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CHAPTER 1

Introduction

1.1. General introduction

Tools to approximately predict the behaviour of a fluid in various situations,
is of great interest to many technical disciplines. For example there is an
interest from petro-chemical industry for the prediction of the recovery and
for transport systems of oil and gas; in geophysical science for the prediction
of the flow of water and pollutants in seas and rivers and for making weather-
forecasts; in glass processing industry, for the prediction of the flow of liquid
glass; in aerospace industry, for the prediction of loads on the structure of an
airplane and the dynamic behaviour of an airplane under various conditions.
Often, numerical predictions or simulations are used in an iterative process
such as the design of a technical device or system. The number of iteration
cycles in a design process is usually large. Hence, efficient computational tools
are of major importance to these design processes.

In each of the disciplines mentioned above, a model of reality is considered
that puts emphasis on the physical phenomena important to that discipline
or to a particular problem under consideration. In this thesis we consider the
Euler equations of fluid dynamics, for a perfect gas. Our main interest is the
numerical approximation of solutions of the steady, two-dimensional Euler
equations, by a solution-adaptive method, which uses local grid refinement
(enrichment) and a multigrid method to solve the system of discrete equations.
The Euler equations model the flow of a compressible, inviscid fluid, without
taking into account the conduction of heat. Aerospace aerodynamics is an
area of application interested in a physical model that neglects viscosity and
heat conduction effects in the flow of a perfect gas. For an object moving
through a gas, viscosity and heat conduction tend to play an important role
only in the close vicinity of that object. Hence, in the ‘outer’ region (away
from the object), a realistic description can often be made with the Euler
equations. For an important part of the duration of a flight, an airplane is
in a so-called quasi-steady situation, where the flight conditions change very
slowly. Furthermore, air can be considered as an ideal gas with constant
specific heats over a very wide range of conditions. These considerations
motivate the study of the steady Euler equations. We restrict ourselves to
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steady flows in two space dimensions.

1.2. The Euler equations of fluid dynamics

1.2.1. Euler equations. The Euler equations may be derived from the
Boltzmann equation. The Boltzmann equation describes the probability den-
sity of a system of N gas particles, having position z € R? and velocity v € R?,
at time ¢, [22]. In the limit as N — oo, the gas behaves like a fluid. The Euler
equations are valid for this limit situation (continuum hypothesis). Writing
the solution of the Boltzmann equation in a formal power series of the mean
free path € « N ™! and applying his theory of integral equations, Hilbert found
that for the solvability of the equation for the lowest-order term (i.e. existence
of the solution of the equation for the lowest-order term of this expansion), a
set of nonlinear conservation equations must be satisfied [11]. These equations
are known as the Euler equations. Similarly, the Navier-Stokes equations are
obtained, if the solution of the Boltzmann equation is written as the so-called
Chapman-Enskog expansion [4]. This expansion adds higher-order correction
terms to the Hilbert expansion. The compressible Euler equations can also
be derived from the compressible Navier-Stokes equations, by assuming an
inviscid and non-heat conducting fluid.

1.2.2. Conservation laws. Usually the Euler (and Navier-Stokes) equa-
tions are derived from the continuum hypothesis, Newton’s second law of
motion and the first law of thermodynamics. These principles can be consid-
ered as physical laws that describe the conservation of mass, momentum and
energy for an arbitrary domain, contained in the domain of definition of the
problem.

A conservation law states that the rate of change (in time) of the amount
of a substance contained in a domain Q* C Q is equal to the sum of the
flux of that substance across the boundary 8Q* of Q*, and the amount of
substance per unit volume produced per unit time in Q*. For the density of
the substance (i.e., substance per unit volume), denoted by ¢, a flux f(g) and
source s per unit volume, a conservation law is given by

d

— g(z)dQ) = — f(g)nds +/ s(z)dQd.

dt Jo- aQ- "

Here, n denotes the outward unit normal at 9Q* and = and t denote space
and time coordinates respectively. In this thesis we are concerned with steady
(i.e. vanishing dq/dt) conservation laws in two space dimensions, with fluxes

f(q) and g(g). These conservation laws can be written as

(1.2.1) ?{ fng +gnyds = / sd), VQ*CQ,
N~ Q-

and Q C R?. Here, the unit normal is n = (n,,n,)? with n, and n, com-
ponents in the direction of the z and y axis respectively. The fluxes f and
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g are d-dimensional vector functions. The components of fn, and gn, form
the flux in the direction of the normal n.

Usually, conservation laws are given in differential form. This gives

0 0
(1.22) 019) | 99@) _ 4, Vimy)en.
Oz Ay

1.2.3. The steady Euler equations. The steady Euler equations de-
fined in an open domain 2 C R%, can be written in differential form as given
by (1.2.2), with g, f and g defined by

p qu pU
_|u | put+p . puv

(123) g = v ) f(q) - puv ) g(q) - p’U2 +p
p puH pvH

For the Euler equations the source term is s = 0. These equations denote
respectively the conservation of mass, of momentum in the direction of the z
and y axis respectively, and of energy. Here, p denotes the density of the gas,
u and v are the velocity in the direction of the z and y axis respectively, p the
pressure and H = E+p/p the specific total enthalpy, with E = e +15(u? +v?)
the specific total internal energy and e the specific internal energy. For a
perfect gas the internal energy is given by
(1.2.4) P
y—1p

where 7 is the constant ratio of specific heats, v = ¢,/c,, at constant pressure
and volume respectively.

For a set of conservation laws such as the Euler equations, we can often
write

(1.2.5) fla)nz +g(q)ny = T71 f(Tq),

where T' is a rotation matrix. Equation (1.2.5) signifies the rotational invari-
ance of the conservation laws. However, often we will not use this notation,
since many of our results are applicable to a wider range of problems than
those which have the rotational invariance property. Usually we write for the
flux in the direction of some unit vector n

f(@ne + g(g)ny = (g, n).
1.3. The numerical tools

In order to provide an efficient numerical tool for the computation of Euler
flows, in this thesis an adaptive technique is studied. The adaptation lies in
the construction of a solution-dependent, locally refined grid. For a numerical
method, this is by no means the only possible way to adapt a technique
to the evolving solution. Without being exhaustive, we consider a number
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discretisation
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FIGURE 1.3.1. Classification of adaptive techniques in nu-
merical mathematics.

adaptation techniques and we place the adaptive, local grid refinement method
considered in the present thesis, in a wider perspective.

The system of equations obtained by discretisation of the continuous prob-
lem, is solved by a multigrid technique. Some considerations concerning multi-
grid and local grid refinement are presented in this section.

1.3.1. Classification of adaptive numerical techniques. If we study
the literature on adaptive techniques in numerical mathematics, a classifica-
tion as shown in Fig. 1.3.1 can be made. This classification is not complete,
but it may place the solution-adaptive, local grid refinement method consid-
ered in this thesis, in a proper perspective. Each element of a subdivision in
Fig. 1.3.1 may be further subdivided in order to distinguish between differ-
ent methods. We only consider the subdivision which leads to the method
considered in the present thesis. Note that the subdivisions made in this clas-
sification, are not mutually exclusive; a combination of techniques is often
possible. Further, we are aware that we present only one of several possible
classifications.

Adaptation in numerical computations may involve both the discretisation
and the process of solving the system of discrete equations. Adaptation of
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the solution process is very common and is used almost everywhere. For
example one can think of methods which control local CFL number in time
stepping schemes, or, in multigrid context, the adaptation of smoothing and
multigrid cycling to the local convergence rate. Also the choice of a stopping
criterion in an iterative process embedded in yet another iterative process,
may be regarded as adaptation of the solution process, since it may control
the number of iterations performed.

Adaptation of the discretisation has been extensively considered, e.g. in [5],
and [18] gives a review of application of these techniques. In local adaptation
of the discretisation, two basic and distinctly different techniques exist. First,
there are discretisations which (locally) use higher order accurate approxima-
tions of the continuous equations. Methods based on this technique are said
to use the p-version of adaptation. Second, there are discretisations which use
(local) refinement of the grid. The common idea behind the two adaptation
techniques is controlling the error of the discretisation through the reduction
or possibly equidistribution of the local discretisation error.

The use of grid adaptation techniques may be further subdivided into meth-
ods which obtain refinement of the grid by moving grid points across the
domain of definition, and methods which add points to the grid: grid enrich-
ment. Moving-grid techniques usually keep the number of unknowns constant
when adapting, but possibly with a high penalty on grid skewness. Meth-
ods using this technique are often called r-version methods. Grid enrichment
techniques ar often referred to as applications of the h-version of refinement.
Methods which use a combinations of these techniques exist: the so-called
h-p-version and h-r-version (cf. [5]). The adaptation of the solution process
may be combined with any of the h, p, h-p or h-r-version.

Local grid refinements by enrichment may be constructed in a nested or
non-nested fashion. In non-multigrid context, non-nested refinement amounts
to a reshifting of grid points after refinements have been introduced (h-r-
version), or to the use of non-aligned, partially overlapping grids. Non-aligned
grids complicate the discretisation of the equations drastically. Nevertheless,
in multigrid context, a sequence of locally non-nested grids is considered by
some authors (cf. [15]). These non-nested grids make grid transfers quite
complicated .

Nested local grid refinement can extend over the domain or refinements
can be clustered. This is done in such a way that locally refined subdomains
satisfy a-priori posed requirements, such as e.g., a rectangular shape of a
subdomain.

Finally, enrichment may be obtained by subdivision of a grid-cell in a full
set of fine-grid cells, (i.e., subdivision in more coordinate directions) or by sub-
division only in one prevailing direction. The latter is called semi-refinement.

In this thesis we consider a local grid enrichment method, which uses a
sequence of locally nested grids consisting of non-clustered collections of cells
in a generally irregularly shaped subdomain. Refinements are obtained by full
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refinement of grid cells (refinement in two directions).

1.3.2. Local refinement and multigrid. The refinement procedure con-
sidered in this thesis results in a composite grid with locally refined regions.
Adaptive, local grid refinement is combined with a multigrid solution tech-
nique. Examples of these approaches have been given through MLAT 3],
PLTMG [2] and FAC [16], for vertex-centered discretisations of (mainly) ellip-
tic problems. A theoretical justification for using multigrid on locally refined
grids is given in [23]. There, a local grid refinement technique for elliptic prob-
lems in a finite element setting and with application of multigrid, is shown to
be of optimal complexity. This is also found for the finite difference discreti-
sation of a model problem and experimentally verified in [1].

The grid is formed by a regular partition of the computational domain into
quadrilateral cells. These cells are refined by subdividing each cell into a set
of 2 x 2 smaller cells, which form the grid on the next finer level. Generation
of such local refinements results in a locally nested sequence of grids, in which
the finer grids possibly cover only subdomains of the domain covered by the
coarser grids.

On this sequence of grids, the conservation laws are discretised by an up-
wind finite volume method. The set of equations which result from the first-
order accurate discretisation, is solved by nonlinear multigrid iteration. The
equations from the second-order accurate discretisation are solved by defect
correction, where the first-order discretisation is used as the less accurate op-
erator and the multigrid method is employed to invert this operator. A com-
putation is started on some basic grid. After a number of nonlinear multigrid
iterations (FAS-cycles) a new level of refinements is generated. The initial
approximation in all newly generated cells is found by interpolation from the
next coarser grid. Then again the multigrid iteration is started with the new
refinements as the top level. After one or more cycles, again new cells may
be generated, both on the already existing levels and on an even finer level.
Cells that have no refinements and have become superfluous with respect to
the refinement criteria, may be discarded. These steps may be repeated un-
til a satisfactory solution has been obtained. The basic principle of such an
adaptive technique was already described in [7].

Local refinements are introduced in the grid, mainly for two reasons. First,
the grid may be refined to provide the required level of resolution. Second,
local refinements may be introduced to obtain a certain level of accuracy of the
system of discrete equations. The resolution requirement of the grid is directly
dictated by gradients of the true solution. Hence, gradients or undivided
differences of computed solution components may serve as refinement criteria.
The accuracy of the numerical approximation is controlled by the error in each
discrete equation (i.e., the local discretisation error). In general, the influence
of the local discretisation error on the accuracy of the solution (or the global
discretisation error) is not simple, and unknown. However, usually when the
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local discretisation error vanishes, then so does the error in the solution.

The multigrid and defect correction algorithms used in this thesis, are a
extension of the work of Hemker and Spekreijse [9], [10], Hemker [8], Spekreijse
[19], [20], [21], Koren and Spekreijse [14] and Koren [12], [13]. The main
difference between the work mentioned above and the present extension is
concerned with the discrete equations obtained from the discretisation in the
neighbourhood of the coarse and fine grid interfaces. Another difference is
that now a coarse-grid solution has an influence on the solution on the final,
locally refined grid (i.e., composite grid), whereas in the non-adaptive case a
coarse grid is only used to accelerate convergence. In the present method, the
coarse grid ‘holds’ a part of the solution. This aspect is also reflected in the
right-hand side of the equations defined for the grid on some level. For the
non-refined cells the discrete equations have a right-hand side which is the
source term of the problem. For the refined cells, the right-hand sides of the
discrete equations approximate the local discretisation error.

1.4. Outline of the thesis

Chapter 2 of this thesis introduces the geometric structure, and the dis-
cretisation of conservation laws, with in mind the steady Euler equations. The
geometric structure enables the definition of a system of discrete equations,
which approximates the continuous problem. In this chapter the local discreti-
sation error is studied and requirements are given which should be satisfied by
the discretisation, to obtain a consistent discretisation in a specific sense, of
first or second order. Emphasis is on the discretisation in the neighbourhood
of interfaces between a coarse and a fine grid.

Chapter 3 presents results of numerical studies, obtained with the adaptive
multigrid method described in Chap. 2. The problems have been selected to
present accuracy, efficiency and flexibility of the method (i.e., its ability to be
effectively used in non-standard situations).

Chapter 4 is concerned with the a-posteriori estimation of the local dis-
cretisation error, in order to use it in a local grid refinement criterion. For
a one-dimensional model problem, the local and global discretisation errors
are studied. Next, a method is introduced and studied which enables the
a-posteriori estimation of the local discretisation error. Finally, this method
is extended to the two-dimensional situation and used in a criterion for the
introducton of local grid refinements, for an actual nonlinear model problem.
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CHAPTER 2

Discretisation of a system of conservation
laws on a locally refined grid

2.1. Introduction

In this chapter we introduce a discretisation of a system of steady conser-
vation laws, in two space dimensions, using a locally refined partitioning of
the domain of definition, and we study discretisation errors.

We consider a system of d conservation laws, defined on an open domain

QCR? and withg: 2 - R% s: Q> RY, f,g: R - RY given by

0f(q(z,y)) " Og(q(z,y))

(2.1.1a) o oy

=s(z,y), (z,9) € Q.

Boundary conditions of the problem are given by
(2.1.1b) B(q(z,y),z,y) =0, (z,y) € 9.

Here, 992 C Q denotes the boundary of the domain €.

For the discretisation we introduce a partitioning of the domain €. The
partitioning forms, possibly after a smooth coordinate transformation, a set
of regular quadrilaterals, called the grid. In transformed coordinates, the lo-
cally refined grid is composed of a sequence of locally nested grids, where
each grid is a regular partitioning of a subdomain of the domain of defini-
tion. In non-transformed coordinates, the union of all quadrilaterals forms an
approximation of the domain of definition.

Each quadrilateral of the grid is used as a control volume on which the
system of conservation laws integrated over the control volume, is approx-
imately satisfied. This leads to a discretisation of a weak formulation of
problem (2.1.1).

The error in the approximation of the weak formulation consists of con-
tributions from the various steps in the discretisation. The first step in the
discretisation is the approximation of the domain by the partitioning. This has
consequences for the accuracy of the discrete equations defined for quadrilater-
als along the boundary of the domain and for the ‘coarse-grid’ approximation.
The approximation of the weak formulation for each quadrilateral involves the

9
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approximation of the mean flux per unit time and ‘area’ across each side of
each quadrilateral. The next step is the approximation of the mean flux across
the sides of the quadrilaterals by the flux at the mean state across each side.
Finally the mean state itself is approximated from the discrete data (i.e., the
available numerical solution, a cell-wise constant function). With this approx-
imated mean state the flux is evaluated. This is done in an upwind fashion,
where each flux depends in an upwind biased sense on the discrete data.

The numerical solution itself approximates the mean of the exact solution
of (2.1.1) on each quadrilateral. Hence, each quadrilateral is associated with
an approximation of the mean value on the quadrilateral of the solution of
the continuous problem. This is the so-called cell-centered approach.

In this chapter, after formally introducing the geometric structure and no-
tations, we discuss the discretisation and we study the various contributions
to the local discretisation error. Emphasis is put on the discretisation involv-
ing the interfaces between a coarse part of the partitioning and fine part. Our
analysis leads to a small set of requirements, to be satisfied in order to attain
a discretisation which is first-order or second-order accurate (in a sense that
will be specified) with respect to the mesh size of the partitioning. Numerical
results of two test problems illustrate the discrete convergence of the proposed
discretisation.

2.2. The geometric structure

2.2.1. Relations in the structure. We consider a system of conser-
vation laws, defined on a bounded, open domain Q C R, with boundary
conditions on 92 C Q, the boundary of Q, where Q denotes the closure of
Q). We assume that a rectangular domain 2 C R? exists and a sufficiently

smooth surjective mapping M : 0} = Q, which is also injective in the interior

Q. The mapping is a transformation of the Cartesian coordinates in ﬁ, the
computational space, into Cartesian coordinates in 2, the physical space.

The system of conservation laws is discretised by a finite volume method.
For this purpose, a regular rectangular partitioning of € is introduced, con-
sisting of disjoint rectangles. This set of rectangles also defines a partitioning
of Q, through the mapping M. A rectangle in the computational space 2, as
well as its image in (2, is called a cell. The partitioning is called the grid. A
grid is a collection of cells in the computational or the physical space.

We consider grids on different levels of refinement. A level of refinement [,
with [ € Z, is a regular partitioning, denoted by !, of a subdomain of €2, and
a surjective mapping M' : Q- ﬁ’, injective in the interior Q. We use the
notation

Ql = M(QY).

where Ml(ﬁ*) denotes the image of Q* under the mapping M'. For the image
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Q! of Q under M!, and the hull © of all images of Q under the sequence of
mappings {Ml}lez’ we use the notations

(2.2.1) Q' = MY(Q),

(2.2.2) a=Ja.
l

A mapping M' is associated with level of refinement  and is an approximation
of M. Generally we take M" such that it maps a cell vertex from the parti-
tioning Q! to the same point in R? as the original mapping M does. Then in
the sequence of mappings {M'};cz, M! approaches M as | — oo. Depending
on M!, the grid Q! approximates M(ﬁl) Hence, if Q= §~2, then ' is an
approximation of .

Since the partitioning of 0 on a level [ is regular quadrilateral, a cell on
level I can be denoted by Qﬁ] C Q. The set I of indices is defined as

= {(i,j,l) FAE N ﬁ} .
The grid on level [ is
o' ={0l. |G el}.

Each cell on Q! has either none or only one neighbouring cell at each side,

residing on the same level. A cell Qﬁyj is the northern neighbour of Qi,j—l and
the eastern neighbour of Qﬁ—l.p provided (4,5 — 1,1), (s — 1,4,1) € I.
The boundary Bﬂﬁ’j C 5{; consists of the four cell faces of the cell, iden-

tified through their relative locations by Bﬂlﬂ-'k, k € D, and

(2

o0t ;= | 09!,
keD

where D = {N, E, S, W} is the set of wind directions. We also have

8Qé,j,E :aﬂiﬁ—l.]‘.Wa V(Z,j,l),(l—’rl,],l) € I:
8Qi,j,N = aQé,j+1,Sa V(l,], l)x (7')] + 1s l) el

Refinements of a cell Qij are the cells obtained by subdivision of the cor-

responding cell ﬁﬁ] in the computational domain into 2 x 2 smaller cells of
equal size. By applying the mapping M'*! to these refinements in the com-
putational domain, we construct the refinements in the partitioning of the
physical domain. Except for cells on the coarsest grid, each cell is one of the
four descendants of a cell on the coarser grid. The coarse-grid cells on ! and
the fine-grid cells on Q'*! are coexistent (i.e., when being refined, giving cells
on Q'*1 a coarse-grid cell remains part of Q!). A cell on the coarser grids is
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called parent and its descendants are called its kids. In this way all cells in
the geometric structure belong to a quad-tree structure.

Without loss of generality we take for the coarsest level [ = 0, and for
finer levels [ > 0. For the smallest integer coordinates on the coarsest grid,
00, without loss of generality we take : = 0 and j = 0. The integer coordi-
nates of a cell on Q! are such that the kids of Qij are denoted by Ql;{éj,

Qéﬁlﬂj’ Qé’f_lzjﬂ and le2¢1,21‘+1' A cell vertex in the physical domain is
Pil’j = M'(¢ 775,]')» where, without loss of generality, ﬁil’j = (55,]-,17%7]-) =

VR
(271,2715). In this way, implicitly we defined P} ., (i,7,1) € I, as the south-

(A
west vertex of cell (! it

! 1 1
Py =00 ;5N ;w.

2

Functions, function spaces and subdomains defined for the computational
domain are identified by a tilde on the same symbol used for the physical
domain.

2.2.2. The sequence of grids. The geometric structure described so far,
is used for multigrid computations on a locally refined grid. The grid Q' on
some basic level I, > 0 covers M (Q). The grids Q!, | > [;, are adaptively
constructed during the computation, when it is decided that cells should be
refined or refinements should be deleted, depending on the computed solution.
At some stage in the computation, a sequence of grids {Q2'};—o.... 1 has been
generated, where L is the highest level present. Thus, the cells on grid Qf,
l > I, typically do not cover all of the domain Q. Therefore, the grid ! =
sz U QL consists of a part Qi, of which the cells have been refined (for which
kids exist on level [ + 1) and a part Q!, with cells that have not been refined
(without kids). Obviously we have

Qn.=0, vie{o,...,L},
QL=0, Ve{,... -1},
Qf =0.

The set of all non-refined cells is called the composite grid €., defined by

L
Q= | oL

=l

Further, we define sets of indices associated with the different grids and
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parts of grids by

{(i,7) € 2*| (5,5,1) € I},
{G,y)er|ai;cal},
{G,J )ell(u)el}
{G
{@

i,7) € I'| QL ; c Ok},
i,5,0) € I'|(i,5) € I}}.

For practical purposes we introduce K : Z2? — (Z?)*, defined by

It
Iy
Iy

(2.2.3) K(1,7) = {(21,25), (2t + 1,25),(2¢,25 + 1), (20 + 1,25 + 1)}
The boundary 99 on level [ is defined by

90" = boundary of U QTM
(3,5)€l!

The part of this boundary coinciding with the boundary of the physical do-
main of definition, is denoted by Q' and defined through

a0y = MY (69 N 6%).

Following [1] and [16], the part of the boundary of the subdomain !, which
does not coincide with 90, is called a green boundary denoted by 8(2;, and
defined as

o0, = 00"\ a0

Cells on Q' that border a green boundary are called green cells. 5
A grid is called uniform if, in the computational domain, it covers all of
and if it is not refined anywhere; it is called locally uniform with respect to a
discrete operator in a cell, if no green boundary is involved in the definition
of the operator for that cell. Otherwise the grid is called locally non-uniform
in that cell, for that discrete operator. A cell is not necessarily a green cell,
if a grid is locally non-uniform for the discretisation, in that cell. A grid that
contains locally non-uniform cells, is called a locally refined grid. A composite
grid that consists of cells from more than one level, is a locally refined grid.

2.3. Finite volume discretisation on a locally refined grid

2.3.1. The grid. The grid Q' on level [ consists of cells Qij, (1,7) € I'.
A cell Ql - in the physical domain is the result of M’(Ql -). The mapping M!
is an appr0x1matlon of M. We assume that M' is a continuous mapping, and
piecewise affine on each cell face BQ . Then the grid Q! in the physical
space is a collection of disjoint quadnlaterals. In that situation, M' can
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FIGURE 2.3.1. Example of discretisation of a domain on
different levels of refinement.

be represented as a vector of two continuous functions, which are piecewise
bilinear in each Qi‘j. Furthermore we assume

(2.3.1) (PL)T = MY(PY) = M(PL)),

i.e., M! is exact in the vertices Pl.. An example of this discretisation of a

155"
domain is shown in Fig. 2.3.1. Here, a set of 2x 2 cells in '+! C Q is mapped
to its image in Q by applying M. This gives the general result as shown in the
top figure of Fig. 2.3.1. The coarse-grid cell of ! results in the quadrilateral
in Q!, when subjected to the mapping M', as shown in the middle figure.
Finally, M'*! applied to the set of 2 x 2 cells gives the set of quadrilaterals
shown in the bottom figure. Notice that in general M'(Q*) # M*1(Q*),
[ < oo.

The boundary 8Q§’j consists of the four faces aﬂf:,j_k, k=NESW. A

cell face 892]-7,6 has a length denoted by sé’jhk. The area of a cell Qé.j is
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denoted by Aﬁ’j.

2.3.2. Grid functions. Here we introduce function spaces for the various
grids. If a function u : Q' — R? is defined then also a function ¥ : Q' — R? is
defined through

u(€,n) = u(z'(€,n), ¥ (€, m)),

where z! and y' are given by

2'(&m)\ _
(2.3.2) <y’(£,n)> = M'(€,n).

The set X, C R? is a d-dimensional vector space of intrinsic quantities. The
function value of ¢(z’,y'), e.g., an (approximate) solution of the conservation
law and appropriate boundary conditions (2.1.1), at some point (z',y') € ,
is called the state at (z',y’). The state g(z',y’) denotes an intrinsic physi-
cal quantity. We define the function space X(2*) of such intrinsic-quantity

functions defined on Q* C Q by
X)) ={q: 9" = X, | Q* c Q).

To each component of ¢(z,y), a physical meaning can be assigned. From a
physical point of view it is often clear that g(z,y) can only take values from
a restricted set of X,. This is called the set of admissible states, and denoted
by X, C X,. We introduce the function space X(Q*), defined by

X(Q) ={qe X() | (' ¥') € Xo, V(a',y) €Q"}.
It is clear that solutions of (2.1.1) are sought in X (). We also introduce a
d-dimensional vector space of extrinsic quantities, denoted by Y, C R%, and a
corresponding function space

Y(Q)={r: Q" >Y,|Q cQ}

As opposed to an intrinsic quantity, an extrinsic quantity is a physical quantity
that depends on the amount of matter considered. For example, density is
an intrinsic quantity and mass an extrinsic quantity. Extrinsic and intrinsic
quantities are related through the volume occupied by the matter considered.
A function ¢ € X () is related to a function r € Y(Q*) through the integral

over w C Q*
r(w):/qdﬂ.

For discretisation purposes we distinguish subspaces for a level [, given by

)_(I(Q*) ={q € X(2*) | q is constant in each Qi] nQ*, (i,5) € I'},
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and
X(Q) = {g e X (@) | q(a',¥) € Xa, V(' y) €2},
Similarly, we introduce
YI(Q*) = {r € Y(Q") | r is constant in each Q ;N Q*, (i,5) € I'}

Notice that we have the nested sequence

X' c X" ) c X,

if Q* c Q1 N QL A similar nested sequence exists for Y, 71, l=0,...,L.

A function in Yl or 71 is identified by the superscript [. For example, a
solution of the set of discrete equations on a level [ is a piecewise constant
function ¢! € X!(Q*). Furthermore, the value of ¢! in a cell Qé,]- is denoted
by qll-,j, hence

¢;=4d.y), («.y)e,;na".

The function value qf,j is called the state in cell Qﬁ!j.

Finally, we introduce the spaces of functions that are piecewise constant
on the composite grid, which we denote by X .(Q*), X.(2*) and Y .(Q*) re-
spectively. E.g., X .(Q*) is defined as

X (%) ={q € X(Q*) | q is constant in each Qf] na, (4,5,1) € 1.},

and similar definitions for the other spaces X. ancL?c. A function from
X .(92*) is identified by the subscript ¢, and for g. € X.(2*) we have

e.(z',y)=dl;, (@, ¥)eq;n*, ()€l

2.3.3. Restrictions. In order to define the relations between the different
function spaces, it is appropriate to define a number of restrictions. The first
three relate intrinsic vector functions and are identified by an overbar on the

operator. The first is a projection and denoted by R . X(Q*) — YI(QI), for
any Q* O O, and given by the integral mean

= 1
(2.3.3) (Bu}t, = ZT/ wdg.

i.j

A projection closely related to (2.3.3) is R X(Q*) — Yl(ﬂﬂf), which

restricts (2.3.3) to the refined part Qlf of the grid:

(2.3.4) (B = (Bludly, V(6,50 € I,

2,79
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Next, we define the restriction }—Zﬁﬂ X)) — Yl(ﬂlf), giving a cell-wise
constant function, which in each Qﬁqj C Qi, delivers the integral mean of the
operand over its kids. Let the collection of kids of Qij be

I I+1
Ei,j - U Qm )
meK(i,j)

T -l .
then the restriction R, ; is defined by

_ g Jor udQ
(235) {RH_lu}i’j = W
1,7
Note that FUH = R;_H, if the grid is obtained by a piecewise bilinear map-

ping M! and M+ = M,
Another set of three restrictions (denoted without the overbar) gives the

relations between the extrinsic vector functions. The first restriction is the

projection R': Y/(Q') — ?l(ﬂl), defined by

{er}i,j = / rd.
Q

r
The second restriction is the projection RY*1:Y(Q!) — ?I(Qlf), defined by

{Rl’l+lr}§,j = {RIT}I V(’L,], l) € ‘[]lc

4,30

Finally we define a restriction R}, , : Y(Q'*!) — YI(Q’), which is related

to TZ;_H in (2.3.5) through the operators A' : X () — Y(!) and A+ ;
Y(Qi,) - ?(Q;) These are defined as

Alu(z',y') = Aﬁyju(m',y’), v(z',y') € Q!

2,07

and
AI’H—IU(:E/’ y’) B Alu(l‘,) yl)a V((E’, yl) € Qi,] and (i)jv l) € If

With these definitions, we define the last restriction by

(2.3.6) Rl = AVHIR (AHYHL
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Summary of notations. In this section we formally introduced a number of
spaces of d-dimensional vector functions and appropriate relations between
them. Function spaces of intrinsic quantities, such as the (numerical) solution
of the problem, are denoted by X, X! or X,, for general functions, piecewise
constant functions on level of refinement [ or the composite grid respectively.
The functions in these spaces can only take admissible values. With bars, X,
X' and X ., we denote the spaces of functions which can take any value from
R?. The spaces Y, Y' and Y . are similar spaces for extrinsic quantities. Each
of these is related to the space of intrinsic quantities with the same sub or

superscripts through scaling with appropriate volume (area).

: T e S | ! .
We introduced the restrictions R, R and R, which relate the func-

tion spaces of intrinsic quantities. The restrictions denoted without bars, R,
RWH1 and Rfﬂ relate the function spaces of extrinsic quantities. The opera-
tors denoted with bars deliver mean values of their operands. The operators
denoted without bars deliver integrated values.

2.3.4. The system of discrete equations. In this section we describe
the system of algebraic equations obtained by the discretisation. We distin-
guish between equations obtained for cells on the composite grid and equations
obtained for refined cells.

FEquations for a cell on a composite grid. A discretisation of the set of conser-
vation laws (2.1.1a) on a composite grid is obtained by considering the weak
formulation of the problem:

Find g € X (), which satisfies the boundary conditions and such that for all
QrcQ

(2.3.7) / 8f(qa(i’y)) + ag(q(;z’y)) dQ:/_ 5 dS2.

We assume that ¢ and s are defined on Q. In case \ Q # 0, we assume

that ¢ and s, defined on 2, are extended to Qina sufficiently regular way.
Then (2.3.7) is approximated by

(238) 17\7((]) =T,

where N : X(ﬁ) — ?(Q) and r € 7(@) are given by

(2.3.9a) N(q) = /Q af;iq) - ég(;) d} = - f(@)ne + g(g)ny ds,
(2.3.9b) r:/ s dQ
-

for all * ¢ Q. In (2.3.9a) n, and n, are the components of the outward
unit normal n on the boundary d9Q*, in z and y direction respectively. For
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Qé,]‘ C Q) we define R'N : X(ﬁ) — 71<Ql) b
l
LB, = }{ml f(@)nz + g(q)ny ds.

The discretisation of the equations is obtained by requiring an approxima-
tion of (2.3.8) to hold for each cell on the composite grid. We first assume that
for the discretisation the source term s is exactly integrated. In our notations
this implies

(2.3.10) r! = Rls.
The mean value of the flux across the kth cell face Bﬂé‘j’k - GQL]' of cell Qﬁj
is

il.j,k(q) e 7‘1‘“‘ / f(@)ne + g(g)ny ds.
aql

Sij.k fk

Hence, a solution of (2.3.8) exactly satisfies
(2.311)  {R'N(@},. =D fliw@st =7, Y6350 €l
keD

The equations (2.3.11) are approximated by approximating the mean fluxes
fl k across each cell face ont . .k by a numerical flux, denoted by Fl] ¢ This
numerlcal flux in general depends on the functions ¢™, m = [, .. l On a
level I the equations read for all (3, j) € I

(2.3.12) Z Fil,j‘k(ql;' ql_l, e aqlb)sé,j.k = Tﬁ.ja

keD

or in operator form
Nl(ql; ql_l’ yee )qlb) = rl,
where N': X{(Q}) — YI(Q') is defined by

lr 1
(Vg™ )l = ) Falalsd ™l d)st

keD

Here, ¢!=1,... g% act as parameters to N!. These formulae define our dis-

cretisation on level [.
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The numerical flur function. The numerical flux Fil’j’k depends on the se-
quence {¢™}u=1,.... ;- In this thesis we assume that the numerical flux can be
written as

Fil,j,k(ql; ‘11—1’ e :ql") = F((qL)é,j,ka (qR)é,j,k’né,j,k)'

l

The arguments (qL)i’j‘,C and (qR)ﬁ’Lk denote estimates of the mean of ¢ along

6Q§’j,k, dependent on {q"}m=i,.... .1, with a bias to the left and right side of
Bﬂﬁqj,k, respectively. The entry nﬁ’j‘k € E denotes the unit normal on aﬂﬁ‘jyk,

pointing outward from Qi,j, where E C R? is the unit circle in R?. The
function F : X, x X, x E — R?, given by F(q%,q®, n), is an approximation
of the flux f(q)n, + g(q)ny, with qF and ¢% in the neighbourhood of g.

There are various ways to define the states ¢* and ¢® and the numerical
flux F. In fact, the choice of F and the states ¢* and ¢f determine the
discretisation method and its accuracy. The left and right states are usually
obtained by piecewise polynomial reconstruction, using discrete data, i.e.,
using ¢™ € XY (), m =1;,...,1 (cf. Sec. 2.3.5). For example, for the flux we
could use

F(¢", ¢ n) = f(3(¢" + ¢®))na + 9(3(a" + ¢™))ny.

Dependent on the choices for ¢ and ¢F, this usually gives rise to the second-
order accurate difference scheme called the central scheme. This scheme is
known to be unstable and requires additional dissipative terms in order to
regain stability.

For our hyperbolic set of conservation laws (see [13]), we can take for F'
an approximate Riemann solver. This means that F' approximates the flux
f(qo), where gy = q(0,t) is the solution at z = 0, ¢ > 0 of the one-dimensional,
hyperbolic initial value problem

05  0f(@ _
(2313&) E + (9$ == O,
~
~ _J e, =<0,
(2.3.13b) q(z,0) = { . 2»0

Here § = g(g,n) denotes the state g in a coordinate system along the normal
n. The flux functions and states are related through

£(@) = f(g(g,n),n) = f(g)nz + g(g)n,

Problem (2.3.13) is called a one-dimensional Riemann problem. The exact
solution of (2.3.13), with the numerical flux F' = f(%), was first used by Go-
dunov [5], to obtain numerical solutions of one-dimensional hyperbolic prob-
lems. Godunov’s scheme leads to an upwind discretisation of the system of
partial differential equations. However, the exact solution of (2.3.13) is not

differentiable. Differentiability is a prerequisite for the solution method, which
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uses exact Newton iteration. A number of approximate Riemann solvers have
been proposed. Discretisation schemes which use an approximate solution
of a Riemann problem, associated with the system of hyperbolic conserva-
tion laws, are called Godunov-type schemes. The best-known approximate
Riemann solvers are introduced in [7, 20, 15, 23, 14]. We use Osher’s flux-
difference splitting scheme as an approximate Riemann solver [14], unless
stated otherwise. Osher’s numerical flux function leads to a high resolution
of discontinuities in the solution (both shocks and contact discontinuities).
A system of nonlinear conservation laws generally does not have a unique
solution. Osher’s numerical flux only admits solutions which are entropy sat-
isfying, i.e., the scheme only allows numerical solutions which for vanishing
mesh width converge to the solution of the hyperbolic system, obtained in the
limit of vanishing diffusion. This solution is the physically relevant solution.
For a survey of flux splitting and flux-difference splitting schemes, we refer

to [8], [24] and [11].

Equations for a refined cell. Discrete equations (2.3.12) are approximations
of the conservation equation (2.3.7) for each cell that has not been refined.
The left and right state for the computation of a numerical flux depend on
the states in neighbouring cells, possibly on different levels. By definition, for
a locally non-uniform grid cell, the left or right state for at least one cell face
depends on coarse-grid states.

The set of equations obtained by applying the discretisation as described
at the beginning of this subsection (2.3.4) are under-determined for a locally
refined grid. If a neighbouring cell has been refined (has kids), that neighbour
is not part of the composite grid, and there has not been defined an equation
like (2.3.12) for the extra unknown. Additional equations, however, are easily
obtained by
(2.3.14) gy = {Rind ™Y, YGa) el
We use the equations (2.3.12) together with (2.3.14) to obtain approximate
solutions on a locally refined (i.e. composite) grid.

2.3.5. Left and right states. Here we describe the computation of the
left and right state used in the numerical flux function. We consider first-order
and second-order accurate discretisations, both for a locally uniform and a
locally non-uniform situation. We partly use the concept of reconstruction of
piecewise C> functions from the cell-wise constant data, qf-,j, associated with
each cell. This concept was introduced in [22] and [26] for one-dimensional
convection and extended and applied in [2] and [3] for unstructured grids
in two space dimensions. Contrary to the work in [2] and [3], we do not
reconstruct a single, unique (vector) function in each cell. However, we take
care that in a locally non-uniform grid situation, the computation of the left
and right state is such that the resulting scheme is consistent of the required
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O—> 0@ =0

FIGURE 2.3.2. Reconstruction for first-order consistency
on a locally uniform grid. o: available mean state; o: left or
right cell-face state.

order, at least in some weak sense (cf. Sec. 2.4). This is done by making a
different reconstruction for each side of each cell face.

Locally uniform composite grid. The computation of the states for the first-
order as well as for the second-order consistent discretisation is a function of
the mean states. On a locally uniform grid, first-order consistency is obtained
by applying an O(h;) accurate reconstruction. Consider for example the east-
ern cell face 9 ; p of a cell Q] ; on a locally uniform composite grid, where
(i+1,7) € I'. For this situation we take-for the states, as usual in first-order
Godunov-type schemes, ([5], [10], [20]),

(2.3.15a) (¢")ije = i)
(2.3.15b) (¢™)igp = disr -

In Fig. 2.3.2 this is clarified. There, a mean state associated with a cell is
denoted by a ‘o’ in the centre of the cell.

For second-order consistency on a locally uniform grid, the states are based
on O(h?) accurate reconstructions of the state functions. This reconstruction
can be done with a limiter, to suppress spurious wiggling of the solution (as
proposed in e.g. [21] and [17] and applied in e.g. [12]), or without a limiter, like
the k-schemes [25] (as in e.g. [9], [18] and [12]). Again, for the eastern cell face
of a cell Qé,j on a locally uniform grid, where (i —1,7), (i+1,7), (i +2,5) € I',
the limiter and k-schemes are given by

(2.3.16a) (6") ;6 =Clai 1 i > Girrj);
(2.3.16b) (qﬂ)i,j,E = C(‘I§+2,j» q£+1.jv qf.j)-

This is schematically presented in Fig. 2.3.3. Here, C : X, x X, x X, — X,
implements a k-scheme or a limiter scheme. Notice that the k-schemes are
recovered by applying certain linear ‘limiter’ functions. However a k-scheme
does not satisfy monotonicity conditions (cf. [19]).



2.3. Discretisation 23
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FIGURE 2.3.3. Reconstruction for second-order consistency
on a locally uniform grid. o:available mean state; e:left or
right cell-face state.

Virtual cells and states. On a locally refined grid, one or more of the mean
states in (2.3.15) or (2.3.16) are not available, because the cells with which the
states should be associated, do not exist. For this, we introduce the concept
of virtual cell and associated virtual state.

With each integer coordinate pair (2% + 7,2"j +s) € I'*", 0 < r,s <
2", n > 1 and (3,5) € I', I, <1 < L —n, we associate the virtual cell

~[+ .
Womitr2nj+s C §2, given by

Gyt fyranjaa =270 (2% 40, 2% 7 4 1)
x 27 (9ng L g 9™ s+ 1).
In the physical space the virtual cell wéf?+T‘2n]—+S C Q is defined as

l il
(2.3.17) W s, = MCEHEIER, o,

Note that w/’,™ is exactly Q%" if the grid would be sufficiently refined.

With each virtual cell wf-‘j we associate a virtual state vf_j € X,, which can
be interpreted as an approximation of the mean of the state vector function
on wf‘j. In general a virtual state depends on the sequence {¢"} =1, ... 1-

Virtual cells and virtual states are used in the discretisation in the neigh-
bourhood of green boundaries. To a large extent the virtual states deter-
mine the accuracy of the algebraic equations associated with the locally non-
uniform grid.

Locally non-uniform grid. The concept of virtual states allows us to compute
left and right states in a locally non-uniform grid situation, in a way similar
to (2.3.15) and (2.3.16). The requirements to be satisfied for the proper
computation of virtual states, are discussed in Sec. 2.4. Irrespective of the
way to compute the virtual states, for first-order consistency we take for the
eastern cell face of Q,’i‘j, similarly to (2.3.15), and (i +1,5) € I

(2.3.18a) @)y = i
(2.3.18b) (@™ = viery
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Similar to (2.3.16), we take for second-order consistency, if (41, 7), (142, ) ¢
Il

(2319&) (qL)i‘]E =C (qll'_L]W qzl',jv vll'+1,j) )
(2.3.19b) (@M)is.8 = C (vira,s visry» 4i) »
and if (i + 1,5) € I', but (i +2,5) ¢ I'

(2.3.20a) (qL)ﬁyj,E =C (45—1,]" qé,ja ‘Izl'+1,j) J
(2.3.20b) (qﬂ)i,j,E =C (vzl‘+2,j’ ‘1£+1,j’ qﬁ,j) J

Formulae similar to (2.3.18)—(2.3.20) are used for the cell faces, 02! k =

leVk,
N,S,W.

Boundary conditions. In the situation where a cell face coincides with the
boundary 09! of the domain Q', a cell face state is determined by the boundary
condition. We have for Bﬂé‘j,E C o0k

(2.3.21a) Bz{,j,E((qB)i,j,m §y=0
(2.3.21b) (qR)é,j,E = (qB)li,j,E7

where le»,j,k
a boundary state (‘IB)é,j,k for BQﬁ_’j,k.
conditions are given by Bf_’j,k, consistent with Osher’s approximate Riemann
solver. We assume that the discretisation of the boundary conditions, (2.3.21),

has been incorporated in the discrete finite volume operators N, 1 =0, ..., L.

((qB)ﬁgj’k;ql) = 0 is a discretisation of (2.1.1b) and determines

In [10] approximations of boundary

2.4. Error analysis of the discretisation

2.4.1. Introductory remarks. In this section we study the local dis-
cretisation error and consistency of the discretisation described in Sec. 2.3. In
the discretisation we distinguish three approximations, each of which have a
contribution to the local discretisation error. These contribution are:

e approximation of the mapping from the computational space into the
physical space; in equations this error is denoted by 7! (q);

e approximation of the mean flux on a cell face by the flux evaluated
at the mean state along the cell face (quadrature rule); in equations
this error is denoted by T;(q);

e approximation of the mean state on a cell face by biased reconstruc-
tions; in equations this error is denoted by 7!(g).

Often the approximation of M by M! is not essential, since the change from
M to M!, merely changes the partitioning in the physical domain slightly,
without affecting the accuracy of the resulting set of algebraic equations.
However, it does affect the approximation of the domain of definition of the
problem. Hence, for the interior cells of Q we can assume M = M' = Mo,
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for some constant Iy and Iy < [ < L, without affecting the accuracy. At the
domain-boundary, 86, the error of this approximation M' can be important.
Here, using M = M! = M is not possible in general, because it results in
an approximation of the boundary, independent of the level I. Hence, the
geometry of the discrete problem does not converge to the geometry of the
continuous problem under consideration with increasing level of refinement. A
more important reason to study this approximation is related to a-posteriori
estimation of the local discretisation error, applying T-extrapolation, a trun-
cation error extrapolation technique, similar to Richardson’s extrapolation.
This uses the so-called relative local discretisation errors of two consecutive
levels of refinement (cf. [4]). In Chap. 4, the relative local discretisation er-
ror is used for the a-posteriori estimation of the local discretisation error. In
short, the relative local discretisation error is the difference in error of the
discretisations on two consecutive levels. When a-posteriori estimating the
relative local truncation error, the difference between the discretisations on
two consecutive levels of refinement is estimated. Hence, the asymptotic re-
lation between the discretisations of the two levels—including the difference
caused by the difference of mappings on the two levels—is taken into account.
Therefore, we study this relation here.

The two errors Té(q) and 7/(g) together make up the local truncation error.
For the fluxes approximated with the projection of the solution of the con-
tinuous problem, i.e. ¢ = g, the exact solution of the problem, they form the
error in the system of algebraic equations, for a given particular partitioning.

The analysis presented in this section leads to requirements to be imposed
on the reconstruction of cell-wise smooth functions from the cell-wise constant
numerical data. These requirements, depend on the goal set out to be reached
in a particular discretisation. We distinguish between the goals

e obtain a given order of consistency;
e obtain a given order of discrete convergence.

This distinction is made, since a certain order of local discretisation error for
all equations may not be essential to obtain a given order of discrete conver-
gence. Assume a total number of equations of O(h=2). An O(h~!) number
of equations with low-order accuracy may not affect the rate of discrete con-
vergence, not even in supremum norm. To study this in detail, we have to
redefine the notion of consistency for a non-uniform mesh. In fact, we define
a slightly weaker form of consistency. In absolute value, this weaker form is
the discrete L;-norm of the local truncation error for a collection of discrete
equations. The requirements for consistency in both the weak and the usual
sense are studied. Consider the situation where a given order of discrete con-
vergence is to be obtained and local grid refinement is applied with the local
discretisation error used in the refinement criterion. Then, an equally high-
order local discretisation error is required for all algebraic equations, since a
refinement decision based on the local discretisation error is based on the im-
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plication that by replacing coarse-grid equations by fine-grid equations, this
error in some norm is reduced at a sufficient rate. If there would be no re-
duction, or no sufficient reduction of local error, local grid refinement would
become inefficient or even ineffective. Hence, consistency in the usual sense is
important when refinement based on local discretisation error is used. From
this point we use the term ‘consistency’ for consistency in the usual sense and
‘weak consistency’ for consistency in the weak sense.

2.4.2. Approximation of the mapping. In order to be able to make an
a-posteriori estimation of the local discretisation error, with sufficient accu-
racy, we first study the consequences of approximating M by Mt Actually, we
are only interested in the relation between the mappings for two consecutive
levels of refinement, since we want to study the use of two consecutive levels
of refinement in the estimation of the local discretisation error. The relation
between the mappings of two consecutive levels can be established through
their relation to M. This relation also allows us to study the accuracy of the
restriction to the coarse grid (cf. Sec. 2.4.3).

We consider a surjective mapping M : Q — Q, which is injective on 2. We
also consider its continuous, piecewise bilinear approximation associated with

level of refinement I, M' : - ﬁl, which is exact in the vertices ﬁz'l.j.k' To
simplify notations, in the present local analysis, we drop the indices which are
constant throughout this part of the analysis. We consider a cell on level of
refinement [. In the computational space, the corresponding cell is denoted

by Q. Its images in {2 are

Q= M(Q),
Q' = M),
where we dropped the subscripts. We use a local Cartesian coordinate system

(€,7m) in the computational space, with its origin in the center of 2. Similar
to (2.3.2), we use the Cartesian coordinates in the physical space obtained by

M
(¢, n))
= M(£,n),
(wermy) = e
where the origin in the physical space is
(2.4.1) (0,0)T = M(0,0).
We assume (2 is the square with sides of length h; = 2h, Q= (—h,h)%. Hence

the area of the cell in the computational space is 4h*. In the physical space
the area is denoted by A for  and A! for Q!. The Jacobians of M and M!
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are denoted by J and J! respectively:
‘](57 77) = TeYn — TypYe,
J' (&) = zlyh — by,

where the subscripts denote differentiation with respect to £ and 7 respec-
tively. Furthermore, we assume that M is sufficiently smooth and for (£,7) €

Q) can be written as

M =mg + mi€ + mon + ma€® + myén + myn?

2.4.2)
( + me€® + mr€in 4+ mgén® + men® + .. . .

Note that according to (2.4.1) mg = (0,0)7. The mapping M' is piecewise
bilinear, hence it can be written as

M= mf) +mie+ mlzn + mifn.

We define (z;,v;)7, (zf,y})T by

(2.4.3) m; = (m> i=0,1,2,...,

Yi
; B

(2.4.4) ml = (;’l) i=0,1,2,4.
From the exactness of M' at the cell vertices, given by (2.3.1), we can express
mi,i=0,1,2,4 in terms of m;, s = 0,1,.... This gives
(2.4.5a) mb = mg + mah® + msh? + O(hY),
(2.4.5b) m} = m; + mgh? + mgh? + O(h*),
(2.4.5¢) my = mg + mrh? + mgh? + O(RY),
(2.4.5d) my = my + O(h%).

As a result, we have M! expressed in terms of M, for [€], In| < h, given by

@8] M' = mg + m € + man + mgh? + my€n + msh?
o +m6h2§+m7h27]+m8h2§—+—mgh27)+(9(h4).

We find from (2.4.2) and (2.4.6) that
M' = M =mg(h? — €2) + ms(h? — %) + O(R3).

We are now interested in the difference between the weak form (2.3.9), for
Q= M(Q) and Q' = M!(Q), divided by the respective areas A and A'. This
error is denoted by 7,,(q).
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Let a sufficiently smooth, integrable function w : Q U Q! — R? be defined,
and let its Taylor series expansion around the origin (z,y) = (0,0) be given
by
(2.4.7) w(z,y) = wy + w1z + woy + wzz? + ... .

For the error of the weak form on € with respect to the weak form on €, it
suffices to consider the difference

1 1
4. = - — d
(2.4.8) )= 4, /QlwdQ A/Qw Q,

for any sufficiently smooth and integrable function w. For M and M', assum-
ing from this point that J, J' > 0, this is equal to

t(w) = %/ﬁwlﬂdﬁ— %/ﬁw]dﬁ,
where w! = w(z!,y'). With
5y = W' —w,
fy=J =
the integrand w'J! can be written as
W' =wJ + 6,0 + why + 6,6

An expression for &, in terms of m; and w; can be obtained by using (2.4.7) for
(z',y') and (z,y), and by subtraction and substitution of (2.4.5). From this
exercise it appears that 6, = O(h?). Multiplication with J and integration

over () yields

~ 8
(2.4.9) /aéwJ d = 2 Joh*{wi (s +25) + wa(ys + y5)} + O(h®),

where Jy is J(0,0).

Similarly, based on (2.4.5), we can also find an expression for 6;. It ap-
pears that generally 6; = O(h), with the O(h) terms linear in £ or 7. A
straightforward calculation yields for the integral of wé;

(2.4.10)

/Nwéde):
Q

8 4

gh {wo(z1y7 — T7Y1 + TaY2 — T2Ys — T3Ys + Tays — T4Ys + T5Ys)
+ wi(—z123Y2 + T1T2Y3 — T1T2Y5 + T2Y5Y1)
+ wo(—T3y1y2 + T2Y1Ys — T1Y2Ys + Tsy1ye)} + O(h®).

The term 6,6 gives only an O(h®) contribution to the integral over Q.
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By (2.4.9) and (2.4.10) we can define C(w) as the coefficient in the first
term of an asymptotic expansion, given by the sum of (2.4.9) and (2.4.10),
le.,

/~(le’ — wl)df = KAC(w) + O(K®),
Q

with C independent of h. Now we can write

(2.4.11) Al — A=hriC(1) + OR%).

For the area A we have

(2.4.12) A= 4R*Jy + O(hY),

combination of (2.4.11) and (2.4.12) yields after some manipulation

1 1 o@)

Al AT 1672

+O(h).

Using this, it can be easily shown that the difference t(w) satisfies

(2.4.13) tw) = %(C(w) —woC(1)) + O(h%).
With
Tfn(Q)=t<6% + @6(7(1)),

we establish the asymptotic relation between the approximation of the weak
form on two consecutive levels of refinement, caused by the approximation of
the grid geometry. Although the difference between the partitioning obtained
with M and the partitioning obtained with M! itself is not essential for the
convergence of the local discretisation error, we use the result (2.4.13) when we
show that an a-posteriori error estimation is sufficiently accurate (cf. Chap. 4).
Furthermore, we use (2.4.13) to show that on a composite grid, the equations
for a refined cell (2.3.14), in general give at best second-order accuracy on the
coarse grid. Assume for (2.4.13) that w is the differential operator, applied to
the solution of the continuous problem. According to the result in (2.4.13), in
general the discrete equations derived for boundary cells are at most second-
order accurate, because (in general) we cannot use M = M! = MY 1y a
constant, lp <! < L, in cells along the boundary of the domain. A piecewise
bilinear mapping M = M! would yield 7l.(g) =0.

The above conclusions do not hold if a grid describes the geometry exactly,
Le., if the sequence of grids is exactly a (locally) nested sequence. E.g., this
is the case if M = M', Vi € {0,...,L}.

Note that for a homogeneous problem the difference between discretisations
caused by the difference in mappings on the two levels, [ and [+ 1 is zero. For
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a homogeneous problem both 7! (¢) and 7/+1(g) are zero. The error due to
the mappings M!, approximating M, is of minor importance in that situation.

2.4.3. Accuracy of the coarse-grid restriction. We consider the re-
striction TZLl, as defined by (2.3.5). We study the difference between the

restrictions Rl+1R+1 (cf. (2.3.3) and (2.3.5)) and RUH (cf. (2.3.4)).
the computation of the virtual states we use as the coarse-grid discrete func-

tion on Ql, the restricted function q” = {R+1ql+1} (i,7) € I%, where

Z]’

gt = R q, while we assume that qi’j is the mean of g on Qﬁ_]-, given by

Hhl+1 ; ; : ; s
R """ q. The error we make with this assumption is studied here.

In our analysis we again drop the unnecessary indices. We consider a cell
Q! on level [, which has refinements on level [ + 1. A kid of Q! is identified
by the subscript m € K, where K is the set of indices (cf. (2.2.3)), associated
with the cell Q'. For level | we have the approximation M! of M and for
level [ + 1 we have M'T!. Similar to the notations in the previous subsection,
we use the superscripts in our notations to distinguish between variables for
Q= M(Q) (e.g., A, no superscript) and Q' = MY(Q) (e.g., A'). Hence e.g.,
Al m e K, denotes the area of the mth kid M!+1(QIF1).

Consider RlHq , where g1 = Rl+1q. By definition of R§+1 we have
L AlH1 gl+1
(2414) R§+1Rl+1q _ ZmEK “m lz;n
EmEK ATYL
With the results from the previous subsection we find
1 1 h{,CQ
(2.4.15) S _ 1 ki CQ) + O(his1).

Y ek AT T A 4A?
For the numerator in (2.4.14) we find

-
ats) X Al = [a7di+ (4 C@) + Ol
meK

Multiplication of (2.4.15) and (2.4.16) gives for (2.4.14):

141 =141 1 h,
RUEY = | [aadi+ {550 - 00() + OhE)

With (2.4.8) and (2.4.13) we also have

A 4Jy

Hence, the difference between the two restrictions is

R'g= l/ qJ dQ + hir (C(q) = 9C(1)) + O(h}).

LI+l =l i+l g ht
R = RiaR " g = 15~ (Cla) — 0C(1) + O(hY).



2.4. Discretisation error 31

2.4.4. Consistency and weak consistency. Here we consider the ap-
proximation of the weak form on a given partitioning by the set of alge-
braic equations, resulting from the discretisation. Hence, we assume that
M = M' = M", where [y < I. With (2.2.1) this implies Q = M!(Q). This in
turn implies that we do not consider the differences between the discretisation
on different levels, due to the differences in mappings from the computational
into the physical space, on each level.

Local discretisation error and consistency. Consider the function spaces and
sets of indices as defined in Sec. 2.2 and 2.3. Let N(q) = r denote the
continuous equations to be satisfied by the solution of the problem in weak
formulation, for some partitioning of the domain. We denote the solution of
the continuous problem by g:

N(g) =r.

Let the weak form N be approximated by the discrete finite volume operator
N', on a level of refinement | € {0,...,L}, of a sufficiently smooth grid,

consisting of quadrilaterals. Furthermore, let projections R' and R' be defined
properly, for example by the definitions in Sec. 2.3.3, and related to each
other through A', as in (2.3.6). Assume that the right-hand side of (2.1.1a) is
exactly integrated, as denoted by (2.3.10). The local discretisation error for

NY(¢'; ¢'=1) = rl is 7'(g), where 7/ : X(0}) — YI(QI) is given by
- =t 1
r(q) = (4)7! (N'(B's; B g) - R'N(g)) -

We define 'ril‘j(q) = {7!(q) fJ The discretisation N! is called an approxi-
mation to N of order of consistency p, if for all (z,7,1) € I

Til,j(q) = O(hlp)a
for h; — 0. Notice that h; — 0, if | — 0.

Weak consistency. We also introduce a weak form of consistency, related to
consistency in the usual sense. The new definition of consistency is weaker
than the usual definition, because it considers the collective behaviour of the
local discretisation error for a set of equations, rather than the behaviour of
each equation separately. Consider a partitioning of the domain 2, obtained
by refining n times a previously obtained locally refined composite grid. Let
a discretisation as described in Sec. 2.3 be defined for this new system. Then
the collective local truncation error, T!(q), for an n times completely refined
system is defined by

Ti(q) = A™'Rl,, ... R (N’+"(Tz§+n) - R’*”N(q)) .
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In absolute value, this is the discrete Li-norm of the local truncation error
for the set of equations for all descendants of each cell Qé,]-. Note that

Ti(q) = 7'(q).

A discretisation N' is called weakly consistent of order p if

l ..
{Ti@},, = O(hL,,), VG.qDel,

for n — oo.

2.4.5. Analysis of local truncation error. In this section we study the
local truncation error of the discretisation as introduced in Sec. 2.3. We use
the same assumptions as formulated at the beginning of Sec. 2.4.4. From
the analysis we obtain requirements for the computation of the virtual states,
both for a consistent and weakly consistent discretisation.

As described at the beginning of Sec. 2.4, the local discretisation error con-
sists of two contributions. The first contribution, which is denoted by 'ré(q),
is a result of the quadrature rule that is used to approximate the mean value
along a cell face, of the flux across that cell face. This mean value is approxi-
mated by the flux evaluated at the mean value of the state function along that
face. Furthermore, the mean value of the state function g along a cell face
is approximated by reconstruction of piecewise polynomial functions from a
cell-wise constant function which represents the average of g in each cell. The
reconstruction is done twice for each cell face, with a bias in both opposite
directions. These reconstructed approximations of the mean value along a cell
face is then used in an approximate Riemann solver. If ¢ is a solution of the
continuous equation (2.1.1a), this procedure gives a contribution to the local
discretisation error, denoted by 7(q)

Quadrature rule. Similar to the local analysis in Sec. 2.4.2, we drop the indices
which are superfluous for this local analysis. As noted, the mapping M is
assumed to be bilinear on . It is given by

(2.4.17) M(&,n) = mg + mi€ + man + myén,
where mg, m;, mg and my are defined by (2.4.3). Note that the cell-wise

constant parameters m; are fully determined by the coordinates of the vertices
of that cell. The area of cell 2 is

A:/dQ:/~Jd(~2=4h2Jo,
Q Q

where Jy = z1yy — 29y; > 0, the Jacobian of M at the origin.
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We denote the mean value of the flux across the kth cell face by f; and
since M is linear at ), we have

fr(g) = ;~ f(@)nz + g(q)n, ds
(2.4.18) 1’“ ol
= - f(@)ngz + g(q)n, ds.

The mean of g(z,y) along 99 is denoted by

1
ke = — gds.
Sk J oo,

The unit normal along a cell face is constant, and we use the notation

(ne)k = nz|am ) ("y)k = ”y|ank 5
By ¢* and ¢} we denote

*

q = (q7nz7ny)Ta
q; = (Qk; (nz)ka (ny)k)T7

and by f* we denote the flux in the direction of n = (nz,ny)T, given by

f(q") = f(@)nz + g(g)ny.

The contribution 7,(q) of the quadrature rule to the local truncation error is
given by

(@)= 3 3 (@) - ful) s

keD

An expansion of f*(¢*) around ¢ yields

* * * * a * * *\
f(q") = f(qx) + —Bq{"‘ (@" —qr)
%
2.4.19
( ) lﬂ; (¢ —q0)*(¢" — q})® +
2 9g~*9g+P 9 —q) @ —qi $24

a

where the superscripts denote the components of ¢* and gy, and the summa-
tion convention is used for a,3 = 1,... ,d + 2. We assume that the function
q(z(€,7),y(€,m)) can be written as a Taylor series expansion around the origin
of the local Cartesian coordinate system in the computational space, l.e., it is
written as

q=q0 + q1€ + gon + g3€% + qu€n + gsn?

(2.4.20)
+ 468 + 1€ + qs€n® + qon® + ... .
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For k = E, W, we use for £ at aﬁk the constant & = {laﬁk. If we now define

A1 = g2 + qabx + @€},

Ay = g5 + qsés,
A3 = q9,
and
Y: =,
1
Y2 = 772 - §h27
Y3 :773)

and use (2.4.18), (2.4.19) and (2.4.20) we can write the mean flux across the
kth cell face as

(2.4.21)
h
r =g [ £l dn

Lot O
“on ), f(ax) + g

- 1 82 *
iy sl T
x

II AnY=

9% v=a,3

y 2 9q*0gP

a1

1
=2l [ ALY [1 A%Yn |} dn.
6 9q*9q”dqr m¥m + O m ¥

9% v=a,8,y aB.y b

Integration of products of Y;, yields

1k
(2.4.22a) ﬁ/ Yidp=0, i=123,
o |,
1 [t Lh?  fori=j=1
I Vo = 3 )
(2.4.22b) 2h /_hYLY] dn { O(h*) otherwise,

(2.4.22¢)

q h
ﬁ/ YY;Yedn = O(h*), 4,j,k=1,2,3.
—h

Substitution of (2.4.22) into (2.4.21) and rearrangement of terms gives for the
approximation of fi(q), k = E, W,

(2.4.23)

2 e
F(a0) = fulg) = —2n2 21

6" sgrggr| (B9 + 255 +O(RY)
K
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Since f* = fng + gn,, for the right-hand side of (2.4.23) we are interested

in expressions like (n, ) sy %5 . For (n;)p sg we find with (2.4.17)
9k

(2.4.24) (ngy)Esgp = 2hyn}£:h = 2h(ys + ysh).

With (2.4.24), and with the aid of (2.4.19) and (2.4.20) we find

>*f *f
(ne)E sp aqaaqﬁtqb_ 5Q"‘3qﬁlqo (y2 + ysah)
2.4.25 SN S VY o ot + Baalas # — g1
(2.4.25) 84°09°09" |, Y2 +ysh)al + hya(as + 345
Ot f
A 2hnda +ORY).
99*0q°0q79q° |,

For 0Qw we have
(nz)w sw = —2h(ys — yqh).
Applying the changes in (2.4.25) given by

qQ — —q, 9 — 9w,

2.4.26
( ) Y2 — —Yo, (ne)e — (nz)w,

yields an expression similar to (2.4.25) for 9Qy,. We also have
(ny)E sp = —2h(zy + z4h).

Hence, the changes

Y2 — —Z2, Yq4 — — 24,

f=u (nz)E_’(ny)Ea

applied to (2.4.25) and to the result of the changes (2.4.26) applied to (2.4.25),
yield expressions for the other terms in (2.4.23). Substitution into (2.4.23), fi-
nally yields an expression for the collective contribution of the quadrature rule
at 000 and 0Q to the local truncation error. Similarly, for the contributions
of 0Qx and 0Qg, we apply the changes

T2 — —Z1, q2 — q1,

Ty — —Ty4, (nz)E — (nz)wN,
Y2 — —Y1, (ny)E — (ny)n,
Yo — —Y4, (nz)w — (nz)s,
a1 — q2, (ny)w — (ny)s.
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Then, combining results gives
h? [ o2

__ = _ a B _ o lp
(0= =57 | 8ga047 {(y4f z49)(9297 — 9 q)

tu

+ (y2f — 229)20545 — (01 f — x19)2qf‘qf}

o 8
* pgagpa, | (0 ~ 2005

+ O(h3).

—(nf- :vlg)qY)qi’qf}

Hence, the contribution of the quadrature rule to the local discretisation error

is O(h?).

Reconstruction. Here we study the role of the reconstruction step, in which the
left and right states are computed. This gives us requirements which should
be satisfied by the reconstruction, in order to obtain either a consistent or a
weakly consistent discretisation. In the previous subsections we found that the
local truncation error is limited to second-order by the choice of the mapping
and by the choice of quadrature rule. Hence we are interested in first-order
and second-order consistency only.

In our notations we will again drop indices if convenient. Assume we are
interested in a local discretisation error, which is O(h?), p = 1,2. We consider
the equation for a cell 2 on some level in the geometric structure. We assume
that the solution of the problem is sufficiently smooth and that the numerical
flux function is sufficiently differentiable.

The outward pointing unit normals on 92 are given by

Y 1 Y 1
ng = 1 —— y nsg = ¢ 5 )
o) Va2 + 2 laar —%¢) Val + ¢ loas
ny = ( > ; ny = — :
Tn ) Val + 2 lsaw g % + vt loay

We introduce the unit normal 7;, in the physical space, on the kth cell face
and 5j, in absolute value equal to the length of 0. The unit normals 7y,
k € D are shown in Fig. 2.4.1. The n;, and s, are defined by

i Nk, k:Ean B e Sk k:E’N’
(2.4.27) o —{ i, R=W.5 Sk—{ —sy, k=W,S.

Note that this gives nysy = nisk, Yk € D. We also introduce the vector
w € X2 x E, of length 2d + 2, given by

s

w(q,q',n)=(q,q,n),
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FIGURE 2.4.1. Definition of ny, k € D.

where ¢, ¢' € X and n € E. For the kth cell face we define

(2.4.28) Wi = (qk, gk, k),
(2.4.29) wi = (g , g, k).

Assume that the following conditions hold

(2.4.30) F(q,q',—n) = —F(q,q',n), Vq,q € X,, n€E,

(2.4.31) F(q,q,n) = f*(¢%), YVqe X,, ne€E.
The local discretisation error due to the reconstruction can now be written as
1 * *
(2.4.32) Ty = A Z (F((If,(hfank) - f (Qk)) Sk-
keD

With (2.4.28) and (2.4.30) we now have

_ [ @), k=EN,
F('“”“)‘{ f(qt), k=W.S,

and with (2.4.27), (2.4.32) can be written as

(2.4.33) = 3 (PP - f(g)s)

keD

We denote the reconstruction error ry, for the kth cell face by
(2.4.34a) re = wik — wy.
We denote the difference between (wp)) and the mean wy on 8Q; by

(2.4.34b) Ap = wg — (wo),
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where (wg), is defined by

(wo)x = (g0, 90, (T20)k ),

and (ng); defined by

Yo 1
m——a) k= Ea Wa

—y1 1
- k=N,S
(ml ) Va? +y?

Now, first making a Taylor series expansion of F(w) around the mean wy
along cell face 89, and substitution of it in (2.4.33) and next, substitution of
an expansion of F(w) around (wg ), gives

(Mo)x =

(2.4.35)

1 oF
Tr:zz{awa

keD

O°F | 5.1 p
a o (03 A -
Tg -+ 0o dw? i(wo)k TR (A + 2Tk)

(wo)k

R
2 OwOwP ow”

1
re(APAY +rPAY + 3rfrg+...)+...}sk.

(wo)k

Here again the summation convention is used for a, 3 and 7. We use (2.4.35)
to study the requirements for consistency.

2.4.6. Consistency requirements. Now we can formulate the require-
ments to be satisfied in the reconstruction phase in order to obtain a pth-order
consistent or weakly consistent discretisation.

Consistency. We consider the contributions due to the cell faces 0Qy, k =
E,W. Assume that the following asymptotic relations hold for p,q,s = 1,2,
and for v and 6, as defined by (2.4.34):

(2.4.36a) rg = O(h?),
(2.4.36b) rw =rg+O(h"), r>gq,
(2.4.36¢) Ap = O(R*),
(2.4.36d) Aw = Ap+O(R'), t>s.

For the mapping M we also have

(2.4.37a) sg = O(h),
(2.4.37b) sw = sg + O(h?).
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2" -1

r

FIGURE 2.4.2. An n times locally refined cell and indices
used on the fine level.

With (2.4.36) and (2.4.37), and by changing the order of summation, we find
for the first term of (2.4.35),

rESE+rwsw =rpsp+ (rg + O(R"))(—sp + O(h?))
= O(h7?) + O(h™F1).

Hence, a pth-order consistent discretisation requires

(2.4.38a) q>p,
(2.4.38b) r—12>p,

It can easily be shown that all other terms in (2.4.35) give O(h?) or smaller
contributions to 7,, provided p, g,s > 1 and (2.4.38) are satisfied.

Weak consistency. For weak consistency and its requirements with respect
to reconstruction, we consider a cell Qi] and all its descendants when the
composite grid is n times refined. The definitions of the previous subsections
hold, but a superscript specifying the level and a subscript for the cell number
are added. The superscript n denotes level | + n. As shown in Fig. 2.4.2,
subscript r denotes cell index 2”7 + r and subscript s denotes index 2™j + s.
The collective local discretisation error is now given by

2" -1
1 n _n
(2.4.39) (T @Y = 5 D Ar.mh(a).
Ai«j 7,8=0

With 7!(q) = 7(q) + 7}(q), we have

(2440) ATn‘.sT:s(q) = Z (F((wLR):‘L,s,k)gvn',s.k - f:,g.k(q)s:,s.k) g
keD
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Assume the numerical flux F((wl®)" ) across cell face 997, , to be an
O(h{,,) accurate approximation of the mean flux f;7 ;(g). We have

(2.4.41) F((w ) )57 0 = £ (@)7,0 + OCREE,):
Substitution of (2.4.41) and (2.4.40) into (2.4.39) yields a summation over all
cell faces on the ‘outer’ boundary 927, C 8Q§’j7k, Vk € D. We consider

k=W and n — oc. For the contribution of the approximations on these cell
faces to {T} ﬁ’j we find with (2.4.41)

2" —1
1 n =N *T n
Al Z (F((wLR)O,S.W)SO,S.W - fo,s,W(‘Z)So,s,W)
) s=0
=
= 2 (Crhzy + 0hiED))
i,J s=0
= Cahf,, + O(h{L,),

where C; and Cy are constants independent of the level n. Similar results hold
for k = N, E,S. Hence, if we have an O(h?+n) accurate approximation of the
mean value along a cell face of the flux across the cell face, then the collective
local discretisation error is (’)(h?+n) and hence, the approximation is gth-order
weakly consistent. So, a weakly consistent approximation of order p = 1,2,
is obtained by pth-order accurate approximation of the mean flux. Let the
reconstruction error be defined by (2.4.34). By the fact that the quadrature
rule yields a second-order contribution, and by expansion of F(w) around the
mean wijiflk, it follows that a reconstruction error of order p = 1,2, yields a
pth-order weakly consistent discretisation.

Note that consistency of order p = 1,2, implies weak consistency, since a
necessary but not sufficient condition for consistency is a reconstruction error

of order p, as given by (2.4.38a).

2.5. Numerical results

In this section we present numerical results of local discretisation errors and
global discretisation errors on a locally refined grid. We consider consistent
and weakly consistent discretisations. First we define the reconstruction and
virtual states in order to obtain consistency or weak consistency. Next for a
problem with a known solution we present results obtained on a composite
grid, showing the relation between consistency and global error. Then we
elaborate on this for the set of Euler equations with smooth solution, where
one component of the solution is known.
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2.5.1. Virtual states. We introduced the concepts of consistency and
weak consistency. Here we describe virtual states to obtain discretisations
which are first-order or second-order consistent in the weak or usual sense.
Their analysis is deferred to Chap. 4 of this thesis.

Weak consistency. For a weakly consistent first-order or second-order dis-
cretisation we require a reconstruction of first-order or second-order accuracy
respectively. This is simply achieved by first-order or second-order accurate
computation of virtual states. First-order weak consistency for the algebraic
equations defined for Qéﬁ_ujﬂ, where aQéﬂi‘il,21‘+l,E C 892, is attained by

using a virtual state defined by

I+1 _ 1
(2.5.1) V2i+2,2j41 = Qit1,5

Second-order weak consistency is attained for the same situation by the virtual
states defined as

3 1
I+1 I+1 I+1
(2.5.2a) U2T+2,2j+1 — iqi-tl.j + i‘hj}“’
3 1
1+1 _ 9 141 I+1
(2.5.2b) Y2it3,2j+41 = 4%it1 T g9i+24+1°

For other virtual states we define similar formulae.

Consistency. Consistency of order p in the usual sense requires in addition
a difference in reconstruction error of two opposite cell faces of order p + 1.
Again, con.sider the. equations for Ql2T—}-1,2j+1v and aﬂlzﬁszﬂ,E C ang. First-
order consistency, is attained by the virtual state

3 1
1+1 I+1 1+1
(2.5.3) Vgit2,2j41 = iqiil.j + iqi3+1'

Compare this to (2.5.2a), for second-order weak consistency. Second-order
consistency is attained for the same situation by defining the virtual states

(2.54a)
s 17 + (¢ 4 gy +d
2042241 = 1g%i+15 T 76 (i + 4 it1,+1)
2 1
~ 16 (Gis2,; + g1 -1) 5
(2.5.4b)
17 1
141 ! l !
V2i+3,2j+1 = e dit1 T 16 (qi+2.j t Qg4+ Qf+1,j+1)

2
~ 16 (¢i; +ab1jo1) -
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2.5.2. Discretisation errors for a nonlinear test problem. Now we
apply the finite volume discretisations described so far to a model problem.
For the model equations we are able to study in detail both local and global
discretisation errors, on a uniform and a locally refined grid. The problem is
of the form (2.1.1a) defined on Q C R?, with g, f(q) and g(q) given by

q= (?) , fla)= (Zi) o 9(e) = (:2)) :

We consider the homogeneous case, s(z,y) = 0. These nonlinear equations
have solutions that are constant in the characteristic direction ¥, when Y,
itself is constant. For any boundary condition which has constant Y/, the
solution is known in closed form.

The numerical flux function F(g%, ¢®,n) used, is the upwind flux given by

T_l(n)f(T(n)qL), if (n-qb),(n-q%) >0,
F(qL,qR,n) = T_1<Tl)f(T(TL)qH), if (TL : qL)an('qR) < Oa
0, if (n-q")(n-q") <0,

where T'(n) is a rotation matrix, given by

n n
T(n) = N Y.
—ny Ny
We consider a smooth problem on the unit square with exact solution

u = u(t(z,y)),
v = utany,

where t = —x sin ¢ +7y cos ¢ is a coordinate perpendicular to the characteristic
direction and ¢ is a constant angle of a characteristic direction with respect
to the positive z direction.

We study the discrete maximum norm of the ath component ||(.)"‘Hx‘xc(55)

on the composite grid, of the local discretisation error 7.(g), and of the error
of the solution. On the composite grid the solution error is given by

1 -
Ec(l‘,y) = d.j - {R q}ip (‘Tay> € Qi’.j» V(Z,],l) € IC'

Here, g is the exact solution of the continuous problem. We take u(t) =
1 + cos(v/27t), ¢ = 45°. The exact solution for this problem is shown in
Fig. 2.5.1, and is given by

u=v=1+cos(r(—z+y)).

The grid subdivides the domain on the finest level L in equal parts with size
hr in the direction of the x axis and lhbhy in the direction of the y axis. The
discretisation errors for uniform grids are given in Tab. 2.5.1, both for the
first-order discretisation (p = 1) and for the x-scheme with x = 0 (p = 2).
The solution and error components are the same. Both the discretisation
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FIGURE 2.5.1. Exact solution of the model problem.

TABLE 2.5.1. Discretisation error for the model problem on
a uniform grid.

[ ‘Qu=1 7 p=2,k=0 7J
he el x| Il poiy | 7@ ey | Nl x.
% 0.6514e + 01 ‘ 0.7214e +00 | 0.7220e +00 | 0.1488e + 00
é 0.3584e +01 | 0.4937e +-00  0.1197e + 00 0.3162e — 01
Tls 0.1836e + 01 ‘ 0.3090e + 00 | 0.2270e — 01 0.6067e — 02
% 0.9234e +00 | 0.1800e +00 = 0.5109e — 02 | 0.1380e — 02
é 0.4624e + 00 } 0.9924e — 01 | 0.1241e — 02 ‘ 0.3376e — 03

i% 0.2313e + 00 | 0.5270e — 01 | 0.3080e — 03 } 0.8429¢ — 04 |

and the solution of the discrete problem tend to pth-order convergence with
decreasing mesh width, as predicted.

We now introduce a rather arbitrarily chosen locally refined grid by refining
all cells to the right of = 0.5. This gives a composite grid as shown in
Fig. 2.5.2. On this composite grid we perform the same test with the first-
order (p = 1) and second-order (x = 0, p = 2) weakly consistent discretisation
of the equations involving a green boundary. The maximum local truncation
error and solution error are given in Tab. 2.5.2. This table shows that the
local truncation error is zeroth-order (for p = 1) and first-order (for p = 2),
although they are first-order and second-order weakly consistent respectively.
The maximum local discretisation errors occur for the equations involving
a green boundary. For the first-order accurate case the limiting value for
hr — 0 of the maximum local truncation error can be easily computed and is
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1
y 0.5
0
0 0.5 1
z
FIGURE 2.5.2. Non-uniform composite grid for the model

problem; hy = %

TABLE 2.5.2. Discretisation error for the model problem on
locally refined grid. Only weak consistency of the specified
order for equations along green boundaries.

p=1 p=2, k=0

3 ”TC(Q)HOC,XC(ﬁC) ||6C||OC,XC(5C) ”TC(q)Hoc,Xc(ﬁc) HEC”DC.,XC(G(-)
é 0.9086e + 01 0.6720e + 00 0.5484e + 01 0.2575e + 00
flg 0.7089%e + 01 0.4213e 4 00 0.2882e + 01 0.6101e — 01
31—2 0.6400e + 01 0.2492e + 00 0.1459e + 01 0.1342e — 01
glg 0.6211e + 01 0.1406e + 00 0.7317e + 00 0.3043e — 02
i‘%é 0.6152e + 01 0.7608e — 01 0.3662e + 00 0.7176e — 03
2%5 0.6134e + 01 0.3999e — 01 0.1831e + 00 0.1738e — 03
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TABLE 2.5.3. Discretisation error for the model problem on
locally refined grid. Consistency of the specified order for all

equations.
] p=1 p=2,k=0 ;
he | Il o x. @) | Neelle x. @) | 17@ello x @ | el x. .
| é 0.7916e + 01 | 0.6954e + 00 | 0.1295e + 01 0.1352e + 00
| %6- 0.4224e + 01 | 0.4305¢ +00 | 0.3079% + 00 0.2532e — 01
3% 0.2147e + 01 | 0.2522e + 00 0.7402e — 01 0.5098e — 02
61—4 0.1078¢ +01 | 0.1411e + 00 0.1802e — 01 0.1177e — 02
l—ég 0.5396e + 00 | 0.7604e — 01 0.4444e — 02 0.2910e — 03
2‘%6 | 0.2699e +00 | 0.3991e — 01 0.1103e — 02 | 0.7421e — 04

%my/3 = 6.12157. ... The global error is first-order (p = 1) and second-order
(p = 2) respectively. Note that the error in the second-order accurate solution
computed with the non-uniform composite grid (Tab. 2.5.2) is larger than the
error of the second-order accurate solution computed on a uniform grid with
the same mesh size as the coarse part of the composite grid (Tab. 2.5.1).
Apparently, the local discretisation errors for the equations on the locally
refined grid are so large that the solution of the discrete problem is worse
than the solution obtained without refinements. The first-order solution is
less sensitive to such large local discretisation errors.

An improvement of this discretisation is obtained by the equations which
are all consistent in the usual sense. This discretisation is also tested on
locally refined grids as shown in Fig. 2.5.2. Discretisation errors are given
in Tab. 2.5.3. This table shows that the local discretisation error is of the
specified order. The maximum error of the solution for both first-order and
second-order discretisation is smaller than on the uniform grid with the coarse
mesh size. We find that both for a pth-order consistent and pth-order weakly
consistent discretisation the order of discrete convergence in maximum norm
is p. The consistent discretisation appears to give more accurate results for
p = 2. Applying the weakly consistent discretisation, one has to be careful
about the errors introduced by the relatively large local truncation errors of
equations involving a green boundary. These errors may spoil the accuracy
in infinity norm of the resulting numerical solution.

2.5.3. Euler equations with smooth solution. Next we show the re-
sults of a numerical experiment, for the steady Euler equations. The experi-
ment is made to study the discretisation error for a smooth problem. Better
than the model problem, this problem may represent problems encountered
in practice. Again, the discretisations are consistent or weakly consistent of
order p = 1,2. The flow is described by the Euler equations, given by (1.2.2)-
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(1.2.4). The unknown vector function ¢ € X(Q) is
q ] (C7 u? ,L” Z)T’

where ¢ is the speed of sound, u and v are Cartesian velocity components in
z and y direction respectively, and z represents the physical entropy.

The numerical flux is Osher’s approximate Riemann solver [14] in the so-
called P-variant as introduced in [10]. It is written as

F(g", ¢" n) = T (n)F(T(n)¢", T(n)q™),

where F is the approximate Riemann solver and T'(n) is a rotation matrix,
defined by

1 0 0 0
10 n, n, O
T =10 —py fig O
0 0 0 1

We consider the subsonic flow through a channel with a ‘sine-form’ bump,
defined by the shape y,, () of the lower wall of the channel, given by

(o) = 0, z<1, z2>3,
YulT) =1 0.1(1 = cos((z — 1)), 1<z <3.

The upper wall is a straight line at y = 1. In the direction of the z axis,
the computational domain extends from z = 0 to « = 4. The boundary
conditions are ‘overspecified’ [9]. At z = 0 the Mach number is M = 0.5,
the density p = 1 and the velocity v = 1, v = 0. On the upper and lower
wall, impermeability is required, un, + vn, = 0 and at the outlet boundary,
« = 4, the boundary conditions are specified to have the same values as the
inlet conditions. For this problem the exact solution has constant entropy,
i.e., constant z = pp~”. In Fig. 2.5.3-2.5.5 we show iso-line plots of the error
in the entropy.

In Fig. 2.5.3a the grids used are shown. Here uniform grids are used. In
Fig. 2.5.3b—c the entropy error is shown for first-order and second-order con-
sistency respectively. The choice of iso-line values is such that for a first-order
and second-order error, the pictures for the two grids should be the same
asymptotically. In Fig. 2.5.4 similar results are shown for a locally refined
grid and a weakly consistent discretisation for the equations involving a green
boundary. Fig. 2.5.4b is for first-order weak consistency and in Fig. 2.5.4c
results are shown for second-order weak consistency. Although the local dis-
cretisation error in a cell bordering a green boundary is O(hf_1 ), p=1,2, the
global error is found to be first-order and second-order respectively. Finally, in
Fig. 2.5.5 results are shown for consistent discretisations on the locally refined
grid.



Nurnerical resuits

2.5.

"SpLIS wIojIun {uoIpnjos yjoous e
y3m suoryenbs aonyy 9y Joy Joa1e Adonyusy ¢ ¢z @UNDI

"UOIYRSIJQIISIP J9pI0-pu0das ‘Adorjuo 011 O

1 0 v € 14

—age” —9Gg" e
£-98LE°0 E-o500 aeern

uoNeSI1RIISIp IopJo-1s1y ‘Adosjus 1oLri] “q

¢—93GLE0 ¢—9GC°0

e AR

‘SpLI3 uLIojIuy) e

. .
e 1T

T M1

y:,m///m - . A - L

St SuatnpstsananS el ys s T T

FE A - L]

T H A ==}

AR T+1

HHE A S -
lllUHHHHH IIIIII HT I - 1 -




d grid

ily refined

tisation on a local

Discre

2.

48

‘21 = d 19piIo jo
A>Ua3sISU0D Yeom pue pLI3 paulal AJ[ed0] ‘UoIInjos yjoows e
yim suoryenbo 1a[nsy oyj) 1oy 10119 Adoxjusy G HUNDI]

‘UoI)esIjaIosIp H@T&Ouwﬁouwm S.QO.NQQ@ JOLIM] D

xr z
4 € ¢ ! 0 v € 14 1
£—9881°0 €990  }-5a79'0 i

‘UoIeSI19.I0SIp J9plo-3siy ‘Adorjus 1olry q

2—9GLE0 29820

¢—9GZ1°0

'SpLIS paurjal A[[edoT ‘e

1

IHI'III
S
e
T
s

ISEREREER::|

17

TTTTTETTTY

IESEEERRRRAY




b'6°g "SI yim Ayureqnuars o8re) oy} 910N 71 =d
I9pIO JO AOU8)SISUOD pue pii3 pauyax AJresor ‘uorinjos yjoous
® 31m suolyenbs 1apngy oyy 10 10110 Adoxyusy "G'GTZ AUNDI

[=2)
<t
"UONBSIIDIISIP 19pI0-puodos ‘Adorjus 10115y o
T T
! 0 v & ¢ I
£€—9GL°0 £€—9G°0 £—982°0
1))
R
2
L "uonyes1PISIp JI9plo-jsiy ‘Adoryus oy q
5
QO
= . : L i
5]
g
3
7
Z,
S T—9GLE°0 2—9G%°0
= \ 2—9Gg1°0

.wv.wb% pouyosa \A.:‘NUOQ e

R bttt

IEERERRRY

IRERES

L
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In the results shown for the Euler equations the difference between the
consistent and weakly consistent discretisations are very small.

2.6. Concluding remarks

We introduced a finite volume discretisation for a system of steady conser-
vation laws, using a regular, non-uniform, locally refined grid. Analysis of the
local discretisation error shows that the approximation of the curvilinear cells
by quadrilateral cells yields at most a second-order contribution to the local
error. This error is only essential for equations derived for boundary cells.

The restriction which transfers a fine-grid function to the refined part of
the coarse grid, is shown to introduce an error of at most O(h?). Hence, on
the coarse grid at most second-order accuracy is obtained.

We studied the contributions of the various steps of the discretisation to
the local discretisation error. The quadrature rule, used to approximate the
mean flux across a cell face, a mid-point rule, yields an O(h}) contribution to
the local error. Besides the usual consistency, we introduced a new, weak form
of consistency. We found requirements to be satisfied by the reconstruction
phase of the discretisation process, to obtain a first-order or a second-order,
consistent or weakly consistent discretisation. A weakly consistent discreti-
sation of order p = 1,2 is obtained by pth-order accurate reconstruction of
the mean flux across a cell face. For the mid-point quadrature rule this re-
quires pth-order accuracy in the reconstruction phase of the discretisation.
Consistency of order p is obtained if, in addition the pth-order errors of the
reconstruction for two opposite cell faces have a difference of order p + 1.
Consistency implies weak consistency.

Numerical results show that the first-order and second-order, weakly con-
sistent discretisations yield a first-order and second-order global error respec-
tively. However, the second-order discretisation may be quite sensitive to the
large local discretisation errors for the equations involving a green bound-
ary. Application of the weakly consistent discretisation for green boundaries
is not recommended, especially not for the second-order discretisation. The
first-order weakly consistent discretisation appears to be less sensitive (almost
insensitive) to these relatively large local discretisation errors (i.e., inconsis-
tency errors). This is shown in Fig. 2.5.4 and 2.5.5.

Experiments for a model problem as well as for the Euler equations show
that the error bounds which are theoretically derived, agree with the errors
found in practice.
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CHAPTER 3

Application of the solution-adaptive multi-
grid method to the Euler equations

3.1. Introduction

In this section the discretisation introduced in Chap. 2 is applied to the
Euler equations of fluid dynamics. The discretisations on the various levels of
refinement introduce a set of nonlinear algebraic equations. The method to
solve the set of nonlinear algebraic equations is an application of the nonlinear
multigrid scheme, called full approximation storage (FAS), possibly embedded
in the full multigrid (FMG) algorithm or an iterative defect correction (IDeC)
process.

First, these algorithms are described for their use in the present context
of locally refined grids. After that, a strategy to introduce local refinements
is described. In the experiments to follow, this strategy is used in the grid-
refinement cycles. Next, some aspects of the implementation of a local refine-
ment, multigrid method in a computer code are discussed. Finally, a number
of examples are presented. The problems chosen for the experiments give an
example of the possible range of application, where this method may be used
as a tool for analysis of fluid dynamics problems. The problems considered
are:

e shock reflection on a flat surface;

e transonic flow around an airfoil;

® spurious entropy in the subsonic flow along a compression corner;
e shock wave along a continuously curved, convex surface.

First we consider two standard test cases from numerical fluid dynamics to
validate the method and to get an idea of possible gain in efficiency of the
local grid refinement method with respect to the uniform grid cases. Then,
a problem is considered where the method is used to locally introduce a sin-
gular grid, in order to approximately solve a problem which has a singular
solution, with sufficient accuracy. Finally, the method is used as a tool to
study properties of the solution of the Euler equations in detail.

In this chapter we also give CPU execution times for the specific implemen-
tation of the solution-adaptive, local grid refinement code, run on a typical
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present-day workstation. We compare these execution times with the execu-
tion times for an implementation for uniform grids only, that uses the same
multigrid and defect correction algorithms as the adaptive code (cf. 3.5).

Refinement criteria used in all of these experiments are solely based on re-
quirements for the grid in order to provide ‘sufficient’ resolution for the solu-
tion. However, sufficient resolution for the solution does not necessarily imply
sufficiently small errors for the discrete approximation of the equations. If one
is only interested in the components of the solution itself of some problem and
not in any of its derivatives, then sufficient resolution depends solely on first-
order derivatives of solution components. Apart from first-order derivatives,
the local discretisation error usually also depends on higher-order derivatives.
Therefore, using only gradients of solution components in the refinement cri-
terion may not be sufficient. The subject of local discretisation errors and
their a-posteriori estimation are considered in Chap. 4 of this thesis.

3.2. Multigrid and defect correction

3.2.1. Introductory remarks. The set of algebraic equations obtained
by the discretisation introduced in Chap. 2 is solved by point Gauss-Seidel
relaxation, with multigrid convergence acceleration. This particular multi-
grid procedure is an application of the nonlinear multigrid scheme, called full
approximation storage [3]. For the second-order discretisation this process is
embedded in an iterative defect correction process [1], [10]. The implemen-
tation of the multigrid scheme is directly based on the methods described
n [15], [16], [31], [32] and [33], extensively applied in [33], [18] and [20]. Itera-
tive defect correction is described in [1] and [10] and applied in [13], [32], [33],
[18] and [20]. The basic method inside the iterative defect correction method,
which is used to (approximately) invert the inaccurate discrete operator, is
the nonlinear multigrid method.

In this section we give a brief description of the methods, and the slight
modifications to our application. The description is a summary of the de-
scription presented in [36].

3.2.2. A locally nested sequence of discretisations. In order to use
multigrid we have to specify grid transfer operators. The restriction operators

R;H and Rfﬂ and the prolongation operator PZH'1 are defined such that (i)
a sequence of locally nested discretisations on the sequence of locally refined
grids is obtained and such that (ii) the coarse-grid equations (2.3.14) are
satisfied implicitly. A locally nested sequence of discretisations {Nl}lzg___. pof
the differential operator N is obtained, by definition, if a coarse-grid discrete
operator N'!, restricted to the refined cells, is a Galerkin approximation of
the fine-grid discretisation. By definition, the restriction RWHIN! as an
approximation to N!*1 is called a Galerkin approximation if

- l l .o
{Nl(ql;ql 1)}1"]‘ — {R§+11Vl+1(Pll+1ql;ql)}i‘j, V(Z,],l) c If.
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The restriction operator for the solution, Ri+1 : XYy - Xl(ﬂlf), is
defined by the operator which approximately takes the integral mean value
(cf. (2.3.5))

—1 ! 1 o .
{Rl+lql+1}_ , = Z Z q'f;:'lv V(Z.'_],l) € [f

W o 5
meK(i,j)

As noted in Sec. 2.4, this restriction is second-order accurate. For the right-
3 .. i+l ol .

hand side a restriction operator, R}, : Y “ Q) - v (Q%), is defined

by

1q1 .
(3.2.1) {Rfﬂrlﬂ}i.j = Z rl (i, € I]lc.
meK(i,j)

The operator for the prolongation of a correction for the solution, PIH'1 :

X'(Q) - X (1), is defined by

I+1 i w .
(3.2.2) {P*'q'},. =dl;, YmeK(i,j)and ¥(i,j) € I\.
As shown in [33], [18] and [20], these restrictions and prolongation appear to
give very good multigrid performance (together with the point Guass-Seidel
relaxation). The prolongation (3.2.2) and restriction (3.2.1) satisfy the multi-
grid rule (cf. [10], [14], [42])

my, + m, > 2m,

where m{, is the order of accuracy of the interpolation used in the prolongation,
(for P/ this is O(h;)), m, the order of accuracy the restriction (for R},

this is O(h?), taking into account that R}, is a restriction in Yl) and 2m the
order of the differential equation (2m = 1 for the Euler equations). For the
given definitions of restrictions and prolongation, the set of first-order accurate
discrete equations, exclusive the equations involving a green boundary, form
a locally nested sequence of discretisations, (i.e., the coarse-grid discretisation
is a Galerkin approximation of the fine-grid discretisation). The first-order
accurate reconstruction which uses first-order accurate computation of virtual
states (hence first-order weak consistency), yields a locally nested sequence.

3.2.3. The FAS and FMG scheme. In the nonlinear multigrid algo-
rithm FAS the equations for the first-order accurate discretisation are solved.
We identify the discrete operator with first-order accuracy by N}, and with
second-order accuracy by N};. The set of equations to be solved is then given

by

(3.2.3a) Ni(¢'¢'™h) = ¢,
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where the right-hand side s is given by

(3.2.3b)
Tﬁ.ja (i,4,0) € I, l
] -
ol = {N{(Rzﬂql;ql 1)}”.
) l ¥ 3
_ {Rf—kl (NIH—l(qu',ql) _ SHl)}i,j 7 (2,]71) = ]f,

and where rf‘j is defined by (2.3.10). Upon convergence of the nonlinear
multigrid scheme, the solution of (3.2.3) satisfies (2.3.12), with appropriate
definition of the numerical flux Fil,j.l and it satisfies (2.3.14).

The collective, symmetric point Gauss-Seidel relaxation on each level of

refinement acts as a smoother in the FAS scheme. For each cell Qij visited,
the state qf'j is updated, by iterating on the local system {N}(¢';¢'™1) 5] =
rfyj, solving for qf‘j using Newton iteration. The residual tolerance for this
Newton iteration is taken such that in all but exceptional cases only one or two
iteration steps are performed. The cells on each level are visited in an order
which is equivalent to the usual lexicographical order. After a first relaxation
sweep has been done, another sweep is done in the reversed direction. This
smoother is shown to be very efficient [15], in both subsonic and supersonic
Euler flow computations. A FAS cycle, where all ¢!, 1 = 0,. .., L are improved,

is a recursive algorithm defined by the following steps:

(1) improve the solution ¢' by applying p pre-relaxations to (3.2.3a) for
level [, resulting in the approximate solution (g')o;

(2) compute the right-hand side s'~!, determined by (3.2.3b) for level [;

(3) improve the solution ¢'~! by applying ¢ FAS cycles to the equa-
tions (3.2.3a) for level | — 1;

(4) compute the correction of the solution, given by the difference of the
present coarse-grid solution and the coarse-grid restriction, d'~! =
¢ = R (¢)os

(5) improve the solution ¢! by adding the prolongation of the coarse grid
correction, ¢' = (¢')o + P}, d'";

(6) improve the solution ¢! by applying ¢ post-relaxation sweeps to the
system (3.2.3a) for level [.

The steps (2)—(5) together are called the coarse grid correction. These steps
are skipped for level 0.

The initial solution on the finest level is obtained by application of nested
iteration (FMG) [2], [3], [10]. For a level [ > 0, a cycle of the FMG scheme is
recursively defined as follows:

(1) if I = 0 initialise the solution gy with some ‘arbitrarily’ chosen so-

lution; if { > 0 initialise the solution on level | with a prolongation

s
-1,
'Pl—lq )



3.3. Refinement cycles 57

(2) improve the solution on level I by application of 4 FAS cycles with
level [ as highest level;

(3) if level I is not the highest level, then apply the FMG iteration cycle
with a finest level [ + 1;

Throughout the experiments presented in this chapter we use o = 1 (V-
cycles), p = g = 1 (a single pre-relaxation and a single post-relaxation) and
7 =1 (a single V-cycle, before starting on a higher level). The prolongation

=l+1 . A . e " ’
Pl+ used in the FMG algorithm is bilinear interpolation.
3.2.4. Defect correction. The set of equations for second-order accuracy

is solved, using iterative defect correction [10], [1]. The set of higher-order
discretised equations on a level [, are given by

(3.2.4) Ni(gq'™h) =rt.
The IDeC algorithm solves these equations, by iteratively solving
Ni(g';¢'™h) =,

applying the FAS scheme, with a modification to the right-hand side s’ for the
equations for a cell of the composite grid, i.e. step (2) of the FAS algorithm.
An initial solution for the IDeC process is obtained by application of the FAS
algorithm to (3.2.3). In the IDeC iteration the right-hand side s depends on
the defect of the higher-order accurate equations through

- l _ l .o
{Ni(dha Db, - {Nh(d5d )}, G el,
1 _ l
(3.25)st; = { {M(Rl,1a*%: ¢! 1)}”
\ ! .
- {R§+1 (NIl+l(ql! ql+1) - Sl+1) }i,j ) (L]a l) € If

In step (2) of the FAS algorithm the right-hand side is computed by (3.2.5).
Upon convergence of the IDeC scheme (3.2.4) is satisfied.

In [18] it is shown that one nonlinear multigrid cycle per defect correction
cycle is sufficient and most efficient. In all our experiments we do the same
and use a single nonlinear multigrid cycle per defect correction cycle.

Before any local grid refinement is introduced, the solution on a basic level
ly is approximately computed. This is done by application of the nested
iteration FMG, one or two FAS cycles to approximately solve the first-order
accurate discretisation and then a sufficient number of IDeC cycles, for second-
order accuracy.

3.3. Refinement cycles

Solution-adaptive grid refinement involves the grid to be refined at some
stage in the solution process. Based on an a-posteriori estimation of relevant
quantities appearing in the refinement criterion, the grid is refined where these
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quantities exceed a pre-set or solution-dependent threshold value, (cf. (5], [29],
[26]).

A computation with use of local grid refinement starts with applying the
FMG algorithm and possibly subsequent iterative defect correction, so that
an approximate solution is obtained for the uniform grid on some basic level
Iy. Introduction of local grid refinements is accomplished by the following
refinement algorithm, for [ the highest level present:

(1) determine which cells on level [ should be refined, or may be deleted
from the system, based on the refinement criterion and an a-posteriori
estimation of the relevant quantities used in the refinement criterion
and based on the requirement that a virtual state vﬁ‘j only depends
on ¢! and ¢!~ 1;

(2) decide whether a grid on level [ + 1 should be created, call the (new)
highest level, level L;

(3) refine the grid and delete obsolete cells on all levels, from l; up to and
including level L — 1;

(4) initialise the approximate solution of the newly created refinements by
application of the prolongation P™+!, for m =1;,...,L — 1 (similar
to the FMG algorithm);

(5) improve the solution on all levels by application of p FAS (first-order
discretisation) or IDeC (second-order discretisation) iterations on the
composite grid;

(6) either apply a refinement cycle on the new system, or solve the present
system of equations by a sufficient number of iterations;

The decision in step (2) of the refinement algorithm may be determined by
the answer to the question whether the grids on all currently present levels
have sufficiently converged, or whether the highest level allowed has already
been reached. Notice that for newly created cells, the refinement cycle ac-
tually is an application of the nested iteration algorithm FMG, introduced
in the previous section. For the prolongation PIH'1 a bilinear interpolation is
used for all newly created cells. In second-order computations, after initiali-
sation of the solution for newly created cells, defect correction is continued,
without applying the nonlinear multigrid scheme to the first-order accurate
system (3.2.3) first. The number of iterations p before a new refinement cycle
is started, step (5) of the refinement algorithm, determines to a large extent
the efficiency of the adaptive grid refinement method. However, using an in-
sufficient number of iterations in step (5) may yield a grid too much distorted
by the insufficiently converged numerical solution, as compared with the grid
that would be obtained with a converged solution. In practice, p =1 or p =2
for a first-order discretisation appears to yield a grid virtually the same as
the grid obtained by using a fully converged solution. For a second-order
discretisation p = 4 or p = 5 is sufficient.
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3.4. Some aspects of implementation

In order to perform multigrid accelerated Euler flow computations with
solution-dependent local grid refinement, a computer code has been developed
in portable FORTRAN 77. This code consists of two modules. One module is
called BASIS, and is entirely devoted to set up and do maintenance on the data
structure. It is described in [17]. The second part, called EULER, consists
of all routines related to the adaptive multigrid Euler flow computations.
This module is described in [37]. Recently some work has been done on
vectorisation of this code for a CRAY Y-MP. This resulted in an additional
module, called EUVEL, which is presented in [25].

The data structure reflects the quad-tree relations of the cells in the geo-
metric structure. The grid, made up by the geometric structure, is composed
of so-called patches. A patch consists of a corner point, and possibly a hor-
izontal wall, a vertical wall and a cell. If a patch contains a cell, sufficient
neighbour patches exist to provide the necessary edges and vertices. On the
other hand, each corner point, each edge and each cell of the geometric struc-
ture belongs to some patch. All data in the structure are stored and referenced
through these patches. The patches in the data structure are also related in
a quad-tree structure. As a matter of fact, the tree of cells is a subtree of the
tree of patches.

In the linked list that implements the quad-tree structure, nine pointers
are used for each patch. One pointer to the parent of a patch, four pointers
to the kid patches and four pointers to the neighbours of a patch. In the
FORTRAN implementation the use of pointers in the linked list is emulated
by a large, two dimensional array of type integer. Each patch has a unique
number. For each patch the patch numbers of its parent, its possible kids and
its possible neighbours are stored in a row of the integer array. Furthermore,
for each patch a set of properties is kept, which identify the type of the patch:
whether the patch contains a cell, whether the horizontal wall or vertical wall
1s part of the green boundary or the boundary of the domain, whether the
cell contained in the patch may be refined upon the earliest possible occasion,
etc.. These properties are stored in a two dimensional array of type logical,
the column identified by the unique number of a patch and the row identified
by a specific property. Finally, all real data for the numerical problem are kept
in another two dimensional array of type real. These data are also addressed
through the unique patch number. For each patch a total of 18 real numbers
are stored. The data structure handled by BASIS has a much wider range of
applications than Euler flow computations and than cell-centred discretisation
schemes.

All actions on the data in the data structure are performed through a
depth-first traversal of the tree. The subroutines performing the necessary
numerical actions work by application of this tree traversal algorithm.

For each patch visited through this algorithm, a subroutine is called to per-
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form some action on the data in the data structure. The quad-tree structure
and the use of such a traversal algorithm to perform any task, is very well
suited for the implementation of a multigrid algorithm with adaptive mesh
refinement. However, as noted in [25], automatic vectorisation (i.e., vectorisa-
tion by the compiler) of a code of this nature does not gain any performance.
Therefore, in the vector extension library presented in [25], subroutines are
provided that collect pointers to patches containing the geometric structure
of a single level of refinement, and place them in an appropriate order in
a separate array of pointers. The order of pointers in this array makes the
smoothing suited for vectorised processing. Furthermore, in the vectorisable
extension the original subroutines that are called for each single patch to per-
form some numerical action on the data, have been modified so they work
on multiple patches. If instead of Osher’s numerical flux, Van Leer’s numeri-
cal flux function is used, (in both the vectorised and non-vectorised code) an
overall speed-up of approximately four is obtained.

3.5. Shock reflection

3.5.1. The problem. In this section we consider a shock reflection prob-
lem. This is a gas-dynamics problem of a supersonic flow along a flat solid
surface. The domain of definition is 2 = {(z,y) |0 <z < 4,0 <y < 1}, and
the flat surface is located at y = 0. A shock is impinging from the point (0, 1),
at an angle of 29° with the positive z direction. The boundary conditions for
this solution are, at the inflow boundary z = 0 given by

u(0,y) =1,
v(0,y) =0,
M(0,y) = 2.9,
p(0,y) = 1.

At the inflow boundary y = 1, the flow perpendicular to the horizontal bound-
ary is subsonic, and we impose three conditions. These are approximately
given by
u(z, 1) = 0.90322141,
v(z,1) = —0.17459319,
M(z,1) =2.37807192.

The boundary y = 0 is the solid wall, and we impose impermeability, given
by

(w-n)ly—0 =0,

y=0

where n is a normal on the boundary 0Q and w = (u,v)T the velocity vector.
The shock is reflected at the solid wall, at an angle of about 23.279°. The
exact solution is known from simple gas-dynamics shock relations. It is a
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piecewise constant function. The impinging and reflected shocks form the
discontinuities of this function.

3.5.2. Refinement. The domain Q is rectangular. The coarsest grid
used, level zero, is a 6 x 2 grid. The basic level is [, = 1. Since away from
the shock, the exact solution is a constant function, for both, a first-order
discretisation and a second-order discretisation, the local discretisation error
Is zero, away from the shock. For an adaptive computation, it is sufficient
for this problem to use only the variation of the solution as the refinement
criterion. Hence, grids are refined based on the first undivided difference of
a component of the solution. According to research on the use of undivided
differences as a general refinement criterion, it is found that of any component
of the solution, the first undivided difference of density gives best results ([5],

[6]).

3.5.3. Results. For this problem, away from the shock, the discretisation
yields equations with local discretisation error equal to zero. The accuracy of
the results will be determined to a large extent by the resolution provided by
the grid used.

First-order discretisation. The equations resulting from the first-order dis-
cretisation, are solved on an adaptively refined grid. For the highest level
L we take L = 4, L = 5 and L = 6 respectively, to study the convergence
behaviour. The number of multigrid FAS iterations (V-cycles) for each refine-
ment cycle is two. A cell is refined if the absolute value of the first undivided
difference in either z direction or y direction exceeds 0.05. We consider re-
finements to have become obsolete if the absolute value of the first undivided
difference of density drops under 0.025. In Tab. 3.5.1 the number of cells used

TABLE 3.5.1. Final number of cells used for shock reflection
problem; first-order discretisation.

locally refined uniform

L | composite | total | composite | total

4 1533 2040 3072 4092
5 3582 4772 12288 16380

(6 7797 10392 49152 65532

are given for both the locally refined and the uniform grids with a highest
level L = 4,5,6 respectively. Notice that the number of cells approximately
doubles, going from finest level L = L* to finest level L = L* + 1. Fig. 3.5.1
shows for L = 5 the grid obtained by local refinement and the corresponding
uniform grid, with iso-plots of the Mach number on both the adaptive and
non-adaptive grid respectively. In Fig. 3.5.2 the convergence histories of both
the adaptive method and the method using uniform grids are given. These
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FIGURE 3.5.2. Residual vs. amount of work: convergence
histories for adaptively refined and uniform grids; first-order
discretisation; o: L =4; +: L =5; 0: L = 6; ——— locally
refined; — —: uniform.

figures show the logarithm of the mean of the four discrete L; norms of the
residual of the first-order discretisation, on the components of X .(f.), for
all (4,7,1) € I, defined by (A} ;)"'{N{(¢';¢'~) — r'}} ;, vs. the logarithm of
number of Newton iteration steps performed (i.e., the iteration used in the
point relaxation to relax the nonlinear system for each cell). Each of the four
norms is the discrete L; norm of a residual of the discretisation of one of
the conservation laws. For L = 6 the number of Newton iteration steps to
convergence up to machine precision for the adaptive method is about nine
times less than the number of iterations needed when a uniform grid is used,
while virtually the same solution is obtained (cf. Fig. 3.5.1 and Fig. 3.5.2).
For L = 5 the number of iterations for the adaptive method is about five
times less and for L = 3 this is about 2.5 times less.

Second-order discretisation. We use the second-order discretisation NIII, with
the Van Albada limiter (cf. [35]), and virtual states as defined by (2.5.4). The
refinement decision is the same as for the first-order discretisation. The num-
ber of defect correction iterations in each refinement cycle is five. It appears
that after five defect correction cycles possible wiggles in the ‘initial’ solution
have vanished. The final locally refined grid and iso-lines of Mach number
for L = 5 are shown in Fig. 3.5.3 The number of cells for local refinement
with this second-order discretisation is given in Tab. 3.5.2. Notice that the
number of cells for all levels L = 4,5, 6 is much smaller for the adaptive com-
putation with the second-order discretisation than for the computation with
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FIGURE 3.5.3. Grid and iso-lines of the Mach number for
the shock reflection problem on a locally refined grid; second-
order discretisation; L = 5.

TABLE 3.5.2. Final number of cells used for shock reflection
problem; second-order discretisation.

locally refined uniform
composite | total | composite | total
924 1228 3072 4092
2004 2668 12288 16380
4707 6272 49152 65532
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the first-order discretisation. For the second-order discretisation some extra
refinements may be introduced, apart from the refinements introduced by the
refinement criterion itself. These are introduced in order to let virtual states
for the discretisation on level I, depend only on the solution on levels [ and
[—1.

Convergence histories for locally refined and uniform grids are given in
Fig. 3.5.4. This figure shows the logarithm of the mean of the four discrete

10 log
(residual)

T | I ;
2 3 4 5 6 7
19 log(number of local Newton iteration steps)

FIGURE 3.5.4. Residual vs. amount of work: convergence
histories for defect correction and second-order discretisation
on uniform and locally refined grids; o: [ = 4, +: L = 5;
o: L =6; : locally refined; — —: uniform.

Ly norms of the second-order discretisation on X.(9.), vs. the logarithm of
the number of Newton iteration steps. We did not consider L = 6 and a
uniform grid. This problem is so large that it causes the computer to start
swapping pieces of memory to disk, resulting in a very large processing time.
Apparently, the defect correction process does not converge for uniform grids.
The reason for this is possibly the following. On a uniform grid, with finest
level L, many more Fourier modes can be represented than on the refined grid
with finest level L. Especially low-frequency modes can be represented very
well on the uniform grid, better than on the locally refined grid. In [8] an
amplification factor g ~ 1 for low-frequency Fourier modes is found, in case of
the linear convection problem in two space dimensions. However, it should be
stressed that for this linear convection problem this high amplification factor
corresponds to functions that are constant in the characteristic direction of
the problem.



66 3. Applications

TABLE 3.5.3. CPU-time required per Newton iteration step
for the shock reflection problem.

- uniform-grid

‘ " adaptive-grid code

| 7 ilﬁézilly refined 1 uniform ‘ code J
FAS \ 0.96 ms/iter. | 0.93 ms/iter. 0.84 ms/iter. |
| IDeC/FAS | 1.14 ms/iter. | 1.03 ms/iter. 1 0.84 ms/iter.ﬁL

The defect correction algorithm for the locally refined grids does converge.
For the second-order discretisation and defect correction, the discretisation
on a locally refined grid yields a more robust algorithm for this problem.

3.5.4. Execution time. In order to get some idea of execution time, for
this problem we give CPU-times of our FORTRAN research code on an SGI
IRIS INDIGO XS workstation. All optimisation was done by the compiler. We
give the average CPU-time it takes for all operations of the local refinement
computation, per Newton iteration step. Note that the Newton iterations
referenced here are local Newton iterations, used in the point relaxations. The
results are given in Tab. 3.5.3. This table also shows the average CPU-time
for another multigrid code, developed to work with uniform grids only. This
particular code, called EULER?7, implements the same multigrid and defect
correction algorithms as used in the code for adaptive computations (cf. [18]).
The FAS algorithm on a locally refined grid appears to be only three percent
more expensive per Newton iteration step than on a uniform grid with the
adaptive code. The iterative defect correction for a locally refined grid appears
to be about 18% more expensive per Newton iteration step than iterative
defect correction on a uniform grid. For the FAS algorithm, the adaptive
code with local grid refinement, appears to be about 14% more expensive per
Newton iteration step, than the non-adaptive code EULER7. For iterative
defect correction, the adaptive-grid code is about 34% more expensive per
Newton iteration step than EULERT.

3.6. Airfoil flow

In this section we consider the transonic flow around the NACA0012-airfoil.
The flow conditions at the far-field boundary are: M. = 0.8, angle of attack
o =1.25° ps =1 and (u% + v%) = 1. The computational domain extends
to about 100 chords to all sides.

As the second-order operator Nj;, we use the Van Albada limiter scheme
[35], [31] and, again, third-order accurate computation of virtual states, as
given by (2.5.4). The limiter scheme is used, since spurious wiggles in the
solution are expected if a second-order non-limiter scheme is used.

In the refinement criterion we use first undivided differences of the den-
sity, in both the streamwise direction and perpendicular to the streamwise
direction. Two thresholds are used, one for each direction. This prevents the
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algorithm from refining in the neighbourhood of a shock only. It allows the
algorithm also to find the contact discontinuity, and to resolve the expansion
region. Then, we not only get a good resolution of the shock, but also a good
resolution of the expansion, and this in turn is important for the accurate
computation of the lift and drag coefficients. The use of only one threshold
value (i.e., the same threshold for both criteria) would be inefficient for a small
threshold value (too many refinements) On the other hand, a larger threshold
value only refines at strong discontinuities.

The grid used is an O-type grid. The coarsest grid is a 5 x 8 grid. The
highest level is L = 5. The uniform grid for level [ = 1 is shown in full and in
detail in Fig. 3.6.1. A cell is refined if the first undivided difference of density

135 1.6 \
| \ <% \
\ \\
Y0 f | 0 x
\
!/ i‘
\
\ /
—135 —-1.5
—100 0 100 -1 —-0.5 0 0.5 1
T T
a. In full. b. In detail.

FIGURE 3.6.1. Uniform grid of level | = 1, around NACA-
0012 airfoil.

in flow direction is larger than 0.02, or when this difference in the direction
perpendicular to the flow is larger than 0.004. The final adaptively refined
grid, with L = 5, is shown in Fig. 3.6.2. In Fig. 3.6.3 the Mach number
distributions are shown both for an adaptively refined and for a uniform grid.
The pressure distribution for the uniform grid and for the locally refined grid
are shown in Fig. 3.6.4. For the lift and drag coefficient on the adaptively
generated composite grid we find ¢; = 0.3480, ¢; = 0.0235. On the non-
adaptive grid we find ¢; = 0.3512 and ¢; = 0.0235. The difference between
these values is less than 10% of the scatter found between different reference
results listed in [41]. This reference gives ¢; = 0.3632 and c; = 0.0230 obtained
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FIGURE 3.6.2. Locally refined grid with L = 5, around
NACA0012 airfoil.
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a. Adaptively refined grid; L = 5. b. Uniform grid; L = 4.

FIGURE 3.6.3. Iso-line plots of the Mach number for the
transonic flow around a NACA0012 airfoil; « = 1.25°; M =
0.8; locally refined grid: L = 5; uniform grid: L = 4.
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FIGURE 3.6.4. Pressure distribution for adaptively refined
and uniform grids for transonic flow around a NACA0012
airfoil; a = 1.25°; M = 0.8; — locally refined grid,
L =5; — —: uniform grid, L = 4.

on a grid of 20480 cells, by Schmidt and Jameson [41]. The number of cells on
the adaptively generated composite grid is 7876 and a total number of 10488
cells was used in the computation. The non-adaptive grid uses 10240 cells on
the finest grid and a total number of cells of 13640. The convergence histories
of both the adaptive and non-adaptive case are shown in Fig. 3.6.5. The
adaptive computation takes about three times less work than the computation
on the non-adaptive grid.

3.7. Spurious entropy generation for subsonic flow past a
compression corner

3.7.1. Introduction. In this section we study the numerical entropy gen-
eration for the steady, two dimensional Euler equations and a perfect gas. Nu-
merical approximations of the subsonic Euler flow along a compression corner
show spurious entropy generation, which is virtually independent of the mesh
size of the computational grid. Sometimes, simple incompressible flow models
are used to describe the flow in the vicinity of geometric singularities, such as
the compression corner shown in Fig. 3.7.1. The presumption that the velocity
near the corner is small, is then used to justify incompressible wedge flow as a
model. The compressibility effect is often accounted for by a correction, such
as the Prandtl-Glauert rule. However, in [40] it is found analytically, using the
hodograph transformation, that even in a subsonic case the flow does not have
to stagnate in the corner. Hence, the use of an incompressible model to ap-
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FIGURE 3.6.5. Residual vs. amount of work: convergence
histories of defect correction and second-order discretisation
for NACAQ012 airfoil flow; a = 1.25°; M. = 0.8; locally
refined grid: L = 5; uniform grid: L = 4.

FIGURE 3.7.1. Subsonic flow along a kinked wall.
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proximate the subsonic compressible flow along a compression corner may be
unrealistic, since for incompressible models the corner is a stagnation point.
Furthermore, the singularity in the solution at the corner for compressible
flow appears to be considerably more complex than that for incompressible
flow. Trying to remove the singularity by postulating the same singularity as
for incompressible potential flow (i.e., an inverse power of the distance to the
corner) in the Euler model, has proved to be unsuccessful (cf. [39] and [38]).

In a numerical method, discrete convergence of the solution may be ob-
tained by considering the compression corner as the limit of a smooth surface,
which is parametrised by the mesh width of the grid. However, convergence
is slow. This problem shows a way to use a local grid refinement technique as
a tool to approximate a singular solution. For the approximation of a singu-
lar solution, the grid becomes singular too, for mesh width h; — 0. We use
the solution-adaptive grid refinement method to obtain reasonable discrete
convergence, without excessive computational cost.

3.7.2. The problem. A typical layout of the geometry of the problem
at hand is shown in Fig. 3.7.1, and the corner with angle §. We consider a
flow problem which is known to be exactly homentropic. As is well-known, in
steady subsonic flow, the entropy along a streamline is constant. Hence, a first
requirement for obtaining a homentropic flow is to impose a constant entropy
at inflow in the domain. Furthermore, at the inflow boundary the velocity
vector is imposed. This velocity corresponds with that of an incompressible
potential flow (i.e. irrotational) along the surface, which is analytically known
by conformal mapping. At outflow the corresponding pressure is imposed.

Boundary conditions are incorporated into the discretisation scheme in a
way which is consistent with the discretisation in the interior of the compu-
tational domain (cf. [16]). In subsonic flows, this requires three boundary
conditions at inflow and one boundary condition at outflow. Notice that
by just obeying these numbers in subsonic flow computations, mathemat-
ical well-posedness is not yet guaranteed. For a study of the mathematical
well-posedness of some typical subsonic outflow boundary conditions, we refer
to [19].

The domain of definition is the area covered by the grid in Fig. 3.7.2.
With the grid shown in Fig. 3.7.2 and similar 16 x 16 and 8 x 8 grids, a
straightforward application of the discretisation gives for the entropy a result
as shown in Fig. 3.7.3. This clearly shows that the entropy error is virtually
independent of the refinement of the grid.

3.7.3. Nature of the error. In [38] a number of possible causes for this
behaviour are considered, in order to make the nature of the zeroth-order
error plausible.

First the local discretisation error is studied. In the discretisation an in-
consistency is encountered, which is due to the kink in a grid as in Fig. 3.7.2.
This inconsistency in the discretisation appears in equations derived for the
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FIGURE 3.7.2. The uniform grid along a compression corner;
32 x 32.
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FIGURE 3.7.3. The entropy error for the computation of the

flow past a compression corner; 6 = 10°; o: 8 x 8; 0: 16 x 16;
+:32 x 32.




3.7. Spurious entropy 73

cells directly bordering the grid line emerging from the corner. It appears
from numerical experiments with the kinked grid and a smooth flow, that this
inconsistency has no adverse effect on the entropy error.

Secondly, the discretisation of the solid-wall boundary conditions are stud-
led, again by numerical experiment. For this purpose, the wedge-shaped wall
is replaced by a continuously curved wall. The boundary conditions are dis-
cretised identically as in the case of the wedge shaped wall. It appears that
the discretisation of the solid wall boundary conditions also has no adverse
effect on the entropy error.

From the experiments it becomes plausible that the singularity in the exact
solution itself causes the bad convergence behaviour.

3.7.4. Parametrised smooth wall. In this subsection we study the en-
tropy error in the flow along a continuously curved wall. The shape of the
wall that we use, is given by

07 T S —%l,
(3.71)  yu(z) = (“—J}Zﬁ = %(ﬂ- 1;3/2[)4) tan é, —%l <x< %l,
z tané, %l <z

Here, [ is the length of the curved part of the wall and & the angle between
the positive z direction and the uncurved part of the wall at z > Uhl. The
geometry is shown in Fig. 3.7.4. The wall is defined in such a way that

Y

FIGURE 3.7.4. The flow along a continuously curved wall.

Yuw € C?[—1,cos6]. The grid used is shown in Fig 3.7.5. In Fig. 3.7.6, for
6 =10° and | = 1 the entropy error along the wall is shown for the 32 x 32,
16 x 16 and 8 x 8 grid. We find that the entropy error is first-order in mesh
size as already mentioned in Sec. 3.7.3.

In these results the length [ of the continuously curved wall segment is the
same for all grids considered. Now we re-compute the flow along a contin-
uously curved wall (3.7.1), but we let [ depend on the mesh size. We use
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FIGURE 3.7.5. A grid along a continuously curved wall; 32 x 32
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FIGURE 3.7.6. The entropy error for the computation of the
flow past a continuously curved wall; § = 10°; 0: 8 x8; 00: 16 x
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l = O(h?), p > 0, where h is the mesh width in the direction of the z axis. If
p < 00, it is clear that for A — 0 the curved wall degenerates into the wedge-
shaped wall. The results in Fig. 3.7.3 and in Fig. 3.7.6 can be considered as
those for the limit p = oo and p = 0, respectively. The number of cells N
along the curved part of the wall is

l
N=_.
h
Hence, with [ = O(h?), we have
N = O(h?~1).

For p > 1 and in the limit A = 0, there would be only one grid line emerg-
ing from the corner, and we arrive at a similar situation as for p = oo (ie.,
zeroth-order entropy error). Thus, looking for decreasing entropy errors for
decreasing mesh width, solving the problem of subsonic flow past a compres-
sion corner, we must take 0 < p < 1. In Fig. 3.7.7 the behaviour of the entropy
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4

0 I I 1 T
0 0.2 0.4 0.6 0.8 1
p

FIGURE 3.7.7. The order of discrete convergence; | = h?; § =
10°; o: computed from 16 x 16 and 32 x 32 grids; O: computed
from 32 x 32 and 64 x 64 grids.

error when [ decreases as a function of h. Here, for | we take [ = ¢, h?, with
c1 constant, and for the entropy error we assume the form

o] e
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¢y constant, and ||.||~ a discrete supremum norm. From numerical experi-
ments with ¢; = 1, on a 16 x 16, a 32 x 32 and a 64 x 64 grid, g has been
determined as a function of p. As already shown, for p = 0 we find g ap-
proaches 1, as h approaches 0.

We find that for a subsonic flow, the flow along a curved wall can be
used to successfully compute the flow along a compression corner. For p €
(0,1), and h — 0, the curved wall becomes kinked and the entropy error
vanishes, because for any p € (0,1) it appears that [[s/sref — Lfloc = O(h?),
and g > 0. If we want to have the entropy error disappear at the same rate
as [, then according to Fig. 3.7.7, we should take p ~ 0.4. In Fig. 3.7.8 we

0.002 S

S
— —1 0.001-
Sref

FIGURE 3.7.8. The entropy error for the computatrion of
the flow past a continuously curved wall; | = RO 6 = 10°;
©: 16 x 16; O: 32 x 32; +: 64 x 64.

give the entropy error distributions along the wall, as obtained for p = 0.4
on a 16 x 16, a 32 x 32 and a 64 x 64 grid. Given the rather low order of
accuracy, ¢(p = 0.4) = 0.4, reduction of the entropy error below some required
tolerance level may become expensive when applying uniform grid refinement.
As an example of adaptive local grid refinement, in Fig. 3.7.9 we give results
obtained on a 32 x 32 grid and local refinements, with p = 0.4. The entropy
error is used in the refinement criterion. The criterion is based on the discrete
gradient of the entropy error in streamline direction (v - Vs)/|v|, multiplied
by the square root of the area of a cell, and with v the velocity vector, s
the entropy and V a discrete gradient operator. Fig. 3.7.10 gives the locally
adapted grid for the result of Fig. 3.7.9: the 32 x 32-grid with four additional
levels of local refinement is shown. Notice that for decreasing mesh width,
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FIGURE 3.7.9. The entropy error for computation of flow
past a continuously curved wall with adaptively refined grids;
1 = h{*; 0: 32 x 32; 0: 32 x 32 with two levels of refinement;
+: 32 x 32 with four levels of refinement.
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FIGURE 3.7.10. Adaptively refined grid; | = h$4; § = 10°;
32 x 32 grid, with four levels of local refinement.
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the refined regions get smaller and also get closer to the corner. Finally, in
Tab. 3.7.1, for the three grids considered in Fig. 3.7.9 we give an impression

TABLE 3.7.1. Geometrical data for the adaptively refined
grids, with [ = hY*  § = 10°.

| grid | 1 N |
‘( 32 x 32 without local refinement \ 0.3299 ﬂ
' 32 x 32 with two levels of local refinement | 0.1895 12 |
| 32 x 32 with four levels of local refinement | 0.1088 28 |

how the rounded corner converges to the kink for decreasing mesh width.

3.7.5. Concluding remarks. It is possible to remove the zeroth-order
global discretisation error from the numerical approximation of the subsonic
Euler flow past a compression corner. Poor computational efficiency due to the
rather low order of accuracy, may be effectively circumvented by application of
local, solution-adaptive grid refinement. Numerical results indicate that local
refinement (combined with the smooth discretisations of the kinked wall) is
an alternative to reduce the error, without increasing the computational effort
excessively .

We found the paradoxical result that by making a sequence of geometrically
less accurate discretisations of the compression ramp, a numerical solution
of the flow with better error behaviour can be obtained. The less accurate
discretisations of the kinked wall employ discrete smooth versions of the exact
kinked wall. By making the discretisation of the geometry dependent on the
mesh size h, an O(h?), 0 < g < 1, entropy error can be obtained. For this
result, the grid has a singularity at the compression corner.

3.8. Shock wave on a continuously curved, convex surface

The main subject of this section is the flow near both ends of a shock wave,
as it appears in transonic flows. Generally, a local supersonic flow suddenly
becomes subsonic, after being expanded along a convex surface. We say that
the supersonic region is fenced off by a shock. In such a steady, inviscid flow
along a continuously curved, convex wall (cf. Fig. 3.8.1), the following two
intriguing flow regions exist:

e the flow region where the shock wave abuts the continuously curved,
convex wall (the shock-foot region);

e the flow region near the other end of the shock wave (the shock-tip
region).

We start by reviewing some studies of the local flow in both regions. Next,
a detailed numerical study is presented of the flows in these regions. The
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shock-tip region

shock-foot region

FIGURE 3.8.1. Shock wave fencing off local supersonic zone
along continuously curved, convex wall.

solution-adaptive method is used to ‘zoom in’ to interesting phenomena. Em-
phasis is on the surface pressure, on the downstream side of the shock, and
the way in which the shock and the smooth part of the flow merge, at the tip
of the shock.

In the following, the shock foot and shock tip are defined as the lower and
upper end point of the shock wave, respectively.

3.8.1. Shock-foot region. We introduce a Cartesian coordinate system
(z,y), with its origin at the foot of the shock and with the direction of the
positive y axis perpendicular to the surface, pointing into the flow. We also
introduce a curvilinear system (£, n), with its origin at 2 = 0, y = 0, and
positive 1 along the shock. We assume that the flow is homentropic upstream
of the shock, as is the case for the steady flow around an object in uniform
free stream. We consider two situations at the shock foot; one called a normal
extension and the other an oblique extension.

Normal shock with normal extension. At the foot of a shock, the follow-
ing physically interesting situation occurs. Since we consider a continuously
curved surface, the flow does not change direction when passing through the
foot of the shock. Hence, the shock is necessarily normal to the surface and,
passing through the shock foot, the gas motion satisfies the normal-shock rela-
tions. However, the gas motion also has to satisfy the equations of curvilinear
motion.

dp _ ypM?
dy R
Here, M is the local Mach number, p the pressure, R < oo the local radius
of curvature of the surface, at (z,y) = (0,0), and v the (constant) ratio of

(3.8.1)
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specific heats.

We consider a shock which is a normal shock at n = 0, and which is still a
normal shock within some distance € > 0 away from the foot. Such a situation
is shown in Fig. 3.8.2. Hence the normal-shock relations are satisfied for all

FIGURE 3.8.2. Normal shock with normal extension.

n < €. We refer to such a shock as a normal shock with normal extension.

The relations for a normal shock, and for curvilinear motion may be contra-
dictory. Satisfying shock relations for a normal shock with normal extension,
does not necessarily mean satisfying equation (3.8.1). We show that this is
the case, by showing that a contradiction arises for a normal shock wave with
normal extension, unless the flow directly upstream of the shock foot is a
flow with a particular Mach number. We introduce the subscripts 1 and 2
for the upstream and downstream side of the shock, respectively (Fig. 3.8.2).
From (3.8.1) we have at the shock foot, downstream of the shock

By R

MZ
(3.8.2) Opa _ Yp2M;

We may also write for dpy /0y

Opy  p2 Opy 0 (pg)
383 e, VO e s + —— = )
( ) 0y p Oy g oy \ ;1

According to (3.8.2) and (3.8.3), Op2 /0y may be expressed in terms of the flow
quantities upstream of the shock. The normal-shock relations express M, and
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p2 in terms of M; and p;. These standard relations are given by (cf. [23])

_2yM - (v-1)

3.8.4 Lo,

(3.8.4) j2) o P
2+ (y—-1)M?

3.8.5 Mi=2"\T7 2L

( ) 2T 2y M - (y-1)

For the pressure gradient dp; /8y at the shock foot, at the upstream side of
the shock, we already have

op1  yp1M?

9y R

(3.8.6)

The gradient B% (‘p’—f) of the pressure ratio across a normal shock can be found

from (3.8.4). The homentropic condition upstream of the shock implies
(3.8.7) d(pt)1/0y = 0,
where (p;); is the total pressure p; upstream of the shock, given by
_ =1
. <1 + L1M2> .
p 2

With the homentropic relation (3.8.7) and (3.8.6), it can be easily derived
from (3.8.4) that

9 (p2 —4y v=1, 5\ M}
3.8.8 —|= )= 1 —
( ) dy <p1> v+1 < + 2 M R

Setting (3.8.2) equal to (3.8.3) and substituting (3.8.4)~(3.8.8), yields a qua-
dratic equation for M?:

(3.8.9) M*~(y+1)ME-1=0.

From (3.8.9), with M € R, M > 0, it follows that the only particular Mach
number M; which allows a normal shock wave with normal extension, is M; =
M7, defined by

2
1 1
(3.8.10) M; = %—+ (%) +1.

By a more cumbersome derivation, this particular Mach number was also
derived in [34], [24] and [44].
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Normal shock with oblique extension. For the flow in the shock-foot region and
Mach number M; # M; further analytical results are presented in [44]. The
main result presented in [44] is that at the downstream side of the shock foot,
for My # M7, in general a singular solution must occur, with the property that
at the foot the shock wave has an infinitely large curvature. Similar as for the
normal shock with normal extension as depicted in Fig. 3.8.2, this shock can
be illustrated as has been done in Fig. 3.8.3. At an arbitrarily small distance

y
A

FIGURE 3.8.3. Normal shock with oblique extension.

n = € > 0 from the surface, the shock is an oblique shock. This singular
change from normal shock wave at n = 0 to an oblique shock wave for n > 0,
implies that at the downstream side of the shock at the foot an infinitely steep
decrease in the surface pressure occurs. This singular behaviour prohibits a
contradiction between the curvilinear motion at the downstream side of the
shock, and the normal-shock relations. In the following we refer to shocks of
this type as normal shocks with oblique extension.

According to [44] support for this singular solution seems to come from the
fact that post-shock expansions (though not infinitely steep, see Fig. 3.8.4b)
are observed in the results of wind tunnel experiments. However, in our
opinion the physics in these wind tunnel experiments is too different from
inviscid physics to let them be of much support to an inviscid analysis. Instead
of support from wind tunnel experiments, support for at least the singular
behaviour of the post-shock surface pressure comes from gas-dynamics. If
the post-shock pressure correction would have a finite steepness (Fig. 3.8.4b),
there would have to be a region of size > 0, in which the equation of curvilinear
motion and the normal-shock relations are contradictory, which in steady flow
is physically impossible.

Apart from this result, in [44] an analytical result is presented which renders
a range of Mach numbers (M, M;*] for M, for which a normal shock on a
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a. Infinitely steep expansion. b. Finitely steep expansion.

FIGURE 3.8.4. Post-shock surface pressure corrections.

convex surface is impossible. Here, M;* is defined by

2L
Yoy i )
B 2L

Note that M < M[~* for any admissible v, i.e., v € [1,3]. Though we do
not know of any examples of a steady shock wave normal to a convex surface,
with My € (M7, M{*], an intuitive understanding of this ‘forbidden’ range is
still missing.

Present study of a shock-foot region. We see that some reason exist which
motivates a numerical study of steady Euler flow in the shock-foot region.
In doing so, we look at the convergence of the steepness for decreasing mesh
width. To study the expansion’s steepness for decreasing mesh width, without
making excessive computational costs, we apply the solution-adaptive tech-
nique to zoom in at local flow features.

3.8.2. Shock-tip region. For the shock-tip region some uncertainty ex-
ists about how the shock wave merges into the smooth part of the flow. Some
authors claim that the shock wave becomes of vanishing strength into the di-
rection of the sonic line (cf. Fig. 3.8.5a). Others claim that it bifurcates such
that a triple-shock configuration (or upside-down A-configuration) occurs (cf.
Fig. 3.8.5b). Notice that a triple-shock configuration must contain at least
one additional discontinuity. In [4] it is proved that it is not possible for three
zones of different continuously varying states to exist and meet in one singular
point. Therefore, in Fig. 3.8.5b an extra zone has been added by introduc-
tion of a contact discontinuity, indicating that the fluid which just passed two
shocks (above the contact discontinuity), is in a different state than the fluid
which just passed only one shock.
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a. Single-shock configuration. b. Triple-shock configuration.

FIGURE 3.8.5. Two types of shock-tip configurations.

Some profound analytical studies exist which support either the configu-
ration in Fig. 3.8.5a or that in Fig. 3.8.5b. Representative examples of these
studies are those presented in [9] and [22], respectively. In [9] the authors con-
sider the transonic small perturbation equation and find through a hodograph
method that the connection of the sonic line to the shock wave is in general
tangent but distinguishable, i.e., generally the shock tip is a point of inflection
(i.e. at their connection, shock wave and sonic line have curvature of opposite
sign). It is found that the entire shock wave is of strong type (transition from
supersonic to subsonic speed across the shock), and they conclude that other
types of shock-tip configurations are possible, but only in exceptional cases.
Opposed to this, the author of [22] finds that the triple-shock-tip configu-
ration sketched in Fig 3.8.5b is the commonly occurring configuration. The
single-shock configuration in Fig. 3.8.5a may be regarded as a special case of
the triple-shock configuration, i.e., with the shock-triple-point in the highest
possible position.

Of all analytical studies on shock-tip configurations, shortcomings are that
they are local and use rather simplified equations, such as the transonic small
perturbation equation. Though still with simplified equations, investigations
of the local shock-tip flow as an integral part of a much more global flow
have been made numerically. Examples of such numerical studies are those
presented in [27], [12], and [43]. Each of these numerical works is concerned
with the transonic small perturbation equation. Whereas the local tip flow
certainly can be described by good approximation as a potential flow, the
global flow generally cannot. Not only for studying the shock-foot flow, but
also for studying the shock-tip flow, it makes sense to consider the full Euler
equations. The above mentioned numerical results are limited in accuracy by
the use of both the simplified equations and by the use of relatively coarse
grids.

3.8.3. Numerical results. Numerical computations are performed for
flows of a di-atomic, perfect gas (y = 75) around a NACAQ012 airfoil. The
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computations are started in a non-adaptive way on the uniform 8 x 5, O-type
grid QV. For level 1, this grid is shown in Fig. 3.6.1. The far-field boundary is
located at about 100 chord lengths away from the airfoil. The computations
are continued, through a nested iteration, up to and including level I, = 3,
the 64 x 40-grid. For | = 3, local refinements are introduced. Refinements are
introduced for cells for which at least one of its cell faces, in the evaluation
of Osher’s numerical flux across that cell face, a sonic point is encountered
along the wave path. We may also refine cells in a ‘buffer zone’ next to the
cells refined by the above criterion. Details about the refinement strategy are
found in [21].

In the nested iteration from Q° up to and including Q% the discrete equa-
tions solved are first-order accurate only. Starting from Q' we begin to solve
higher-order discretised equations; those corresponding to the limited Fromm
scheme (k = 0), as introduced in [35]. The computation of a virtual state
is second-order in the first-order discretisation (p = 1) and the virtual states
are computed third-order accurate in the second-order accurate discretisation
(p = 2). Hence, consistency is obtained for all equations.

The following cases of far-field boundary conditions are considered

o M, =08,a=0,

o M. =038, a= am:.
The special angle ap; is the angle at which M; = M;. The first test case
is arbitrarily chosen. However, from other computations its is known that
it yields a flow with a shock wave for which M; < M} ~ 1.662 for v =T
Hence, for the first test case we may expect a post-shock pressure correction.
Using local grid refinement, we study the corresponding shock-foot flow, as
well as the corresponding shock-tip flow.

The second test case, with M; = M7, is studied to verify whether, in
agreement with analytical results, the numerical shock-foot flow is without
any post-shock pressure correction. The value M; = M7 may be obtained
in an iteration, by varying the free stream Mach number for a fixed angle of
attack or by varying the angle of attack «. This iteration has to allow the
capturing of a nice shock wave on the convex surface, with M) converging to
M7 in the limit of the iteration process. It appears that for the NACA0012
airfoil, variation of free stream Mach number does not allow M; = M. Hence,
in the iteration we choose variation of angle of attack a. The iteration for « is
based on an approximate Newton iteration using the numerical approximation
of the derivative M) /0. For a detailed description of the algorithm we refer
o [21]. Note that according to theory (cf. [44]), this situation is at the limit
of existence, with M; = M7 the lower bound of the forbidden range.

Results fora = 0. For o = 0 we consider L, = 5,6, 7 and we take no buffer zone
of cells to be refined. In Fig. 3.8.6 a detail of the various converged composite
grids is given, together with the sonic lines found during the computation
and used in the refinement criterion. In Fig. 3.8.7 the corresponding upper
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FIGURE 3.8.7. Surface pressure distributions for a = 0.
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surface pressure distributions are shown. Clearly visible in the latter figures
is the occurrence of an expansion downstream of the shock. We study the
convergence of the steepness of this expansion for decreasing mesh width.
Assuming that in the exact solution, in conflict with theory as described in
Sec. 3.8.1, a post-shock expansion occurs which is not infinitely steep (i.e.,
|Op2 /0z| < 00), we introduce the error §% of the pressure gradient

Apy t Op2
L | 2P2 _9p2
(3.8.11) 6 = ( I) -

In our notations we assume this to be positive for each finest level L. The
discretisation is consistent. Then, given the finite gradient of the exact post-
shock expansion, and hence regularity of the solution, we may assume discrete
convergence for L — oo of order p > 0. Hence for sufficiently large L we may
assume

p
(3.8.12) Fhtl (;) 6L, p>o.

From definition (3.8.11) and the assumption that the solution is regular (and
hence (3.8.12)) we should find

I A N E AN VAR O A
o Azx Az Az Az '
L

In Tab. 3.8.1 we give the values of (% that are actually found in the

TABLE 3.8.1. Post-shock expansions, o = 0.

| L 5 6 7
L
R%) ~0.28 —0.36 —0.50

numerical experiments, for L = 5,6,7. Relation (3.8.13) appears not to be
satisfied by the present numerical results. Hence, one of our assumptions
(i.e., regular solution, L sufficiently large) is not satisfied. In the case that
L =5,6,7 is sufficiently large, the result is in agreement with theory in [44],
which predicts a singular solution with |8p;/8z| = oo at the shock foot for
M, < Ml*

At the shock-tip, for all values of L considered, we did not observe a triple-
shock-configuration as advocated in [22]. The configurations found are com-
parable to one which is supported by the results of [9]. In all cases considered,
the shock does not bifurcate (cf. Fig. 3.8.8 for one detailed view of this). The
subtle inflection point is not (yet) observed.
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FIGURE 3.8.8. Mach number distribution around shock tip;
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Results for a = apy:. For a = ay; we consider L = 3,4,5 and for the
width of the buffer zone of cells to be refined we take two cells. Similar to
the previous results, in Fig. 3.8.9 we give the converged composite grids and
corresponding sonic lines and in Fig. 3.8.10 the corresponding surface pressure
distributions. The main result is that the surface pressure distributions do
not show post-shock expansions. In agreement with theory, downstream of
the shock wave, all surface pressure distributions in Fig 3.8.10 nicely show a
pressure increase only. A remarkable phenomenon that we observed in these
experiments is that for all grids the defect correction iteration did not converge
(nor did it diverge), as long as the intermediate value of (M) was in the
forbidden range (M7, M;*] during the iteration for a. The reason why we
show results for L = 3,4,5 only (instead of for L = 5,6,7 as we did for the
previous test case) is that the solution method diverges for L > 6. With a
buffer zone of less than two cells, the iteration diverges, also for L = 5.

For the shock-tip flow, similar to the results for & = 0, the configurations
found agree best with those in [9)].

The convergence problems which arose for this test case seem to indicate
that no steady shock wave perpendicular to the wall can exist in some range
with M; as the lower bound. Interesting results can be found in [7] where for
a circular cylinder at M., = 0.5, Euler flow results are presented which have
been obtained by various numerical methods. It is interesting to see that when
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using unsteady numerical methods for this circular cylinder test case, fully
subsonic initial solutions first seem to evolve to a specific quasi-steady solution,
which becomes unsteady when continuing the time integration. Inspecting
all circular cylinder results in [7], our conjecture is that the aforementioned,
specific quasi-steady solution is at M; = M. It seems that the on-set of
unsteady flow is when in the time integration the situation is reached where
M, = M;. Results which make this particularly plausible are those presented
in [28] and [30].

3.8.4. Concluding remarks. The method for solution-adaptive grid re-
finement has been applied to study some phenomena of compressible fluid
dynamics, related to normal shocks in transonic flows. From the physics
point of view, some questions concerning shock-foot and shock-tip region are
still open. Analytical results are available, but they are based on simplified
models for inviscid flow. Wind tunnel experiments suffer from diffusion, not
appearing in the Euler flow model.

In our numerical modeling, we find that at the shock tip the shock merges
smoothly with the smooth part of the flow, without a bifurcation of the shock.
However, our results do not show a point of inflection where the sonic line is
attached to the shock.

We find that at the shock foot, with the Mach number M; < M7 at the foot
upstream of the shock smaller, for the particular number M7, an expansion
is present immediately behind the shock, with a pressure gradient which does
not seem to converge to a fixed value. This supports the idea that the normal
shock has infinite curvature at the foot, unless M; = M;. Our results for M
converging to M7, show that the expansion behind the shock disappears. This
implies that at M; the normal-shock relations and the equation for curvilinear
motion are satisfied by a non-singular solution.

No Mach numbers M; larger than M; are observed. For M; ~ M we
observed some convergence problems. According to theory, M7 is the infimum
of a range of ‘forbidden’ Mach numbers at the upstream side of a normal
shock, in a stationary flow. The convergence problems are most likely related
to this forbidden range, since the numerical solutions obtained by methods
for unsteady problems seem to develop into an unsteady solution once M;
reaches M7 .

The adaptive local refinement technique shows to be a flexible and efficient
tool for detailed studies of such physical phenomena.
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CHAPTER 4

A-posteriori estimation of the local dis-
cretisation error

4.1. Introduction

The decision where to refine or derefine a given composite grid, ideally may
be based on the local discretisation error. Therefore we study the a-posteriori
estimation of the local discretisation error. For discontinuous solutions, esti-
mation of the local discretisation error is not possible. However, refinement
should not be based solely on the local discretisation error. Apart from suffi-
ciently accurate equations, an accurate solution requires that the grid provides
sufficient resolution. Resolution of the grid is measured by the derivatives of
the function approximated by the numerical solution, the exact solution. The
grid should therefore also be refined, on the basis of solution gradients. For
the equations associated with cells near discontinuities in the solution, an es-
timate of the local discretisation error is superfluous, since the grid will be
refined due to the approximations of the large gradient in the solution. For
the smooth part of the solution an estimate of the local discretisation error
can be obtained with sufficient accuracy and may be used in a refinement
strategy.

In this chapter we study the local discretisation error and its a-posteriori
estimation on a locally refined grid, for the upwind discretisation of a one-
dimensional, scalar conservation law. We consider local refinement in a non-
linear multigrid context and emphasise estimating in the neighbourhood of
the interface between a coarse and a fine grid.

In the neighbourhood of such a grid interface the discretisation scheme
used is different from the one used elsewhere. Estimating the local truncation
error in such a situation by means of extrapolation techniques, requires a
different treatment of the various contributions to the local truncation error.
We introduce two discretisations at grid interfaces and a procedure for the
estimation of the local truncation error. We show for a model problem that
under sufficient smoothness conditions, the estimate is sufficiently accurate.

Later, the procedure for estimation of the local truncation error is extended
to two space dimensions. This requires expressions for the leading terms of the

93



94 4. A-posteriori estimation

error in the virtual states. This error is analysed for first-order and second-
order accurate schemes. The first-order result is applied in the actual grid
refinement criterion for a two-dimensional model problem.

4.1.1. Description of the 1D problem. To start the discussion, we
consider a steady state solution for a one-dimensional, scalar conservation law
defined on a bounded, open domain 2, with appropriate boundary conditions

df(u(z))
dx
(4.1.1b) u(xg) = ug, on a proper part of 9,

(4.1.1a) =g(z), z€QCR,

where Q C Q is the boundary of the domain Q. Smooth data g(z) is assumed.
We study the fully one-sided upwind discretisation of (4.1.1a), augmented
with an approximation of (4.1.1b) and we study the solution of the resulting
set of equations for an example problem. This one-dimensional conservation
law may be considered as a model for fluid dynamics problems. We aim at
applying the results of our analysis in a method for steady state fluid dynamics
computations in more space dimensions and in a refinement criterion based on
an a-posteriori estimate of the local discretisation error. Therefore, we analyse
the situation where the partitioning of the domain has a sudden change in
mesh size.

We estimate the local discretisation error (a-posteriori) by an extrapolation
of the relative truncation error of the difference operator. In general it is only
possible to use a standard extrapolation technique if a regular discretisation
scheme is used everywhere [3]. Such a regular discretisation scheme admits
a simple extrapolation, since asymptotic expansions for the local truncation
error can be readily used. For an irregular discretisation scheme, used at
boundary interfaces, we propose to split the local truncation error of the
discrete operator into two parts. For one part we assume the existence of an
asymptotic expansion which can be estimated by extrapolation (the regular or
uniform part). The other part (the irregular or non-uniform part) is estimated
via estimates of the derivatives which appear in the expression for this part,
obtained by Taylor series expansion.

We consider first-order accurate discretisations only. Extension to second-
order discretisations is straightforward. For a locally non-uniform grid we
consider two discretisations: an inaccurate and an accurate one. Analyses
are performed for both a locally uniform grid (hence application of a regu-
lar discretisation scheme) and a locally non-uniform grid (where an irregular
discretisation scheme is used). The definitions for locally uniform grid and
locally non-uniform grid are given in Sec. 2.2.2. They are introduced to facil-
itate the treatment of the sudden change in coarseness of the grid, due to the
presence of local refinements.
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First we present definitions and notations and we introduce the discreti-
sation. Then we investigate the local discretisation error, the global dis-
cretisation error for an example problem and a method to estimate the local
discretisation error of the discretisation of (4.1.1a) on a locally refined grid.
All investigations are supported with results for an example problem. Finally
the extension to two dimensions is made.

4.2. Preliminaries for the one-dimensional case

In this section we give the definitions and notations used in the part of
this chapter concerned with the analysis of a one-dimensional problem and
we describe the one-dimensional problem which serves as an example prob-
lem. The notations used here are consistent with the notations used for two
dimensions, but for clarity we give a precise description.

Given a partitioning of the domain in cells, we distinguish between function
values defined in a cell and function values defined at cell end points. A value
in a cell ! is denoted by (.)!. A function value at the left end point of a cell
is denoted by ()iL and at the right end point by ()iR

4.2.1. Definitions and notations. With a multiple grid solution method
in mind, we consider different levels of refinement in the partitioning of the
open domain 2 and associate with a level of refinement [ € Z, the partition-
ing Q'. We call the partitioning €' the grid on level [. The grid on level [ is

determined by the grid points z! € Q!, i € Z and it consists of the intervals
Qf = (a!,2!,,), called cells. The grid 9 on level I is defined by

o =Jal
The set I is the set of index pairs, defined as
I={@G1)ez?| 30 c Q}.
We also define sets of indices I' by
(4.2.1) I'={iez|@G)erl}, Ve{o,... L}
where L is the finest level present. Without loss of generality, the sets of
indices I' can be chosen so that on the coarsest level, [ = 0, the smallest

index is zero.

The grid points z! are the boundaries of the cells on level [. A grid point
which has only one neighbouring cell and which does not coincide with a
physical boundary, is called a green boundary. We denote the left and right
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end points of a cell Q! also by :ciL and méqR respectively. Hence we have the
notation

The size st of a cell Q! is defined by

11 U 1
§; =Ty R — T L = Tit1 — Ty

where we assume z},; > z!. We consider the (typical multigrid) situation
where cells on a grid are obtained by splitting the cell on the next coarser
grid, and the size of a cell on level [ + 1 is approximately half the size of a
cell on level I. The grid points do not have to be uniformly distributed over
Q. For all I, we denote by h; the maximum
h; = max si.
iel!

Furthermore, we consider a grid which is sufficiently smooth, i.e.
siy1 = i + O(h]),
with p > 1 sufficiently large. Consequently we have for all [ € {0,...,L —n}
hl+n =2""h; + O(hf)

The refinements of a cell 2! are denoted by lefl and Q;ﬂl The part Qlf
of the grid Q! consists of all cells on level | which are refined. Thus, Qi+l
consists of all refinements of the cells in Q; We denote the non-refined part
of Q' by QL. The collection of all non-refined cells on all levels is called the

composite grid and is denoted by .. Thus, we have for all

l l l
Q = Qf L QC’
and the composite grid is
L
.= | }g.
i=0

Similar to (4.2.1), the sets of indices associated with Qgc and Q. are denoted by

I} and I! respectively. The set I, of index pairs associated with the composite
grid is defined as

I.={G)elliel, vie{o,...,L}}.

In Fig. 4.2.1 an example is given of different levels of refinement and the
associated composite grid.
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FIGURE 4.2.1. Example of grids on different levels which
result in a locally refined composite grid.

Forall I € {0,..., L} we define two sets of piecewise constant functions on
an arbitrary subdomain Q* C Q by

X)) =Yi(Q*) = {u: @ = R|u(z) is constant in each Q! N Q*}.

We also define on Q* the sets X (©2*) and Y(Q*), which contain XHQ*) or
Y!(*) as well as all sufficiently smooth functions, for [ € {0,...,L}. Hence,
we have

L
X)) =c*ayulJxie),

with k sufficiently large, and similar for Y(22*). Notice that we have a nested
sequence

X c X)) c x(Y),

if 0* c Q"1 C Q!. The same applies to Y.

By u} we denote the value of the cellwise constant function u! € X(), in
AN To simplify notation, we introduce restriction operators A and
RMH™ n = 0,1. With Q" C O, the restriction operator R X(Q) —
X I(QH") maps quite general functions to functions that are piecewise con-
stant on cells in !, but only defined on Q!*™. This restriction is defined for
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le{0,...,L—n}by

1
Shi+n 1 [TiR Viel', if n =0,

¥ i L
The other restriction operator, R*'*", is related to (4.2.2) through the oper-
ator SHHm . X (QF™) — Y(Q!F"), for n = 0,1, which is defined as
(4.2.3) Shitny(z) = stu(z),

for all u(z) € X(QNQH*"), ie.iel'ifn=0,0rie€ ]} if n = 1. We denote
S also by S'. The restriction operator RbF™ @ Y(Q!™) — YH(QH™), for
n = 0,1, is defined by

(424) Rl’l+n — Sl,l+nﬁlvl+"(sl+n)—1.

For example, we define the efflux function of cells on Q'*1 by Fi*1. X(Q) —
YiH+1(QHF), with for Q)

(4.2.5) F]H'1 = f(u(w;jr}%)) - f(u(a:é'le)),
where u(z) is continuous in the grid points mgﬂ. Then, we have for all 7 € I},
(AP = B 4 i, = f(ulabihy ) - f(u(eTh),

= f(“(mi,R)) - f(u(mi,L))a

§ . 5 —1,1

which is the cell eflux function for the coarser cell of level [. We denote R
e

also by R and R“! by R'.

We denote the restriction (mean value) of the exact solution u € X () of
(4.1.1) by the cellwise constant function a' € X'(Q'):

wd
' = Ru.

Approximations of u! are denoted by u!. Such an approximation can be
considered as the restriction of some (possibly continuous) approximation u
of w. The u! and u! are so-called cell states of cell Q!. The error € of an
approximation u! is defined by

(4.2.6) e =a -

Finally we define the piecewise constant functions on the composite grid,
denoted by the subscript c. For example, the piecewise constant u. € X ()
is defined by
(4.2.7) ue(z) = ul

1)

veeQ, V(1) el.
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We consider a finite volume discretisation of the steady conservation law
of the form (4.1.1a). Integration of (4.1.1a) over a cell Q! C Q, gives

/ df(;ﬂ dx = f(u(mﬁ,n)) - f(u(mﬁL)) = glsl.
Q! x

In the discretisation, the flux f(u(z} p)) = fl g is approximated through a
numerical flux F: R x R — R by

Fz‘l,R =F ((UL)i,R» (UR)ﬁ,R) :
l

The arguments (uL)i’R and (u®)! ; of the numerical flux function F represent

the result of a left and right biased interpolation from u', as denoted by the
superscripts L and R respectively. Similarly, the approximation of leL is

denoted by Fi{ 1, and is given by

Fip=F ("), ()iz).
The function F' may be considered to be e.g. an approximate Riemann solver.
This may describe sophisticated upwind discretisations of the conservation
law. Such upwind discretisations for conservation laws are considered in e.g.
(6], [9] and [5].

In a local refinement context, some of the values ué required in the com-
putation of the left and right states, (uL)ﬁqk and (uR)Lk, k = L, R, may not
be available. Therefore, we introduce the concept of virtual states. A vir-
tual state vll. is an interpolant, generally computed from »'~!, ... % which is
used when Q2 does not exist due to (the lack of) refinement of the grid. This
occurs in the neighbourhood of a green boundary. For simplicity, we restrict
ourselves to the situation where a virtual state v! depends on u'~! only. We
introduce a virtual cell, w! C Q, 7 & I', which is defined as the part of 2 which
would be exactly Qﬁ, if the grid would have been sufficiently refined. With
the virtual cell w! we associate the virtual state v].

The discretisation on level [, defined on the subdomain Q'*™, is defined by
the finite volume operator N%/*m . X!{(Ql+n) — YI(Qi+7") n = 0,1, given by

nshitn _ Viel', if n=0,
(4-2-8){Nu+ (R ul§ul 1)}i = FiI,R - Fil,L’ { Viell ifn=1.

Here, u'~! acts as a parameter in N7 which determines the possible virtual

states. We denote N'! also by N'. Following these notations, the discreti-
sation for each cell of level [ + 1, as given by (4.2.5), is denoted by R!*!N,
hence

{RIN(u)}; = f(u(z} g)) - f(u(a} 1)),
The set of equations on level [ is written as

(4.2.9) N ult=h =7
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where the right-hand side represents the source term.

For simplicity we restrict ourselves to the fully one-sided upwind compu-
tation of the flux and first-order accuracy. However, the framework described
above can be used for more general numerical flux functions and higher-order
accuracy. In fact it can be easily extended to a general second-order upwind
discretisation of a conservation law in more space dimensions.

For the discretisation of our scalar problem (4.1.1a) we use the fully one-
sided upwind computation of the flux, defined by the numerical flux function

f(ub), ufuf >0,
Fut,uf)={ ff), ubu® <0,
0, otherwise.

For simplicity and without loss of generality, we consider a problem with
u u® > 0 only. Since in this case F(u”, u®) is a function of ul only, we may
redefine F' by F(u) = f(u) to shorten notation. The left state (uL)é’L at the
left boundary mé.L of Q! is given by

11—

l e (s 1

Ll. _ ui—l’ lf(’l-l)e],
(=2.00) (u%)ir = { vl_q, if acliyL is a green boundary.
This gives a first-order accurate discretisation if (i — 1) € I'. We consider two
interpolations for the virtual state vé‘f_ll: the first-order accurate interpolation
11, given by

+1 _ 1
Vgi—1 = Ui-1»

and the second-order accurate interpolation /2, given by
1

1+1 l 1

Vi1 = ZUi-1 g%

In Sec. 4.3 we show that the interpolation I1 leads to an O(1) and /2 to an
O(h;) local discretisation error.

4.2.2. The one-dimensional example problem. In our example prob-
lem, we choose the domain of definition = (0,1), partitioned by cells of
constant size s} = h;. For the flux function we take f(u) = u?, and we choose
a source g(z) = 4z3. With a boundary condition u(z¢) = 0 at g = 0, prob-
lem (4.1.1) does not have a unique solution. However, by imposing the extra
condition

u(z) >0, VzeqQ,
we have the unique solution
u(z) = 2%, VzreQ.

This example problem and its solution are sufficiently simple to allow a de-
tailed analysis. Yet, the problem is sufficiently non-trivial to emulate the
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properties of a fluid dynamics model such as the Euler equations, with re-
spect to the aspects we focus on.

4.3. Analysis of accuracy

For the discretisation described above, we investigate the local truncation
error and for the example problem, we study the error in the solution, both
on a uniform grid (no local reﬁnements) and on a locally refined grid. The

local discretisation error is 7!(), where 7' is the local truncation operator for
N defined by

-1

(4.3.1) r'(w) = (87! (MR R ) - R'N(w)),

where
{R'N(u)} = flu(ah p)) - f(u(al ).

Application of the definitions of S' and N' in (4.2.3) and (4.2.8), gives for all
(4,0) eI,

1
(4.3.2) Ti(u) = ;(Fil,a - Fil,L - fil,R -+ fil,L)a

with Fl R FIIL evaluated using u! = = R'u and f’R and ffL evaluated using u.
For our 51mple upwind discretisation, with

F(u(z; 1)),
l

F oL = F(u' 1)7
we have for a sufficiently smooth F(u)
(4.3.3)
oF 1 6*°F
zlL = FI,L + u u(zlL)(“(xé,L) —uj_ )+ 2 B2 " ;L)(u(xé’L) —uj,)?
1 &®F
t6 908 (u(zl p) — uj_y)® + O ((u(z! L) —uis)),

(25,[,)

and similar expresswns for other fluxes. If u!_; is not available due to miss-
ing refinements, v!_, is used instead. Express10n (4.3.3), possibly with virtual
states, is used in the following subsections. We also use a Taylor series ex-
pansion of a sufficiently smooth u(z) around :cﬁ,L. This expansion is written
as

(4.3.4) w(x) = ug + ur € + un€? + uz€® + O(€4),

R —
where £ = T L



102 4. A-posteriori estimation

4.3.1. Locally uniform grid. Here we investigate the local truncation
error and the global error for the example problem, defined in the previous
section, on a locally uniform grid. A locally uniform grid is a collection of
grid cells, for which no equation of the discretisation is involved with a virtual
state. By definition, such an equation is obtained by application of the regular
discretisation scheme.

Local truncation error. Here we assume that all equations are obtained by
applying the regular discretisation scheme. On a sufficiently smooth grid,
with a maximum size h; of the cells, using (4.3.2), (4.3.4) and (4.3.3) we
derive for 7!(u) in Q!

(ua(sh)? = yus(s))®)

ug
1 0°F 2.2 4 1\3
(4.3.5) 5 buz uo(—%(si) - §u1u2(5i) )
1 8F 3
va 28| o0

Hence, for a differentiable solution of the continuous problem, the discretisa-
tion on a locally uniform grid is first-order accurate.
For the example problem, if i > 0, (4.3.2) gives

Iyl ) RN R P o/ 1
ri(u)sy = (u})® — (@i_,)* — @ (i ) + ¥ (2 1)

Because of the uniform grid, sé = h; and hence a:é{L = th;. The restriction of

the solution of the continuous problem is

1 (i+1)hy ].
(4.3.6) al = — / 2tde = R +i4 ),
hy ihy 3
and hence,
5, 2. 1
(4.3.7a) ()2 = kit +2i° + 5i + Sit ),
5, 2. 1
(4.3.7b) (w_,)? = h{(s* —2i% + 52'2 —5itg)

The square of the solution #(z) at the left and right end points of Q! respec-
tively, is

(4.3.8a) a?(zt ) = hidt,
(4.3.8b) w(xh g) = hi(i + 1%
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Hence, the local discretisation error is

8
(4.3.9) (@) = —h} (62 + gt i>0

A similar result may be obtained from (4.3.5), which for the example problem

reduces to
ou
- Oz

(4.3.10)

For 7 = 0, the boundary condition at zy = 0 is implemented by defining the
flux FOI’L to be equal to the exact flux, Fé’L = f(l)’L = 0. This gives the local
truncation error

0%u
2
(') 61: 1:1

1 oF 0*F
Til(u) = ‘5}11 67 e

Ou?

2
) + O(h?).
zf‘,L

(4.3.11) T5(8) = —S-h?.

Note that 7{(u) is third-order if u(0) = 0, but generally it is zeroth-order.
We define 0 < o < 1 through the relation z = (i + a)h;, for a given z and
i — oo, while Ay — 0. Then, the cellwise constant function 7!(u(z)), defined
by 7!(u(z)) = 7} (=), for = € O, is given by

—-8h3, ze€Qf,
rl(@(z)) = { —6x2h; + (12az — Sz)h?

+(—6a% + 8a— 1)}, z€Q'\ Q).

Since « is bounded, the local discretisation error is first-order in the mesh

width.

Error in the solution of example problem. The global discretisation error is
defined by € = u' — u!. Here u' is the solution of (4.2.9), with r! = Sigt,
where ¢! = ng, with Fé’L = 0 and the extra condition u! > 0. The discrete
equation for a cell Q! is given by

! I
(u0)2 = g(l)SOv
(u})? = (ui_,)? = gisi, i>0.

(2

By induction, it easily follows that

(4.3.12) (w2 =) glst.
k=0

Because we consider a grid which is locally uniform everywhere, N! is inde-
pendent of its parameter u'~!. By definition, @' satisfies

N'(a) = 8 (' + 7'(w)
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with the conditions F{ ; =0 and a} > 0. Similar to (4.3.12), the restriction
@' of the exact solution satisfies

)

(4.3.13) (@) =Y (g + i(w) si.

k=0

Subtraction of (4.3.12) and (4.3.13) gives
(4.3.14) @)% - (W) =) 7i(m)sk.

With st = h;, u(z) = 22, (4.3.9) and (4.3.11), this gives the cumulative
truncation error up to and including cell Q!, given by

: 1 : 8
I — E L=\l _ p4 § 2
(4315) Ti = Tk(u)sk = hl <§ = k:O(Gk + gk' + 1)) P

k=0

Since
2 6
T}, as defined by (4.3.15), is

1)

13, 10, 8
(4.3.16) T! = -2 + i+ ﬁ +9)

Expression (4.3.14) and the definition of €' (4.2.6) give

(@)? — (u)? = (W)’ - (@ — &)’ =T,

& = ub xuly/1 - T}/ (ul)?

Since T! = O(h;) and both u!, @l > 0, the minus sign applies. For small

1
T} /(ul)?, the global dlscretlsatlon error may be written as

G-l o ()

Substitution of the expressions (4.3.6) and (4.3. 16) for u. and T} respectively,
gives for the example problem, and small 7} /(u})?,

from which we obtain

1Tt 1
(4.3.17) & = f—+§( o 16()

1\4
e =—hi(i+ ; +0G"%))+0 (g&» .

(2
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FIGURE 4.3.1. Error of the solution, for the example prob-
lem on uniform grid.

The cellwise constant error €'(z) is given by
2
(4.3.18) é(z) = —zh + (—5 + a)hi + O(h}),

where again « is defined by th; = ¢ — ah;, 0 < a < 1. In Fig. 4.3.1 a linear
interpolation of the error €' as obtained by numerically computing the solution
of the discretisation, is shown for two grids, one with h; = Y35 and one with
hi = 4. Equation (4.3.18) is in agreement with the results in Fig. 4.3.1. As
we expected, the global discretisation error is first-order.

4.3.2. Locally non-uniform grid. A grid is called locally non-uniform
in a cell €2, if the discrete equation for Q! involves a virtual state. This situ-
ation results in an irregular discretisation scheme. First we look at the local
and global error of the irregular discretisation, using the first-order accurate
interpolation I1 to compute a virtual state. After this we study interpolation

12.

Local truncation error for interpolation I1. We consider a coarse grid, denoted
by ! and a fine one, denoted by Q/*1. The grid O covers the domain Q com-
pletely and the grid Q! covers only a subdomain. Without loss of generality,
we take the green boundary of Q'*1 at z, and QI+1 = [z4,1]. Furthermore,
we define for the green boundary

Y S & |
Ig =z, = 1:2771. .
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The discrete equation for the cell on the locally non-uniform grid involves the
virtual state v;1 By interpolation 71 this virtual state is simply given by

I+1 !
Voam—-1 = Um—1-

With (4.3.3) and (4.3.4) we find the expansion of the local truncation error

1 oF 1 5
)= o { OF| it - i+ o)

wy 4
1 &*°F T 9.0+l 1+1\3
T 9 6u? uo(—EUI(SZTn) + uruz(syy, )°)
1 F| 13 1411
T 6 oud uo(g%(sﬁzm) ) ¢ + O(h}).

This shows that interpolation /1 to compute a virtual state gives an O(1)
local truncation error in the locally non-uniform grid cell. For our example

problem the local discretisation error Téj—nl(ﬁ) in letnl is

(4.3.19) 7l (@)t = (agn)? = (@h_1)* — @ (a5 p) + @ (2000, 1)-

If we substitute expressions similar to (4.3.7) and (4.3.8), into (4.3.19), we
find for the example problem that the local discretisation error of the equation
involving the virtual state, is also O(1), viz.

(4.3.20) ol (@) = 223 — 11k + 2x,h7,, — th

Error in solution of example problem for interpolation I1. The global error
on the non-refined part Q! is the same as for the uniform grid situation. For
the example problem the global error in the green-boundary cell QQm can be
found from the equation

(4.3.21) (@hhh)? = (uph)? = Thy + Tame (@)sihy = T

2m

where T}+! is the cumulative truncation error as in (4.3.15). For the coarse-
grid contrlbution T! | to the cumulative local error, we have from (4.3.15)

0 2212 16

(4.3.22) T} 2= 3mgh§‘+1+ hl+1

m—1

= —41‘ h[+1 =

Furthermore, (4.3.20), (4.3.21) and (4.3.22) give

13 10 8
Tob! = —2e5hrei — —whhiy; — 3 —ghiy; — hz+1

With expression (4.3.17) for the error, and proceeding along the same lines as
for the uniform grid, we find the global error in QH'

(4.3.23) el = —z by — 3hl+1 + O(hi41)-
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FIGURE 4.3.2. Error of the solution for the example prob-
lem on the composite grid, using interpolation I1 for the
virtual state and with green boundary z, = Y.

It appears that the solution in Qéfnl is first-order accurate, although the dis-
crete equation for lefnl is zeroth-order consistent. For z, = 2, a linear inter-
polation of the global error €. on the composite grid is shown in Fig. 4.3.2,
for two values of the mesh size: h; = Y39 and h; = Ys4. Equation (4.3.23) is
in agreement with Fig. 4.3.2. Notice that for interpolation /1 we have
(4.3.24) estl — ¢ O(hy).

m—-1 ="

We assume that for £ = [, 4+ 1 the error can be written as the asymptotic
expansion

e* = hLﬁke(m) + O(h}),

with hy the maximum mesh width at the highest level and €(z) € X(Q),
independent of hy. From (4.3.24) it appears that ¢(z) is discontinuous at
x = x4, which is also observed in Fig. 4.3.2.

Local truncation error for interpolation I2. In this subsection we consider the
more accurate interpolation /2. The introduction of this higher-order accurate
interpolation is not primarily required to obtain a higher-order error, as was
demonstrated in the previous subsection (see also Sec. 2.5.2 and [8]). 2 is
necessary to obtain a discretisation which has the same order of consistency
everywhere. This could make local refinement an effective tool to reduce the
local truncation errors. A technique for local refinement based on the local
discretisation error, requires that the local truncation error of the equations



108 4. A-posteriori estimation

for the finer cells is smaller than for the corresponding coarse-grid cells. This
is generally not the case when these equations are inconsistent. In practice,
when using adaptive refinement, such inconsistency may result in small, highly
refined regions (islands) in Q. (see Sec. 4.5.4).

The more accurate interpolation used to obtain the virtual state vé
given by the interpolation

+1

m—1s 18

+1 _ 3 l l
Vom—1 = ;ium—l + Zlum’

l

where u;, is the restriction of the fine-grid solution

ul, = {R"Tuy

m

Following the same lines as in the previous section, we find the expansion of
the local truncation error of N!*1

1 oF 1
2200 = g { 5] otz + Sy

Sam ug 4
1 O°F 20 +1y2 _ 1 1+143
5 9.9 (—ui(sgm ) — Jurua(sy,,)”)
2 out| 3
1 &3F 3 I+1 3
¢ ag| (—pui(sam)’) ¢+ OhY).
6 oud|, " 4
Since sht! = O(h},,), application of interpolation /2 to obtain a virtual state

gives an O(h;41) local truncation error for the equation derived for the locally
non-uniform grid cell. For the example problem with solution u(z) = z2, we

find the local discretisation error
2 8
I+1/- 2 2 3
Tom (8) = =8xghipy — gxghiny — Shiyy.

Error in solution of example problem for interpolation I2. Again, on Q. the
global discretisation error is the same as for the uniform grid. Only the
computation of the global error in Qé‘fnl is a little more laborious. The state
ué':ll in the cell adjacent to the green boundary, is part of the solution of the
nonlinear system

(uphy )2 = (Juby_y + jub,)? = gt shh),
l 1
U, = %(“Jnl +ugtia),
1+1 I+1 I+1 141
(“2tn+1)2 — (ug,, )2 = 9om+152m+1-

Since u!,_; and the right-hand sides g}71si*! and géﬁﬂséﬂﬂ are known, it

follows that ulztnl can be considered as a function of the independent variables
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1 I+1 141 I+1 +1
Um—15 92m S2m and g2m+132m+1‘

(4.3.25) Uyt = Uty ot Syt géjnl+1sl2:zl+1)»
where the function U = U(a,r;, r3) satisfies

U2 —(3a+1ib)2=ry,
(4.3.26) b=1(U+c),

2

c _U2:7'2.

The solution of this system is not given in closed form, but we can use (4.3.26)
to estimate the error €571, Using the definition of the local truncation error,
we can write the restriction of the exact solution as

(4.3.27)

g Cj NN l 1 Y JH1

Uztnl =U (ulm—la (géﬁ + Téll(U))SzT,f, (92Tnl+1 ¥+ 72;11(1‘)) 24;1+1) :
Assuming that U is sufficiently differentiable and bounded, with bounded

derivatives as h; — 0, it follows from (4.3.25) and (4.3.27) that the error in
Q4! can be written as

(4.3.28)
A =t = S g il
+ g‘g o1 (W)s5hiy + % %2(1(2]‘ (em-1)* + O(h}),
where %, %rl and 5%% are evaluated at
(4.3.29a) a=a,_,,
(4.3.29b) rL = (gam + Ta (@))s5hn
(4.3.29¢) To = (gé_:nl—l—l + Tzlj-nh1(ﬂ))312tnl+1-

The local discretisation error is O(h;) and for twice differentiable U, we find
for hy — 0

ou
512‘;1 = ba flm—l + O(h).
Since €, _; = O(h;), the approximation ul;,'nl of Hétnl is first-order accurate.
In Fig. 4.3.3 the derivatives of uyt! = U(a, r1,72), with arguments given by
(4.3.29), are given as a function of h; for the example problem, i.e. with
solution #(z) = z? and with a green boundary at z, =Y.
Assume an asymptotic expansion of U

U =Uy+ Uh; + O(h?),



110 4. A-posteriori estimation

0.999+

0.998—

0.997-

au
0.996 39k
0.995

0.994

i \ 1 l
0 0.0002 0.0004 0.0006 0.0008 0.001

T

FIGURE 4.3.3. Derivatives of U = uy of the example
problem, at green boundary z, = Y.

with Uy and U; independent of h;. Then for h; — 0 the error 612‘;1 in (4.3.28)
can be written as

0 U U
G = (UO + i hz) €1+ %,"9 o (@) s

2m 2m
(4.3.30) da — Oa o

8U0 - 1 82U0
+ ry (@i + 5 G (ena)” + OB,

with all derivatives evaluated at (4.3.29). These derivatives are found by
solving (4.3.26), differentiated with respect to a, 1 or 3. In the limit h; — 0,
these derivatives are

oUg 0%*Uy —0 ovy
Oa ’ Oa? ’
oUy 31 oUp 11
da

(4.3.31)

2z, Ory 1222

These results are in agreement with Fig. 4.3.3, which shows the first derivatives
of Uy, for z, = 1> and small h;. Substitution of (4.3.31) into (4.3.30) gives for
the example problem

3
el = —22,hi4y + 5h,2+1 + O(R}).

In Fig. 4.3.4 the error is given for two grids, one with h; = Y32 and one with
h; = Y64, and x, = 2. Note that in this particular case the discretisation
with interpolation I1 (cf. Fig. 4.3.2), yields a more accurate solution than /2.
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FIGURE 4.3.4. Error of the solution for the example prob-
lem on the composite grid, using interpolation I2 for the
virtual state and with green boundary &y =

For both interpolations the numerical solution is first-order accurate. Op-
posed to interpolation I1, interpolation I2 gives

" i L ein_l = O(hlz).

2m

This means that €(z) is continuous at z = z4. Interpolation /2 to compute
the virtual state apparently gives a smoother error and hence a smoother
approximation of the exact (smooth) solution. A further investigation how-
ever, reveals that €(z) is not differentiable in ¢ = z,, which is also observed
in Fig. 4.3.4. We remind that the use of I2 is primarily meant to obtain a
higher-order accurate local truncation error, which can be used in constructing
a solution-adaptive, locally refined grid.

4.4. A-posteriori estimation of the one-dimensional local
discretisation error

In the previous example the exact solution and hence the exact local trun-
cation error are known. In practice we want to estimate the local discreti-
sation error, while we only have the solution of the discrete problem as an
approximation of the exact solution. Now we consider estimating the local
truncation error for a uniform grid and for a locally refined grid. The proce-
dure described in this section is intended to be used (and is actually used) in a
multigrid context. It is based on a classical truncation error extrapolation, (2],
(3]. Instead of estimating the local truncation error by extrapolation, it may
also be estimated by estimating expression (4.3.3) for each grid point. For a
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first-order accurate discretisation this would imply estimating du/dz, OF /0u
and 0?F/0u? at each grid point. However, we aim at application of our a-
posteriori estimation of the local discretisation error to a set of simultaneous
conservation laws, defined in two or even three space dimensions. For these
kinds of problems, estimating the local truncation error by approximating
these derivatives would be very expensive, and even more so for higher-order
accurate discretisations. Therefore, we propose to estimate the local discreti-
sation error by application of an extrapolation technique that will be studied
in Sec. 4.4.2 and 4.4.3.

Since our goal is the use of (an estimate of) the local discretisation error
in a refinement criterion, we focus on the situation where the local truncation
error is of the same order everywhere. Hence, where an irregular discretisation
scheme is applied, we focus on the interpolation /2.

4.4.1. Preliminaries. On the sequence of grids, !, [ = 0,...,L, we
consider a sequence of locally nested discretisations, denoted by

(4.4.1) N'(@huet Y=+ wvied{o,...,L}.

Again, u!~! merely acts as a parameter, since solving the equations for a level
! will leave u!~1 unchanged. This parameter is superfluous on level [ = 0, and
on any level for which the grid covers § completely. As usual for the multigrid
FAS procedure (see [1]), the right-hand side of (4.4.1) is defined as

I I
N S'g', on 1,
= —LI+1 _
NUFL(RT 41, 1) - RLIHL (Nl+1(ul+1;ul) —r!*1), on Qlf.

The solution of (4.4.1) is u,, defined by (4.2.7) and is associated with the cells

on the composite grid Q.. The approximation on Q! is R u and on Qlf it is

Shi1 . o g
R"u. The sequence of (locally) nested discretisations allows us to define the

so-called relative discretisation error, similar to the local discretisation error,
defined by (4.3.1). The relative discretisation error is denoted by i @),
where 7/, + XF1(Q!F1) — X!{(Q1) is defined by

- —lI+1 =
Tll+1(ul+1) — (Sl,l-f-l) 1 (Nl.l+1(R ul+1; ul 1) _ Rl,l+1Nl+1(ul+1; ul)) )
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With the definition of the local truncation error (4.3.1) and R“'*! defined
by (4.2.4), the relative truncation error can be written as

(4.4.2)

Tll+1(ﬁl+1u) = (Sl,l+1)—lNl,l+1(El,l+1u; Rl_l’lu)

_ Rl,l+l(5l+1)—1Nl+1(ﬁl+1u; }_Zl’u,)

_ (51,1+1)—1 (N““(Rl’lﬂu; ﬁl—l,lu) _ Rl’l+1N’l+1(u))
_ Rl’l+1(sl+1)—l NH—I(RH'lu; Rlu) n Fl’Hl(Sl“)_lN’lH(u)

=R (W) - BT ).

We assume that the global error and the local error can both be written as an
asymptotic expansion in the mesh width h;. By € = ¢(z) € X(Q2) we denote a
function independent of hp, so that for a sufficiently smooth grid, the O(h{)
global error on a level [ can be written as

=K (the + O(th+1)) :

where hp is the mesh width at the finest level present. The solution of the
system N'(u';u!~1) = 7! is written as

u' =t — € = R'(@— hie) + ORI,

For the asymptotic expansion of the local truncation error, we introduce 7 :
X(Q) — X(Q) by

where the primes denote differentiation with respect to z. We assume that
the local truncation error 7¢ of N! can be written as the expansion

T (u) = hfﬁlT(u, u o)+ O(hf“).

For example, for the model problem (4.1.1) discretised with the fully one-sided
upwind flux, according to (4.3.10), 7 is given by

1[af 82u  8%fF [0u)\? 162
4.4, P u"y=-2-¢2L 748 9] (ou g .
(44:3) 7(u, ', u") 2 { ou 9z T ou? 62:) 2 O

For derivatives we use the notation

~

|

o5
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Foru =u—hle+ O(hf'l) and sufficiently smooth u(z) and e(z), the error
7(u,u',...) is related to 7(w, ', ...) through the asymptotic expansion, by
r(u,d',...)=1(w,d,...) - b ebur (B, @5 )

4.4.4
(4.44) —hiésr(u,u,...) -+ O + O(RY).

The preliminaries introduced here will be used to show that our estimates of
the local discretisation error are sufficiently accurate, both in a locally uniform
and locally non-uniform situation, provided that some smoothness conditions
are satisfied. Both situations are described in detail in the following two
subsections. Results for the example problem are given in section 4.4.4.

4.4.2. Estimating on a uniform grid. The restriction of the local trun-
I

. . +1 ; o 2
cation error 7't1(u) of N**1(R " u) on a uniform grid is

B+ (w) = B (hf,y7(u) + O(RF™))
(4.4.5) = 27PhPR'7(w) + O(RPHY)
= 2777l (u) + O(RPTH).
Hence, we find
(4.4.6) H(u) = 2P R 7 (w) + O(RPTY).

Substitution of (4.4.6) into (4.4.2) gives

1 —=l+1

T (R u) = 'rl(u) - TZITZH(U)

= (27 — )R 7 (u) + O(RFTY).

Assuming the existence of an interpolation operator Pl . X (QHY) —
XH1(QH1)) to interpolate a coarse-grid function, which for any sufficiently
smooth u € X (Q'*1) satisfies

=Li+1

(4.4.7) PRI Ry = B w1 o).

With this interpolation and with (4.4.4), where u = u — hje+ O(th+1), we
find

Wlk_lPlHTllH(T{lHu) = Pl"'lﬁl'rl“(u) + C’)(th)
= 'rl+1(u) - O(thrl)
= (u) — RPRS R (ebuT(u )
+ebyr(u,d,...)+ )
+ O(RPRITY) + O(RPRYY) + O(RIHY).

(4.4.8)
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Hence, with an interpolation operator which satisfies (4.4.7) and provided ¢
and u are sufficiently smooth, the estimate

- 1 _

FHl(utl) = 9 1 PHhri (ufth) = 7l(w) + O(h)),
holds with ¢t = min{p + ¢,p + 1}. According to (4.4.3) and (4.4.4), for the
one-sided upwind discretisation of (4.1.1) we investigate here, it suffices to
have differentiable u(z) and €e(z).

4.4.3. Estimating on a locally non-uniform grid. For a locally non-
uniform grid, we wish to be able to estimate the local truncation error in a
similar way as described in the previous section. As noticed earlier, this is
difficult because we have to find asymptotic expansions for the local error
of an irregular discretisation scheme. In this section we describe how the
local error may be split into two parts. This is done so that one part can be
estimated by extrapolation. The other part is approximated by approximating
the differences that appear in the expression for this local error.

In a locally non-uniform grid situation, (4.4.5) does not hold, since the
discretisation in the neighbourhood of a green boundary differs from the reg-
ular discretisation. We split the local discretisation error into two parts. One
part, 7!(u), is the local truncation error in the case where each cell is part
of a locally uniform grid (all neighbours exist). The other part, 7!(u), is a
perturbation due to the local refinements and virtual states (e.g., fine-grid
cells have been deleted and hence some neighbours do not exist any more).
This splitting gives

(4.4.9) Tl(u) = 'rfl(u) + T,ll(u)

The part 7}(u) is zero in cells which are part of a locally uniform grid (if the
regular discretisation scheme is employed). For the first-order accurate inter-
polation in (4.2.10) and fully one-sided upwind computation of the numerical
flux, 7 (u) is unequal zero, only when xé‘L is a green boundary. We describe
estimates for both 7/ and 7! in detail, in the next subsections. We consider a
locally refined composite grid, so that a coarse grid is locally uniform.

The non-uniform part. The non-uniform part of the local truncation error
may be considered as a perturbation of the local truncation error on a locally
uniform grid. In the locally non-uniform grid cells, 7/¥!(u) results from the
difference between a virtual state véi’nl_l in wéfnl_l and the corresponding state

ubtl | if Q51 would exist. We have for ity

{r" (Wem = o' (w) = {r ()5
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By (4.3.3) and (4.3.2) we have, for :réfnlL a green boundary,

1 oF
1 1 !
{7 . +1 = l+1 { - (u 247;11 1 _U2Tnl 1)
w(zy, 1)
2 2
+0 (( (mlz-:nlL) vptl 1> “( (rlztnlL)_UlzTnl 1) >}

The second-order accurate interpolation /2 to obtain the virtual state vé‘fn}_l

gives for the non-uniform part {7/+!(u)}5"! in Q4F!

8%u

zlt! 8:62 il
ZTom,L 2m,L

1 141 OF

+1 +1 __
{Tn ('U.) 2 Som au

2m =

+ O(h?).

For a second-order accurate approx1mat10n of 7/¥1(u), it suffices to approx-
imate 0F/0u at u(z! ;) and 6*u/dx? at ! with first-order accuracy. Let

vitl | be the virtual state obtained by interpolation I2 of the restriction of

u(z). In addition, let a function @(x) satisfy

f I+1 ﬂ(a:) dz 131
4.4.10 Rl =
( oy fw1+1 dz Y2m-1)
2m -1
(4.4.10b) a(z) = u(z), x> aclz“:nl‘L,
where whl | is a virtual cell. If the solution for a regular discretisation scheme

is the restriction of a differentiable function, then there exists a @(z) which
satisfies (4.4.10) and which is also differentiable. Differentiability is ensured,
since for a given viF! | the scheme may be considered a regular scheme. The
regular discretisation is shown to have a solution, which is the restriction of
a differentiable function. For this @(z) we have

2

) 0“u
l+1 + O(hl) = 5112221 8? . + O(hl)
2m,L 2m,L

1+1 141 | 1+l o0
Ugpyr — 2Ugp, T Vg 0%

(S’ZT,})? o

Furthermore, it can be easily shown that

6£
ou

_OF
ul;"nl_ du u(z

for u(z) continuous on QlH.
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—t—f —t— Q'+t
o : : : : L
t } 4 } .Ql—l
141
X
T
I
X
s
x

FIGURE 4.4.1. Example of characteristic function on differ-
ent levels of refinement.

For xl;[nlL a green boundary, we have an a-posteriori estimate for i1 (y),

denoted by 7L (ut*1; ut), given by

(4.4.11)
1 OF
~l4+1/. 1 NI+ I+1 I+1 I+1
{Tn+ (u “;u) Z_Z-n = 231+1 Bu M( 2Jrrn+1 _2“+ +U2-:n—1)
u

2m

{ra" ! (w)}ahs +O(h}).

I

Otherwise, 7\*1 is zero.
The uniform part. Let the characteristic function X' e XY(Q!) be defined by

1, ifzeQland 2!, is a green boundary
A. o) =4 " ' ek :
(#412) () { 0, everywhere else and z € Q.

An example of characteristic functions associated with the locally refined grid,
is shown in Fig. 4.4.1. Similar to the locally uniform case, we 1ntroduce
functlons to be used in asymptotic expansions in terms of hy, for both 7! and
7! given by
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An asymptotic expansion of the local truncation error is then written as

) =R {hlm(u, o)+ ORPTY)
(4.4.13)
X (B ) + OFH)

where 7, and 7, are independent of h;. The assumption that the coarse grid
Q! is locally uniform, implies

=UiFl
X T

R W(u,u'y ) =0.

The local truncation error on the refined part Qi, of the coarse grid is then
given by

. L1
H(u)=R *

Hhi+l
=R

7! (u)

{WH@WC~J+0wﬁﬂ+x%wmwﬂ:“»+omﬁvﬁ
= hff?l’l“‘ru(u, u,. )+ O(hfﬂ)

The restriction of the local truncation error on the fine grid, can be written

as

Rl‘lHTlH(u) = thT?l'H—lTu(u, ', )+ RI'HIT,ILH(u) - O(h;’“)

= 2773 (w) + B" 1 (w) + O(RPTY).

From this we see that the local truncation error on the refined part of the
coarse grid then may be written as

) = 2RV A () — 22 RV (u) + O(RHY.
The relative truncation error 7/, (u) as given by (4.4.2) can be written as

(4.4.14)

=141

. i+l
Tll+1(R u) = #(u) - R 7 (w)

— PR () — 9 R A () — RV L () + O(RET)

(20 — DRt (w) — 22 RV A (w) + ORI,

From (4.4.13) and the definition of x' in (4.4.12), it is easily seen that e Y
cannot be considered as the restriction of some smooth function. An inter-
polation operator which satisfles (4.4.7) for a smooth function, cannot be
applied effectively to approximate 7/*!(u) from (4.4.14). This would result
in errors of O(h!) in the approximation of the local truncation error, which
itself is O(h?). The part /7! may be considered as the restriction of a smooth
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function Af, ; 7, (u(z))+O(h?*"). For the upwind discretisation of the conser-

vation law (4.1.1a) 7, is given by (4.4.3). Introduction of the splitting (4.4.9)
in (4.4.14), gives

Ty = (@ - DR ) - B () + O,

Tzl+1(ﬁ
Interpolation by using P'*!, which satisfies (4.4.7), division by 27 — 1 and
reordering gives
1+1

1 .
——— P (TII-H(R

B+l 141 _ 41 p+1
T w)+ B (W) = niF () + O],

If zé";}L 1s a green boundary and the estimate of the non-uniform part is given
by (4.4.11) with sufficiently smooth €(z) and @(z), then we have, similar to
(4.4.8), an estimate of the non-uniform part of the local truncation error given
by
(4.4.15)

S O TS T N S S AC I Gl B FE R N 25 SR PO TR R

T (u ;u):rip (Tl+1(u )+ R AT (u 7u))

=7, (@) + O(h}),

where t = min{p + 1,p + ¢,2}. From (4.4.3) and (4.4.4) it follows that u(z)
and €(x) have to be differentiable to ensure that (4.4.15) is true.

4.4.4. Estimating the local discretisation error for an example
problem. In this section we investigate the a-posteriori estimation of the
local error, for the example problem introduced in Sec. 4.2.2.

Locally uniform grid. In the model problem we use a first-order discretisation
and we have a first-order accurate solution, p = 1. With the expression (4.3.9)
for the exact local discretisation error of the example problem, we find

16
(4.4.16a) T3 (W) = —h},, (2442 + w1
o, 88 29

(4.4.16b) o1 (@) = —h}y,(24i% + 3¢t *3')

For the problem and discretisation considered here, it suffices to take for
P'*1 the cellwise constant interpolation

PR = (P G, = o,

for i € []lc. This interpolation satisfies (4.4.7). For the example problem, with

solution u(z) = z?%, the coarse-grid operator N, acting on the restriction of
the fine-grid solution of the discrete equations, gives

{NYR'W*)Y = b, (640 + 4842 + 32i + O(0)).
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For the restriction of the fine-grid operator, acting on the fine-grid solution
we have

{RINI (W)} = b, (644 + 9642 + 643 + O(:°)).
Hence, the relative truncation error is
{Tll+1(ul+l)}it = _h?+1(24i2 +16i + O(:)).
The cellwise constant interpolation gives the estimate on the fine grid

ForH(uth) = REL (W) = —h} (2442 + 161 + O(i0)).

As expected, this differs O(h?) from the estimate (4.4.16).

Locally non-uniform grid. The local discretisation error in the locally non-
uniform grid cell QIZT,} is

_ 2 8
(4.4.17a) Ton (@) = —8a2hiyy — ga:gh;‘;l - ghfﬂ.
For its neighbour we have

_ 44 29
(4.4.17b) Tonep1 (@) = —6xhups — gl’yhzal = gh?ﬂ‘

In this locally non-uniform case, the local discretisation error is estimated by
estimating 7. and 7.. By application of (4.4.11), we find for the non-uniform
part

[ @ )t = —222 + O(RY).

Furthermore, we find
Lo L, =1\ __ 3h ﬁ 2h2 (9h3
{N(u’u )}m“sa"g l+1+3mg l+1+ (1)7
and
{RMFIN (W u)), = 8adhiy + 2423RE,, + O(RY).
The estimate of the relative truncation error is
14

(@Y, = =5 Shi + O(RD)

Then we have with the cellwise interpolation P!*1 and p =1
W = G L,
= {rl (W)Y +{R T A W ),

17
= —gwﬁhm + O(h}),
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FIGURE 4.4.2. The function €(z) for the example problem
and green boundary x, = Y.

and the estimation of the local truncation error is
- . 23
A+ 550 = - S etk + O(RY),
x - 17
{7t + Trll+1}l2_+‘r;11+l = _?$3h1+1 + O(h}).

Clearly, these are O(h;) accurate approximations of the exact local truncation
errors, given by (4.4.17), which itself is O(h;). This inaccuracy is caused by
the fact that €, which is used in the asymptotic expansion of the error, is
not sufficiently smooth. In Fig. 4.4.2 € is shown for the green boundary at
z, = 1. As already noted, ¢ is not differentiable in z4. The inaccuracy of
this estimate is in full agreement with the theory developed in Sec. 4.4.3.

An accurate estimate of the local discretisation error can be made, by
replacing € with a sufficiently smooth ¢, and use this in the estimation of the
uniform part 7{+1. Replacing ¢ is the same as replacing the function u used
in the asymptotic expansion of u!, with a sufficiently smooth and first-order
accurate u, which satisfies (4.4.10). Then, the restriction of & may be used in
the computation of 7',’+1.

This restriction of 4 is easily found by extrapolation of the solution u!*!.
We use (4.4.10) for the mean of @ at wht! ;. The mean at whtl , is found
from linear extrapolation by

~l41 Wy _ 2”51}1-1 _ u1241;11
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~[+1 A

! the value of %(u2m_2 +aqr) ). For altl

In Q! | we use, instead of ul,_,,

we find
- 1
UIZTnI—l — Uétnlq = w?, +xghiyr — 6h12+1 + O(h}),
- 5
ulztnl—z = mz —zghiy + éth-H + O(h?)~
Then, we also have

1 1
1 5 141 .
Uy = 5(“21_,1—2 +igh 1) = mz + ghlz+1 + O(h}).

+1

The restriction of the fine-grid operator, acting on u'™", 1s

{RIN"H @ ah)), = (ughi)? = (v0)?

Furthermore, we have for the coarse-grid operator, acting on the restriction

of @ttt

{]V'I(Rl’l+lﬁl+1;ﬁl+l) Lo @) — (@ )2

m m m—1

= L Ul ) - (b )
= 8z3hi1 + 1422k, + O(RY).

Then, the relative local discretisation error is

{rl (@)} = —52ghi + O(hY).

From this and with P!*! the cellwise constant interpolation and p = 1, we
find

R @A = (@)
. =LI+1 . s .
{rla @O} + (BT A @ ),

= —622hi41 + O(h]).

Then, the estimates of the local discretisation errors on Q1 are

(FIA 4 7 = 622y — 222k + O(hY)
= —822hi41 + O(h}),

(B + 2 = —6zghi + O(hY).

These clearly are O(h?) accurate approximations of the local discretisation
errors given by (4.4.17).
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4.5. Extension of the estimation to two space dimensions

In this section we consider the extension of the procedure developed in
the previous section to two space dimensions. We consider a grid in physi-
cal domain obtained by an affine mapping M! = M. An analysis for more
general mappings would probably require an invariant description in general
coordinates, similar as e.g. in [4].

For the present analysis we need expressions of the error of the discretisa-
tion due to the computation of the virtual states. For an affine mapping M
and a function ¢ € X () we have

isd 1 -
qzl‘,j = {R Q}é,j = Elg’ /ﬁﬁ. j qdQ2.
This greatly simplifies the analysis, since we can do it completely in computa-
tional (£, 7) coordinates. We first establish the accuracy of the virtual states
for first-order and second-order accurate discretisations, for the virtual states
defined by (2.5.1)—(2.5.4).
We assume a sufficiently smooth function ¢, and a Taylor series expansion,
given by

q9=qo+ @€+ @0+ qa3€% + quén + gsn*
+ q6€% + g€ + gen? +qon® + ...,

around the centre of the cell Qﬁj
We consider the equations for a cell 9121-41-1,2]'4—1 where 8912-:+1—1,2j+1,E C
59;”'1. The virtual state véji2’2j+1 required for these equations, is an ap-

: : 141 :
proximation of the mean of ¢ on Wyit2.2;+1- Lhis mean can be expressed
as

B2

I+1 2i42,2j+1

i ~ 3 1
7 /Qm qdd = qo + §hl+1fh + 5’ll+1(12

7 3 1 15
(4.5.1) + ohiigs + “hiiqs + ~hi g5+ ‘h?ﬁ—l‘IS
3 4 3 4
7

1 1
+ ghlsﬂ(h + §h13+1QS + a’h?ﬂ% + O(hiyy).

The mean state in (4.5.1) equals qé-;i2.2j+1 in the situation (2i+2,25+1) € I',
since wéﬁszH is the part of Q that would be Qé?i2.2j+1 if the grid would
be sufficiently refined (cf. (2.3.17)). In [7] it is shown that qéﬁ%zﬁ_l (and
hence (4.5.1)) satisfies the requirements for consistency (2.4.38), for the re-
constructions discussed in Sec. 2.3.5. For any virtual state Uéﬁmﬂ-l that dif-
fers O(hY, ), p=1,2 from (4.5.1), the reconstructions discussed in Sec. 2.3.5

do not satisfy the consistency requirements and introduce an O(hf:ll) error
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in the equations for le’;ilﬂj_‘_l. However, the numerical flux will be a pth-
order accurate approximation of the mean value of the exact flux, and hence
pth-order consistency in the weak sense is obtained (cf. 2.4.6).

We study the accuracy of the virtual states, for both weak consistency
and consistency in the usual sense, and for both first-order and second-order
discretisations.

4.5.1. Virtual states for weak consistency. For pth-order weak con-
sistency we only require a pth-order accurate approximation of the mean flux
across a cell face. We consider virtual states for both first-order and second-
order weak consistency.

First-order. The formula for a first-order accurate virtual state véﬂmi“ is
given by (2.5.1), i.e.

1+1 1
(2.5.1) U2i+2,2j+1 = Tit+1,5>

and schematically represented in Fig. 4.5.1. For this virtual state we find with

+1 I+1
QQi‘2j+1 92i+1.2j+1 !
o) o} e X Bitrs

1+1 I+1
Q2i,2j Q2i+1,2j /

O @] ® X

FIGURE 4.5.1. Virtual state for first-order weak consistency
on a locally refined grid; o: available state; e: left or right
state; x: virtual state.

the Taylor series expansion

(4.5.2) véﬁ”jﬂ = qo + 2hip1q1 + O(h7y,).

This virtual state differs O(hi41) from (4.5.1). Hence, it yields a zeroth-order
error for the equations. However, since the virtual state is O(h;) accurate,
the reconstruction gives a first-order accurate virtual state, which yields a
flux computation which is first-order accurate. This implies first-order weak
consistency.
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Second-order. A similar situation for second-order weak consistency is found,
if the virtual states are computed with the second-order accurate formu-
lae (2.5.2), i.e.

3 I+1 1 I+1

I+1
(2.5.2a) U2i+2,2j+1 = Zqi-H,j + Zqi,j+1’
3 1
I+1 _ 9 141 I+1
(2.5.2b) V2it3,2j+1 — ZqH—l,j + Zqi+2,j+1'

This is schematically presented in Fig. 4.5.2. Again, the virtual state v;ﬂ2,2j+1

1+1 1+1
Q2i.2_7'+1 Q2i+1,2j+1.

© @ O ee X

N

1+1 1+1
2,25 92i+1,2j
9 = o)

i+1,j

FIGURE 4.5.2. Virtual states for second-order weak consis-
tency and first-order consistency on a locally refined grid;
o: available state; o: left or right state; x: virtual state.

is an approximation of the mean of ¢ on ‘*’53'112,2]'“’ given in (4.5.1). For the
virtual state computed in this way, we have

3 1 10
vé-z!i2,2j+1 =gqo+ §hz+1fh + 5h1+1Q2 = ghf+1q3
(4.5.3) 4. i
+ §h1+1‘I5 + O(hiy1)-

A similar result is obtained for véﬁ&zﬁl. Apparently, this is a second-order
accurate approximation of (4.5.1). Similar to the first-order weakly consistent
situation, the consistency requirements (2.4.38) are not satisfied for p = 2.
However, the flux is second-order accurate, hence (2.5.2) yield second-order
weak consistency. Formulae (2.5.2) are two of a number of possible choices for
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second-order accurate virtual states. We have chosen these for their relative
compactness and their symmetry. They are symmetric with respect to the
diagonal through the centres of Qé.j+1 and Q£+1.j' A virtual state required

for e.g. le_:iz.zj+2’ with 0Q9;42.2j4+2,5 C (9ng+1, exactly results in (2.5.2a).

4.5.2. Virtual states for consistency. The requirements to be satisfied
for a consistent discretisation, are given by (2.4.38). We consider both first-
order and second-order consistency. A pth-order consistent discretisation for
equations for cells near green boundaries requires a (p + 1)st-order accurate
computation of virtual states.

First-order. First-order consistency can be obtained by second-order accu-
rate computation of virtual states. For this formulae (2.5.2) are applied.
From (4.5.1) and (4.5.3) it is clear that the requirements (2.4.38) are satisfied
for p = 1, if they are satisfied by qéﬂ“ﬂ_l when Qéﬂ””l would exist. This
is shown to be the case in [7].

Second-order. Similarly a third-order accurate computation of the virtual
state is required for second-order consistency. This causes no extra second-
order error with respect to the situation where leﬁzzjﬂ would exist. As

shown in [7], in that situation (i.e., le-ig-2‘2j+1 exists) a second-order accurate
discretisation is obtained.
A third-order accurate computation of virtual states is given by (2.5.4), i.e.

(2.5.4a)

17
41 1 ! ! !
U2?+2,2j+1 = 1gdi+1. + 16 (qi.j +q 41t Qi+1‘j+1)

2
16 <q£+2,j + q£+1,j—1) )

(2.5.4b)
17 1
+1 l l l l
U2T+3,zj+1 = qu‘ﬂ,]‘ + 16 (qi+2.j +giv2 41 T qi+1,j+1)

2
T (¢ + i jo1) -

This is schematically represented in Fig. 4.5.3. These are also chosen from
a number of possible alternatives. Apart from compactness and symmetry,
this choice is based on the size of the in absolute value largest negative coeffi-
cients. For the present choice, the negative coefficients are smaller in absolute
value than for possible alternatives with similar compactness and symmetry.
From the Taylor series expansion of g it can be shown that the virtual state
Ué}h&?&]’*‘l’ obtained by (2.5.4a) can be expressed as

3 1 7 3
Vatia,2j41 =00 T ghisiar + Shivige + ghzzﬂ% + ;1h12+1q<;

1 3 5
+ ghl?ﬂ% =F ihtsﬂ% + §h?+1‘17 +3hi1q0 + O(hiy1)-
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1+1 1+1
922',2j+1 Q2i+1‘2j+1

o ® o

)

I+1 14+1
QZi,Qj Q2i+1,2j

FIGURE 4.5.3. Virtual states for second-order consistency on
a locally refined grid; o: available state; e: left or right state;
X : virtual state.

Clearly this is a third-order accurate approximation of the mean value on
w;ﬁz 2j+1- Hence, since this virtual state does not introduce extra second-
order errors in the reconstruction, the requirements for consistency (2.4.38)

are satisfied for p = 2 and the discretisation is second-order consistent.

Suggestions. Apart from accuracy considerations, the way to compute virtual
states is chosen arbitrarily. Some suggestions for proper choices of virtual
states are given here. These suggestions maintain the accuracy of the virtual
states, while they may have other implications for the final numerical solution.

Virtual states may be computed with sufficient accuracy in several different
ways. A way to do this for both first-order and second-order accuracy, is
given in the previous section. Consider the situation where the four virtual
states v'Fl Vm € K(i,7) are required, and for each of these we have two

m

alternative ways to compute the virtual state: (v*)!*! and (v*)!*!, which are

both pth-order accurate. We can now choose the final virtual state as a linear
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combination of these two alternatives
vl = At 4 (1 - M)

The choice of X is still undecided. E.g., A may be chosen so that the mean value
of the four virtual states v'*1, Vm € K(i,j) equals qf’j (as in the restriction
of the fine-grid solution). This gives for A

qﬁ,] ] 4 ZmEK(z])( )l+1

§ Zmek(ip (@t = (@)t

Another choice may be given e.g., by requiring that for the eastern cell
faces, 8Q21+1 2j,E Y 6Ql 21+1,2j+1,E C BQI+1 the numerical fluxes satisfy

A_

l 1+1 +1 1+1 l+1
Fz] ksz J.k T F2z+1 25, ES2i+1, 25,F + FQH—I 27+1, ES 2i+1,254+1,E"

From this requirement A may be solved numerically. The implications of these
choices require further investigation.

4.5.3. A-posteriori estimation of the local discretisation error in
two space dimensions. Here we extend the method for estimation of the
local discretisation error to the case with two space dimensions. We only
consider first-order accuracy. In this case we only have to consider the con-
tribution to the local discretisation error due to the reconstruction phase of
the discretisation. The other contributions are all second-order. Extension to
second-order accuracy is straightforward, although it involves more tedious
calculations.

Similar to the one-dimensional case, we define the relative local truncation
error by

INES
{rhald* Oy = o {INE T e,

Al
—{Rf+1Nl+1<ql+1; ql) i,]} ’ \V/(Z,],l) € If‘

For ¢™ = szq, m=10-—1,l,l 4+ 1, and assuming exact approximation of the
right-hand side, the relative truncation error is (cf. (4.4.2))

—l+1 B+l !
TR g =R"" 1 (g) - Ripamt(g) + O(RFT).

Also for the two-dimensional case we split the local discretisation error
7!(q) in a part 7!(q), the local truncation error if the cell would be part of a
locally uniform grid, and a perturbation, 7} (g) due to the fact that the cell is
a locally non-uniform grid cell, i.e.

H(q) = 74(q) + T (q).
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The perturbation 7.(q) vanishes if the cell is part of a locally uniform grid.
We denote estimates of the local discretisation error by a tilde over the sym-
bols. Then, the uniform and non-uniform part of the local discretisation error
are denoted by 7!(g';¢'~!) and 7!(¢';¢'~1), respectively. Hence, we use the
estimate

(4.5.4) 7(q) =7u(d ¢ ) + 7ld's ¢ ).

The uniform part. The uniform part is estimated by extrapolation. This is
similar to the extrapolation given in (4.4.15) for the one-dimensional case. We
have for the uniform part

. i =
(4.5.5) 7,7 (¢ ¢') = ﬁpl“ (Tzl+1(ql+1) + R 7t (g ql)) :
For the operator P' : X(Q*) — Yl(ﬂl) the piecewise constant interpola-
tion can be chosen, which for a sufficiently smooth ¢ € X(Q'*!) satisfies
(cf. (4.4.7))

Pl+l§§+1ﬁl+lq = Rlﬂq + O(h).

The non-uniform part. The non-uniform part 7. (q) of the local discretisation
error is estimated by considering the terms appearing in the expressions for
the local discretisation error, as found with the Taylor series expansions. An
expression for the contribution of the reconstruction to the local discretisation
error is given by (2.4.35). We are only interested in the reconstruction error
Ti,j,ka appearing in the first term of (2.4.35), because all other terms give
higher-order contributions to 7! (assuming a consistent discretisation and a
reconstruction that is at least first-order accurate). The left and right states
(qL)ﬁ’]-,,c and (qR)ﬁ'j‘,c can also be written as the sum of a part from a uniform-
grid situation and a perturbation due to the locally non-uniform grid. We
define

(qL)é,j,k = (‘Izll)i,j,k + (Q#)i,j,k,
(qR)é,j,k = (Qf)é,]’,k + (qf)é.j,k’

With this and with (2.4.35) we have for the non-uniform part of the local
discretisation error

(T)ig = (T)ij = ()i ;

1 OF
(4.5.6) ", 2 { d(qk)e

*J keD

((qr{')é,j,k)a

9i,j

oF

 agh)e

<<qzz>z,j,k)“} S+ O,

‘1,-']'
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where the superscript a denotes the components of the state vectors, and
where summation convention is used for o = 1,...,d. Here, we expanded the
notations in (2.4.35) to its original components, using (¢*)* and (¢®)* instead
of the components (wff)? and wlf = (g%, ¢q®)T. Note that (q#)lw._,C and
(qf)ﬁ_j'k both vanish if the numerical flux Fil’]-‘k, across 8Qli.j’k is independent
of virtual states. To be more specific: (q{;)i,j’k equals zero when the left state
(qL)équ,c does not depend on a virtual state. An analogous statement holds
for the non-uniform part of the right state. Note that contributions from two
opposite cell faces never cancel, since two opposite cell faces never are both
part of the green boundary.

We now consider the eastern cell face 8012”;11'2]-“_}5 C (9ng+1. For the first-
order consistent discretisation we use the reconstruction given by (2.3.18),
Le.

Lyl+1 1
(q )2i+1,2j+1.E = q2i+1,2j+1>

Ryl+1 1
(q )2i+1.2j+1,E = V2i42,2j+1"

Hence, for this situation we have

(4.5.7a)
L\l+1 —
(qn)2i+1,2j+1.E =0,
(4.5.7b)
1 -
R\I+1 I+1
(qn )2i+1,2j+1,E = V2it2,2j41 T 7 /m qdQ2.
I+1 Ywsii2,2541
We assume that F2lj+11.2j+1,E is the only numerical flux for this cell that de-

pends on a virtual state. Substitution of (4.5.1) and (4.5.3) in (4.5.7), and
subsequently substitution of (4.5.7) in (4.5.6) for cell Ql2-:-+1—1,2j+1’ gives

(4.5.8)
1+1
(Tn)2i+1,2j+1 =
1 OF 3 9 I+1 2
i d(gh)e (93— 40 + 95)*hit185141 05418 T O(hita)-
2i+1,2j+1 O\d LA,

We now have to estimate the derivatives appearing in (4.5.8). The esti-
mates have to be first-order accurate only. We assume similar smoothness
conditions as for the one-dimensional case in 4.4.3 and assume this condition
to be satisfied. For the present situation we use the following approximations



(4.5.9a)

(4.5.9b)

(4.5.9¢)
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1 0% 3
2 2 _ 141 1+1
gshiy, = 2 062/ hiyr = R(qu,Zj + a5 2541)
quj
5 I+1 I+1 1 l 3
- 16( 2it1,2) T G2ir1,2j41) T gdi+15 T O(hi41),
0%q
2 2 _ 141 I+1
gshiy, = w@éa—‘ o 1+1 = 924,25 — 92i+1,25
T) 2i4+1,25+1

I+1 1+1 3
— Q91241 T 9i+1,2j+1 T O(Ri41),

2 1 & 2 3 1 1+1
gshiy = 2 an?| hij1 = E(‘hi,Zj + ¢21+1,2;)
qi,j
5 I+1 I+1 1 l O h3
= ﬁ( 9i2j+1 T Toit1,2j41) T 4 i+ + O(hi41)-

These contributions are schematically represented in Fig. 4.5.4. With the

16

516 -1 1

16

1/‘1

/
\
\!
—%16 1 -1 )

a. Estimation of qszh?, ;. b. Estimation of q4h?, ;.
q3hyyq I+1

FIGURE 4.5.4. First-order accurate approximations of the
terms (13h12+1 and q4hf+1; Q5h12+1 is estimated similar to

q3h12+1'

derivatives estimated by (4.5.9), ignoring higher-order terms, we can estimate
7! which itself is first-order, with second-order accuracy. The estimate of o
is denoted by 7..

4.5.4. Local grid refinement based on a-posteriori estimation of
the local discretisation error. With the estimate of the uniform part de-
fined by (4.5.5) and the non-uniform part, defined by (4.5.8) and (4.5.9), and
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with

(4.5.10) =5+

we found a sufficiently accurate estimate 7 of 7.

Numerical ezample of the estimate at an arbitrary green boundary. We study
the estimation of the local discretisation error for a model problem with an
arbitrary green boundary. In order to numerically establish the accuracy of the
estimate of the local discretisation error given above, we consider the same
two-dimensional, nonlinear model problem, already discussed in Sec. 2.5.2,
with exact solution shown in Fig. 2.5.1, given by (2.5.5). We use a grid with
a green boundary at z = 0.5, as shown Fig. 2.5.2. For this configuration, the
local discretisation error is given in Tab. 2.5.3. In Tab. 4.5.1 norms of the

TABLE 4.5.1. Error in the estimate of the first-order local
discretisation error for the situation with an arbitrary green
boundary; results for a model problem.

hr ||7-L - TLHQC‘YL(Qg) “710 - TCHLl,Yc(Q)
3 0.1114e + 01 0.1323e + 01
& 0.2841e + 00 0.3763e + 00
5 0.7222e — 01 0.9709e — 01
& 0.1809e — 01 0.2427e — 01
38 0.4519e — 01 0.6068e — 02
sie 0.1129e — 02 0.1518e — 02

error in the estimate of the local discretisation error are given. Here, 7

the estimate (4.5.10) of the local discretisation error 7, on the finest level L.
The local discretisation error on the composite grid is 7. and its estimate is
denoted by 7.

; ; <L
Note that the maximum norm is on X (Q}), where Q) c Q' denotes the
collection of green cells of the grid on level [. Clearly, the estimate of the
first-order local discretisation error is second-order accurate.

Estimate of local discretisation error used for local refinement. We can use the
estimate of the local discretisation error in a refinement criterion. Therefore,
as an example, we numerically solve the model problem discussed in Sec. 2.5.2,
with exact solution given by (2.5.5).

First we apply in the refinement criterion the straightforward estimation
of the local discretisation error, by extrapolation of the relative local discreti-
sation error, assuming that the discretisations on two consecutive levels of
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refinement are similar. This gives the (inaccurate) estimate

1

_ plitil
2P — 1

l+1(ql+1) ql)v

(4.5.11) #

where P'*1 is piecewise constant interpolation and p the order of consistency
of the equations. This is an inaccurate estimate, since the assumption that the
discretisations on two consecutive levels of refinement are similar, is incorrect.
The grid is obtained by applying the refinement strategy given in Sec. 3.3. A
cell is refined if the estimate (4.5.11) is larger than 1.0. The grid obtained
with this strategy is shown in Fig. 4.5.5. We observe that it does not reflect

innl
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T

FIGURE 4.5.5. Locally refined grid obtained with inaccurate
estimate of the local discretisation error.

the local discretisation error. Hence, this primitive refinement by application
of (4.5.11) is not effective.

As a contrast we now apply the accurate estimate given by (4.5.4), (4.5.5)
and (4.5.8), in the refinement criterion. We use the same refinement strategy,
with cells refined when the estimate exceeds 1.0. The grid obtained is shown
in Fig. 4.5.6 This grid reflects the absolute value of the local discretisation
error for the first-order discretisation. For the first-order discretisation, the
lowest-order term of the local discretisation error is given by 7! in (2.4.35)
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FIGURE 4.5.6. Locally refined grid obtained with accurate
estimate of the local discretisation error.

and the local discretisation error can be written as

2 I
o _nlo., P10 o
* 9q*9q° dz., Ozs
of ¢ \' )
C! O(h
+ 7,6 aq (9I7(91‘5 ZJ+ ( l)a
where 2, = z and z, = y. Here, summation convention for a, 3, vy and

6 and U, s and C' 0 independent of h;. There is refinement where first and
second derlvatlves of the solution are large (in absolute value) except when the
derivative of the flux vanishes. For the model problem, the flux derivatives are
linear functions of the solution components. They vanish when the solution
components vanish.

We observe that the more accurate error estimate generates correct lo-
cal grid refinements (cf. Fig. 4.5.6), whereas the estimate (4.5.11) introduces
spurious refinements.

4.6. Concluding remarks

For a locally refined grid we have studied in detail a-posteriori estimation
of the local discretisation error for a finite volume, upwind discretisation of a
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one-dimensional conservation law. We have shown how the same estimation
technique can be applied to the two-dimensional case. We consider an estimate
of an O(h]) accurate local discretisation error to be sufficiently accurate, if it
approximates the local discretisation error with O(h’i+1) accuracy.

In the discretisation, for the one-dimensional case we considered two inter-
polations for the computation of virtual states at fine-coarse grid interfaces
(so-called green boundaries). It is shown that, to obtain a first-order accurate
solution, it suffices to use a first-order accurate interpolation to compute the
virtual states. However, this gives zeroth-order local discretisation errors in
the cells neighbouring a green boundary. A second-order accurate interpola-
tion gives a first-order local discretisation error. For both discretisations the
global error is first-order. However, the second-order accurate interpolation
may yield a smoother solution.

It is also shown that extrapolation of the relative local truncation error
(as in T-extrapolation) can be used for the a-posteriori estimation of the local
discretisation error, provided that the exact solution and the global discreti-
sation error satisfy a certain smoothness condition. In the neighbourhood of
a green boundary, the estimate is based on a splitting of the local discretisa-
tion error. We distinguish a part equal to the local discretisation error of the
regular scheme (the uniform part) and a perturbation, due to the irregularity
introduced by the lack of refinements in neighbouring cells (the non-uniform
part). The uniform part is estimated by extrapolation of the relative local
truncation error. The non-uniform part is approximated by estimating the
expression for this term obtained by Taylor series expansion. This estimation
technique can be applied if the solution of the continuous problem is differen-
tiable. To derive this result, it is assumed that the global error can be written
as an asymptotic expansion in the mesh width, with a differentiable function
in the lowest-order term. For an example problem it is shown that, away from
the green boundary, the global error can be considered as the restriction of a
differentiable function.

The global error on a locally non-uniform grid may not satisfy the smooth-
ness condition mentioned above. For a one-dimensional example problem
it is shown how to accurately estimate the local discretisation error, if the
smoothness condition is not satisfied. In that situation, the estimate is based
on extrapolation of the numerical solution across the green boundary. The
extrapolant obtained is an approximation of the solution, sufficiently accurate
to use it in the estimation of both the uniform and the non-uniform part of
the local truncation error. The extrapolated discrete function also satisfies
the smoothness condition.

Estimation of the local discretisation error has been extended to the dis-
cretisation on a locally refined grid, for a system of conservation laws in two
space dimensions. For the first-order accurate discretisation, the uniform part
and the non-uniform part of the local discretisation error can be estimated
with sufficient accuracy (i.e. with O(h?) accuracy for the first-order discretisa-
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tion), assuming that a similar smoothness condition as for the one-dimensional
case is satisfied. An example of local refinement based on the accurate approx-
imation of the local discretisation error for a two-dimensional model problem
shows that the estimate can be successfully applied indeed.
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Sa menva tt' ng (abstract in Dutch)

Tegenwoordig worden in tal van takken de industrie numerieke stromingssimu-
laties toegepast. Een belangrijke toepassingsgebied vormt de vliegtuigbouw.
Om te fungeren als gereedschap in een ontwerpproces, dient een numerieke
simulatie nauwkeurig, maar ook goedkoop te zijn. Enerzijds maakt een goed-
kope en nauwkeurige methode simulaties mogelijk van complexere problemen.
Anderzijds stelt het de industrie in staat een in economisch opzicht concurre-
rend produkt te ontwerpen in een aanvaardbare tijdspanne.

Multiroostermethoden behoren tot de meest efficiénte methoden om een
stelsel discrete vergelijkingen op te lossen. Om een efficiénte numerieke si-
mulatiemethode te maken, is het interessant om niet alleen gebruik te maken
van een multiroostertechniek, maar ook om het aantal onbekenden in het
numeriek-wiskundige probleem, dat ten grondslag ligt aan de simulatie, te
beperken. Met dit doel wordt in dit proefschrift een multiroostermethode ge-
presenteerd, die gebruik maakt van automatische, oplossingsafhankelijke aan-
passingen van het rekenrooster. In deze methode wordt een gegeven rooster
alleen lokaal verfijnd, waar dat voor de gewenste nauwkeurigheid noodzake-
lijk is. Deze methode kan worden toegepast op fysiche modellen die wor-
den beschreven met behulp van behoudswetten. Er wordt in het bijzonder
een lokale roosterverfijningsmethode beschouwd voor een speciaal stelsel niet-
lineaire behoudswetten, n.l. de stationaire Euler-vergelijkingen in twee ruim-
tedimensies. Dit stelsel van vier partisle differentiaalvergelijkingen beschrijft
de twee-dimensionale stroming van een compressibel, ideaal gas. De Euler-
vergelijkingen worden als wiskundig model vaak gebruikt in de vliegtuigbouw.

De discretisatie van het stelsel differentiaalvergelijkingen zoals gebruikt in
dit proefschrift, is een eindige volume, upwind-discretisatie van de stationaire
Euler-vergelijkingen in behoudsvorm. Het rekenrooster is een discretisatie
van het definitiegebied van de differentiaalvergelijkingen. Een lokaal verfijnd
rooster wordt in dit proefschrift opgevat als een samenstelling van (delen van)
roosters met verschillende verfijningsgraad. Ieder verfijningsniveau heeft een
rooster dat het definitiegebied geheel of gedeeltelijk overdekt. Het rooster op
een eerstvolgend niveau van verfijning ontstaat door een aantal cellen van een
rooster te verdelen in vier kleinere cellen van ongeveer gelijke grootte. Het
rooster dat uiteindelijke de numerieke benadering van de oplossing bepaalt, is
de verzameling van alle niet-verfijnde cellen.

De methode om het stelsel discrete (eerste orde nauwkeurige) vergelijkingen
op te lossen, is een niet-lineaire multiroostermethode. Een tweede orde nauw-
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keurig stelsel vergelijkingen wordt opgelost met behulp van defect correctie
iteratie, waarbinnen de multiroostermethode voor de eerste orde vergelijkin-
gen gebruikt wordt.

Zowel deze discretisatie van de vergelijkingen als de multiroostermethode
en de defect correctie methode is in de jaren 1984-1989 ontwikkeld en geimple-
menteerd op het CWI, door Hemker, Spekreijse en Koren. Het werk beschre-
ven in dit proefschrift is een directe uitbreiding van het werk van deze auteurs.

Een belangrijk resultaat van deze uitbreiding is een numerieke methode
die —door de automatisch adaptieve roosterverfijning— afhankelijk van het be-
schouwde probleem en de gebruikte discretisatie, voor de twee-dimensionale
Euler-vergelijkingen een factor vier tot tien aan efficiéntie wint.

In hoofdstuk 2 van dit proefschrift wordt de geometrische structuur en
de discretisatie voor stationaire behoudswetten beschreven. De geometrische
structuur maakt het mogelijk een stelsel van discrete vergelijkingen te definie-
ren, dat het continue probleem benadert. In dit hoofdstuk wordt ook de
lokale discretisatiefout bestudeerd en worden eisen geformuleerd waaraan de
discrete vergelijkingen moeten voldoen om een —in een bepaalde zin— eerste
of tweede orde consistente discretisatie te leveren. De aandacht is speciaal
gericht op de randen die de overgang vormen tussen een locale verfijning en
het aansluitende grove rooster.

In hoofdstuk 3 worden resultaten gepresenteerd van numerieke experimen-
ten, verkregen met de methode beschreven in hoofdstuk 2. De beschouwde
problemen zijn gekozen om een idee te krijgen van de nauwkeurigheid, de ef-
ficiency en de flexibiliteit van de methode (d.w.z. in hoeverre de methode de
mogelijkheid biedt om effectief gebruikt te worden in bijzondere situaties).

Hoofdstuk 4 gaat over een a-posteriori schatting van de lokale discretisa-
tiefout, met het doel deze te gebruiken in een criterium voor de verfijning van
het rooster. De lokale en globale discretisatiefouten voor een één-dimensionaal
modelprobleem worden in detail bestudeerd. Vervolgens wordt een methode
geintroduceerd en bestudeerd, die het mogelijk maakt de lokale discretisa-
tiefout te schatten. Uiteindelijk wordt deze methode uitgebreid naar twee
ruimtedimensies en wordt deze gebruikt als roosterverfijningscriterium voor
een niet-lineair modelprobleem.



