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Abstract: For a dissipative differential equation with stationary solution u *, the difference between any solution U ( t) 
and u * is nonincreasing with t. In this note we present necessary and sufficient conditions in order for a similar 
monotonicity property to hold for numerical approximations computed from a Rosenbrock method. Our results also 
provide global convergence results for some modifications of Newton's method. 
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1. Introduction 

Consider an initial value problem in Rm 

U'(t)=f(U(t)), t~O, U(O)=u 0 (I.la, b) 

whose solution U(t) tends to a stationary solution u* E Rm. For the numerical solution of (1.1) 
we consider a well known Rosenbrock method 

(1.2) 

where 8 is a positive parameter, h > 0 is the stepsize and the vectors un E Rm approximate 
U(tn), tn = nh (n = 0, 1, 2, ... ). 

Assume the function f is dissipative with respect to an inner product ( · , ·) on Rm (i.e., 
(/(u)-/(u), u-u)~O for all u, uERm) and let llxll =(x, x)1/ 2 (for xERm). This as
sumption implies that the difference II U( t) - U( t) ll of any two solutions of the differential 
equation (1.la) is nonincreasing with t. The corresponding property for the numerical approxi
mations, II u,,+ 1 - u,,+ 1 11 ~ II u,, - u,., II, only holds under additional, rather restrictive conditions 
on f (see e.g. [3]). In this note we look at the less exacting monotonicity property 

II U,,+1 - u* II~ II u,, - u* !I, (1.3) 

and we shall present conditions on f which are necessary and sufficient for (1.3) to hold with 
arbitrary stepsize h. Under somewhat stronger conditions on f the convergence of u,., to u* can 
be guaranteed. These results are relevant to stiff ordinary differential equations and to partial 
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differential equations (via the method of lines) since neither the Lipschitz constant off nor the 
dimension m are involved. 

The monotonicity property (1.3) is of particular interest if scheme (1.2) is regarded as a time 
marching procedure for finding stationary solutions. The scheme has been used for this purpose 
in [4} with()= 1 (and with an approximation to the Jacobian matrix f'(un); cf. (2.1)). We note 
that in such a situation (1.2) can be considered as a modified Newton procedure for solving 
/(u) = 0. By introducing w = 1/0 and A= 1/hO we can rewrite (1.2) as 

Un+1 =Un - w(J'(un)-A.Iflf(un), 

in which w > 0 can be viewed as a rdaxation parameter and A> 0 ensures that /' ( un) -A.I is 
nonsingular whenever f is dissipative (see [5; sect. 5.4, 7.1]). 

2. Monotonicity for numerical approximations 

Besides the Rosenbrock method (1.2) we also consider the more general linearly implicit 
scheme 

(2.1) 

where J(un) is an m x m matrix. Further we shall use the following notation. By L(Rm) we 
denote the space of linear operators on Rm. If 11 ·II is a norm on Rm, the corresponding operator 
norm on L(Rm) is also denoted by II· I!, and µ[·]will stand for the logarithmic norm (cf. [2]). 

Consider for arbitrary E: and 8, with 0 ~ E: < oo, 0 < 8 ~ oo, the following set of assumptions 
(2.2)-(2.6), which will be denoted by (A1). 

m EN and II · II is a norm on Rm generated by an inner product ( · , ·); (2.2) 

/:Rm-+ Rm, u* E Rm is a zero off, and J: Rm~ L(Rm); (2.3) 

{ D = { u: u E Rm, II u - u* II < 8}, f is continuously differentiable on D (2.4) 
and J is continuous on D; 

{
for any u ED we have µ[/'(u)] ~ 0 (2_5) 

and J(u) does not have positive real eigenvalues; 

{
for all u, vED there is an E(u, v) EL(Rm) such that (2_6) 

j'(v)=J(u)(l+E(u, v)), llE(u, v)ll ~L 

Further (A 2 ) will stand for these assumptions (2.2)-(2.6) together with 

J(u)=f'(u) foralluED. (2.7) 

In (2.4) continuously differentiable means that the matrix of partial derivatives f'(u) = 
(of;(u)/ouj) exists and depends continuously on u. The condition µ[f'(u)] ~ 0 on D is 
equivalent to requiring that f is dissipative on D (see e.g. [5, sect. 5.4]). The condition in (2.6) 
states that the relative difference between f ' ( v) and J( u) is bounded by t:; in case J( u) is regular 
it reads II J(u)- 1(/'(v) -J(u)) II~ t:. Thus, in a relative sense, the variation off' on D may not 
be too large and J( u) has to approximate f ' ( u) accurately enough. 



WH. Hundsdorfer / Monotonicity of a Rosenbrock method 269 

In order to formulate our main results we define the real functions 'ljlk (k = 1,2) on the interval 
[!,co) by 

1h(8) = min{28- 1, l}, 

-.J;z(B) = min{20- l, J(20- l)/O }. 

(2.8) 

(2.9) 

Theorem 2.1. Leth and 8 be positive, and k equal to 1 or 2. We have II un+l - u* II ~ II un - u* II 
(whenever un ED and (Ad is valid) iff 8): i and E: ~ 1h(B). 

This theorem is an extension of a result by M.N. Spijker and the present author [7; sect. 4]. 
The proof will be given in the next section. The restriction 8): ~ in this theorem is not surprising 
since the methods with e < ~ are not A-stable. For 0 = 1 we see that the monotonicity property 
only holds for linear problems ( E: = 0). 

Under slightly stronger conditions on fit can be shown that II un+l - u* II< II un - u* II (for 
un ED, un ..-/= u*). This leads to the following result which will also be proved in Section 3. 

Theorem 2.2. Leth and 8 be positive, and k equal to 1 or 2. Assume Uo ED, 0): -L ( ~ lf;k( 0) and 
(Ak ). Assume in addition that either E: < lf; k( 0) and J( u) is regular (for all u E D) or µ.[f' ( u)] < 0 
(for all u ED). Then u* is the unique zero off in D and limn ~ooun = u*. 

3. Proof of the monotonicity results 

3.1. Preliminaries 

In order to prove the theorems of Section 2 we first derive some technical results. Consider 
arbitrary A, B E L(IR m) with m E N, and suppose II · II is a norm on IR m generated by an inner 
product(·,·). For any CEL(!Rm) we denote by C* its adjoint with respect to this inner 
product ((Cx, y) = (x, C*y) for all x, y E IRm). 

The relation II Bx II ~ y II Ax II (for all x E !Rm), with y > 0 given, implies the existence of a 
C E L(IRm) such that B =CA, II C 11 ~ y; if A is regular we can take C = BA- 1 and for singular 
A the inverse A- 1 can be replaced by the generalized inverse of A (see e.g. [1; eh. 8J). Since 

11 C* II = II C II for any C E L(IRm) one easily arrives at the following result. 

Lemma 3.1. Let y>O. We have llB*xll ~YllA*xll (for all xEIRm) iff B=AC for some 
CEL(IRm) with llCll ~Y-

Consider the following statements, with 8): } and €): 0, 

B =A(l + £ 1) for some E 1 E L(IRm) with II E1 II ~ €, (3.la) 

A=B(l+E2 ) for some E 2 E L(!Rm) with 11 £ 2 11 ~ e, (3.lb) 

and 

B= OA(I + F) for some F E L (IR m) with 11 F 11 ~ 1. (3.2) 
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Lemma 3.2. (3.la) implies (3.2) iff t: ~ 1/i 1( 8). 

Proof. Assuming(3.la) and E ~ lfi1( 0) we set F = e- 1[E1 + (1 - O)I], in which case B = OA(J + F) 
and 

llFlf ~8- 1 (E+ ll-O!):S;;0- 1(1/ii(O)+ 11-01)=1. 

To construct a counterexample in case E > o/1(0) we first consider the simple scalar (complex) 
example A =a, B = b with a, b EC. The condition in (3.la) corresponds to 

I b - a I :S;; t: I a I ( 3 .3) 

and (3.2) corresponds to 

I b - Oa I ~ o I a I· (3.4) 

By simple geometrical arguments it follows that for E > 1/;1 ( 0) there exist a, b E C satisfying (3.3) 
but violating (3.4). 

These considerations on C lead to a counterexample with A= A 1 and B = 8 1 E L(IR 2 ), 

A = ( Re a - Im a) B = ( Re b - Im b ) 
1 Ima Rea' 1 lmb Reb' 

and with ll · ll the Euclidean norm on IR 2 (and the corresponding spectral norm on L(IR 2 )). D 

Lemma 3.3. (3.la) and (3.lb) together imply (3.2) if! E ~ l/;2(0). 

Proof. Assume (3.la), (3.lb) and t :S;; i/i 2(0). To show that (3.2) holds it is, in view of Lem.ma 3.1, 
sufficient to consider the remaining case 1 < E2 ~ (20 - 1)/8. From Lemma 3.1 it follows that for 
any x E !Rm 

llB*xll 2 -2(A*x, B*x) + [JA*xll 2 ~E 2 11A*xll 2 , 

]\B*xll 2 -2(A*x, B*x) + l\A*xl\ 2 :S;;E 2 llB*xl\ 2 • 

Combining these inequalities we obtain 

<A* x. B * x > ~ ( 1 - iE 2 ) II B * x II 2 • 

From our assumption on t: it follows that 

llB*xll 2 ~20(A*x, B*x), 

and hence 

ll(B*-(JA*)xll ~OIJA*xll· 
Statement (3.2) now follows by again applying Lemma 3.1. 

Now assume t: > l/;2 ( 0) and t ~ 8 ~ 1. Then we obtain a (scalar real) counterexample by taking 
m = 1, A = -1, B = -1 - E. 

Finally assume t: > i/i 2(8) and 8>1. Let ~ E ((20 - 1)/8, 2) such that ~ < E2 , and take 
a, b EC such that b/a equals (1 - H) + iJ~(l - j~). Then I b - a I ~ t: I a I and I b- a I ~EI b I 
but I b - Oa I > 0Ia1. As in the proof of Lemma 3.2 such a, b EC lead to A2 , B2 E L(IR 2 ) such 
that for A = A2 , B = B2 the statements (3.la), (3.lb) hold whereas (3.2) is violated. D 
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We note that in the above counterexamples which prove the necessity of u;;, 1h( 8) we can 
choose the a, b EC such that Re a~ 0, Re b ~ 0. This leads to Ak, Bk E L(IR 2 ) satisfying 
µ[Ad~ 0, µ[Bk]~ 0 (fork= 1, 2). 

The following lemma is a slight generalization of results in [6] and [7; lemma 4.3]. 

Lemma 3.5. Assume 1- 'J\.f)A is regular for all A> 0. We have II I+ (l-A.OA)- 1A.B II ~ 1 (for all 
A.> 0) iff µ[B] ~ 0 and (3.2) holds. 

Proof. Let C == B - 8A. Then I+ (I - A.8A)- 1A.B =(I - A.OA)- 1(1 + A.C), and it follows that 
l\l+(I-A.OA)- 1 A.B\I ~l iff 

l\(/+A.C*)xll ~ ll(l-A.8A*)x\\ for all xEIRm. 

The latter inequality can be written as 

2A.(B*x, x) +A.211C*xl\ 2 ~A2110A*x!l 2 for all xE Rm. 

Clearly this holds for all A. > 0 iff 

(Bx, x) ~ 0 and II C * x II ~ II OA * x II for all x E Rm. 

Application of Lemma 3.1 completes the proof. D 

3.2. The proof of Theorem 2.1 

For u ED we define 

(1 ( u) = la 1 11 I + (I - h OJ ( u)) - l hf, ( u * + T ( u - u * ) ) II d T. 

Since for any un ED 

it follows by the mean-value theorem that 

!lu,,+i -u*ll ~a(u,,)llu,,-u*ll-

(3.5) 

(3.6) 

Application of the Lemmas 3.2, 3.3 and 3.5 with A= hJ(u,,) and B = hf'(u* + -r(u,, - u*)) 
shows the sufficiency of £ ~ 1h(fJ) for having II u,,+ 1 - u* II ~ II u,, - u* II in case (Ak) holds, 
k = 1, 2. The necessity will be proved by some counterexamples. 

A counterexample in case (A1) holds, £ > 1h(8) is given by h/(u) = A.A1, hf(u) = A.B1u (for 
u E IR 2 ) with A1, B1 as in the proof of Lemma 3.2, A.> 0 and II· II the Euclidean norm on R 2• 

With u* = 0, un E IR 2, we obtain 

\I u,,+ 1 - u* II= II( I+ (I - AllA1)- 1A.B1)( u,, - u*) II 

= IJ I+ {l-A.8A1)- 1 A.B11ill u,, - u* II> II Un - u* II 
provided A. > 0 is suitably chosen (see Lemma 3.5). 

Next we give a scalar (real) example for £ > 'l/; 2 (fJ), i ~ e ~ 1 in case (A 2 ) is valid. This 
counterexample is similar to one given by Sandberg and Shichman [6]. 
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Take, for convenience, h = 1, ()>I and u* = 0, u0 =1. Let T/ E (20-1, f) and f(u) = >-.g(u) 
{for u E rR) with A> 0 and g: R -+ R a continuously differentiable function such that 

g ( O) = 0, g' ( u ) E [ - 1 - t: , - 1 ] for all u E R , 

g ( u) = - u + ri for u < - I, g ( u) = - u - 11 for u ~ 1. 

Such an f meets the conditions imposed in (A 2 ). Further we have 

u1 = (1 + A.o) -l (1 + >-. ( e - 1 - '11)) 

and thus I U1 - u* I tends to o- 1(TJ + 1- 0) > 1 =I Uo - u* I for A-+ 00. 

Finally we assume f > i,/i 2 ( 0), 0 > 1. For this we construct a complex, scalar counterexample, 
which can, as before, be converted to a real one by identifying C with ~ 2 in the usual way. 
Suppose (20- 1)/0 < ~ < min{2, f 2 } and let a, b EC be such that Re a< 0, Re b < 0 and 
b/ a= (1 - i~) + iJH1 - ~~) (as in the proof of Lemma 3.3). Then I b - a I < f I a I, I b - a I < 
t:lbl but lb-Oal >Olal, and thus for A.>0 suitably chosen 11+(l-A.Oa)- 1A.bl>1 (see 
Lemma 3.5). We put a= A.a and f3 = A.b. 

Let D be the unit disk in C, h = 1, u* = 0, and define 

J(u) = cf>(O)(a - /3) +au+ <P(u)(/3- a), 

""( ) _ 2k (I I )l+l/k 
'!' U - - -- 1 - "JU 

k+l 
for u EC, where k E 1\1 is to be specified later. Then f(O) = 0 and 

f'(u) =a+ <P(u)(P- a), cp(u) = 0: - !u)11k. 

The image of D under rp tends to the interval (0, 1) on the real axis if k-+ oo. By using this 
property it can be shown that, fork sufficiently large, the conditions on fin (A 2 ) are satisfied. 
Moreover, since /'(l) =a and /(1) tends to f3 fork~ oo, 

11 + (1 - Of' (1))- 1/(1) I > 1 
provided k is sufficiently large. It follows that, for such k and u0 close to 1, 

I U1 - u * I > I Uo - u * 1-

3.3. The proof of Theorem 2.2 

First we show that under the assumptions of Theorem 2.2 the function a, defined by (3.5), 
satisfies a( u) < 1 (for all u ED). Examination of the proof of Lemma 3.5 shows that for 
A, BE L(!Rm) satisfying (3.2) and µ.[B] < 0 we have 

111 +(I- MJA)- 1A.B II < 1 for all ;\ > 0 

provided we assume in addition either 

µ[BJ < 0 
or 

A is regular and B = OA(I + F), II F II < 1. 

Further it is easily seen, by regarding the proofs of Lemma 3.2 and Lemma 3.3, that if A is 
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regular and we have (3.la) with t: < lh(fJ) or (3.la), (3.lb) with t: < 1[;2 (9) then there is an 
FE L(!Rm) such that B = 9A(I + F), \IF II < 1. By setting A= hl(u), B = hj'(u* + T(u- u*)) 
it follows that the assumptions of Theorem 2.2 imply a(u) < 1 on D. 

The function a is continuous on D. Therefore we obtain for arbitrary u0 ED 

II u,, - u* II~ soil Uo - u* II 
with s0 = max{ o(u): u ED, ll u - u* II ~ II u0 - u* II} < 1. From this it is clear that u* is the 
unique zero off in D and that the un converge to u* for n-+ oo. 
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