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Abstract: For a dissipative differential equation with stationary solution u*, the difference between any solution U(r)
and u* is nonincreasing with 7. In this note we present necessary and sufficient conditions in order for a similar
monotonicity property to hold for numerical approximations computed from a Rosenbrock method. Our results also
provide global convergence results for some modifications of Newton’s method.
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1. Introduction

Consider an initial value problem in R™
U'(t)=f(U(1)), =0, U(0) = u, (1.1a, b)

whose solution U(?) tends to a stationary solution u* € R™. For the numerical solution of (1.1)
we consider a well known Rosenbrock method

i =+ (1= hOf" (w,)) "hf (u,) (1.2)
where @ is a positive parameter, &> 0 is the stepsize and the vectors u, € R™ approximate
u(t,), t,=nh(n=0,1,2,...).

Assume the function f is dissipative with respect to an inner product (-, -) on R™ (ie.,
(f(#@) — f(u), #t —u) <O for all #, u€R™) and let || x| = (x, x)'/* (for x € R™). This as-
sumption implies that the difference ||U(z) — U(z) | of any two solutions of the differential
equation (1.1a) is nonincreasing with ¢. The corresponding property for the numerical approxi-
mations, || &, — U, || < || &, — u,|, only holds under additional, rather restrictive conditions
on f (see e.g. [3]). In this note we look at the less exacting monotonicity property

sy —u™ |l < Jluy —u™ |, (1.3)

and we shall present conditions on f which are necessary and sufficient for (1.3) to hold with
arbitrary stepsize h. Under somewhat stronger conditions on f the convergence of u, to u* can
be guaranteed. These results are relevant to stiff ordinary differential equations and to partial
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differential equations (via the method of lines) since neither the Lipschitz constant of f nor the
dimension m are involved.

The monotonicity property (1.3) is of particular interest if scheme (1.2) is regarded as a time
marching procedure for finding stationary solutions. The scheme has been used for this purpose
in [4] with § =1 (and with an approximation to the Jacobian matrix f'(u,); cf. (2.1)). We note
that in such a situation (1.2) can be considered as a modified Newton procedure for solving
f(u)=0. By introducing w=1/6 and A =1/h8 we can rewrite (1.2) as

Uy = tup~ 0(f/(4,) = N) ' f(n,),

in which w > 0 can be viewed as a relaxation parameter and A > 0 ensures that f'(u,) — Al is
nonsingular whenever f is dissipative (see [5; sect. 5.4, 7.1]).

2. Monotonicity for numerical approximations

Besides the Rosenbrock method (1.2) we also consider the more general linearly implicit
scheme

Uy =ty + (= hOT(u,)) " B () (2.1)

where J(u,) is an m X m matrix. Further we shall use the following notation. By L(R™) we
denote the space of linear operators on R™. If || -|| is a norm on R™, the corresponding operator
norm on L(R™) is also denoted by || -|{, and p[-] will stand for the logarithmic norm (cf. [2]).

Consider for arbitrary € and 8, with 0 <€ < oo, 0 <8 < oo, the following set of assumptions
(2.2)-(2.6), which will be denoted by (A,).

meN and |- || is a norm on R™ generated by an inner product (-, -}; (2.2)
fiR™">R™ u*cR™isazeroof f,and J: R™ —» L(R™); (2.3)
{D-—- {u: ueR™, |lu—u*| <8}, f is continuously differentiable on D (2.4)
and J is continuous on D; ’
for any u € D we have u[f'(u)] <0 (2.5)
and J(u) does not have positive real eigenvalues; |
{for all 4, v € D thereis an E(u, v) € L(R™) such that (2.6)
f(0)=J(u)(I+E(u, v)), | E(u, v) || <e. '

Further (A,) will stand for these assumptions (2.2)—(2.6) together with
J(u)=f"(u) forall ueD. (2.7)

In (2.4) continuously differentiable means that the matrix of partial derivatives f’(u)=
(3f;(u)/Bu;) exists and depends continuously on u. The condition p[f "(u)]<0 on D is
equivalent to requiring that f is dissipative on D (see e.g. [5, sect. 5.4]). The condition in (2.6)
states that the relative difference between f’(v) and J(u) is bounded by ¢; in case J(u) is regular
it reads || J(u)"}(f’(v) — J(w)) || < €. Thus, in a relative sense, the variation of f* on D may not
be too large and J(u) has to approximate f’(u) accurately enough.
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In order to formulate our main results we define the real functions ¥, (k = 1,2) on the interval
[3, ) by

¥1(0) = min{26 - 1, 1}, (2.8)

¥,(0) =min{26 -1, /(26 - 1) /6 }. (2.9)

Theorem 2.1. Let h and & be positive, and k equal to 1 or 2. We have ||u, . —u™| < ||u,— u*||
(whenever u, € D and (A,) is valid) iff 6 > 3 and € < ¢, (8).

This theorem is an extension of a result by M.N. Spijker and the present author [7; sect. 4].
The proof will be given in the next section. The restriction € > 3 in this theorem is not surprising
since the methods with 6 < § are not A-stable. For § = 1 we see that the monotonicity property
only holds for linear problems (€ = 0).

Under slightly stronger conditions on f it can be shown that ||u,,, —u*|| < |ju, —u*|| (for
u, €D, u, +u*). This leads to the following result which will also be proved in Section 3.

Theorem 2.2. Let h and 8 be positive, and k equal to 1 or 2. Assume u, € D, § > 3, e <y,(8) and
(A ). Assume in addition that either € < ,(0) and J(u) is regular (for all u < D) or u[f'(u)] <0
(for all u € D). Then u* is the unique zero of f in D and lim u,=u*.

n—o0n

3. Proof of the monotonicity results

3.1. Preliminaries

In order to prove the theorems of Section 2 we first derive some technical results. Consider
arbitrary 4, B € L(R™) with m € N, and suppose || -|| is a norm on R” generated by an inner
product (-, -). For any C€ L(R™) we denote by C* its adjoint with respect to this inner
product ({Cx, y) = (x, C*y) for all x, y€R™).

The relation || Bx|| <v|| Ax|| (for all x €R™), with y > 0 given, implies the existence of a
C e L(R™) such that B=CA4, |C|| <v; if 4 is regular we can take C = B4 ™! and for singular
A the inverse 4! can be replaced by the generalized inverse of 4 (see e.g. [1; ch. 8]). Since
|C*|l =||C]|| for any C € L(R™) one easily arrives at the following result.

Lemma 3.1. Ler y>0. We have ||B*x|| <vy||A*x|| (for all x€R™) iff B=AC for some
CeL(R™) with |C|| <.
Consider the following statements, with > 3 and € > 0,
B=A(I+E,) forsome E, € L(R™) with ||E, | <e, (3.1a)
A=B(I+E,) forsome E,€ L(R™) with || E,| <e, (3.1b)
and
B=6A4A(I+F) forsome FEL(R™) with|F| <]1. (3.2)
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Lemma 3.2. (3.1a) implies (3.2) iff € <y,(8).
Proof. Assuming (3.1a) and e < y,(8) weset F=6""[E, + (1 — #)I], in which case B = 4(I + F)
and

IFl <67 (e+1-0)) <07 (y:(8) +11-6])=1.

To construct a counterexample in case € > ,(#) we first consider the simple scalar (complex)
example A =a, B=>b with a, b € C. The condition in (3.1a) corresponds to

|b—a| <ejal (3.3)
and (3.2) corresponds to
|b—68a| <8|a|. (3.4)

By simple geometrical arguments it follows that for € > y,(8) there exist a, b € C satisfying (3.3)
but violating (3.4).
These considerations on C lead to a counterexample with 4 = 4, and B = B, € L(R?),

A =(Rea —Im a) =(Reb —Imb)
'"\Ima Rea /) '"\Imb Reb )
and with || -|| the Euclidean norm on R? (and the corresponding spectral norm on L(R?)). O

Lemma 3.3. (3.1a) and (3.1b) together imply (3.2) iff ¢ < y,(8).

Proof. Assume (3.1a), (3.1b) and ¢ < ¢,(#). To show that (3.2) holds it is, in view of Lemma 3.1,
sufficient to consider the remaining case 1 < e€” < (26 — 1) /6. From Lemma 3.1 it follows that for
any x€R™

[ B*x||2 = 2(A%x, B*x) + || A*x | ? < || 4*x ||,

| B*x)|2—2(A*x, B*x) + || A*x||> < €*|| B*x|| 2.
Combining these inequalities we obtain

(A*x, B*x) > (1— 3e*) || B*x || >
From our assumption on ¢ it follows that

[|B*x|| 2 <20{A*x, B*x),
and hence

[(B* —04)x|| <8 A*x].

Statement (3.2) now follows by again applying Lemma 3.1.

Now assume € > ¢,(#) and 3 < 8 < 1. Then we obtain a (scalar real) counterexample by taking
m=1, A=-1, B=~1—¢.

Finally assume €>,(#) and §>1. Let £€((26 —1)/6,2) such that £§<e? and take
a, b€ C such that b/a equals (1 — $¢) +iyé(1 — 3¢) . Then |b—a| <e€|a|and |b—a| <e€|b]
but |b—8a|>8]|a|. As in the proof of Lemma 3.2 such a, b € C lead to 4,, B, € L(R?) such
that for 4 = A,, B = B, the statements (3.1a), (3.1b) hold whereas (3.2) is violated. O
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We note that in the above counterexamples which prove the necessity of € <y, (6) we can
choose the a, b€ C such that Re a <0, Re b<0. This leads to A4,, B, € L(R?) satisfying
p(A4,1<0, p[B,] <0 (for k=1, 2).

The following lemma is a slight generalization of results in [6] and [7; lemma 4.3].

Lemma 3.5. Assume I — N0A is regular for all A\ > 0. We have || I+ (I —X6A) 'AB|| <1 (for all
A>0) iff p[B]< 0 and (3.2) holds.

Proof. Let C =B —60A. Then I+ (I—X8A4) 'AB=(I—-XA4) (I +AC), and it follows that
| I+ (I—A0A)"AB| <1 iff

(I +XC*)x| < ||(I—-A84*)x]| forall xeR"™.
The latter inequality can be written as

2A(B*x, x) + N || C*x || > < N*||64*x||* forall xe R™.
Clearly this holds for all A > 0 iff

(Bx, x) <0 and | C*x| <|/§4*x| forall xeR™.
Application of Lemma 3.1 completes the proof. O

3.2. The proof of Theorem 2.1

For u€ D we define
1 -
o(u)= [ 111+ (I=h8J(u) " (u* + r(u—u*))| dr. (3.5)
0
Since for any u, € D

ltger = u* | = [ty = u* + (L= 18I (u,)) " R(f(w,) = F(u*)) |
1t follows by the mean-value theorem that

lttpsr = u* [ < 0 (,)lu, —u. (3.6)

Application of the Lemmas 3.2, 3.3 and 3.5 with 4 =hJ(u,) and B = hf"(u* + 7(u, —u*))
shows the sufficiency of €< ¢, (8) for having ||u,,, —u*|| < |lu,—u*| in case (A,) holds,
k =1, 2. The necessity will be proved by some counterexamples.

A counterexample in case (A,) holds, € > y,(8) is given by AJ(u) = AA4,, hf(u)=AB,u (for
u € R?*) with A4, B, as in the proof of Lemma 3.2, A>0 and || - || the Euclidean norm on R?.
With u* =0, u, € R?, we obtain

Natpn = w* | = (1 + (1= A84,) T'NB, )(u, — u*) |
=1+ (1= N84,) T AB |, — u* || >, — |

provided A > 0O is suitably chosen (see Lemma 3.5).

Next we give a scalar (real) example for € > {,(8), $<8<1 in case (A,) is valid. This
counterexample is similar to one given by Sandberg and Shichman [6].
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Take, for convenience, =1, §>1and u* =0, uy=1. Let n € (20 — 1, €) and f(u) =Ag(u)
(for ueR) with A >0 and g: R — R a continuously differentiable function such that
g(0)=0, g'(uye[-1—¢ —1] forall ueR,
g(u)=—u+n forus -1, glu)=-u—n forux>1l.
Such an f meets the conditions imposed in (A ,). Further we have

U= (1+X0) A +A(6-1—7))

and thus [u; —u*|tends to 07 (n+1—8)>1= |uy—~u*| for A - 0.

Finally we assume € > ,(8), § > 1. For this we construct a complex, scalar counterexample,
which can, as before, be converted to a real one by identifying C with R? in the usual way.
Suppose (26 —1)/0 <£ <min{2, €*} and let a, b€ C be such that Re a<0, Re <0 and
b/a=(1—3£) +1y¢(1— 3£) (as in the proof of Lemma 3.3). Then |b—a| <e|a|, |b—al <
€|b| but |b—0a|>8|a|, and thus for A >0 suitably chosen |1+ (1 —Afa) 'Ab| > 1 (see
Lemma 3.5). We put « =Aa and B =Ab.

Let D be the unit disk in C, A=1, u* =0, and define

f(u) =@(0)(a—B) + au+ @(u)(B - a),

2k 1+1/k
(D(u)=—k+1(%——%u) N

for u € C, where k € N is to be specified later. Then f(0) =0 and
fl)y=ato()(B-a), ()=} -u)""

The image of D under ¢ tends to the interval (0, 1) on the real axis if k — co. By using this
property it can be shown that, for k sufficiently large, the conditions on f in (A,) are satisfied.
Moreover, since f'(1) =« and f(1) tends to B8 for k — oo,

11+ (1-67'(1)7 7 (1) >1

provided k is sufficiently large. It follows that, for such k and u, close to 1,

fuy — u* | >|ug — u*|.

3.3. The proof of Theorem 2.2

First we show that under the assumptions of Theorem 2.2 the function o, defined by (3.5),
satisfies o(u) <1 (for all u € D). Examination of the proof of Lemma 3.5 shows that for
A, B€ L(R™) satisfying (3.2) and u[B] < 0 we have

| I+ (I—A84) 'AB| <1 forall A>0
provided we assume in addition either
p[B] <0
or
Aisregular and B=6A(I/+F), |F| <1.
Further it is easily seen, by regarding the proofs of Lemma 3.2 and Lemma 3.3, that if A4 is
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regular and we have (3.1a) with € <y,(8) or (3.1a), (3.1b) with e <y,(#) then there is an
Fe L(R™) such that B=0A4(I+ F), || F|| <1. By setting 4 = hJ(u), B=hf"(u* + 7(u—u*))
it follows that the assumptions of Theorem 2.2 imply o(u) <1 on D.

The function o is continuous on D. Therefore we obtain for arbitrary uy, € D

1w, — w* | < sgljug —ux|

with so=max{o(u): €D, ||u—u*| < ||ug—u*||} <1. From this it is clear that u* is the
unique zero of f in D and that the u, converge to u* for n - .
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