (6.61)

So the intensity of the reflected light, as well as the type of ray path (which
is determined by the sign of 6), are related to the curvature of the reflector curve
by (6.61). We now show that the information on the reflected light is even more
conveniently expressed in terms of the curvature of the so-called wave front. To
introduce the wave front, let us follow a ray, emitted in direction ¢, when it has
travelled over a distance A > f(t). The position of the ray after it has travelled
this distance is denoted x(A). We have

K(t) = (6.60)

It follows that

X(A) = fv+( — fHw. (6.62)
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For each fixed A, the vectors x(X) as a function of ¢ form a curve which will be
called the wave front at distance ». We list a few results without proof. In the
following sections, the corresponding 3D results will be presented with proofs.
An elementary but important property of the wave front is that the reflected rays
w are normal to it.

Lemma 6.4.1. The reflected rays w are normal to the wave front X(1).

We are interested in the curvature of the wave front, which depends on A, and
which we denote K (X). In particular, we are interested in the curvature of the
wave front immediately after reflection, that is in K = limy 1f K(d). We have
the following theorem, which shows that the curvature K is directly related to the
intensity of the reflected light.

Theorem 6.4.2. We have

-0
K= 7 (6.63)
Corollary 6.4.3. The curvature K is related to the curvature of the reflector
by
k=142 1+f—21<. (6.64)
f f?

In particular, if f; = 0, that is if the reflector surface is perpendicular to the

incident ray, then we have

~ 1
K =—42K, 6.65
7 (6.65)

6.4.2 Gaussian and Mean Curvature of a Surface

In this section we summarize some of the foundations of the theory of surfaces.
In particular, we define the first and second fundamental forms, and the Gaussian
and mean curvature of a surface. For more details we refer the reader to e.g. [16].
Suppose we have a surface R : x(u', u?). Then we let

g1l = X1.Xp, (6.66)

g12 = 821 = X1.X2, (6.67)

g2 = X2.Xp. (6.68)

Recall that we write x; for a%’ X, for % etc. These coefficients are used to

define a metric on the surface as follows

ds? = g11(du")? + 2g12du’ du® + gar(du?)?. (6.69)
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This quadratic form is called the first fundamental form. At regular points of the
surface this form is positive definite, and we can define the discriminant g of the
first fundamental form by

z‘ 811 812

2
= — > 0. 6.70
o @ 81182 — &> (6.70)

It is easily seen that [x; x X|> = g, so we have the following expression for the
normal to R,

X1 X Xp
n—
NG
We also define the components of the contravariant metric tensor by
g = gn/s (6.71)
g?=¢" = —gn/s (6.72)
2 o= gu/s (6.73)
The second fundamental form
b1 (du")? 4 2b1adu’ du? + by (du®)? (6.74)
is defined by the coefficients
b” = Xj1.n = —X.n, (6.75)
b12 = b2| = Xj2.n = —X;.Imp, (6.76)
b22 = X22.0 = —Xp.I. (6.77)

These coefficients are used to study the shape of the surface around any of its
points. The discriminant b of the second fundamental form is defined as

by by

= by By — B 6.78
b21 b22 11022 12 ( )

|

Now consider a point P on the surface S. A plane passing through P that con-
tains the normal to S at P intersects the surface in a plane curve. Let x denote
the curvature at P of that plane curve. We consider the values of « for all such
planes. The maximum and minimum values of «, say k| and k>, are the principal
curvatures of S at P. The directions of the corresponding planes are called prin-
cipal directions. It can be shown that if a plane has an angle o with the principal
direction corresponding to 1, then the curvature at P of the corresponding plane
curve is given by

K = K| cos® o + K sin’ a. (6.79)
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This is known as Euler’s Theorem. In particular, the two principal directions are
perpendicular. The Gaussian curvature K at P is defined to be the product

K = K1K2 (6.80)

of the two principal curvatures. It can be shown that
b
K=—- (6.81)
8

and also that
JgK = %£[n,n;,m] = £n.(n; x ny) (6.82)

The mean curvature H at P is defined to be the arithmetic mean

) g (6.83)
2
of the two principal curvatures. It can be shown that
1
H = S(bug' +bng™ +2bag"). (6.84)

2

Note that K and |H | are independent of the choice of coordinates. A point P is
called hyperbolic or a saddle point if K < 0, it is called elliptic if K > 0, and
it is called parabolic if k = 0 in exactly one direction (so one of the principal
curvatures, and consequently K = O in that case). A point P is called a parabolic
umbilic or a flat point if at P all the coefficients by, b, and bj, of the second
fundamental form vanish.

6.4.3 Curvature in Spherical Coordinates

In order to express curvature properties of reflector surfaces, we represent the
surface in the usual spherical coordinates. Recall that these have to be handled
with care when t = 0. We have u! = t, u?> = u, and x(u', u?) = r(t,u) =
f(, u)v(t, u) and we find

gn = fr+ A (6.85)
gn = fIsin?t+ f2, (6.86)
g2 = fifu (6.87)

g = fHfEsin’t 4 fEsin’t 4+ f2). (6.88)
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To calculate the coefficients of the second fundamental form, we first note that

ry = (fu— HV+2fivi, (6.89)
rny = ftuv + fuvt =+ (L + ft)vua (6.90)
tant
rw = (fuw— f2sin®t)v — fcostsintv, +2fv,, (6.91)
and we recall from (6.24) that
. . fu
_ fsintv— fysintv, — mVu. 6.92)
JFEsind 4 f2sin? 4 f2
So we obtain
2 2y
- f°-2 t
By = mpme— S0 _J 2/ J8NF (6.93)
\/fz sin?t + f2sin®t 4 f2
bia = ryn= ffiusint — ff,cost —2f f, sint’ (6.94)

\/fzsinzt + f2sin’t + f2

by = rum— (ffuu —2f> + fficostsint — f? sinzt)sint. o

25in%t + f2sin’t + f2
t u

And we find
b f
f2sin®t 4 f2sin’t + f2
(for fuu = fi)f sint +
fu(fifcostsin®t — f2sin*t — 2fu2 sin® 1) +
fiu2fu f costsint + 4 f, f, sin® 1) +
Fua(—F2sin®t —2f2 sin” 1§ —
4f, f2costsint + ff>(3sin’t — 1) — 2> costsin®t —
F2ficostsin®t + 2 ff2sin*t + f3sin*1). (6.96)
We have K = b/g, and for H we find the following expression
= : (

2f(f2sin’t 4+ f2sin’t 4 f2)3/2

Fu(f2sin’t + f2sing) + fo (f*sint + f*sint) +

Fu(=2f: fusing) —2f3sin’t + f,3 costsin’t +

2fif2cost —3ff2sint + f2f costsin’t —3ff?sin’ 1). (6.97)

Let us now look at some examples.
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Example 6.4.4. Consider a sphere with radius p, i.e. f(t,u) = p for all
t and u. We find

gn=p>, gn=0, gn=p’sin’t, g=p’sin’t
and
by =—p, bip=0, bpp=—p sin®t, b = p*sin’t.
So we have K = 1/p?, H = —1/p, and consequently k| = k2 = —1/p. 0O

Example 6.4.5. Consider the plane described by f(z,u) = 1/cost for all z
and u. We find
byy=bp=bn=>b=0.

So we also have K = H = k| = k» = 0. This holds for any plane of course.
0O

Example 6.4.6. The cylindrical surface given by the equation x* + y* =1

is described by
1

ftu) =

\/1 —sin®tcos?u
Computations show «; = 0,k = —1. 0

Example 6.4.7. The parabola defined by f(¢,u) = 1/(2 + 2cos1) has

sin® ¢
& = 81 +cosns’
b o— sin’ ¢ ’
8(1 + cost)3
= (1+cost)2,
o _(3+cost)m
42 ’
. (14 cos 1)/
Ky = ——\/:2——’

Ky = —+/242cost.

Example 6.4.8. Consider the quadratic surface given by the equation

x=1 +a11y2 +apnyz +a2222»
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which is described by the function

2
f@tu)= (6.98)
cost ++/cos2t — 4a(u) sin®t

where
a(u) = ay cos? u + ajp cos u sinu + ax sin® u.

Then at the point P = (1, 0,0) (i.e. t = 0) we find (more easily by using carthe-
sian rather than spherical coordinates)

2
K = Jdayaxn —aj,,
H = aj +an,

2
Ky = a11+022+\/(011 — ap)? +ayp,,

2
ko = ap +an— \/(an —an)? +aj,.

6.4.4 The Wave Front

In this section we study the wave front of the reflected rays. We will see that the
curvature of the wave front contains information on the intensity, as well as on the
type of the ray path of the reflected light.

Let us follow a ray, emitted in direction (¢, 1), when it has travelled over a
distance A > f (¢, u). The position of the ray after it has travelled this distance is
denoted x(1). We have

X(A) = fv+ A - fHw. (6.99)

For each fixed A, the vectors x(A) as a function of ¢ and u form a surface which is
called the wave front at distance A. An elementary but important property of the
wave front is that the reflected rays w are normal to it.

Lemma 6.4.9. [ffor a given A, the wave front X(A) is a differentiable surface,
then the vector w is a normal to x()).

Proof. We show that x(1),.w = x(1),.w = 0. We have
xX(A); = fiv+ fvi — fiw+ (A — f)w,, (6.100)
s0, keeping in mind that w is a unit vector, we obtain

X(A\);. W = fiv.w+ fvi.w— f2. (6.101)
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Using the expression (6.26) for w, we find

2 il 2 il 2
—fesin“t + fsin“t + f;

v.w , (6.102)
F2sin®t + fZsin®t + f2
2ffsin’t
VW = — LA o : (6.103)
f2sin’t + frsin“t + f}?
2
VW = fu (6.104)

) ) ’
f2sin®t + frsin“t + f}?

and elementary calculus shows that the right hand side of (6.101) vanishes. Simi-
larly, it is shown that x(1),.w = 0. O

Let us write b;; (1), gii(}), K(X), etc. for the curvature and the coeffi-
cients of the fundamental forms of the wave front. From the above lemma, and
from (6.82) it follows that

VEMWK Q) = £[w, wi, w,]. (6.105)

Note that the right hand side of (6.105) is related to the intensity of the re-
flected light; cf. expression (6.42) in Section 6.2.3.

Let us now consider the wave front in direction (¢, u) immediately after reflec-
tion. We define

g = 1l M),
g1 )Llf?fg“( )
by = limb; (),
M f
K = limK(Q®),
rMf
etc.

The curvatures K, H, %, and K, are called the (Gaussian, mean and principal)
curvatures of the wave front. We are now ready to distinguish several types of ray
paths.

Definition. A ray path is called hyperbolic, elliptic or parabolic in (t, u) if K <
0, K > 0or K = 0in (r, u), respectively. Note that this corresponds to the
wave front x(1) being hyperbolic, elliptic or parabolic in (¢, #), immediately after
reflection. We call a ray path (globally) hyperbolic, elliptic or parabolic if it
is hyperbolic, elliptic or parabolic for all + and u. In the elliptic case, we can
distinguish two cases (either locally or globally), depending on the signs of the
principal curvatures k; and &,. If both principal curvatures of the wave front are
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Gaussian curvature | Signs of principal curvatures | Type of ray path

K >0 k1 >0andk; >0 Elliptic, divergent
K>0 kK1 <0Oandky <O Elliptic, convergent
K <0 k1 >0andk; <O Hyperbolic

K=0 k1 =0o0r k=0 Parabolic

Table 6.1: The types of ray paths corresponding to the principal curvatures of the
wave front after reflection.

positive, the ray path is called divergent. If both principal curvatures of the wave
front are negative, the ray path is called convergent. See Table 6.1 for a summary
of the types of ray paths. Let us consider some examples.

Example 6.4.10. Consider a sphere with radius p, i.e. f(t,u) = p for all
t and u. We then have
x(A) = 2p — M)v.

Sowe find K(A) =1/Q2p — M2, H = —1/(2p — 1), and consequently «; (1) =
k2(A) = —1/(2p — 1). It follows that the corresponding ray path is globally
convergent. d

Example 6.4.11. Consider the plane described by f(t,u) = p/cost for
all t and u. We find K(A) = 1/Q2p — )%, H = 1/(2p — A), and consequently
k1 (L) = ka(A) = 1/(2p—A). It follows that the corresponding ray path is globally
divergent. O

Example 6.4.12. For the parabola defined by f(¢,u) = 1/(2 + 2cost) we
find

sintcosu sintsinu
2+2cost’ 2+42cost’
so the wave front x(X) lies in the plane x = A 4+ 1/2 and we find

x(L) = (A + 1/2,

KA =H®R) =x1(}) =k2(2) =0
for all A, so the ray path is parabolic. g

Now, recall from Section 6.2.3 that the intensity G (w) of the reflected light in
direction w can be expressed as

I(v)sint
Gw) = ———, (6.106)
|[w’ Wi, wu]l
so from (6.105) we obtain
Gw) = LSt 6.107)

1K1V/g



6.4. Ray Path Types and Curvature of the Wave Front 141

From this we see the following.

Corollary 6.4.13. The intensity G (W) in direction w is infinitely large if and
only if the ray path in that direction is parabolic. Furthermore, any ray path
that has finite intensity in all directions, is globally hyperbolic, convergent or
divergent.

The latter part of this corollary follows from the observation that if the lo-
cal type of the ray path is not the same for all (¢, u), then one of the principal
curvatures K, ko changes sign, so it has to be 0 at some point.

Caustics. It is well known that the curvature of the wave front is directly related
to the caustics of the reflected bundle: the caustic surface is formed by the locus
of the principal centres of curvature of the wave front! We won’t go into that here
however, and refer the interested reader to e.g. [37].

6.4.5 Curvatures of the Wave Front in Terms of the Reflector

We have seen that the principal curvatures of the wave front right after reflection
determine both the intensity and the type of the reflected ray paths. We therefore
want to express these in terms of the function f that describes the reflector surface.
Next, we relate the principal curvatures of the wave front to those of the reflector
surface.

Lemma 6.4.14. The coefficients of the fundamental forms of the wave front
are

gn = f% (6.108)
gn = fisint, (6.109)
g = 0, (6.110)
B = FQ@ffysin®t — f2sin® —3 f2 sin2t+fu2)’ BT

f2sin®t 4 f2sin’t + f2
~ 2fsint (ffi,sint —2f; f,sint — ff,cost)
f2sin?t + f2sin’r + f2 '
- fsinzt(fo,m+2ff,costsint+(f,2—fz)sinzt—3fuz)
f2sin’t 4 frsin’t 4 f2 '

6.112)

(6.113)
which gives

§ = fhsin’t, (6.114)
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B o= i sin® ¢ (
(f2sin®t + f2sin®t 4+ f2)?
(fir fuu — fo)Af7sin® 1 +
fu@f f2costsin®t —2f3sin*r — 6 ff2sin*t + 2 ffsin 1) +
FruBf2 fucostsint + 16 ff, f, sin® 1) +
Fuu(=2f3sin®t — 6ff2sint +2ff2) —
3f 42 f2cos?t — 14ff, f2costsint + 22 f2sint —
6f,2fuzsin2t —2f3f,costsin’t —6ff,3costsin3t+
Ffrsin*e + 22 f2sin*t — 3£ sine), (6.115)
H = Juu + fu sin’t 4+ f;costsint 3 l 6.116)

f2sint + f2sin®t + f2 f
Proof. We only prove the expressions for g;; and 51 1, the others are proven
similarly. We have
gno= gu),_, = XKA)X()),_,
= (fiv+fvi—fiw+ A= HW).(fiv+ fvi— fiw+ (A — Hw),_,
FE4+2f2 = 2f2(v.W) = 2ffi(v;.W).

Using (6.102) and (6.103) then gives the above result for g;;. To compute I;l 1, We
use the right hand side of (6.75) and Lemma 6.4.9 and we find

by = bu),_, = —XQ)r.—Wi)),_,
= fi(v.w) + f(vi.Wy).
The rest then follows from straightforward but tedious calculations. O

The Monge-Ampére equation. Now recall that a reflector surface described by
a function f produces the required far field pattern if and only if (6.107) holds,

that is if _
Vv)Sint ~

S i, K o

= N

which by definition of K can be written as

I(v)sint 7
oo VA=

So, using the above expressions for b and g we obtain the Monge-Ampére equa-
tion, as given in the next proposition.
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Proposition 6.4.15.  The reflector surface described by the function f pro-
duces the far field G when combined with a source of luminous intensity I if and

only if

vy 1
GW)  (f2sint 4+ fPsin®t 4+ fu2)2(

(forfuu = F)4fsin® t +

fu(df, fAcostsin’t —2f3sin*t ——6ffuzsin2t+2ff,25in4t) +

fruBf* fucostsint + 16 ff, f, sin?1) +

fu(=2f3sin®t — 6 ff2sin®1 4+ 2ff2) —

3f —af>flcos’t — 14ff, f2costsint + 22 f2sin? 1 —

67 f7sin*t —2f3 f,costsin®t — 6 ff3 costsind 1 +

fAsintt + 22 f2sin*r — 3 £ sin* ). (6.117)

Relating curvatures of the wave front to those of the reflector. Note that in
both the expressions for b and for b the quadratic term of the second order partial
derivatives of f is of the form

fofuw — [

Since both K and K have these same highest order terms, we can derive the
following relation between K and K
Roak=2H_] (6.118)
f '

Using K = 1k, K = k1iy and H = %(El + k2), we obtain the following result.

Corollary 6.4.16. The principal curvatures of the reflector and those of the
wave front are related by

(k) — %)(’22 — %) = 4k k3. (6.119)

As we did in the 2D case in Corollary 6.4.3, we would like to express the
principal curvatures of the wave front in terms of those of the reflector surface.
This is particularly easy in the case in directions where the reflector surface is
perpendicular to the incident ray.
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Proposition 6.4.17. If the reflector surface is perpendicular to the incident
ray in a certain direction, i.e. if fi = fu = O for a pair (t, u), then we have

1 1
K1 = — 4+ 2k, Kp = — + 2k2. (6.120)
f f

Proof. If f, = f, = 0, then we have

1 in? t
g = g detrttin _if““
f 2f2sin“t
- 1 in’ 1
f f#sin“t
SO |
H=—+2H.
f

In terms of the principal curvatures, this implies
- 2
K1+ K2 = ?+2K1 + 2x5.
When we combine this equation with (6.119), we obtain the required result.

O

Let us consider a few more examples.

Example 6.4.18. The cylindrical surface given by the equation x2+yr=1

and described by
1

ft,u)=
V1 —sin®tcos?u

has H = 0, which is fairly easily computed from (6.116). So kp = —k. Note
that k; = 0, so from (6.119) we see that

%, =1/f =1 —sin’tcos?u = —ka.

Note that K = —1/f2, so the ray path is hyperbolic. O

Example 6.4.19. Consider again the quadratic surface given by the equation
x=1+any*+apyz+ a»z*, described by the function

2
ftou)=
cost + \/cios2 t — da(u)sin’t

where
2 s « 9
g(u) = ajycos”u +appcosusmu +ax sin” u.
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Then at the point P = (1,0, 0) (i.e. t = 0) we find

K (1 +4a1)(1 + 4ax) — 4dl,,
H = 1+42a +2a,

Ki = 14 2k,

K 1+ 2k5.

Note that the values for the principal curvatures follow directly from Proposi-
tion 6.4.17. O

Unlike the special case of perpendicular incidence of Proposition 6.4.17, in
general we cannot nicely express the principal curvatures of the wave front ex-
plicitly in terms of those of the reflector. However, the following section shows
that if we consider a more appropriate choice of curvatures of normal sections of
the surface, then we can do better.

6.5 Equivalence of Definitions

In this section we introduce the parallel and normal curvatures of the reflector and
the wave front. These notions have been used for the description of the wave front
before and after refraction or reflection in e.g. Stavroudis [37]. They enable us
to relate the curvatures of the wave front to those of the reflector in a convenient
way. They also pave the way to show the equivalence of the different definitions
of the types of ray paths that we gave in the previous two sections; this will be the
subject of the final subsection of this section.

First we will consider the ray path in the neighborhood of a given point and
introduce a natural coordinate system and corresponding parametrization of the
surface. In the next section we introduce the parallel and normal curvature, and
will show how they relate to the principal curvatures.

6.5.1 Plane of Incidence; a New Coordinate System

Let xo be a point on the reflector surface, and let Vo = Xo/||Xo|| be the unit vector
in the direction of x(. Let ny be the normal to the reflector surface at xo, and let o
be the angle between v, and no. Let us assume that o # 0, i.e. that the incident
ray vy is not perpendicular to the reflector surface. The plane through the point x,
that contains the vectors v and ny is called the plane of incidence, or the parallel
plane. A normal to this plane is given by the vector

ng X vp

PR Lk (6.121)
[Ing X vo]
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The plane through x, parallel to v, and no is called the normal plane. We also
introduce the vector v), which lies in the plane of incidence and is perpendicular
to vo, by

V| = VL X Vp. (6.122)

The three vectors vy, v and v form an orthonormal basis, and we can describe
the reflector surface around X in coordinates on this basis as follows,

x=h(B,y)Vo+ BV +¥VL (6.123)

for some positive function h of the parameters B and y in some interval [—¢, €].
It turns out that with this parametrization of the surface, expressions for the cur-
vature have a simple form. Indeed, we have

xg = hpvo+V,
X, = hyvo+Vvyi,
Xgp = hppvo.
Xyy = hyyVo,
xgy = hpyVo,
gn = 1+h3,
gn = 1+h,
g2 = hghy,
g = l+hy+h.

The normal to the surface is given by

X vo—h —h,v
. Aok SO el i ol Ay (6.124)

||X,3XXyH /1+h%+h]2/

Note that we have ng.v, =0, so for g =y =0, we have
h,(0,0) =0, (6.125)

and for the angle between the incident ray and the normal at Xo we have

cosap = Vo.g = 1/,/1 4 h3(0,0). (6.126)

For the coefficients of the second fundamental form we obtain

by = Xﬂﬂ.ll:hﬂﬁ/,/l -I—h%-{-h%,,



6.5. Equivalence of Definitions 147

by = ny.n=hyy/‘/1+h%+h$,,
blz = Xﬂy.n=hﬂy/,/1+h/23+h$,,

hﬂﬁhw - h,zsy

1+hg+h2
So for the Gaussian and mean curvature of the surface we find
hﬁﬂhw - h%ﬂy

(1 +h + h2)2’
hpp(1+h3) + hyy (1 4+ h3) — 2hg, hgh,

H = . (6.128)
2 2
2(1 + hj + h2)%

(6.127)

6.5.2 Parallel and Normal Curvature

Consider the intersection of the incident plane with the reflector surface. This
intersection is a curve C| that contains the point xo. The curvature of this curve at
Xo 1s called the parallel curvature and denoted k). Analogously, the intersection
of the normal plane with the surface is a curve C 1, and its curvature at X, is called
the normal curvature and denoted « | . These curvatures are related to the principal
curvatures by
K1+ K2 K|+ k1
H = 5 S (6.129)
K = K1K2=K”KJ_—T2, (6]30)

where 7 is the torsion of a geodesic curve through xo, see [37, p. 149, 182-185].
Note that when we consider the matrix

K|| T
< . K_L) (6.131)

then K and H are the determinant and trace of the matrix respectively, while the
principal curvatures «; and «; are its eigenvalues.
Let us now calculate the parallel and normal curvatures.

Lemma 6.5.1. The parallel and normal curvatures and torsion T at Xq are
given by

hps
Ky = ——— ; 6.132
LT oasmy, (@152

B=y=0
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h
By = ==ty 4 (6.133)
a+ hﬂ) |g=y=0
h
= P (6.134)
(A+hp),

Proof. We first calculate the parallel curvature. The incident plane consists of
vectors of the form

UV + VY|,

forany p, v € R. Its intersection with the surface as given by (6.123) is the curve
Cy(B) = h(B,0)vo + BVy. (6.135)

The curvature K (C) of this curve is

J(C.CH(C".C") = (C'.C")?

K(C) = (C/.C/)3/2

’

where C' = g%h(ﬁ, 0)vo + v and C” = Tj%z—zh(ﬂ,O)vo. It follows that C'.C" =

14+ h3, C".C" = hjg and C'.C" = hghpp, S0 We obtain

hgp
K= ———>7 . 6.136
[p=y=0
To obtain the expression for k1, first note that i, (0,0) = 0, so from (6.128) we
find
hgg + hyy (1 + h%)

Hy_ o = 243/2

[g=y=0

The result for k| then follows from (6.129). The expression for © then follows
from the above and from (6.127) and (6.130). O

6.5.3 Reflected Rays in the New Coordinates

We now study reflection, and its effect on wave front curvatures, in terms of the
coordinate system introduced in Section 6.5.1.
Let w, be the direction of ray vo after reflection, as usual given by

wo = Vo — 2(vo.mo)No. (6.137)
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Let us now also introduce an orthonormal basis for the reflected wave front as
follows. Let

W = v —2(v).np)no, (6.138)
Wi = vy —2(vim)no=vy. (6.139)

Then by definition wy lies in the plane of incidence and w lies in the normal
plane, and wy, w and w; form an orthonormal basis. We are interested in the
curvatures of the wave front after reflection. As above, we define the parallel
and normal curvature of the wave front as the curvature at X of the curve ob-
tained by taking the intersection of the surface with the parallel and normal plane,
respectively. They are denoted k| and i |, respectively. Again we have

g o= Atk & +/z¢, (6.140)

2 2

K = ki =Rk — 12, (6.141)

where 7 is the torsion of a geodesic curve through xo, see [37, p. 149, 182-185].
See this same reference or [5] for a proof of the following proposition, which
relates the parallel and normal curvatures of the wave front to those of the reflec-
tor. Both references show a stronger result that also incorporates refraction, and
arbitrary incident wave fronts.

Proposition 6.5.2. We have the following relations between the curvatures
of the reflector and the wave front,

1 2
By == = , 6.142
K| Pl v ( )
1
KL = ;l—+2(v.n)/cl, (6.143)
T = 2r1. (6.144)

Note that % is actually the parallel or normal curvature of the (spherical) inci-
dent wave front. So, for 8 = y = 0, we have

1 2hg

B o= —+ , 6.145
I W 1+h% ( )
3 1 2h,
K = - , 6.146
+ h ' 1+h3 (6.149)
2h
r . (6.147)

We now give a result that will prove to be useful to understand the types of ray
paths in terms of the mapping between incident and reflected rays.
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Proposition 6.5.3. At X, i.e. for B =y = 0, we have

(2)-(22)() e
w, A AR A '

Proof. First we write w on the basis vo, v and v, . We find

(1 + hy +h2) h2+ﬂ2+y2(

(h(=1+h} + h2) +2Bhg + 2y hy)Vo +

(B — h% + h2) + 2hhg — 2y hgh,)v) +

(y(1 +h} — h2) + 2hhy, —2Bhghy)V.). (6.149)

Taking derivatives and inserting 8 = y = 0 gives

2hp(1 + h + 2hhgp) (1 — h3)(1 + hj + 2hhgp)

w = A\ v +
g T h(l + h3)? :
2h
__ﬂV2 v, (6.150)
1+ h2
4hghg, 2(1 — hp)hg, 1 2hy,
w, = v v+ (= + v, 6.151
r = awmr et Tagme TGty OFD

while for wo, w, w we have (where again all functions are evaluated at g =
y =0,

—1+4h3g L2
wy = A\ vy,
0 140y 1+ h I
2% 1 — h%
Wy == ﬂ2V0+ gvu’
1+hﬂ 1+hﬁ
W, = V].

We can now easily express wg and w,, on the basis wo, W), w by taking inprod-
ucts, and the proposition follows. O

Perpendicular incidence. Note that in this section and in the previous one, so
far we have only considered the case that the incident ray is not perpendicular
to the reflector surface, because otherwise the incident plane would not be well-
defined. Note however, that for perpendicular incidence we could choose any pair
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of mutually perpendicular planes that contain Xy and ng, and choose vectors v
and v in these planes such that vy, v| and v, form an orthonormal basis. Then
all the above results carry over to this situation. In particular, we can choose the
planes such that they are precisely the planes of the principal directions. The
curvatures kK and K are then equal to the principal curvatures k£, and i, and
Proposition 6.5.2 is then clearly a generalization of Proposition 6.4.17.

6.5.4 Equivalence of Definitions of Ray Path Types

Let us now recall that in Section 6.4 we had defined a ray path to be hyperbolic or
elliptic, depending on whether K is negative or positive (the parabolic case that
K = 0 results in infinite far field intensities and can be ignored). Moreover in
the elliptic case we can distinguish divergent and convergent ray paths, depending
on whether k) and k; are both positive or both negative. Under some additional
constraints, we introduced the same notions in terms of fixed and antipodal point
properties in Section 6.3. We now show that locally, the two different definitions
are equivalent.

Now, from Proposition 6.5.3 it follows that we have the following linear ap-
proximation of w in terms of 8 and y around wy, i.e., the Taylor expansion of w
around B = y = 0 ignoring O(|B|*> + |y |?) terms and higher,

K T w
w~w0+(ﬂ,y)("r~” h)(wl)’ (6.152)
Let us write
M = ( “a T ) (6.153)
T Kj

Recall that the principal curvatures of the wave front are the eigenvalues of M,
and that the Gaussian curvature of the wave front equals the determinant of M.
Let us now introduce spherical coordinates for incident and reflected rays around
Xo. We write

X = g(t,u)(cost vy +sintcosu vy +sintsinuv,) (6.154)
fort € [0,1;]and u € [0, 27r]. So we have

h(B,y) = g(t,u)cost, (6.155)
B = g(t,u)sintcosu, (6.156)
y = g, u)sintsinu. (6.157)
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Furthermore, let (¢, u) and ¢ (¢, u) be functions such that

w(t, u) = cosO(t, u)Wo + sin0(t, u) cos ¢ (t, u)w) +sin6(t, u) sinp(t, u)w, .

(6.158)
We then have the following result.
Theorem 6.5.4. For t small enough, we have
9 ~
sign(a——¢>(t, u)) = signk. (6.159)
u

In particular this shows that locally, the definitions for elliptic and hyperbolic ray
paths in terms of the curvature of the wave front, and in terms of fixed points of
the mapping (t, u) — (0, ¢) as given in Section 6.3 are equivalent.

Proof. We have the Taylor expansion of w with respect to 8 and y as follows,

Wi

W:W0+(,B,)/)M< o

)+oumﬁﬂyﬂ.

It follows that for t = 0 (so 8 = y = 0) we have

w; = go(cosu, sinu)M ( Wi ) ,
W

where go = g(0, 0). So the Taylor expansion of w around ¢ = 0 gives

w = Wo + go(cos u, sinu)M ( ::” ) t+ O(tz).
1

Comparing this expression with (6.158), we find

cos = 14 0(?) (6.160)
sinfcos¢p = go(kjcosu+ Tsinu)t + 0(1?) (6.161)
sinfsing = go(KLsinu + 7cosu)t + O(t%). (6.162)

It follows from (6.161) and (6.162) that

(R sinu + T cosu)got + O(t*)  Kisinu+Tcosu

W = (k) cosu + T sinu)got + O(1?) "~ Rjcosu + Tsinu +00
SO o 3
¢ = arctam('il sl D),
Kjcosu + Tsinu
and o _,
¢'u) = ul et +0).

(K1 sinu + T cosu)? + (k| cos u + 7 sinu)?

Since the denominator of this expression is positive, and the numerator equals K,
this proves the proposition. a
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So, we have seen that locally, the two definitions for hyperbolic and elliptic ray
paths are equivalent. In the elliptic case, we can distinguish between convergent
and divergent ray paths. It is easily seen that if the eigenvalues of M are both
positive or both negative, then the function ¢ has fixed or antipodal points in the
directions corresponding to the eigenvectors of M, respectively. This shows the
equivalence for all three types locally.

In the wave front definition, we have seen that local definitions extend to
global definitions easily (Corollary 6.4.13). Similarly, we would also like to show
that if the function ¢ (¢, u) has a certain behaviour in terms of fixed points for ¢
small enough, then it should have that behaviour for all ¢ (of course, under the
usual condition that ¢ comes from a one-to-one reflector mapping). It can be
shown using results from homotopy theory, that the sign of %d)(t, u) cannot be
different for two different values for 7, because that would correspond to curves
with different winding numbers. This argument then shows that we have global
fixed point properties corresponding to elliptic and hyperbolic types.

6.6 Discussion

In this final section we mention a few items of interest for further study, and we
will show some examples of applications of this work.

e In the previous section we have seen that we have global fixed point proper-
ties for elliptic and hyperbolic ray path types. In the wave front definition,
we have seen that in the elliptic case we can further distinguish convergent
and divergent ray paths. In the elliptic case, we would also like to have
a corresponding distinction in terms of fixed points, so we would have to
show that the function ¢ (¢, u) should have either only fixed points or only
antipodal points. But this is not obvious. Arguments of homotopy theory
cannot be applied unless we know that an increasing mapping as in Fig-
ure 6.4(c) does not occur as the result of a reflector mapping.

e In the 2D case we have seen that smooth ray paths have to be one-to-one,
otherwise infinite intensities may occur. We conjecture that if the reflec-
tor surface is simply connected, we have a similar property in 3D: if the
reflector mapping (¢, u) — (6, ¢) is differentiable and not one-to-one, then
the corresponding light distribution has an infinite intensity. Note that this
is not the case if the surface is not simply connected: Example 6.3.3 pro-
vides an example of a reflector which produces a smooth two-to-one ray
path without infinite peaks, if we allow a hole around the r = 0 direction. A
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study of a possible classification of global ray path types for reflectors with
one or more holes is also of interest.

The study of the different types of ray paths may perhaps be helpful in
the study of the solutions of the Monge-Ampére equation (6.117) in the
case that the reflector surface is simply connected. A heuristic approach to
the reflector design problem based on the fixed point properties, suggests
that with the proper boundary conditions, there are precisely 2 solutions
in the elliptic case (corresponding to convergent and divergent ray paths),
while in the hyperbolic case, a one-parametric family of solutions seems
to exist. Perhaps the uniqueness and existence results of Marder [24] and
Oliker [29], as mentioned in Section 1.2, can be generalized to more arbi-
trary cones, or to the hyperbolic case.



Appendix A

Practical Examples

A better theoretical understanding of ray paths produced by reflectors may also
contribute to more heuristic approaches as mentioned in Section 1.2. Within
Philips, this has indeed been the case. A heuristic design method has been de-
veloped, which proves that the different solution types can actually be found. The
fixed point properties of the various solution types play an important role in our
heuristic.

To lift a tip of the veil, consider Figure A.1. In this figure, part of a sphere
is triangulated such that all triangles span equal solid angles with respect to the
origin of the sphere. When we imagine a uniform point source to be located in the
centre of the sphere, and the triangles to be the facets of a reflector, then all facets
receive equal amounts of luminous flux from the source. In the above figure, we
have 160 facets, ordered in strips and rings. For large numbers of facets, incident
and reflected beams will both be contained within small solid angles with respect
to the source.

Now suppose we have a required intensity distribution, with a total required
luminous flux equal to the total flux reflected from the reflector. What we now can
do is subdivide the total required intensity distribution into parts, such that all parts
have equal flux, and such that they can be realized approximately by the reflected
beams resulting from triangular facets. These parts will be called required beams.

Next we can assign each facet to a required beam, and we can change the
orientation and size of each facet, such that its triangular solid angle with respect
to the source remains fixed, and such that its reflected beam resembles the cor-
responding required beam. The reflector surface we obtain will then realize a
distribution resembling the required distribution. However, the crucial difficulty
here is to do this in such a way that a connected reflector surface is obtained!

Note that when we have n facets and n required beams, there are n! ways of

155



156 A. Practical Examples

Figure A.1: Part of a triangulated sphere, representing a facetted reflector.

assigning the facets to the beams. A random assignment will generally lead to a
chaotic, strongly disconnected collection of facets. In order to obtain a collection
of facets resembling a connected surface, the assignment of (incident beams of)
facets and required beams should satisfy “fixed point properties” similar to those
derived for the one-to-one correspondence between incident and reflected rays for
smooth surfaces in Section 6.3.

In the examples that follow, it should be noted that the required distribution is a
near field distribution, i.e. it is defined as an illuminance on a screen. Furthermore,
neither the reflector nor the required distribution are necessarily simply connected,
as was assumed in the theory of Chapter 6.
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Figure A.2: Convergent, divergent and hyperbolic reflectors which all illuminate
a square uniformly.

Example A.1.1. The uniform illumination of a rectangular square. This
square is at 1 meter distance from the light source, and its size is 1 by 1 meter.
The reflectors have an opening angle of 60 degrees, and a back opening of 30
degrees. They are about 0.1 meter in size. In Figure A.2 a convergent, a divergent
and a hyperbolic solution are shown. They all realize similar distributions to the
one in Figure A.3. O

Figure A.3: The illuminance achieved by the reflectors in Figure A.2.
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Figure A.4: Convergent, divergent and hyperbolic reflectors which all produce
four light peaks as in Figure A.5.

Example A.1.2. In this example, the reflectors have realized 4 separate peaks
of light at the corners of the screen of the previous example. See Figures A.4
and A.S. O

Figure A.5: The illuminance achieved by the reflectors in Figure A.4.
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Figure A.6: A convergent reflector realizing a car headlight profile.

Example A.1.3. In Figure A.6, a distribution for car headlights is shown on
a screen at a distance of 25 meter from the car, with a size of 10 by 10 meter. This
distribution was achieved by the convergent reflector shown in the same fi gure, in

combination with a realistic area source. 0O
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Figure A.7: A divergent reflector which produces a light distributions that forms
the name BOB.

Example A.1.4. Figure A.7 shows the contour plot of the distribution corre-
sponding to a divergent reflector that aims to produce the word BOB as its light
distribution. Lighting tasks of this complexity are generally considered to be im-
possible to achieve with just a single reflector. O
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Summary

Mathematical Methods for Reflector Design

This thesis discusses mathematical methods for reflector design. Reflectors are an
important component in many lighting systems. They contribute to the realization
of required light beams as well as to the efficient use of the yield of a lamp.
From early days, Philips produces lighting systems for a variety of applications
like street lighting, playground lighting, but also systems for Projection TV, LCD
backlighters, or ordinary TL-tubes and spotlights.

For a long time, optical design has been a matter of craftsmanship and expe-
rience, where the drawing table and prototypes played a central role. Naturally,
computer technology has changed this situation. The expensive process of manu-
facturing and measuring prototypes can partly be replaced by computer programs
for simulation. When I met the optical designers of Central Development Lighting
in 1990, simulations programs which compute a light distribution for a given light
source and reflector, were already being used extensively. However, there were
hardly any programs or methods available for the inverse problem, which is the
problem to calculate a reflector for a given lamp and required light distribution.

In its full generality, this is a very difficult problem: one has to deal with com-
plicated light sources, multiple reflections, but also for instance with geometrical
constraints of the armature, aesthetical matters, or requirements with regards to the
production of reflectors. Not all these practical aspects can be taken into account
in the mathematical modelling of the problem. We have to simplify the problem in
such a way that a mathematical approach is workable. Consequently, we assume
in this thesis that reflection is specular and that light sources are small with respect
to the reflector. We assume that required light distributions are well-defined and
we neglect multiple reflections or reflected light re-entering the light source. The
assumptions we make are similar to those made by designers in practice, and they
don’t limit the practical relevance of this research.

The literature on reflector design is also usually limited to small light sources
and specular reflection. The methods described in the relatively scarce litera-
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ture on this topic can roughly be divided in three classes: optimization methods,
heuristic approaches, and studies based on mathematical analysis, in which the
problem is formulated in terms of differential equations. What in my opinion is
usually lacking in all these approaches is the geometrical insight in ray paths, or
in other words, in the question: what light beams can actually be realized by re-
flectors? I think that an answer to this problem will be of use to all the above
methods. To obtain a better geometrical understanding was one of the main issues
I addressed, and the results of this research have led to this thesis. It discusses the
mathematical aspects of the reflector design problem, which within Philips have
been the basis for practical design methods.

A considerable simplification of the general reflector design problem is pos-
sible when the problem has rotational or cylindrical symmetry (TL-tubes for ex-
ample). In these cases, a 2-dimensional (2D) approach to the problem becomes
possible. Chapter 3 discusses the 2D problem. When one considers smooth (dif-
ferentiable) ray paths only, then it is easy to show that 2D problems with point
sources have precisely two solutions, corresponding to convergent and divergent
ray paths. Things become more interesting when one drops the smoothness as-
sumption. Then 2D problems appear to have infinitely many solutions and, by
using the convergent and divergent beams as building blocks, it is possible to
compute reflectors of varying shapes and sizes, which all produce the same light
distribution. In particular, the extra freedom of choice can be exploited to fulfill
the practically important geometrical constraints.

A special geometrical constraint is treated in Chapter 4, for cylindrical reflec-
tors with a required light distribution defined on angles. It is described how one
can find a ‘most compact’ reflector for a given required distribution. This chapter
uses classical real analysis, in particular it applies the theory of ‘rearrangements’.

The 2D design methods for point sources can be realized in very fast algo-
rithms even on a simple computer. In order to check the validity of results for
extended sources such as cylinders and spheres, it was desirable to have a fast
method for the calculation of light distributions for these sources as well. In Chap-
ter 5 it is shown that those light distributions can be computed analytically to a
large extent, which has resulted in an implementation which is considerably faster
than existing ray-tracing techniques. In this chapter we apply the calculation of
‘view factors’” which are also being used in Computer Graphics and Heat Transfer.

Chapter 6 is concerned with the 3D problem for point sources, and for re-
quired distributions defined on angles. We do not present a design method, but we
aim at geometrical insight in the problem that can be useful in the development
of actual design methods. Two laws play principal parts in the formulation of the
reflector design problem: the law of reflection and the law of conservation of en-
ergy. Starting from these, and assuming that there is a one-to-one correspondence
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between incident and reflected rays, a partial, non-linear, second-order differential
equation can be deduced which describes the problem mathematically. This type
of differential equation is called the Monge-Ampere equation. Methods based on
the solution of this equation as described in the literature so far have had only
limited results of practical relevance. Only little is known about the existence and
the uniqueness of solutions, and for numerical solutions, good initial guesses are
needed.

The highest order term of the Monge-Ampere equation, f;; f,,, — f,ﬁ is related
to the Gaussian curvature of a surface. Using elementary differential geometry, it
is shown in Chapter 6 that the Monge-Ampeére equation can be written in terms of
the curvature of the wave front of the reflected light, immediately after reflection.
The possible curvatures of this wave front (flat, convex, concave or saddle-shaped)
lead to a classification of types of ray paths that can be realized by means of a
reflector. We show that, when infinite intensities do not occur in the required
distribution, there are three types of ray paths. These are the convergent, divergent
and hyperbolic ray paths, which correspond to concave, convex and saddle-shaped
wave fronts, respectively.

This classification can also be made by a completely different characterization
of ray paths, which uses fixed point properties of reflector mappings. By this
characterization one gains a better understanding on which ray paths are feasible.
It is for instance impossible to rotate a ray path, by means of just one connected
reflector without any cracks or holes. The equivalence between the definitions of
the ray path types in terms of curvatures of the wave front and in terms of fixed
point properties, is demonstrated locally. The practical relevance of the fixed
point characterization is made plausible in the appendix, where a rough sketch
of a heuristic design method is given, as well as several practical results from a
method based on this theory.
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Samenvatting

Wiskundige Methoden voor Reflector Ontwerp

Dit proefschrift behandelt wiskundige methoden voor reflector ontwerp. Reflec-
toren vormen een belangrijk onderdeel van veel verlichtingssystemen. Ze dragen
er aan bij dat een voorgeschreven lichtbundel verkregen wordt en dat de lichtop-
brengst van een lamp zo efficiént mogelijk gebruikt wordt. Reeds van oudsher pro-
duceert Philips verlichtingssystemen voor zeer verschillende toepassingen, zoals
straatverlichting, stadionverlichting, maar ook systemen voor Projectie TV, LCD
backlighters, of voor gewone TL-buizen en spotjes.

Lange tijd is optisch ontwerp een kwestie van vakmanschap en ervaring ge-
weest, waarbij de tekentafel en prototypes een centrale rol speelden. Uiteraard
heeft computertechnologie in die situatie verandering gebracht. Het dure proces
van het vervaardigen en doormeten van prototypes kan deels vervangen worden
door simulatieprogramma’s op de computer. Toen ik in 1990 met optiek ontwer-
pers van Central Development Lighting in contact kwam, werd reeds veel gebruik
gemaakt van simulatieprogramma’s, die voor een gegeven lamp en reflector de
bijbehorende lichtverdeling uitrekenen. Echter, voor het omgekeerde probleem,
om voor een gegeven lamp en gewenste lichtverdeling een reflector uit te rekenen,
waren nauwelijks programma’s of methoden voorhanden.

In zijn algemeenheid is dit ook een zeer moeilijk probleem, waarbij men niet
alleen met ingewikkelde lichtbronnen, meervoudige reflecties enz. te maken heeft,
maar bijvoorbeeld ook met geometrische beperkingen aan de optiek, esthetische
wensen, of eisen met betrekking tot de productie van reflectoren. In een wis-
kundige modellering van het probleem kunnen we doorgaans dan ook niet alle
praktische aspekten meenemen. We zijn genoodzaakt het probleem zodanig te
vereenvoudigen dat een wiskundige aanpak rendabel is. Zo nemen we in dit proef-
schrift aan dat reflectie speculair is en dat lichtbronnen klein zijn ten opzichte van
de optiek. We gaan uit van welgedefinieerde gewenste lichtverdelingen, en we
verwaarlozen effecten zoals licht dat terugvalt op de lamp, of meervoudige reflec-
ties. De in dit proefschrift gemaakte aannames lijken veel op de aannames die
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ontwerpers in de praktijk maken bij de modellering van hun probleem en ze tasten
de praktische relevantie van het onderzoek dan ook niet aan.

Ook in de literatuur over reflector ontwerp beperkt men zich doorgaans tot
kleine lichtbronnen en speculaire reflectie. De methoden beschreven in de relatief
schaarse literatuur over dit onderwerp kan men opdelen in drie klassen: optima-
liseringsmethoden, heuristieke aanpakken en meer wiskundig analytische studies
die het probleem in termen van differentiaalvergelijkingen formuleren. Wat mijns
inziens vaak ontbreekt in al deze aanpakken is een geometrisch inzicht in stralen-
gangen, ofwel in de vraag: wat voor soort lichtbundels kan men nu eigenlijk met
reflectoren maken? Ik denk dat een antwoord op deze vraag voor alle methodes
van nut zal zijn. Het verkrijgen van een duidelijker geometrisch inzicht was één
van de taken die ik mezelf stelde, en de resultaten van dit onderzoek vinden hun
weerslag in dit proefschrift. Het behandelt de mathematisch-theoretische aspecten
van het reflector ontwerp probleem, die binnen Philips de basis zijn geweest voor
praktische ontwerpmethoden.

Een significante vereenvoudiging van het algemene reflector ontwerp pro-
bleem is mogelijk wanneer er sprake is van rotatiesymmetrie of cylindersymme-
trie (denk aan TL-buizen). In die gevallen is een 2-dimensionale (2D) aanpak
van het probleem mogelijk. Het 2D probleem wordt behandeld in Hoofdstuk 3.
Wanneer men zich beperkt tot gladde (differentieerbare) stralenbundels, is het een-
voudig af te leiden dat 2D problemen met puntbronnen precies twee oplossingen
hebben, die overeenkomen met convergente en divergente bundels. Interessanter
wordt het wanneer men de eis van differentieerbaarheid laat vallen. Dan blijken
2D problemen oneindig veel oplossingen te hebben, en is het mogelijk om, met
de convergente en divergente bundels als bouwblokken, reflectoren van zeer ver-
schillende vorm en afmetingen te berekenen, die allemaal dezelfde gewenste licht-
verdeling opleveren. In het bijzonder kan men door de extra keuzevrijheid aan de
praktisch zo belangrijke geometrische beperkingen proberen te voldoen.

Een speciaal geval van zo’n geometrische beperking is in Hoofdstuk 4 uitge-
zocht voor cylindrische reflectoren met een gewenste lichtverdeling gedefinieerd
op hoeken. Er wordt beschreven hoe men in zekere zin een meest compacte re-
flector voor een gegeven gewenste verdeling kan vinden. In dit hoofdstuk wordt
gebruik gemaakt van onderdelen van de klassieke reéle analyse, onder andere van
de theorie van ‘rearrangements’.

De 2D ontwerpmethoden voor puntbronnen zijn in zeer snelle algorithmes
op een eenvoudige computer te realizeren. Om de geldigheid van de resultaten
voor uitgebreide bronnen als cylinders en bollen te kunnen verifi€ren, bleek het
wenselijk om ook een snelle methode te hebben voor de berekening van de licht-
verdeling behorend bij die bronnen. In Hoofdstuk 5 laat ik zien dat die lichtverde-
lingen grotendeels analytisch berekend kunnen worden, wat heeft geresulteerd in
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een implementatie die veel sneller is dan bestaande ray-tracing methoden. In dit
hoofdstuk wordt gebruik gemaakt van de berekening van ‘view factoren’, zoals
die ook voorkomen in Computer Graphics of bij de berekening van warmtestra-
ling.

Hoofdstuk 6 behandelt het 3D probleem voor puntbronnen, en voor gewenste
lichtverdelingen gedefinieerd op hoeken. Er wordt hier uiteindelijk geen ontwerp-
methode afgeleid, maar wel worden geometrische inzichten in het probleem ver-
kregen die bij het ontwikkelen van concrete ontwerpmethoden nuttig zijn. Twee
wetten spelen een hoofdrol bij de formulering van het reflector ontwerp probleem:
de reflectiewet en de wet van behoud van energie. Met deze ingrediénten, en met
de aanname dat er een één-op-één-correspondentie tussen invallende en gereflec-
teerde stralen bestaat, kan men een partiéle, niet-lineaire, tweede orde differen-
tiaalvergelijking afleiden die het probleem wiskundig beschrijft. Dit type dif-
ferentiaalvergelijking heet een Monge-Ampére vergelijking. De in de literatuur
geboekte, praktisch relevante resultaten van methoden gebaseerd op het oplossen
van deze vergelijking zijn beperkt. Over de existentie en de uniciteit van oplos-
singen is nog maar weinig bekend, en voor numerieke oplossingen zijn goede
beginschattingen nodig.

De hoogste orde term van de Monge-Ampere vergelijking, fi, f,. — f2, is ge-
relateerd aan de Gaussische kromming van een oppervlak. Gebruik makend van
elementaire differentiaalmeetkunde wordt in Hoofdstuk 6 getoond dat de Monge-
Ampere vergelijking beschreven kan worden in termen van de kromming van het
golffront van het gereflecteerde licht, onmiddellijk na reflectie. De mogelijke
krommingen van dit golffront (vlak, convex, concaaf of zadelvormig) geven aan-
leiding tot een klassificatie van typen stralenbundels die met behulp van reflec-
toren gerealiseerd kunnen worden. We tonen aan dat, wanneer oneindige inten-
siteiten niet toegelaten worden, er drie typen stralenbundels bestaan. Dit zijn de
convergente, divergente en hyperbolische bundels, die horen bij respectievelijk
concave, convexe en zadelvormige golffronten.

Deze klassificatie kan men ook maken aan de hand van een geheel andere
karakterisering van stralenbundels, die gebruik maakt van vaste punten stellingen
over reflector afbeeldingen. Hierdoor krijgt men een beter inzicht in welke stralen-
gangen mogelijk zijn. Het is bijvoorbeeld niet mogelijk om met behulp van een
samenhangende reflector zonder scheuren of gaten een stralenbundel te roteren.
De equivalentie tussen de definities van de typen bundels in termen van krommin-
gen van golffronten en in termen van vaste punten, wordt locaal aangetoond. De
praktische relevantie van de vaste punten formulering wordt aannemelijk gemaakt
in de appendix, waar een zeer ruwe schets van een heuristische ontwerpmethode
gegeven wordt, alsmede enkele praktische resultaten van een op deze theorie ge-
baseerde methode.
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