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SUMMARY AND INTRODUCTION

This tract deals with the approximation theoretic aspects of summation
methods for expansions in terms of Jacobi polynomials Réa’S)(cos 6). By
studying Jacobi polynomials a broad class of orthogonal polynomials is cov-
ered including Chebyshev polynomials (o=B=-1), Legendre polynomials (a=B=0)
and Gegenbauer or ultraspherical polynomials (a=B8). For certain discrete
values of a and B the Jacobi polynomials can be interpreted as spherical
functions on compact symmetric spaces of rank 1 (Gangolli [25]). Especially,
if @ = B = (n-3)/2 the Jacobi polynomials are zonal spherical harmonics on
the unit sphere in R". When a function f is expanded in terms of Jacobi po-
lynomials many summation methods for this Fourier-Jacobi series may be con-
sidered as approximation processes for the function f. The main object of
this tract is to investigate the order of approximation of these processes
and to characterize the functions which allow a certain order of approxima-
tion. Many of these processes exhibit the phenomenon of saturation, which is
equivalent to the existence of an optimal order of approximation (the satu-
ration order). For the summation methods treated in this tract the satura-
tion order and the saturation class, that is the class of functions which
can be approximated with the optimal order, are derived.

In recent years much progress has been made separately in both subjects
combined in this tract, in Jacobi series as well as in approximation theory.
The joint work of Askey and Wainger led to the discovery of convolution
structures which give rise to Banach algebras for Jacobi series [5] and
their duals, Jacobi coefficients [6]. Gasper [26 until 28, 3] determined the
exact regions in the (a,B) plane, where these Banach algebras can be defined
and where the generalized translation operator or its dual, which are used
in the definition of the convolution, are positive operators. The convolu-
tion structure for Jacobi series is one of the basic tools in the present
investigation. It will be used here only in the case, where the generalized
translation operator is positive, that is if a > B and either B z_-% or
a + B > 0. However, most of the results dealt with in this work can easily
be carried over to the case, where a weaker condition, uniform boundedness
instead of positivity, is required for the generalized translation operator,
that is if @ > B, a + B > -1. Only at a few places the positivity is essen-
tial. But the author has restricted his considerations in order to keep the
formulas as simple as possible, while all the interesting special cases are

still covered. A survey of well-known facts on Jacobi polynomials and se-
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ries is given in the first sections of chapter I. The convolution structure
for Jacobi series is dealt with in section 1.L4. Section 1.5 is devoted to a
special class of Jacobi series. A more general class has been considered by
the author in [8], but for the applications in this tract the easier class
treated in section 1.5 suffices.

In approximation theory the concept of saturation has been introduced
by Favard in 1947 (cf. [2L4]). During the following years many authors con-
tributed to the subject and general methods were developed for determining
the saturation classes of families of convolution operators on the real
line, on the unit circle in the plane, on the n-dimensional unit sphere, on
the Euclidean n-dimensional space, the n-dimensional torus, etc. For histor-
ical details the reader is referred to [18], section 12.6. Methods due to
Peetre [39] of constructing intermediate spaces between two Banach spaces
turned out to be a useful framework for characterizing saturation classes
and classes of non-optimal approximation. For semi-groups of operators on
Banach spaces Butzer and Berens used this setting in [16], while more gener-
al families of operators on Banach spaces were considered with these inter-
mediate spaces in Berens [12], Butzer and Scherer [20] and in a number of
papers. In concrete cases as are dealt with in this investigation, these
general results on approximation processes on Banach spaces are quite use-
ful. They indicate which particular inequalities or limit relations for the
approximation processes in question are sufficient in order to draw conclu-
sions about their saturation class and classes of non-optimal approximation.
The theorems on approximation processes on Banach spaces, necessary for use
in this tract are stated in chapter II. For the proofs the reader is refer-
red to [12], [16], [20], [21].

In the first section of chapter III kernels and approximation kernels
are introduced. If X is written for a member of a class of function spaces,
which become Banach spaces by choosing suitable norms, the convolution of a
function f € X with an approximation kernel furnishes an approximation pro-
cess for f in the X norm. Next, summation methods for Jacobi series are de-
fined and with each summation method a kernel is associated. If this kernel
happens to be an approximation kernel then the Fourier-Jacobi series of a
function f € X, summed up by means of this method, converges to f in the X
norm. This is the case for many classical summation methods.

The main part of chapter IV consists in proving theorems of the Jackson

and the Bernstein type, which relate the smoothness of the function and the
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order of best approximation by polynomials to each other. The smoothness
here is introduced by means of the modulus of continuity defined with re-
spect to the generalized translation. If the space of continuous functions
endowed with the supremum norm is considered, this modulus of continuity
turns out to be equivalent with the ordinary symmetric modulus of continu-
ity.

In chapter V the author investigates a number of more or less classical
summation methods and characterizes the functions which allow a certain or-
der of approximation by these processes. The methods of proof used in this
chapter are indicated by the general theory on approximation processes on
Banach spaces, stated in chapter II.

Processes generated by the convolution of a function f € X with a posi-
tive kernel are considered in chapter VI. If positivity of the kernel is
assumed the conditions for norm convergence can be relieved considerably. On
the other hand, the order of approximation by positive polynomial kernels is
usually limited for non-constant functions. In section 6.3 a saturation the-
orem is given for processes generated by positive kernels, which satisfy a
certain condition on the Fourier-Jacobi coefficients. By means of this theo-
rem the saturation class and the saturation order of some kernels are deter—
mined in section 6.L4.

Finally, certain classes of functions which were used in the preceding
chapters are characterized in chapter VII.

Most of the results obtained in this tract were known for Fourier
cosine series (a=B=-3). However, at many places the way to generalize was
not at all obvious, since many specific facts for cosines, used in the clas-
sical proofs, do not go over to Jacobi polynomials. Also, in [13] some re-
sults are proven for Laplace series, which include ultraspherical series
(a=B). But the investigations there are restricted to the saturation of the
summation methods. In the present work the author has succeeded in charac-
terizing almost all the classes of functions which arise as classes of opti-
mal or non-optimal approximation for the summation methods under considera-

tion in terms of the modulus of continuity of the functions.



iv
NOTATIONS

Let g(x) be defined and postive on [a,b], let f(x) be any function de-
fined on [a,b] and X be an element of [a,b]. Then we mean by the notation

f(x) = 0(g(x)), (x+x0), that there exists a positive constant M such that

| £(x)

<M
g\x) —

in a neighbourhood of x, and by f(x) = o(g(x)), (x+x0), that

0

1lim
X,

If we write f(x) = g(x), (x+xo), we mean that there exist two positive con-

stants M, and M2 such that in a neighbourhood of x

1 0

We write f(x) ~ g(x), (X*XO), if

f(x)
g(x)

1lim =1

XX
For two Banach spaces X and Y we write X > Y, if the spaces are equal and
have equivalent norms. If we put Y ¢ X we mean a continuous embedding of Y
in X. By R we denote the set of real numbers; for the real numbers > 0 we
write R+. Let Z be the set of all integers, P the set of all nonnegative
integers and Z+ the set of all natural numbers 1, 2, ... . By A we mean

. +
either R or Z%.
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CHAPTER I JACOBI SERIES

The purpose of this chapter is to state the facts about Jacobi polyno-
mials and Jacobi series which are needed in the following chapters. For the
proofs of the formulas stated in the first two sections the reader is refer-
red to Szegd's book [46]. Section 1.1 contains a number of formulas whereas
in section 1.2 estimates are mentioned. The expansion of functions and fi-
nite measures in Jacobi series is treated in section 1.3. The next section
deals with the generalized translation operator and the convolution struc-
ture for Jacobi series, which play a crucial role in this tract. In section
1.5 a special class of Jacobi series is studied. Theorem 1.5.4 is essential
for the proof of the theorems concerning fractional integration and differ-
entiation stated in section 5.5 and proved in Bavinck [8], section 5. The
author has preferred to present these rather technical investigations at
this stage of the tract, although some results on the Abel-Poisson summation

method, treated in section 3.3, are needed.

1.1. FORMULAS

By Pia’B)(x) we denote the Jacobi polynomial of degree n and order

(a,B), defined by

n n
(1.0 (0B Bl () 2 S & (@B o g s g,
= 2"n!  ax

The polynomials in cos 6

(a,B)

P 7?7/ (cos 6)
Réa’e)(cos p) = *E—TE—ET————— nelP,
P (1)

are orthogonal on [0,m] with respect to the weight function

(a’S)(e) = (sin g')2a+1(cos %)26+1

(1.1.2) o >

and normalized to be 1 at 6 = 0. Hence,

m
(1:18) J 88 (cos 8) R(**B) (cos 6) 0(®:8) (g)ap = s [ Bl =1
o B m n,m n
where § =1if n =m and § =0 if n # m, and
n,m n,m



(1.1.4) (a,B) _ (2H+G+B+1)F(n+u+8+1lr(n+a+1l
e “n = TT(n+B+1)T (n+1)T(a+1)T (at+1)

+
For large n we have w(a’B) ~ n2(ll 1.

Also, Ria’s)(cos 0) satisfies the differential equation

(1.1.5) = [p{®B)(g)17" 6 (2:8) () L Ri Bl fomn )3 =

n(n+a+B8+1) Riu’e)(cos 8).
Occasionally, we shall use the notation

(1.6 2 = - (o)1 L (P ) S

and

(1.1.7) A, = n(n+a+8+1)

(G,B)(

For Rn cos 8) we have the following representation as a hypergeo-

metric function:

F. (-n,n+a+B+1;0+1; 51n2 6)

(1.1.8) Réa’s)(cos 8) = JF, 5

T (n+k+a+B+1)T (n+1)T (a+1) . 2k 6
2 (1) T'(n k+1)F(n+a+B+1)F(k+a+1)r(k+1)aln 2’

An easy consequence of (1.1.8) is the useful differentiation formula

We shall need the Christoffel-Darboux formula for Jacobi polynomials.

In a special case it can be written in the form

n
(a,B)(x) def ) (a,B) (G,B)(x)

(1.1.10) D w
n k=0 k Rk
at+1 (a+1,8),(a+1,B)
T 2n+at+B+2 w Rn (x).

1.2. ESTIMATES

Tt is derived in Szegd [46], section T.32, that for a > max(B,-3)



(1.2.1) sup IRﬁa’B)(

0<6<m

cos 0)] = Ria’s)(1) =

and the following relation holds uniformly in any compact subinterval of
(0,m) (Lk61, (7.32.5)):

(1.2.2) Ria’s)(cos g) = e‘“'%(n-e)'s'% o(n™%7%) n > .

An important asymptotic formula is Hilb's formula ([46], (8.21.17)), which

is valid uniformly for 0 < 6 < m-e:

. 8ya 08,8 (a,B) g CIIRY:
(1.2.3) (sin 2) (cos 2) Rn (cos 8) = N I‘(a+1)(Sin e) Ju(Ne)
1
ezO(n_3/2_a), n>w, cn <6 < m-e,
+
0%*20(1) , n>®, 0<6<cn,

where N = n+3(a+B+1) and Ja(z) denotes the Bessel function of order a.

We now prove the following inequalities, which we shall use in chapter

VI:

(a,B) n(ntatB+1) . 2 6
(1.2.4) 1 - Rn (cos 8) < = sin” 3 0<6<m,
(1.2.5) c nntatB+1) sin2 2-5'1 - R(a’B)(cos 0) 0 <6 <e,

a a+1 n

where c, € RY is suitably chosen and 0 < e < L/(2n+a+p+2).

By the mean-value theorem and formula (1.1.9) we obtain

(1.2.6) 1 = Réu’e)(cos g) = n(nta+B+1) sin2 B R(a+1’6+1)(cos 8),

o+1 2 "n-1

0<8<e.

Formula (1.2.4) is a direct consequence of (1.2.6) and (1.2.1). For the
proof of (1.2.5) we use (1.2.3). The power series expansion of (g)—a Ja(z)
has terms which have alternating signs and are monotonically decreasing for

real z, 0 < z < 2. Hence, for N » =



(a+1,8+1) 2 o+l 2 1
R._; (cos 8) > T(a+2)(Fg)" T 4, (N6) + 670(1) 0 <6 <2N ',
2
(o) 2
21 - y(ae) * O of3)
o+1 -2
(1.2.7) BegE - o(N" 7).

The inequality (1.2.5) follows from (1.2.6) and (1.2.7) for n > n_. On the

0
other hand, the constant c, can be chosen such that (1.2.5) remains valid

foroinino.

We shall also need the following estimate, which can be derived from

(1.2.1), (1.2.2) and (1.2.3) in a way similar to Szegd [46], (7.34.1):

™
(1.2.8) J |RI(10!.+)\,B)(COS e)IP p(0l+1138)(e)de ~
0

n-2a-2u-2 ph > (2-p)o+2u+2-p/2

o { n—2a-2u—2 iog @ pA = (2-p)at2u+2-p/2

n-P/Z-GP‘AP pr < (2-p)o+2p+2-p/2

\

with A > 0, u >0, 1 <p<®, a+td > B, n > =,

1.3. EXPANSIONS IN TERMS OF JACOBI POLYNOMIALS

In this tract we shall be concerned with the summation of the Jacobi
series which are associated with functions belonging to certain spaces of
functions on [-1,1]. By C we denote the space of continuous functions, L” is
written for the essentially bounded functions and the P spaces are intro-
duced with respect to the weight function (1.1.2) with x = cos 6. We call M
the space of all regular finite Borel measures on [-1,1]. The spaces C,

P (1<p<w) and M are Banach spaces if they are endowed with the following

norms

||f||C = sup |f(cos 8)],
0<6<m
™
||f||p = [[ |f(cos 8)|% p(“’s)(e)de]1/P, 1<p<o,
J

0



ess sup |f(cos 6)],
0<6<m

[EIR
m™
[1ully = | lauteos o)1

With an element of one of the spaces C or L¥ (1<p<) we associate

an expansion in terms of Jacobi polynomials, the so-called Fourier-Jacobi

expansion

(1.3.1)  £(cos 0) ~ nio £ (n)ol *BIR(%8) (cos 0),

where wia’S) is defined by (1.1.4) and

(1.3.2) M (n) = Jﬂ f(cos 6) Ria’s)(cos 6) o{%®)(0)as, neP.

0

The numbers fA(n) are called the Fourier-Jacobi coefficients of f.

With a measure pu € M we associate the Jacobi-Stieltjes expansion

o

(1.3.3) du(cos 8) ~ § uv(n)w(a’B)R(a’B)(cos 9),
n=0 n n
where
v " (a,B)
(1.3.4) u (n) = J Rna’B (cos 8) du(cos 0), ne P.

The numbers uv(n) are called the Jacobi-Stieltjes coefficients of u. The ex-
pansions (1.3.1) and (1.3.3) are only formal expansions, which need not to
converge. In chapter III we shall direct our attention to the norm conver-
gence of these series and general methods will be investigated for the sum-

mation.

1.4. CONVOLUTION STRUCTURE

One of the main tools in this tract is the convolution structure for
Jacobi series. In the case of ultraspherical polynomials (a=8) there is an
old addition formula due to Gegenbauer [29], which gives rise to a type of
convolution, introduced by Gelfand [30] and Bochner [1L4]. Later Gangolli
[25] discovered a convolution of this type for Jacobi series with these

values of a and B, for which the Jacobi polynomials can be interpreted as



spherical functions. For general Jacobi series (azﬁzf%) the convolution
structure was found by Askey and Wainger [5], who used asymptotic formulas
for Jacobi polynomials to prove the uniform boundedness of the generalized
translation operator T,. This operator maps a function f belonging to one of

the spaces C or LP (1<p<») and with Fourier-Jacobi expansion (1.3.1) into

(aaB)(

(cos 8) Rn

(a,B)Rﬁa,B) cos ¢).

(1.4.1) T, f(cos 0) ~ Z fA(n)wn
n=0

It was pointed out by Gasper [27] that the operator T¢ is a positive opera-

tor, that is if f(cos 6) > 0 almost everywhere on [0,T] then T¢ f(cos 6) >0
(0,8)

n

and the positivity of the operator it follows that T4 has operator norm 1.

Gasper gave an explicit formula for Ria,B)( ) Rﬁa,B)(

almost everywhere on [0,7].By the orthogonality of the polynomials R
cos 6 cos ¢) as an inte-
gral with Bessel functions, from which resulted the positivity of the opera-
tor T . Recently, Koornwinder [34] has discovered the generalization to Ja-
cobi polynomials of Gegenbauer's addition formula for ultraspherical poly-
nomials by means of group theoretical considerations. His formula enables us

to write the generalized translation T, f in the form

¢
1! m 0 0 ip,2
T¢ f(cos 8) = J J f(2]cos 5 cos g—+ sin 5 sin % re | —1)dua 8>
ua,B r=0 7 =0 ?
where
dua g™ (1_1'2)0"8_1 r26+1(sin w)28 drdy (a>B>-3).

From this representation the positivity of the operator T¢ is obvious.
Finally, Gasper showed in [28], that the operator T¢ is uniformly bounded if

and only if a > B, a+B > -1. Moreover, he proved that T, is a positive oper-

¢
ator if and only if o > B and either B > -3 or a+B > 0. In the rest of this
tract we shall always assume o > B and either B > -3 or o+B > O.

Hence, we have
(1.4.2) T, (] < e in C and LP (1<p<w)

and by the Banach-Steinhaus theorem (Hille-Phillips [32], p. 41) we may also

conclude that

(1.4.3) lim, |7, £(-) - £(-)|| =0 in C and L (1<p<w),
g0t ¢



since (1.L4.3) holds for polynomials and the polynomials are dense in the

spaces C and LF (1<p<e).

ot =0 _/

ot = -1

region where T¢ is bounded

region where T¢ is uniformly bounded but not positive.

Following Askey and Wainger [5] we define for f1,f2 € L1 the convolu-

tion f1 * f2 by

m
(1.4.4) (£,%2,)(cos 6) = J (T, 2,(cos 0)) f,(cos ¢) 0 (®2B) (4144,

0

This convolution has the following properties (see Askey and Wainger [5]).

1.4.1. Proposition. Let f,,f,,f, « L. Then £,5f, ¢ L' and

i) £y % £, = £, * £, ,
ii) £, % (fxf3) = (£,%5,) * £,
ii1) (£,x£,)"(n) = £5(n) £)(n) ,
iv) If g ¢ L (1<p<=), then £ xg € LP and [exell, < el el

By F.Riesz's representation theorem the space M is the dual space of C.
We use this fact to give an implicit definition of the convolution of mea-

sures. Suppose u,v € M and f € C. Then the map

m m
f > J J T f(cos 6)du(cos 6)dv(cos ¢)
0“0 ¢



defines a bounded linear functional on C and thus there exists a unique

measure u * v such that

m o
f f(cos 0)a(u*v)(cos 6) = f f T f(cos 6)du(cos 6)dv(cos ¢).
0 0lo ¢

The following properties are easily verified:

1.4.2. Proposition. Let Hyotysty € M. Then u *u, € M and
i) My X My = By %oy >
ii) uy (ue*u3) = (u1*u2) * Uz,
iii) (uprup)’ (@) = wy(mugn)
iv) Hwgrus |y < 1Ty Hy Tl Ty

There is an obvious embedding of 1! into M, namely f - me, where
dm, = f(cos 8) p(“’B)(e)de. The space L' consists of all the measures which
are absolutely continuous with respect to p(“’e)(e)de. The convolution de-
fined for L1 coincides with the convolution defined for M restricted to the

absolutely continuous measures. In fact,

d(mf *m,

™
)(cos ) = {J (cos 6)f,(cos ¢)p(“’8)(¢)d¢}p(“’8)(e)de.
1 *3

T f
0 ¢ 1

If £ e LP (1<p<e) and p € M we define f * u by

™
(1.4.5) (f*xp)(cos 0) = J T¢ f(cos 6)dp(cos ¢).
0
It follows that mf*“ = mg*u and that f*u € P satisfying
1.4.6 f hig "
( ) el < 11l Tully

Remark. By using the well-known relation (Szegd [461, (L4.1.3))
BB () e (978 2B R0 )

an analogous Banach algebra can be obtained in the case 8 > a and either

o > -3 or a+B > 0, if one considers the polynomials



Pia’s)(cos 8)

cos ) = ——;?ajgjzj:;—
n

(a,8)
Sn (

and defines the generalized translation and the convolution in a way similar

to (1.4.2) and (1.k4.4).

1.5. A SPECIAL CLASS OF JACOBI SERIES

In Bavinck [8] Jacobi series of the form

5 (0,8) (a,8)

(1.5.1) z n”Y b(n)w *2°/g\%> (cos 8)
n n

n=1
are studied, where y ¢ R’ and b(n) is a slowly varying function, such as a
power of log n. For the applications in this tract we only need the results
in the case b(n) = 1 for all n ¢ Z'. In this much easier case we shall treat
this class of Jacobi series here. For trigonometric series of the form
(1.5.1), the case a = B = -}, we refer to Zygmund [51], ch. V. Askey and
Wainger [L] have investigated ultraspherical series (a=8) of this type.

One of the main techniques we use is summation by parts. We have the

following lemma.

1.5.1. Lemma. Let a(n) be a function defined on 7' and let there exist an
(e

€ > 0 such that a(n) as n > », Let

H(cos 8) = n£1 a(n)wéa’S)Réa’B)(cos 9).
Then
(1.5.2)  Hlcos 0) = ] (a(n)-a(n+1) Tommenlsy ol "R 158) (cos o).

n=1

Proof. We first take the sum

(a,B)R(a,B)(
n

1 a(n)mn

cos 0).

ne—=

HN(cos 9) =
n

By (1.1.10) summation by parts yields
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N-1
- __(o*1)  (o+1,8) (a*1,8)
HN(cos 9) nZ1 (a(n)-a(n+1)) Zrtorg+2) “n R (cos ©)
(a+1) (o+1,8) o (a+1,8)
+ a(M) yrqrar2) “n Ry (cos 6).
Relation (1.5.2) follows by taking the limit as N - «, since w§a+1,8) does
not grow faster than a polynomial in N and 1R§a+1’8)(cos 8)| is bounded by

1 (see (1.1.4) and (1.2.1)).

In the case y > o + % and b(n) = 1, the behaviour of the series (1.5.1)

is described in the following lemma.
1.5.2. Lemma. Let y > a + gu Then the series
(1.5.3) Yy oY wﬁa’B)Rga’B)(cos 6)

n=1

converges absolutely and uniformly in any compact subinterval of (o,m). If
we call F(cos 0) the sum of (1.5.3), then F(cos 6) is continuous for

0 <6 <7 and

X
F(a+1—2)

F(%)F(a+1)

Proof. The fact that (1.5.3) converges uniformly and absolutely in any com-

[}

(1.5.1) F(cos 0) fain qu‘Z“'E (6>0").

pact subinterval of (0,m) follows from (1.1.4) and (1.2.2). This implies the
continuity of F(cos 6) for 0 < 6 < m. Moreover, the following formula is

easily derived from (1.1.1) (cf. Szegd [461, (9.3.11):

F(a+1a%)

G)Y—2u-2 -
r(r(a+1)

(sin =

(1.5.5) >

o P(n+8+1)F(n+a+1—%)

NCONCOR

N cos 6) (Y>u+%).

n=0 T'(n+o+1)T (n++1+1)
For any positive j there exists a set of numbers Wy (k=1,2,...,J) such that

r<n+s+1)r(n+a-1§5+1)
+ 0f

u
1 - F(n+a+1)r(n+3+1§5+1)

T(n+B+1)F(n+a+1—%)

o=l

’
— +
F(n+u+1)r(n+8+%+1) nY

Il 10,

as n > », If we choose j > 2a~y+1 the Jacobi series with the coefficients

0(n"Y"9"") converges absolutely and hence (1.5.4) follows from (1.5.5).

1.5.3. Lemma. Let FE(cos f) be given by
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F (cos 8) = ) n™Y &% w(a’S)R(a’S) (eeR+, veR).

+ :
Then for vV € Z we may write

F (cos 9) Me(cos 6) + E, (cos 6) + E

1.e 2,€(cos 0),

where

l‘- [ee]
I‘(OL-W-H)F(E v) e—enn-y—Qv

(1.5.6) M (cos 0) =

¢ F(a+1)T(F)  n=1
: w(a+v’B)R(a+v’B)(cos 8),
n n
3 (v) ©  —en j —y-2v+j
(1.5.7) E, (cos 8) = J c:”/ J e eI J
1.8 e J =
J=1 n=1
" w(a+v’B)R(a+v’B)(cos ),
n n
vV v . .
- -y=-2 -1-k
(1.5.8) By leos o) = [ ] ] d(vi’ne €y mY=2vH =T

j=0 k=0 n=1 J°
; w(a+v’B)R(a+V’B)(cos ).
n n

(v) (v) (v)

Here c. and d.
J J,k,n

only dependent on v.

(v)
belong to R.Nbreover,ldj’k’n

(v)

| <M/, where M is

Proof. We apply v times lemma 1.5.1, using the mean-value theorem to re-

place the differences by derivatives and noting that

1 1 atB+2
(1.5.9) i~ 5_—;;5— .

We then obtain

(1_5.10) FS(COS 9) = i:llr.ligiﬁill § [(l'g—)v(t_Ye_Et)]

+ -
5V I'(a+1) aoq  boat t=n

. m£a+v’B)R£a+v’B)(cos 8) + E

2’E(cos 9).
The error term E2 e(cos 8) can be written in the form (1.5.8). The summation
i

over the variable k is due to the right-hand side in (1.5.9) whereas the
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summation over j accounts for the error made by replacing differences by

derivatives, since

Vv, =Y =-€n dv -y —-€t
2’07V = (¢ Ve {J 0<6<1
at t=n+0v
v V+1
= ‘_i_\.)(t—Ye—Et)J oy & v+1(t-Ye_€t)J Lo<o, <.
dt t=n dt t=n+61v

The main term Me(cos §) arises from taking derivatives only on powers of t

in (1.5.10). Ee 1(cos 0) consists of the remaining terms.
]

1.5.4. Theorem. Let y € R be such that y < 2a + 2 and y # 0, -2, =k, ...

For € > 0 we define

_ v _-y_-en (a,8)_(a,B)
FE(cos 9) = nZ1 nle w R (cos 9).

Then, for 6 # 0O

F(cos 8) = lim, Fe(cos 9)
>0

exists in the pointwise sense. Also, F(cos 6) is continuous on 0 < 6 < w and

r(a+1-1)
(1.5.11) F(cos 8) = s s (sin g)y—Eu—Q (6+0+).
F(%)F(a+1)

Finally, if y > O then F(cos 0) € L' and

o

F(cos 8) ~ ) n_Ywéa’B)Ria’B)(cos 6).
n=1

Proof. We choose v € 7¥ so large that y + v > a + % and we apply lemma
1.5.3. It follows immediately from (1.2.2) that the series ME(cos 8), de-
fined in (1.5.6) converges uniformly in any closed subinterval of (0,m).
Me(cos 9) with € = 0 is a series of the type treated in lemma 1.5.2. Since
the Abel-Poisson means (see section 3.3) define a summation process which
converges uniformly to the sum of the series, whenever it exists and is con-
tinuous (this can be proved by an argument similar to theorem 3.1.L), we

find that Mo(cos g) = lim+ Me(cos 0) exists and is continuous on 0 < 8 < w.
>0
Moreover, by (1.5.4) we have
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T(u+1—l)
M (568 B) & ——— B iy DYT-CR-E (8+0%).
0 2

r(%)r(an)

We now investigate E (cos 6), defined by (1.5.7). Application of

1,8
(1.2.2) and the obvious estimate

(1.5.12) eje—en S O(n_j) (noe, jeR+)

yields

1 i \% ©
E1 €(cos p) = ee—a-v—g(w_e)—B—z of § z n'Y+a'v+3/2)_
’ j=1 n=1

Thus E, E(cos 6) converges uniformly in any closed subinterval of (0,m).
b

Moreover, we see that for O < 6 < m, the function E cos 6) tends to zero

1,9(
+
as € >0 .

Finally, we consider E2 E(cos 8). Since E, E(cos 0) contains terms
3 bl

similar to those of Ms(cos 6) and E (cos 6), except that the exponent of

1,€

n may be lower, we may apply a reasoning similar to that in the previous

terms. We find, that E, E(cos 6) is a series which converges uniformly in
:

any closed subinterval of (0,m). Also, we find that

E, (cos 0) = lim E

(cos 0)
240 >0 €

2,
s ; ; +
exists and is continuous for 0 < 6 < 7. Furthermore, as 6 - 0 5

_ Y-2a-2
E2’0(cos 8) = o(6 )=

We now examine the behaviour of F(cos 6) near 6 = 7. It suffices to
show that Fe(cos 8) converges uniformly to F(cos 6) as & - O+ for 6 suffi-
ciently close to m. For 6 = 7 the convergence follows from theorem T of

Wainger [50], with x = I, We use the Bateman integral (see Askey and Fitch

o
[2], formula 3.L4)
(0.,8) ((X+B+% ’_%)
(1+X)S Pn ) = rigel) fx (1+Y)_% Pn T 1 ) (X-Y)B—% dy
B ) r(diresd) Do pla¥BHL-l )

or, writing x = 2u2-1, y = 2z2-1,
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28
u (a,B),. 2 _ 2
T (n+B+1) Pa (2u™-1) = T(B+2)T (n+3)

u 1 q: 21
. J I(1a+8+2’—2)(222—1)(u2—z2 B-2 az.

P
0

Thus, by applying Szegd [46], (L.1.5),

( 2u'26r(n+e+1)r(n+a+s+§)r(2n+1)
p a,B) 2
n

(2u2—1) =
P(8+1)T (n+})T (20+0+B+2)T (n+1)

u 1 1 _1

: J P(a+8+2’a+8+2)(z) u2—22)B 2 3z.
2n

0

We investigate Fe(cos ®) near 6 = m. If we put cos 6 = 2u2—1, we have to

study F€(2u2—1) with u in the neighbourhood of 0. After some calculations we

obtain

r(a+B+3)
20+28+1

Y 2-g?)82,

-28 J
u Z
T (a+1)T(B+3) 0

F (2u°-1) =
€ 2

( E e—enn-Ym(u+8+%,u+8+%)R(a+B+%,a+8+%)(z))d

2n 2n G

n=1
In the first part of this theorem we have shown that the series in the inte-
grand converges uniformly in any closed subinterval of (-1,1) and that its

lim_ exists and is continuous. Indeed, if EanRia’a)(x) and ZanRia’a)(—x) are
>0
continuous functions of x near x = 0, then so is their sum XaenRia’a)(x),

which is a series of the kind used in the integrand. By the dominated con-
vergence theorem, FE(2u2—1) converges pointwise to a limit as € - 0+, at

least if u is sufficiently small. Moreover,

F(22-1) = o(u=2B Ju e(2) (2=22)PF az) (w0*),
0

where c(z) is continuous near z = 0. And the convergence is uniform, since

|28 Ju (2=z2)8% az| = o(1) (wo').
0

This implies that F(cos 6) is continuous near 6 = m.
Let us now assume y > 0. We apply lemma 1.5.3 with v € Z+ such that

Vo> oo+ gu We combine (1.5.6), (1.5.7) and (1.5.8) using (1.5.12). to the
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following estimate

§ L oYH2oH lR(a+v,8)(

v n
n=1

F (cos 8)] < ¢ cos 6)]|.
- =

Application of (1.2.8) with p = 1, A = v and p = 0 yields

" (a,B)
|F (cos 8)] p' 2"/ (8)as < K.
€
0

* &
K does not depend on e. By the weak compactness of a closed sphere in M
we may conclude that there is a sequence e; > O+ as 1 » », and a measure

u € M such that for each g € C

vim [ (a,8) [
im g(cos 6) Fe.(cos 8)p (6)as = g(cos 0)du(cos 0).

i 70 i 0

But in a preceding part we have shown that F€ (cos 6) converges uniformly to

F(cos 0) in any compact subinterval of (O,ﬂ].lThis implies that the singular
part of M is concentrated at 0 and therefore is a Dirac S-measure at 0. We
wish to show that u is absolutely continuous. Let u = ua+us, where n is
absolutely continuous and My is a Dirac S-measure at 0. We have for h suffi-

ciently small

T h/n
IIO Rr(la38>(cos e)d’ua(COS 6), ifo er(la’S)(COS e)l |dua(cos e)l

T g(a,8)
+ J IR %"’ (cos 6)| |au_(cos 8)| = o(1) (o).
WA a

By (1.2.1) it follows that, if g is not zero
T (a,8)
R'"7*"/(cos 6)dn (cos 8) = o(1) (n>e) .
o B s

On the other hand

m
limJ Rr(l“’s)(cos 8)F_ (cos 8)0(%+8) (9)ap

jﬂ Riu’e)(cos 8)du(cos 6)
0 ¥

0 i

=n"",

This is a contradiction unless Mg is zero. The Radon-Nikodym theorem en-
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sures us that there exists a unique function G(cos 8) € L' such that

G(cos e)p(“’s)(e)de = dp(cos 0).
By corollary 3.3.2 we may conclude that

G(cos 0) = lim+ Fe(cos 8) = F(cos 8)
e>0

almost everywhere.
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CHAPTER II APPROXIMATION PROCESSES ON BANACH SPACES

In this chapter we quote the main results on approximation processes on
Banach spaces treated in Butzer and Berens [16], Berens [12] and Butzer and
Scherer [20]. We first give a short summary of the K-method developed by
Peetre [39] in the theory of interpolation spaces between two Banach spaces.
We only deal with the special case when one Banach space is a normalized
Banach subspace of the other. In order to keep this chapter as short as pos-
sible we avoid the J-method of interpolation, which entails that some of the
theorems cannot be stated in their most general form. We use the discrete
K-method introduced in Butzer-Scherer [20] instead of the original continu-
ous K-method, since the discrete method is more appropriate for the charac-
terization of the spaces of best approximation, to which section 2.2 is de-
voted. In the next section the properties of the intermediate spaces which
are related to strong approximation processes on Banach spaces are given.
Then, we treat the direct and inverse theorems for strong approximation pro-
cesses in Banach spaces, which have been obtained by Berens [12] (see also
Butzer-Nessel [18], section 13.4). Finally, results due to Hille and Butzer
(see [16]) are stated for families of operators on Banach spaces which de-
fine an equi-bounded semi-group of class (CO). For Dutch readers a conve-
nient presentation of the K- and J-method of interpolation and of approxi-

mation processes on Banach spaces may be found in [11].

2.1. THE DISCRETE K-METHOD OF INTERPOLATION

2.1.1. Definition. Let X be a Banach space and Let Y be a Banach subspace
of X, which is dense in X and such that for all f e Y

@10 el < sl
Then we call Y a normalized subspace of X.

2.1.2. Definition. By lg (1<q<») we denote the space of all sequences of

real or complex numbers a = {a } ., such that

) Ian|q a1}/ (1<q<w),
(2.1.2) sl , = n=l

Y | sup, |a| (g==),
nelZ
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is finite.

2.1.3. Definition. Let X be a Banach space and Y be a normalized Banach

subspace. If for 0 < t < » and for every f € X we consider the function norm

(2.1.3)  K(t38) = K(t383%,Y) = inf (|22 |1y + el]£]]y),

€
feY
then we denote by (X,Y) - < B <o, 1<q<®, the set of all elements

f € X such that

6,9:K’

0 -1, q
{n"K(n ’f)}neZ+ & 4.

2.1.4. Proposition. For 1 < q < ®, 6 < 1 and q ==, 6 = 1 the spaces
(X’Y)e,q-

2

g are Banach spaces under the norms

(2.1.4)

- 6 _1.
lellg g = 50011 g -

They satisfy the inclusion relation

Yo (XY), qc X
3 3

In all other cases the spaces (X,Y) only contain the zero element.

0,q;K
Moreover, for 1 < q < ®, 8§ <0 and q==®, 6 =0

(X’Y)e,q;K ; X.

The spaces (X,Y) are called spaces of K-interpolation.

8,q:K

2.1.5. Proposition. TFor 0 < 6' < 6 < 1 the following inclusions hold:

a) (X,ﬁf)e,q;K c (X’Y)e,p;K ; (12q2pz=),

b) (X,ﬁf)e c (X,Y) i (1<q,p<=).

»a3K 0,p;K

The next theorem is usually called the theorem of reiteration.

2.1.6. Theorem. Let 61, 92

let X, (i=1,2) be Banach spaces such that
i

be real numbers satisfying O §_61 < 92 < 1 and
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(2.1.5) (X,¥)g 15k € Xp, © (K¥)g
2 bl 1
for i = 1,2 if 6, > 0 and for i =2 with X, =X if 6, = 0. Then for
1
0<6'<1,1<q<»ando = (1-9')e1+e'e2 it follows that
(X81’X62)6',q;K = (X¥)g i -

2.2. SPACES OF BEST APPROXIMATION

The following results on spaces of best approximation are taken from

Butzer-Scherer [20], ch. 2.

. . . +
2.2.1. Definition. Let X be a Banach space and let Pn (neZ") be subspaces
such that

{0}=POCP c P cP c

1 PIRER n v om Ko

We define the degree of best approximation of f € X by elements of Pn by

(2.2.1) E(P ;f3X) = inf l|f-pn||X .
p _€P
n n
We denote by Xg q° -© < f§ <o, 1 <qg< o the set of all elements f € X such
3
that

0
n’E(P353X)} o+ € 12,

2.2.2. Proposition. For 1 < q < » and all real 6 the spaces Xg g e Banach
L

spaces under the norms

K 0o o
(2.2.2) ||f|[e,q = [lellg + |ln E(Pn,f,x)lllq .
*

They satisfy the inclusion relation

u = Xg,q & & (neZ®).

Moreover, for 1 < q <, § <0 and q =, 8§ =0

o

0,9

e

X.
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The spaces Xg q are called spaces of best approximation.
3

2.2.3. Proposition. The following inclusions hold:

8.) fésq ° XI;QP ? (1iq:Piw’ 6>O),
b) Xlgsq ° XI;',P ’ (12p, qz=, 8'<6<1).

2.2.4. Definition. A Banach space Y, satisfying the inclusion Pn <Y <X,

+ .
n e Z , is said to belong to

a) the class DK(X), ® > 0, if for all n € Z* and for f € Y the relation

0
(2.2.3) neE(Pn;f;X) < ¢l IY (C independent of n)
holds;
b) the class Dg(x), 6 > 0, if for P, € Pn’ n e Z+, the relation
(2.2.4) IlpnllY j_Cne||pnitX (C independent of n)
holds;

c¢) the class D,(X) if it belongs to the classes DE(X) and Dg(X).

ol

. . +
2.2.5. Lemma. For 6 > O the Banach space Y, satisfying P < YcX,nel,
belongs to

a) the class Dg(X) if and only if

Y c XK 5

8,

b) the class Dg(X) if and only if

0,1

c) the class DG(X) if and only if

E cyexX .
6,1 6,0
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2.2.6. Theorem. Let Xi be spaces of the classes De (x), i = 1,2, and
i

62 > 61 > 0. Then for 0 < 6' < 1 and 1 <qse

(X,,%,) ,

~

0',q:K 0,q

where

- 1 1
6 = (1-0 )e1+e 6, -
2.3. SPACES OF S-APPROXIMATION

2.3.1. Definition. Let the set A be RT or Z%. A family {Sp}peA of operators

mapping a Banach space X into itself and satisfying the properties

i) [1s,2lly < All£ll,s £ e X, A e R, wnifornly for o ¢ A,
(2.3.1) J ii) lim llSpf-f[|X =0, feX,
p—)OO
iii) Sp(STf) = ST(Spf) for all p,t € A, f € X,

is called a (commutative) strong approximation process on X.

2.3.2. Definition. Let {sp}peA be a strong approximation process on the

Banach space X and let f € X. The expression

(2.3.2) ws(p3£3X) = sup I|Scf—f[|X
o>p

is called the modulus of S-approximation of f. By Xx e —© < X < o
M
1 2 q 2, we denote the collection of all elements f € X such that

A % q
{n ws(n,f,X)}n€Z+ € L.
The spaces XA 438 are called spaces of S-approximation.
-8

2.3.8. Proposition. For A > 0, 1 < q < = the spaces XA 48 are normalized
L8]

Banach subspaces of X under the norms

A
(2.3.3) Ilfllx,q;S = ]|f||X + ||n ms(n;f;X)Hlq :
*
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2.3.4. Proposition. For A > A' > O the following inclusions hold:

& Brass < Bupss (12q<p<=),

b) X c X

2,a3S  A',p3S (1<q,p<=).

2.4. SATURATION AND NON-OPTIMAL APPROXIMATION

The concept of saturation has been introduced by Favard [24].

2.4.1. Definition. Let {Sp,oeA} be a strong approximation process on the

Banach space X and let ¢(p) be a positive non-increasing function on A tend-
ing to zero as p > . Let XO be a subspace of X. We shall say that the pro-
cess {Sp} is saturated with order ¢(p) and with trivial subspace X, if every

f € X for which
wg(p3£3X) = o(¢(e)) (o)
belongs to XO and if the set

F(X,8) = {f e X: w (p;£3X) = 0(¢(p)), p > =}

S
contains at least one element which does not belong to XO. The set F(X,S) is

called the saturation or Favard class of the process {Sp}.

Let B be a closed linear operator mapping the Banach space X into it-

self with a domain D(B) which is dense in X. Under the norm

1) lellygy = el + 1selly

D(B) is a normalized Banach subspace of X.

We now state the following saturation theorem.

2.4.2. Theorem. Let f € X, {Sp}peA be a strong approximation process on X
and let B be a closed linear operator. Suppose that the ranges Sp[X] of the
operators Sp belong to D(B) for all p € A and that there exists a positive
number y, such that for all f € D(B)
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¥
(2.4.2) lim ||o %S -1} - BfllX = 0.

p>® .
Then the process {Sp} is saturated with order p and the saturation class
F(X,S) is the space of K-interpolation (X,D(B))1 w.g The trivial subspace

bl 2

XO mentioned in definition 2.4.1 Is the null space N(B) = {f ¢ D(B): Bf = 0}
of the operator B.
In the case of non-optimal approximation we need an additional condition in

the form of an inequality of the Bernstein-type.

2.4.3. Theorem. Let f, {Sp}, Yo and B satisfy the conditions of theorem
2.4.2 and, in addition, suppose that

.
0
(2.4.3) ||BSpf||X < Np |[f||X , (peA, feX),

where N is a constant > 1. Then the spaces of S-approximation XA i8¢
b b

0 < X < Yo» 1<qg<e®or\-= Yg» 2= coincide with the spaces of K-inter-

polation (X,D(B)) with equivalent norms.

A/Yo,q;K
2.5. SEMI-GROUPS OF OPERATORS

2.5.1. Definition. A family {U(t), t > 0} of operators mapping a Banach

space X into itself and satisfying the conditions
i) lluo)el |, < all2l], » A e RY, wniformly for t > 0.

ii) lim, ||U(t)f—f||X =0,

(2.5.1) < L

iii)  U(t,+t

1¥tp) = U(t,)u(t,), tysty, 2 0,

iv) u(o) =1 >
is called an equi-bounded semi-group of operators of class (CO).

2.5.2. Definition. The infinitesimal generator B of the semi-group
{u(t), t > 0} is defined by

(2.5.2) Bf = lim B f, B =1 [U(1)-I]
+ T T
>0
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whenever the limit exists; D(B) is the set of elements for which this limit

exists.

2.5.3. Proposition.

a) D(B) is a linear manifold in X and B is a linear operator.

b) If f e D(B), then U(t)f € D(B) for each t > O and
(2.5.3) = U(t)f = BU(t)f = U(t)Bf (£>0)
furthermore,

t
(2.5.4) U(t)f-f = J U(t)Bfdt (t>0).
0

c) D(B) is dense in X and B is a closed operator.

If we put p = t_1, an equi-bounded semi-group of operators of class
(CO) defines a strong approximation process on the Banach space X satisfying
a limit relation of the form (2.4.2), where Yo = 1 and B is written for the
infinitesimal generator. Hence, if U(t)f € D(B) for all f € X, then, by the-
orem 2.4.2, the process {U(p-1), p € R* is saturated with order 9_1 and the
saturation class F(X,U) is the space of K-interpolation (X,D(B))1’Q;K. The
'trivial' subspace mentioned in definition 2.4.1 is the null space of the
infinitesimal generator.

The characterization of the spaces of U-approximation XA,q;U S
0<X<1,1<qg<®orA=1,q=xcan be obtained by means of the follow-
ing relation for equi-bounded semi-groups of operators of class (CO):

(2.5.5)  K(o™',£3%,D(B)) » min(1,0) || 2] ]y + wy(ps£sX) (o, £X)

U

(see Butzer-Berens [16], prop. 3.4.1). Here wU(p;f;X) denotes the modulus of

U-approximation (see definition 2.3.2). Summarizing the results we have

2.5.4. Theorem. The process {U(t), t > 0} is saturated with order t. The

saturation class F(X,U) is the space (X,D(B))1 .+ Moreover, the following
: ] t ;
statements are equivalent for 0 < 6 < 1, 1 < g<eor6=1,q=®



ii)

f e (X,D(B))

{newU(n;f;X)

0,9;K

q
}neZ+ € l* .
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CHAPTER III SUMMABILITY OF FOURIER-JACOBI SERIES

The main part of this chapter consists in Introducing summation methods
for the Fourier-Jacobi expansion of a function and in showing that many sum-
mation methods can be looked upon as strong approximation processes on cer-
tain spaces of functions. In section 3.1 we define approximation kernels and
we show that the convolution of a function with an approximation kernel gen-
erates a strong approximation process on the function space to which the
function belongs. The next section deals with results, due to Rau [42] and
Pollard [40] concerning the norm convergence of the partial sums of the
Fourier-Jacobi expansion of a function. In section 3.3 we introduce summa-
tion methods for Jacobi series and we associate a kernel with each summation
process. For many classical summation methods this kernel is an approxima-
tion kernel, which enables us to prove the norm convergence of the summation
process. In the last section of this chapter we prove some results concern-
ing operators of the factor sequence type, which will be used in the next
chapters. For analogous theorems on summation methods for Fourier series we
refer to the recent textbook by Butzer and Nessel [18], ch. 1, which we fol-
low to a large extent in our treatment. In [13], Berens, Butzer and Pawelke

deal with similar results for expansions in terms of spherical harmonics.

Notation. In the rest of this tract X will always denote one of the func-
tion spaces C or ? (1<p<w), defined in section 1.3. By the set A we mean

either Z¥ or R*.

3.1. APPROXIMATION KERNELS

We first give the definition of a kernel.

3.1.1. Definition. A set of functions {KA(cos e)}AeA is called a kernel if
K e 1! for each A € A and

K (a,B)
(3.1.1) Kx(cos B)p "' (8)de = 1.
0
A kernel {K.(cos 6)} is called real if K,(cos 6) is a real function for each
A A ’
% ¢ A. A real kernel {K.(cos 6)} is said to be positive if K, (cos 6) > 0
A A —

a.e. for each X € A.
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3.1.2. Definition. A kernel {Kx(cos 8)} is called an approximation kernel

if, with some constant A > 0,

(3.1.2) [, 1, <4 * (uniformly for all AeA).
(3.1.3) lim K;(n) =1 (neP).
>0

Every positive kernel satisfies condition (3.1.2) with A = 1 as follows from
(3.1.1). The following theorem justifies the name approximation kernel. We

write Kx(f;cos #) for the operator which is defined by (Kx*f)(cos 8).

3.1.3. Theorem. Let {Kx(cos 6)} be an approximation kernel. Then for f € X

(3.1.4) ||Kk(f;-)]|X :_Allf(-)]|x (xeA),
(3.1.5) Lim ||, (£5+)-£(-) ]| = o,
A>
(3.1.6) K, * (Ku*f) = Ku * (Kx*f) for all A,pu € A.

Proof. Relation (3.1.4) is an immediate consequence of (3.1.2) and prop.
1.4.1 (iv). Relation (3.1.5) follows by application of the Banach-Steinhaus
theorem (see Hille-Phillips [32], p. 41) by using (3.1.2) and the fact that
(3.1.5) holds for a dense set, the polynomials in cos 6, as follows from

(3.1.3). Relation (3.1.6) is a consequence of prop. 1.4.1 (i) and (ii).

Thus, we have shown that convolution of the elements of X with an ap-
proximation kernel leads to a strong approximation process on the Banach
space X (see definition 2.3.1).

The condition (3.1.3) can be replaced by the 'peaking property’
p

™
(3.1.7) +im J |, (cos e)lp(“’e)(e)de =0, for each h, 0 < h < .
Ar ‘h

In this case we have
3.1.4. Theorem. Let {Kx(cos 8)} be a kernel satisfying (3.1.2) and (3.1.7).

Then (3.1.4), (3.1.5) and (3.1.6) are valid and {K,(cos 8)} is an approxima-

tion kernel.
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Proof. Relation (3.1.4) and (3.1.6) follow as in the preceding theorem. In

order to derive (3.1.5) we consider

|1y (5502 g = 1] 008 01y )-£0-10 (% (4)asl I

™
0

A

i (a,B)
["1iy(eom )] T1yt0-2() 11 00 ()20,
0

where we have used the HSlder-Minkowski inequality (see [18], prop. 0.1.7).
We break up the range of integration into the parts [0,h] and [h,m]. By
(1.4.3) we can choose h < m such that ||T¢f(-)—f(-)||X < e for 0 < ¢ <h.
Hence, by (3.1.2) we have

§ K, ( ) 1,20 )-2()] 1, 0¢®8) (4)ap < en
& ylcos ¢ 6 - X P ¢)dd el.
On the other hand, using (1.4.2) and (3.1.7), we obtain

fh |k, (cos ¢)| [lT, £(-)=2() |14 S OLT

™
12||f||XJ K, (cos ¢)|p(°"8)(¢)d¢ <e, if x> A (e).
h

This proves relation (3.1.5). If we take for f the functions Rﬁa’s)(cos ),
(neP) it follows from prop. 1.4.1 (iii) that (3.1.5) implies (3.1.3), which

shows that {Kx(cos 9)} is an approximation kernel.

3.2. NORM CONVERGENCE OF THE PARTIAL SUMS

When we study the convergence of the Fourier-Jacobi series associated
with a function f e X, we first consider the partial sums. In view of
(1.3.1) and (1.3.2) we have

N
(3.2.1) S, (fjcos B) = z fA(n)wﬁa’B)Ria’B)(COS 0)

-t

T N
= J f(cos ¢){ Z mia’B)Ria’B)(cos e)Ria’B)(cos ¢)}p(a’8)(¢)d¢.
0 n=0

Recalling formula (1.1.10) and prop. 1.4.1 (i) we derive
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™
SN(f;cos 8) = J T f(cos G)D(a’s)(cos ¢)p(a’8)(¢)d¢

o ¢ N
() (a+1,8) (a,8)
+1,8 o,
= T oNtaipiz Tyt (cos e)RNa (cos ¢)p (¢)as.

0

The functions U%aﬁ)

Dirichlet kernel. But the Dirichlet kernel fails to be an approximation

(cos 6)}N€Z+ define a kernel, which is called the

kernel, since by formula (1.2.8) with A = p =1, u = 0,

" (a,8) (ar 1)) (a+1,8) (a,8)
J [Dn(cos )]0 %" (6)ae = -_EE:E%EIE—__ J |Rn >""(cos 0)|p """ (0)ae
0 0
n“"'% (U>-% s n—)oo) s
(3.2.2) x
log n (a=-3, no=),

This result is due to Rau [42]. It follows that the operator norm of the

partial sum operator SN as an operator from X into X satisfies

(3.2-3) HSN” iHDNII']'

If we choose X = C it is not hard to show that equality holds in (3.2.3).
Hence, by the uniform boundedness principle, there exists at least one
element f e C for which the partial sums (3.2.1) do not converge to f in the
supremum norm.

On the other hand if X = L2 the partial sums converge to f in the norm
by the Riesz-Fischer theorem. The norm convergence of SN(f;cos 8) in the Lp
spaces has been treated by Pollard [40]. He showed that there is norm con-

vergence if

4(at+1) o Yla+1) anil L(B+1) < o < L(B+1)

2a+3 P < et 2g+3 P < Topm

and there is no norm convergence, if p is outside one of these ranges.

3.3. SUMMATION METHODS

Since the partial sums of the Fourier-Jacobi expansion in general do
not furnish a process which converges in the norm to the function, we are

looking for the processes which produce norm convergence. We introduce a
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sequence {ck(n)}nep’ A € A, which for each A € A satisfies the conditions

(3.3.1) cx(n) is real for all n € P,

©

(3.3.2) )} mﬁ“’s) ley ()] < =,
n=0

(3.3.3) e, (0) = 1.
Then for f € X we may form the c-means

cos 0).

(m)£" (m)a{®2F IR P)

(3.3.4) Cx(f;cos 8) = N

B8
]
>

=0 A

By (3.3.2) and the fact that the Fourier-Jacobi coefficients fA(n) are all
bounded by l|f||1, the series (3.3.4) converges absolutely and uniformly in
cos 6. If we substitute (1.3.2) into (3.3.4) we obtain

[}

T o
Cx(f;cos 0) J T f(cos 0) { } cx(n)wéa’B)Ria’B)(cos ¢)}p(a’8)(¢)d¢

o ¢ n=0

(3.3.5) (Cx*f)(cos 8),

where we have put

(3.3.6) ¢ lcos 0) = 1 e (mul®FR{*:) (o5 ).
n=0
The interchange of summation and integration is justified by the uniform
convergence of the series. On account of (3.3.1), (3.3.2) and (3.3.3) the
functions {Cx(cos 9)} define a real, continuous kernel. If the c-means
Cx(f;cos 9) of £ € X converge in some sense (pointwise, in the norm ete.) to
a limit as A > « and if the limit coincides with the usual sum of the series
in case the Fourier-Jacobi series converges in ordinary sense, we say that
the factors {cx(n)} define a summation method or summation process and we

call the Fourier-Jacobi series c-summable. By theorem 3.1.3 we have

3.3.1. Proposition. Let {cx(n)}nep, A e A, satisfy (3.3.1), (3.3.2) and
(3.3.3) and be such that the corresponding kernel {Cx(cos 8)} is an approxi-

mation kernel. Then for each f € X

lim |le(f;-)-f(-)||X =0,
A

—>0
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that is, the Fourier-Jacobi series of f is c-summable to f in X.
We give two examples. First we take

(3:3:T) cx(n) = e—n/x, A

=1/x

which after the substitution r = e are called the Abel-Poisson factors.

The corresponding means

ficos 8) = ) 1 fA(n)wéa’B)Ria’B)(cos 0)
n=0

(3.3.8) A
are called the Abel-Poisson means of the Fourier-Jacobi series of f. In view

fo (3.3.5) we may set
Ar(f;cos 8) = (Ar*f)(cos ),

where Ar is written for the Abel-Poisson kernel

(3.3.9) Ar(cos 6) = } r° wia’B)Réa’B)(cos ).

Bailey [7] has given the following explicit representation for the Abel-

Poisson kernel

(3.3.10) Ar(cos p) =

29
= —T(a+B+2) (1-r) (X842 a+p+3 br cos 5)
T(a+1)T(B+1) (147)%tB*2 21 2 ¥ 2

B+1;
» b

(141)?
which shows that it is a positive kernel. Since condition (3.1.3) is trivi-

ally satisfied, if r > 17 or in (3.3.7) if A > » we have

3.3.2. Corollary. The Fourier-Jacobi series (1.3.1) of f e X is Abel-

Poisson summable to f in X, that is
lim_ ||Ar(f;-)—f(-)l|X = 0.
r>1

As a second example we treat the Cesiro-means of order u. The factors are
. +
defined by (NeZ', ueR¥)
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(3.3.11) cN(n) =

where

al = T (n+p+1)

n  n!T(p+1) °

The corresponding means, the (C,u)means, are

1}

(3.3.12)  sbleseos 0) = (@71 ] &t Mol ®Br(*F) (cos 0).
n=0

We may put

S;(f;cos ) (S§*f)(cos 8),

where the Sﬁ is written for the kernel

N
)1 7o w(G,B)Ré“’B)(cos 8).

-n n

u _ .u
(3.3.13) SN(cos 8) = (aN
n=0
The kernel (3.3.13) clearly satisfies (3.1.3) if N » =. It has been shown by
Szegd [46], theorem 9.41, that S§ satisfies

(3.3.14) ||S§||1 j_Au (uniformly for all N € Z% u > a+d)

and that (3.3.14) is not satisfied if u < o+3.

By theorem 3.1.2 we conclude

3.3.3. Corollary. The Fourier-Jacobi series (1.3.1) of f e X is (C,u) sum-

mable to £ in X if p > o+}, that is

lim ||S§(f;-)—f(-)||X =0, u o> a+3.

N0

3.3.4. Definition. If for a summation process with factors {cA(n)}nEP the
; + ; . . .
index set A = Z¥ and A = N and there exists an increasing function m(N) on

Z* with values in 7 such that c_(n) = 0 for n > m(N), then the kernel

N

CN(cos 8), which corresponds with this summation process, is called a poly-

nomial kernel of degree m(N).
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In chapter V we shall investigate a number of summation methods, which
have the property that their corresponding kernels are approximation ker-
nels. In particular, we shall study the order of approximation of these pro-
cesses by means of the general theory on approximation processes on Banach
spaces, treated in chapter II. We have to show that relations of the form
(2.4.2) and (2.4.3) hold. For the processes we investigate, the operator B
that occurs in (2.4.2) is of the factor sequence type, as is defined in the

next section.

3.4. OPERATORS OF THE FACTOR SEQUENCE TYPE

3.4.1. Definition. Let y(n) be an arbitrary real or complex valued function
defined on P. The operator B¢’ which maps f € X with the Fourier-Jacobi ex-

pansion (1.3.1) into g € X, where

(3.4.1)  glcos 0) = B s(cos 0) ~ T y(m)e(m)ul @B IR{*H) (cos o),
n=0

is called an operator of the factor sequence type with factors ¢(n), n ¢ P.

The following lemma is proved in the same way as in the case of Fourier

series (see Butzer-Scherer [20], lemma L4.1.1).

3.4.2. Lemma. Let Bw be an operator of the factor sequence type with fac-

tors ¥(n), n € P. Then B¢ is a closed, linear operator with domain

(3.4.2) D(B,) = {feX: geX, glcos 8) ~ ] w(n)fA(n)wéa’B)Ria’B)(cos 8)}
n=0

and range in X. The domain D(B¢) is a normalized Banach subspace of X under

the norm

(3-’4-3) HfHD(BW) = HfHX * ||B‘pfllx'

Proof. We assume that {fi}:=0 is a sequence in D(B¢) with lim f, = f and
-0

lim B f. =g in X. It follows that lim fg(n) = fA(n) (neP) and

i ¥ A A . A A
lim ¢(n)fi(n) = g (n), which implies that y(n)f (n) = g (n) (neP). This
i->co

means that f € D(Bw) and BWf = g or B¢ is closed. The lineariﬁy of the ope-

rator B¢ is obvious. Also, D(B¢) is dense in X, since it contains all the
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polynomials in cos 6. The last assertion of the theorem is a consequence of

section 2.L4.

For operators of the factor sequence type B¢ it is possible to give a
characterization of the space of K-interpolation (X’D(B¢))1 w:K in terms of

E] ’
the Fourier-Jacobi coefficients (see Butzer-Nessel [18], theorem 10.k4.6).

3.4.3. Theorem. Let Bw be an operator of the factor sequence type with fac-
tors ¥(n), n € P, and let D(B¢) be the Banach space (3.4.2) with norm

(3.4.3). Then the following statements are equivalent:

i) fe (X’D(Bw))hw;K >
fec c3g e, ¥(n)f (n) = g (n)

ii) £feHXyn) =4drer c3ueM, vt (n) = wWin) L.
£ e 1P (1<p<=): 3g € IP, ¥(n)E (n) = ¢ (n)

Proof. We prove the theorem in the case X = L1. The other cases are simi-

lar.

i~>ii. Iffe (X,D(Bw))1’w;K

a constant A > O such that

there exists a sequence {fk}keZ+ € D(B¢) and

+ A
|[fk||D(B¢)iA for all k € Z' and ||f—fk||1iE.

Hence the sequence {Bwfk}kez+ is uniformly bounded in L1. By the weak™ com-
pactness of a closed sphere in the space M and the embedding of L1 into M

, . +
(see section 1.4) we may conclude that there exists a subsequence ki of Z

and a measure p € M such that for each function g € C

" (a,B) _["
1lim g(cos 8)B (cos 8)p (6)ase = g(cos 8)du(cos 8).
! vk,

10 /0 i 0

cos 0) we obtain

If we take for g the Jacobi polynomials Ria,B)(

lim y(n)£] (n) = u'(n),

10 i

or by the fact that lim fk = f we have

1% i
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ii > i. If we assume that there exists a measure p € M with

A v .
Y(n)f (n) = v (n), then we consider the sequence

£, = S;*f, N eIt A a+l.

Here S§ denotes the kernel (3.3.12). By prop. 1.4.1. iii it follows that fN
is a polynomial of degree < N and thus {fN}nGP € D(Bw). Moreover, by Szegd's

result on (C,A) means (section 3.3),
1Bygyll, = Hsy=ull, < allully, unifornly in N
On the other hand f > f as N > =. Therefore, for n € Z',
£) = Lin nk(a™',8) < Lim |yl lpq ) < allully,
Noeo Y

which shows that f € (X,D(B. ))

SaI.He
In order to prove that the domains of some operators of the factor
sequence type coincide we need the following lemma, which generalizes a well-

known result for Fourier series (Zygmund [51], I, p. 1L49).

3.4.4. Lemma. The numbers a,ne P, are the Jacobi-Stieltjes coefficients

of a measure p € M if and only if the Abel-Poisson means

n w(a,S)R(a,B)
n n

Aia)(cos 8) = Z r a (cos 0)

satisfy l[Aia)(cos G)H1 < A, uniformly in r (0<r<1), A e R*.

Proof. Suppose z a
n=0
the measure p. Then

méa’B)Réa’B)(cos 0) is the Jacobi-Stieltjes series of

Aia)(

cos B) = (Ar*u)(cos ),

which implies by the positivity of the kernel A (see 3.3) and (1.Lk.6)

(a)(

1482 (cos )11, < [1ul s 0<r<.
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. +
This proves one part. We now suppose ||A£a)(cos 9)||1 <A, 0<r<1,AeR

and we take
(a)  (a) (a,8)
F %' (cos 0) = A% (cos ¢)p* 27 (9)as.
r g ¥
The family {F(a)(cos 0)} is a family of absolutely continuous mea-
r relo,1)

sures, which have the property that

||Fia)(cos G)I!M 2 A,

Therefore, for r € [0,1) the integral

™
o{¥ (m) = JO h(cos e)dFia)(cos 0)

defines for each h € C a linear continuous functional on the space C. The
norm of the functional is given by i|G£a)|l = I‘Fia)llM' The set of the
lineir functionals Gia)(h) is uniformly bounded with respect to r and by the
weak compactness there is a sequence rs, with rs + 1 as j > ©, which deter-

mines a measure W € M, such that for all h € C

l- J'ﬂ (a) B JTF
im h(cos 6)dF ] (cos 08) = h(cos 6)du(cos 6).

0 5 0

j—)oo

)

Since the measures Fia are absolutely continuous we have

Jﬂ h(cos e)dF(a)(COS 8) = Jn h(cos e)A(a)(cos e)p(“’ﬁ)(e)de.
0 Tr. 0 rj

(a,B)(

If we choose h(cos 6) = Rn cos 0) (neP), we obtain

" (a,8) .
R'\"?"/(cos 6)du(cos 8) = limr. a_ = a_,
n : j n n
0 J

which proves the lemma.

The method used in the proof of the following lemma is taken from Taibleson

[47], p. 465 (see also [131, p. 256).

3.4.5. Lemma. There exists a measure p € M with

win) = (et (neZ*),
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where A is an arbitrary real number.

+
Proof. For n € I we have

n X at+B+1,-A
(3.L4.4) (m) = {1 #==]

()t () o

= 14— + -2 + +f(P)(5)QLB+_1_L
— 5 X - =

n pln

a+B+1

(0 = £, 9 ==y

because the function fx(t) = 1+t)-x has an arbitrary number of derivatives
for t > -1. At the right-hand side, the first term, 1 for each n, furnishes
the coefficients of a finite measure, the Dirac measure, as follows from
(3.3.10) and lemma 3.L4.4. In theorem 1.5.4 we have shown that the terms ok
(k>0) are the Fourier-Jacobi coefficients of an L1 function. If we choose

p > 2a+2, the last term leads to the coefficients of an absolutely conver-

gent series in view of

© [

b
z |f(p)(gn)l (o+B+1) mia’ﬁ)lRéa’B)(COS 0)| < z K(a,B,A,p)n2a+1-p-

n=1 A p!np n=1

We have used (1.1.L4), (1.2.1) and |f§p)(t)| <K'(A,p), O it'_<_£‘+—§+l .

Thus, together the right-hand side supplies the coefficients of a measure

u € M.

8.4.6. Corollary. For the operators of the factor sequence type

. A + . 2)
Bl (n+o+pe1) ]t With factors [n(n+a+B+1) 1" (neZ") and B o) with factors n™",

+ s e i ¥
(neZ', X real) the domain coincides. Also, for the corresponding Banach
spaces

D( ~ D(B

B 50 = .
n2k [n(n+a+8+1)]x

Proof. This is an immediate consequence of lemma 3.4.5 and (1.4.6).
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CHAPTER IV BEST APPROXIMATION BY POLYNOMIALS

In this chapter we deal with the connection between the modulus of con-
tinuity of a function f, defined with respect to the generalized transla-
tion, and the degree of approximation of f by polynomials in cos 6. We ob-
tain theorems of the Jackson and the Bernstein type, which in the case X = C
enables us to show the equivalence of the modulus of continuity (L.1.1) with

the usual symmetric modulus of continuity

w*(03£50) = sup ||£(-+p) + £(-=v) - 20|
0<yp=<¢

to which (4.1.1) reduces in the case X = C, o = B = -3.

4.1. PROPERTIES OF THE MODULUS OF CONTINUITY

4.1.1. Definition. 1In the space X we define the modulus of continuity of
f e Xby

(L.1.1) w(o3f3X) = sup ||T £() - £(+)]

0<¥=¢

" x ¢ > 0.

Here TW is written for the generalized translation operator, which is
introduced in section 1.4. We list the main properties of w(¢;f;X) in the

following

4.1.2. Proposition. Let f e X.
i)  w(¢3;f;X) is a monotonely increasing function of ¢, ¢ > O.
ii) lim, w(¢;f3X) = 0.

$>0

iii) There exists a constant c (independent of f) such that
2 2
w(A3£3X) < c max(1,3%) [67] £ |y *ules£3X)].

iv) If w(¢;f3X) = o(¢2) as ¢ > 0+, then f is constant (a.e.).

v) Let f f, € X. Then

1°

w(;3E,+5,3X) < w(93£,3X) + w(¢3£,3X).
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Proof. Properties i) and v) are obvious from definition 4.1.1. Property ii)
follows by (1.4.3). For the proof of iii) and iv) we need more knowledge
about the generalized translation. We shall postpone the proof of iii) and

iv) until the end of this section.

In section 1.1 we have already stated, that the Jacobi polynomials sat-

isfy the differential equation (1.1.5), which we write in the form

d

(a,B)
a8 Ba o

= (a,8)
(k.1.2) P(=2) R, cos 0) = Ay B2 (cos 8) (neP),
where P(%g) and An are given by (1.1.6) and (1.1.7).
We shall denote by A the operator of the factor sequence type with factor
A,» that is, A maps f € X with the expansion (1.3.1) onto

oo

A
(1.1.3)  Aar~ § . £Mn)el®BIR(0B) (s 6y
n n n
n=0
In view of (4.1.2) the operator A is the realization of P(%g) in X. The do-
main of A is denoted by D(A). For each f € D(A) the following equation is

satisfied:

d
ho1.k P(z5) T,f = T Af.
( ) (d¢) o 6
Generalized translations connected with an equation of the form (L4.1.4) have

been investigated by L&fstrdm and Peetre [36]. Following them we prove

4.1.3. Lemma. Let f ¢ D(A). Then there exists a constant C, independent of
f, such that

(5.1.5)  w(:530) < Co®| |ag] |, 0o
Proof. We introduce the function

¢
- J 1p{®28) ()} do, 0<1t< 6,
(4.1.6) h(¢,t) = ¥

0, otherwise.

(a,B)(T) N T2a+1 (a,B)(

Since p as 1 > 0", it follows that p h(¢,7) > 0 as

>0, Thus, by (4.1.4), we have for f e D(A):



Lo

o ¢
J h($,T)T AL ol®sB) (1)ar = J h(¢,r)P(%;)[TTpr(“’B)(T)dr
0 0
¢
= [-p (a )( Yh(¢,T) ——-T f]¢ J af-T fdr
0
h.1. = -
(4.1.7) T, - £

The integration is meant in the sense of Bochner (see Hille-Phillips [32]).

It is easy to estimate the function

¢
C1(¢) = J h(¢,T)p(a’B)(T)dT
0

¢ T
= J [D(a’s)(r)]_1 (J p(a’s)(o)do)dr
0 0

/_
on the interval 0 < ¢ < E—by means of the inequality — < cos %» 1. We ob-

tain

g+1

.2 ¢ 2 .2 ¢
(4.1.8) L g < C,.(¢) < sin , 0:<¢<
26(0.‘*‘1) -1 — o+l 2 —

MIE]

Recalling definition 4.1.1 and formula (1.4.2), we obtain for f e D(A)
m
w(os£3%) < C (o) ||ag]]y 0<¢ <%
2
< o |lacl

In the case % < ¢ < m we use a computation similar to that in the paper of
Butzer and Johnen [17] and attributed there to Chernoff and Ragozin:

(a,B)

T f-f (t)dr

¢
J h(¢,t) T Af o
0

©

T
(o(®:B) (1)) (f r_ag o#) (0)an)ar
0

o

T
(p(®B) ()} (f 1 ar o(**#)(0)ao)ar +

T TR
N E!

0 0

®  (asB),yy-1 T (a,8)
J“ {7 (1)} (J T Af o'/ (0)do)dr = I,+I,.
i 0 g

2
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The Fourier-Jacobi expansion of Af shows that

m™
J 7 ar 0(%P) (5)a0 = 0.
0 o

Hence,

©

m™
{p(a’s)(r)}-1 (J ToAf p(a’s)(o)dc)dT,
T

Ie:'f

n
2
which leads to

m™
lIye-ell, < 8 swp CfF 008t (f

Sh<r

T
D(G,B)(
0

o)do)dr

m
E T

w ™
+J{J%@un4<jp“ﬁ%meﬂ|uﬂu,

for 5 < ¢ < m, and thus (4.1.5) is valid for 0 < ¢ < m.

We now want to express the modulus of continuity w(¢;f;X) in terms of

the K function norm (2.1.3) with the spaces X and D(A).
4.1.4. Lemma. For f e Xand 0 < ¢ <
(4.1.9) K(¢2;f;X,D(A)) ~ min(1,¢°) || £] 'x + w(¢;f3X).

Proof. Let f, e D(A) and f. = £-f_. By (1.4.2), (4.1.5) and prop. L4.1.2. v)

1 0 1°
we have, for some constant C > O,

w($33%) < c(| + 07| [ag, 1)

EXIN
Since
" 2 2
min(1,6%) [[£lly < [lgplly + o711£, 01y
we obtain

min(1,6%) |12]ly + wlos53) < cllI2glly + 611211 0)-
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Taking the minimum of the right-hand side over all f1 e D(A), we deduce
. 2 2
min(1,67) [[£][y + w(o3£3X) < CK(975£3X,D(A)).

For the proof of the converse inequality we take

¢

w10 1y, = @17 [ e, ne P (e,

1,6 .

(k.1.11) f0,¢ = f—f1’¢ v

Then, by (4.1.7) and the closeness of the operator A (lemma 3.4.2), we may

conclude that f1 6 e D(A) and that the following relations hold:
b

(4.1.12) T¢f—f = c1(¢) Af1’¢ s
(4.1.13) ||Af1 ¢||X i[c1(¢)]'1 w(d;3X).
Furthermore, by (1.4.2) and (L4.1.10),
(b.1.1k) l[f1,¢||x 5_||f||X
On the other hand we have
£ =-rc (¢)17 ? o,0(T =000 (%8 (1)a
O,¢-_ 1 8 ¢3T T_ p T T,

which leads to
(h1.15) gy Gy < w(4,85%).
Combining the estimates (L4.1.8), (4.1.13), (4.1.14) and (4.1.15) we conclude

K(¢2;£;X,D(A))

| A

2
Hf0,¢||X + 9 llf1,¢|lD(A)

c(e®l]£]] + w(e:3£5%)), 0 <4 <

| A
SIE]

Noticing that K(¢2;£;X,D(A)) 5_||f||x, we derive



(5.1.16)  K(6%5:3,0(8)) < Clmin(1,67)] 2] ]y + w(o350)), 0 <4 < T .
If g < ¢ < T, we observe that
9,2
K(¢°;£3X,D(A)) < YK((3)75£;%,D(4))

and we apply (4.1.16) to the right-hand side of this inequality, noticing
the monotonicity of w(¢;f;X). Hence (4.1.16) holds for 0 < ¢ < 7. This com-
pletes the proof of lemma 4.1.L.

We are now in a position to prove proposition 4.1.2., iii) and iv). Part
iii) is a direct consequence of lemma 4.1.4 and the corresponding property

for the K function norm:
K(At;f) < max(1,A)K(t;f),

which follows immediately from definition 2.1.3.

In order to prove part iv) let us assume w(¢;f;X) = (¢2), ¢ > 0", If ve
define f1, and fO ¢ by (4.1.10) and (4.1.11), then, in view of (4.1.5) and
(1.4.3), we know that £, 5 0 and f o > fas ¢ >0t Moreover, we may con-

s 1,

clude that Af1 6 > 0 as ¢ > O+. Since A is a closed operator, Af = 0 or, on

9
account of (4.1.7), we have T¢f = f. This proves part iv).

L.2. DIRECT AND INVERSE THEOREMS

4.2.1. Definition. We say that f e X belongs to the space Lip(y,X),

0 <y <2, if there exists a c € R* such that
cf. Y
(L)(CP,f,X) <cod'.

The spaces Lip(y,X) can be characterized in terms of spaces of K-inter-

polation between X and D(A).

4.2.2. Theorem. The subspace Lip(y,X) of X is a Banach space with respect

to the norm

|lf|| * SuP+ (n” w(n_1;f;X)).

[E[A— =
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Moreover,

Lip(v,X) = (X,D(A)), /5 o -
Proof. The theorem is an immediate consequence of lemma 4.1.4 and proposi-

tions 2.1.4 and 2.3.3.

4.2.3. Definition. Let f € X and let P Dbe the (n+1) dimensional subspace

of polynomials in cos 6 of degree < n. Then we call

(h.2.1)  E(P33%) = inf [|fp |l
pnePn

the best approximation of f by polynomials of degree n in X.

It is not hard to show that the infinum (4.2.1) is attained (Lorentz
[37], ch. 2). A polynomial P, with this property is called a polynomial of
best approximation to f. It is also possible to establish the unicity of the
polynomial of best approximation. For the spaces C and L1 this follows from

the fact that the Jacobi polynomials Rﬁa,B)(

cos 8), k=0, ..., n, which are
a base in Pn’ form a Chebyshev system. For the spaces Lp, 1 <p< o, it is a
consequence of the strict convexity of the spaces. For the details we refer

to Cheney [22].

We now prove a direct theorem of the Jackson type.

4.2.4. Theorem. There exists a constant C0 such that for each f ¢ X and

+
each n € Z

(k.2.2) E(P_;f3X) g_cO[n'2||f||X +wln e300,

Proof. We use the kernel

(k.2.3) Jia;2’8)(008 8) = cn[Réa+2’B)(cos 0)1°  (neZ"),
where
m
(h.2.4) = J [R(a+2’6)(cos 6)]2 p(a’B)de.
n g B

Application of the estimate (1.2.8) with A =2, p =2, u = 0, shows that
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~ n20L+2
e, .
If we put
(a+2,8) _ (o+2,B) v =R
(4.2.5) Kn (cos 8) = Jn',2 (cos 6), n' = [2],

then Kéa+2’6)(cos 8) is a positive polynomial kernel of degree < n. More~
over, by (1.2.8) with A =2, p=2, pu = Y/2, the kernel Kéa+2’8)(00s 6) has
the useful property

m
(4.2.6) J 6" Kr(la+2’8)(cos 8)0(%8) (6)a0 m 0™, 0 <y < 2.
0
By the H6lder-Minkowski inequality we have

B(e3050 < || ({28 (g;.) ok 11

n

IlfO k{28 (cos 9)(m2(+) - 20208 (g)ag] |

| A

m
f k{258 (cos )uls;25100(%8) (9)as.
0

Using proposition 4.1.2. iii), we obtain

™
E(P_5£3%) < C max[1,n° f k{2:8) (co5 9102 0(%58) (4)a9]
0

2 £l + w(n™"525%)3,

which, by (L4.2.6), leads to

=1

-2
E(P,;f3X) = Cyln | £] |X + w(n” ;%) 0.

This proves theorem L.2.lk.

The operator A% is defined recursively by A¥r = A(Ak_1f), =1 (the

identity operator) k € Z'. For functions with "higher order smoothness" we

have

4.2.5. Theorem. For every r e Al there exists a constant Cr’ such that for
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+
each £ € D(AY) and each n € Z

(4.2.7) B(P ;f3X) < C, n-zr[n_2(||f||x + ||Arf||X) + w(n”;ATE3%) 1.
(0.+298) .
Proof. Let Kn (cos 6) be the kernel in theorem 4.2.4 and K, the bound-

ed linear operator of X into Pn defined by (an)(cos 8) = K£“+2’S)(f;cos 9).

j=1 0 : +
Ki Iy K = Ty & L5

We construct the powers of K iteratively by Ki = Kn(

Then

r n .
(Kn-I)rf = jzo (—1)r-J(§)Kif.

We define the operator Tz by

)r+1 + I.

Tz = -(IK
Clearly TE maps X into P and, by the proof of theorem 4.2.L,
[le-xie| |, = | (1K )78 - K (TK )¢ |y
< o8| | (1) 7e] |, + w(n™ !5 (1K )Te3%) 1.

From the Fourier-Jacobi expansion it follows that

I

ATk )7f = (1-k )"

Af, f e D(A),
so that by (4.1.5) we obtain
||f-T£f||X :_C'[n_zll(I—Kn)rf||X + n_2||(I-Kn)rAfl|X].

By continuing this process, repeated application of theorem L4.2.L and

(4.1.5) leads to
-2r. -2 % 18 -1..r
E(P_;£3X) < C(r)n™"[n {1y + 1AMl lyd + oo™ A7 650 1.
i=1

Since for f € D(A2) we have the relation Af = gz*Azf, where

o

g2(cos p) = z [n(n+ot+.8+1)]-1 w

(a,B)R(a,B)
=1 n n

(cos 8),
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and g, € B (by theorem 1.5.L4), it follows that
2
[lagl] < el 8%, .
Hence,

k .
i -1, T
I el < sl
and theorem 4.2.5 is proved.

An inequality of the Bernstein type for the operator A has been derived

by E.M. Stein [U45]. There exists a constant C such that for p, € Pn

2
(4.2.8) 14,1y < ea®l1p, Iy »

and therefore for each r ¢ Z1
2
(h.2.9) 14T,y < %2 p |1, .

We are now in a position to apply the general theory on spaces of best ap-
proximation, dealt with in section 2.2. From definition 2.2.k and the formu-
las (4.2.7) and (4.2.9) we conclude that the Banach space D(Ar), r € Z+, be-
longs to the class D2r(x)' Application of theorem 2.2.6 yields

4.2.6. Theorem. For 0 < y < 1 and 1 <q<w

r r+1 ~
(D(a),D(a™" ), ok =X§r+gy’q , re P,

We have written D(AO) = X.

Theorem 4.2.6 states the equivalence of the spaces of best approximation

Xgr+2y 7 which consists of all the functions f e X such that
b

2r+2
(nTTeY E(P3£5X)} 74 € 12,

with the spaces of K-interpolation (D(Ar),D(Ar+1))Y 4K which, by lemma
34> '
L.1.4, are composed of all f e X such that f D(AT) with
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0 w5 DTN, ge € 15

*

(reP, 0<y<1, 1<q<»). In particular, in the case q = © we have

4.2.7. Corollary. Let f e X. Then a necessary and sufficient condition for
f to belong to D(AT) with ATf € Lip(y,X), r e P, 0 <y <2, is

sup, (n2r+ry

E(P_;f3X)) < =.
nel n

An important consequence of theorem 4.2.6 is the equivalence of the
modulus of continuity w(¢;f;C) with the ordinary symmetric modulus of conti-
nuity w*(¢;f;c), defined in the introduction to this chapter. Since the de-
gree of best approximation by polynomials in cos 6 is the same in both
spaces, it follows from corollary 4.2.7 and the Jackson-Bernstein theorems

that

- . K
Llp(Y,C) = LlP (YJC)) 0 <y< 2,
where Lip*(y,C) denotes the space of functions f e C with 0 (93£3C) _<__C¢Y

endowed with the norm

||f||c + sup, (n” w*(n-1;f;C)).

IIfllLiP*(Y,C) B nel

The results obtained in this chapter are generalizations of theorems of
Jackson and Bernstein, for which we refer to Butzer and Nessel [18] and the
literature quoted there. Similar theorems for spherical harmonic expansions
are obtained by Butzer and Johnen [17]. The direct part (theorem 4.2.5) in
the case X = C has been established by Ragozin [41] who considers approxi-

mation of continuous functions by polynomials on projective spaces.
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CHAPTER V SATURATION AND NON-OPTIMAL APPROXIMATION OF SOME SUMMATION
METHODS

The main object of this chapter is to investigate the order of approxi-
mation of a number of summation processes for Jacobi series and to charac-
terize the functions for which the Fourier-Jacobi series, summed up by this
particular summation method, approximates the function with a certain order.
The summation methods we consider are all saturated. This means that, except
for constant functions (the 'trivial' class), there exists an optimal order
of approximation (the saturation order) for these processes. The saturation
problem consists in determining this optimal order and in finding the class
of functions (saturation class) which can be approximated with this optimal
order. By the general theory on approximation processes on Banach spaces,
which is dealt with in chapter II, the problem of characterizing the classes
of optimal and non-optimal approximation can be solved, if one can find a
closed linear operator B, satisfying relations of the form (2.4.2) and
(2.4.3). If, on the other hand, the summation process defines a semi-group
of contraction operators, it is also possible to give a characterization of
the classes of optimal and non-optimal approximation by applying the results

mentioned in section 2.5.

5.1. THE WEIERSTRASS APPROXIMATION PROCESS

The first summation process we investigate is the Weierstrass approxi-

mation process (W-summation) which is generated by the factor sequence

+

=
{e—n(n+a+8+1)x A e R.

(5.1.1) {c,(n)} = }

by neP neP

The sequence (5.1.1) obviously satisfies the conditions (3.3.1), (3.3.2) and
(3.3.3). Hence, putting t = 1/), we may form the Weierstrass means for
f e X: ’

o

(5.1.2) W, (ficos ) = )
n=0

e-n(n+a+8+1)t A (a,B)

The corresponding kernel is defined by

(5.1.3) Wt(cos 9) = § e-n(n+a+8+1)t w(a,B)
n=0
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It is not hard to show that the kernel (5.1.3) is an approximation kernel

(see definition 3.1.2) with A = t—1.

Condition (3.1.3) is trivially satis-
fied. The positivity of (5.1.3), which implies (3.1.2), is a consequence of
the positivity of the generalized translation operator by the following
argument due to Bochner [15], (see also Gasper [28]). Let the operator of
the factor sequence type B¢ with factors ¥(n), (neP), be a positive opera-
tor, i.e. if £ > 0 (feX) then Bwf > 0. Then it follows that the operator of
tW(n),

Taking ¥(n) = Ria’s)(cos ¢), (0<¢<m, neP), and multiplying by e™ we obtain

the factor sequence type with factors e (t>0, neP), is also positive.
that the operator with factors
(a,B)

-t(1-R (cos ¢))
u(n) = e n (t>0, neP)

. . . - +

is positive. If we now replace t by t(2a+2)(1-cos ¢) 1 and we let ¢ >0 , we
conclude by (1.1.9) that the operator of the factor sequence type with fac-
tor

e-n(n+a+8+1)t (£>0, neP)

is positive, which is equivalent to the positivity of (5.1.3).

The function W, (ficos 6) is a solution of the generalized heat equation

t

)
=y U(e,t) = - A U(8,t),

which, by theorem 3.1.3, satisfies the initial condition

1im+ U(6,t) = f(cos 0) (feX).

t->0
Here A is written for the operator defined by (L4.1.3).
The family of convolution operators {Wt’ t>0} define an equi-bounded semi-
group of operators of class (CO). The conditions (2.5.1. i) and ii)) follow
from theorem 3.1.3; the other conditions are obviously satisfied. It is not
hard to show that -A is the infinitesimal generator of this semi-group. Let
B be the infinitesimal generator of the semi-group {Wt’ t>0} and suppose

f ¢ D(B). Then by definition

m [W (f3cos 8)-f(cos 6)]
(8£)"(n) = lim, J 1 Réa’8>(cos 0)0 %8 (0)a0
™0

0 T
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—AnT
< A A
= 1im, =—=1 ¢"(n) = -2 £ (n) (neP),
>0 T

which proves that B = -A and
D(B) < D(A).

On the other hand, if f € D(A), then we obtain for the N-th Cesiiro mean of
order 1 (u>a+}) of the element Af that

BS;(f;cos 6) = —S;(Af;cos 0) (NeP) .

Slnce by proposition 2.5.3, B is a closed operator and Sy (f cos 9) and

BS (fycos 6) converge in norm to f and -Af, respectively, as N > ®, this
proves that f € D(B) and Bf = -Af which completes the proof. Application of
theorems 2.5.4 and 4.2.2 yields

5.1.1. Theorem. The Fourier-Jacobi series (1.3.1) of f € X is W-summable to
f in X. The process {W,; t>0} is saturated with order t. The saturation
class F(X,W) is the class Lip(2,X). Moreover, the following statements are

equivalent for 0 < 6 < 1, 1 <qg<wor6=1, q=

i) £ e (X.D(A)g x>

i 9 L q
ii) {n mw(n,f,X)}n€Z+ € 12
5.2. THE GENERALIZED WEIERSTRASS AfPROXIMATION PROCESS

A generalization of the Weierstrass summation method has been intro-
duced by Bochner [15] for expansions in terms of ultraspherical polynomials.

In order to define Wo—summability we consider the following sequence

a/2

A_l(n(n+a+8+1)) }
neP?

(5.2.1) {Cx(n)}neP = {e” A€ R+, 0<ox<a2.

The sequence (5.2.1) defines a summation process as is easily checked. By

the substitution t = X_T the generalized Weierstrass means of f € X can be

written in the form

o/2 («,8) (a,B)(Cos ).

(5.2.2) wg(f;cos 6) =

E e-t(n(n+a+8+1)) (n)m

n=0
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In order to show that (5.2.2) defines a strong approximation process on X
(with A = t_1), we only need to prove the positivity of the kernel

/2
(5.2.3) Wc(cos 9) = ] wia’B)Rﬁa’B)(cos 8).

b —t[n(n+o+B+1)
t L e
n=0

This can be deduced from the positivity of (5.1.3) by Bochner's method of
subordinators (see Bochner [15], p. L46).
. o . . .
The function Wt(f;cos 8) satisfies the equation
9

é? U(eat) = _DO U(eat)

with the initial condition

1im+ U(6,t) = f(cos 6) (fex).
>0

Here Da denotes the fractional differential operator of order o, defined as
a/2
] . By

the same argument as in section 5.1 we may conclude that the family of con-

the operator of the factor sequence type with factors [n(n+a+B+1)

volution operators we, t>0} defines an equi-bounded semi-group of operators
of class (CO) with infinitesimal generator -DO. Hence we have by theorems

2.5.4 and 3.L4.3

5.2.1. Theorem. The Fourier-Jacobi series (1.3.1) of f € X is W -summable
to f in X (0<0<2). The process {w°, t>0} is saturated with order t. The
/2
]

saturation class F(X,WO) is the class H(X,[n(n+a+B+1) ) (see theorem
3.4.3). Moreover, the following statements are equivalent for 0 < 6 < 1,

1<gq<e®or®=1,q=x
i) f e (x,0(D )
ii) 0% o (385001 4 el

v o' M Tnelt )

Later on we shall be able to characterize the spaces (X’D(Do))e K
E] ¢ ]

0<B<1,1<qg<®, 0<0 <2 as spaces of K-interpolation between X and

D(A) (see theorem T.4.1).
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5.3. THE ABEL-POISSON SUMMATION METHOD

The Abel-Poisson summation method has already been introduced in sec-
tion 3.3. Here we wish to determine the saturation order of this process and
to characterize the functions which allow a certain order of A-approxima-
tion. After the substitution r = e_t the Abel-Poisson means (3.3.8) define a
equi-bounded semi-group of class (CO) with infinitesimal generator B—n’ the
operator of the factor sequence type with factors -n, n € P. By theorems

2.5.4, 3.4.3 and corollary 3.4.6 we conclude:

5.3.1. Theorem. The process {Ar’ 0<r<1} is saturated with order (1-r). The
= 1
saturation class F(X,A) is the class H(X,[n(n+a+B+1)]®). Moreover, the fol-

lowing statements are equivalent for 0 < 6 < 1, 1 <qg<®or®=1,q=

i) £ e (X,D(D))g ¢ >

v 0 i q
ii) {n” w n,f,X)}nez+ L

a(
5.4. THE GENERALIZED ABEL-POISSON SUMMATION METHOD

The generalized Abel-Poisson summation process is defined by the se-

quence
10
o e +
(5.4.1) {c)\(n)}nep = {e JoeP » reR,0<0o<1.

In the case o = 1, this process reduces to the Abel-Poisson summation method

after the substitution r = e—1/k

f € X have the form (t=k_1)

. The generalized Abel-Poisson means of

o o
(5.4.2) Az(f;cos 8) = ) e £ (n) w
n=0

The positivity of the corresponding kernel

(5.4.3) Ag(cos 0) = e w (cos 8)
n

~tn”  (a,8)5(a,8)
0 n n

Iho~18

can be deduced from the positivity of (3.3.9) by Bochner's method of subor-

dinators (see Bochner [15], p. 46). This implies that (5.4.2) defines a

strong approximation process on X (with A = t-1). Furthermore, it is easily
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derived that the family of operators {Az, t>0, 0<o<1} defines an equi-
bounded semi-group of operators of class (CO) with infinitesimal generator
-B_, 0> where B_no is the operator of the factor sequence type with factors

-n%. Application of theorems 2.5.4, 3.4.3 and corollary 3.4.6 yields

5.4.1. Theorem. The Fourier-Jacobi series (1.3.1)of f ¢ X is A%-summable to
f in X (0<o<1). The process {7, t>0} is saturated with order t. The satura-

ey

tion class F(X,AU) is the class H(X,[n(n+a+B+1 . Moreover, the follow-

ing statements are equivalent for 0 < 6 < 1, 1 < g < or 6 =1, q =

i) £ e (X,D(X))g g >

w5 6 - q
ii) {n w 0(n,f,X)}nez.,. € Ll.
A
For a characterization of the spaces (X’D(Do))e aE in terms of the spaces
] b 4

of K-interpolation between X and D(A) we refer to chapter VII.

5.5. SOME RESULTS ON FRACTIONAL INTEGRALS AND DERIVATIVES

So far we have only treated summation methods which define an equi-
bounded semi-group of operators of class (CO). The next sections will be
devoted to summation methods which are generated by convolution with a poly-
nomial kernel. In order to treat the non-optimal approximation of these pro-
cesses we need a generalization of the inequality (4.2.8) to fractional pow-
ers of the operator A. We shall use the function

o

(5.5.1) g (cos 8) ~ ] [n(nta+p+1)]
n=1

—0/2 m(a:B)R(a’B)(cOS e)s

o > 0,
n n

and the following properties of 8+

5.5.1. Lemma. For o > O the function g € %!, Furthermore,

i) 8, *8; = & 4
01 02 01 02 1

ec—2a-2)

ii) | g, (cos 8)] = of (000", 0<o<2a+2).

iii) If 6 # 0, then P(g—) g (cos 6) exists, is continuous and
ae o]



55

0—2a—h)

+
sup |P(%§)gc(cos 8)| = o(e (60", O<o<2a+h).

0<b<m
The operator P(%g) is defined by (1.1.6).

Proof. Property i) is obvious. Property ii) and iii) follow from theorem
1.5.4 and formula (3.4.k4).

9.6.2. Lemma. There exists a constant C(o), such that for each polynomial

p, of degree < n (neZ*) in cos 6

n
(5.5.2)  [Ipgp 1y < clo)n’|]p |, (0<0<2).

Proof. We shall give the proof in the case X = LP (1<p<e).

(

m QB)
12,011, = 1] 280,006, (065 0ra0]

L m
n -
[RINSIINIRCEES
n

If we put p' = p/(p-1) and notice that p(u,B)(¢) = 0(¢2a+1), ¢ > O+, then by

H&lder's inequality

| A

1
™
I [O ]fg T,4p, (cos 0)g, (cos $)o(®*®) (9)as|P o(*#) (6)ae

1 A(p=1)+1
R P )R g4)R/P’
0

| A

1
™
JO (JH |T¢Apn(cos o) P |82_c(cos ¢)|® ¢(2a+2)P_x(p_1)_1d¢)p(a’8)(9)d9
0
1

| A

Cn—X(P-1) fg IIT¢APn||§ |g2_c(cos ¢)IP ¢(20+2)p-A(P-1)-1d¢.

Now, using (1.4.2), (4.2.8) and lemma 5.5.1. ii), we have

1
1® < oM (e-1) 20 1 Jn 5(2-0)p-A(p-1)-1,

P
1 £ Pl g ¢

AL
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3.

we choose 0 < A < (2-0)p'.

| A

| A

| A

| A

On the other hand, using (1.4.2) and lemma 5.5.1. iii), we have

Tom
JO lfl T¢Pn(cos 0) P(%g)g2-o(cos ¢)p(a,8)(¢)d¢|p p(OL,B)(e)de
n
S
C(f1 ¥ Poap)P’® (J (J1 |T¢pn(cos 0)|®
n 0 g

|p(Gpe,_g(cos 0)IP p(2av2)pHu(p-1)=144),(4:8) (6)4)

u(p-1) fn p ,-op+tu(p-1)-1
Cn 5 Hzgegllp e as

n

e @1 |]p |1 f1 poPHp=T)=Tg

n

op b
o [1p, /12,

if we choose O < | < Op'. Combination of the estimates proves (5.5.2).

We define the fractional integral of order ¢ of f € X, Icf by the con-

volution of f with 8y defined by (5.5.1). In [8] we have proved the follow-

ing results, mainly by the method used in the proof of lemma 5.5.2:

5.5.3. Theorem.

a)

b)

c)

)

If f e Xand 0 <o <2, thenI fe Lip(o,X).

If £ e Lip(1,X), 0 <o, T <2 and 0 + T <2, then Icf € Lip(o+1,X).

2a+2 2a+2

<0<2+ _2&_*.2.

If £ e I¥ (1<p<) and , then I_f e Lip(o- ).

P . 2042 r 1_1_ o
If f e LF (1<p<®) and 0 < 0 < > then I f e L, where >~ Zasd

For the fractional derivative of order o of f € X, Dof’ defined as the oper-

ator of the factor sequence type with factors [n(n+a+8+1)

]o/2

, we have shown

in [81:
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5.5.4. Theorem. Let 0 < ¢ < T < 2 and suppose f e Lip(t,X). Then
D f € Lip(t-0,X).

5.6. THE CESERO SUMMATION METHOD

This summation method has already been introduced in section 3.3. We
now derive a limit relation of the form (2.4.2) for this process by a well-

known method (cf. [13], p. 2L9).

5.6.1. Lemma. Let B = B_ & be the operator of the factor sequence type with

factors -un, n € P, and let Sﬁ(f; cos 8), N € Z+, denote the Cesiro means of

order u (w>a+z) of the expansion (1.3.1) of f e D(B), then
(5.6.1) lim HN{SE(f;')—f(')} - Bf(+) ][y = o.
N>

Proof. We apply the following identities (see Zygmund [51], p. 269)

utl, o _ghttl o kvl 1w ;
(5.6.2) Sy (f3cos 6) SN_1(f,cos 8) = - o W) Sy (Bf;cos 6),

U+

Mo, = Tie. 1 Hige.
(5.6.3) S (fjcos ) = By (fycos 0) - PTETTED) SN(Bf,cos 0),

N

(NeZ+, feD(B)).

Repeated application of (5.6.2) in the case u > a+} yields by corollary
3.3.3

He-sy ey < 5 188 (50082402500
=N+1

o 1-1 X
w1y oy |lst
< T ||s:(Bf;)|]..-
B iofieq 1(1+u+1) il X
-7 1
If we put Cy = ) a1 then by (5.6.3) we deduce for f e D(B)

1=N+1
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[lc sk (g;)-£()} = BE()]] < B ogup |s¥Bes)-Be(o) ||
H K X N+ T X
-1
Cy 1 1
+ —(ﬁ:;;;— |lsp(Bes+) - BE() ||y + 5 |- EBTEIEITTI IIBe(-) |1

= o(1) (N>),

using corollary 3.3.3 and the fact that

1____1__:1_ 1 (Jm __E_)”
Cu(N+u+1) N+p+t My x(x+p+1)

o(1) (N>e).

Since lim CNN 1 relation (5.6.1) follows.

N—)(n

As Sﬁ(f;cos ) is a polynomial of degree < N in cos 8, it is obvious
that S}i(f3cos 0) € D(B) for all N € 7" and all f € X. Also, by lemma 3.4.5.,
we know that there exists a measure v € M such that Bf = D1(v*f), whefe D1
is the operator of the factor sequence type with factors [n(n+o+B+1)1%. Ap-

plication of (5.5.2) and (3.3.14) leads to

lmsh (5011, = Hysyores ) |y < eanlivily Helly

X —

| A

el Il

Now all the conditions of theorems 2.4.2 and 2.4.3 are satisfied. Hence we

have

5.6.2. Theorem. The process {SN, Z+, pw>o+3} is saturated with order N 1.
The saturation class F(X,S ") is the class H(X, [n(n+a+B+1)] ). Moreover, the

following statements are equivalent for 0 < 6 < 1, 1<gq<>®or 8= 1, @ =

i) f e (X,D(D1))e 4K

i3 6 . r q
ii) {n wsu(n,f,X)}n€Z+ €1,



59

5.7. THE DE LA VALLEE-POUSSIN SUMMATION METHOD

This summation method has been introduced by De la Vallée-Poussin [L49]
for Fourier series and it has been generalized for ultraspherical series by
Kogbetliantz [33]. The N-th De la Vallée-Poussin mean VN(f;cos 6) of the

Fourier-Jacobi series of a function f € X is defined by

£ (n)w

N
I (N+1) T (N+a+B+2 Ay (@sB)plasB)
(5.7-1) ¥g(Eseon 8) = nZO F(N—n:1)F§N:g+aIBiz) Juy " R, (cos o)

(NEZ+).

All the conditions for a summation method (section 3.3) are trivially satis-
fied, since the corresponding kernel VN(cos 8) has the explicit representa-
tion

(5.7.2) Vg (cos 0) = —MbatBt2) _ 62N o4y

N T T'(a+1)T(N+B+1) 2)

This can be verified by computing the Fourier-Jacobi coefficients of
(cos g)ZN by means of formula (1.1.1). The representation (5.7.2) allows us
to conclude that the kernel VN(cos 0) is a positive approximation kernel,

since the 'peaking property' (3.1.7) is satisfied. We prove

5.7.1. Lemma. Let A be the operator of the factor sequence type with fac-
+
tors n(n+a+B+1), n ¢ P, and let VN(f;cos 6), N € Z denote the De la Vallée-

Poussin means of the expansion (1.3.1) of £ e D(A), then

(5.7.3) Lim | [N{Vy(£35+)-£(+)} - af(+)| |y = o.

N>
Proof. A direct calculation, based on comparison of the Fourier-Jacobi
coefficients, leads to the following identity, which generalizes an identity

due to Butzer and Pawelke [19]:

(5.7.4)  N(W+a+g+1) [Vy(cos 0)-Vy . (cos 6)] = -AV (cos 0)  (NeZ*).

Repeated application of (5.7.4) yields by proposition 3.3.1

[[£C)=ve(£59)]], < ———— ||V, (af;") )
N X — l=§+1 1(1+a+B+1) 1 llx
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©

Y N S , we obtain for f e D(A)

If we write C
1=li+1 1(1+a+B+1)

N=

-1
llcN {v(£5+)-£(+)} - Af(~)||X :'1§§£1 ||V1(Af;-)-Af(~)||X

=0(1) (N-e) .

Since lim NCN =1, (5.7.3) is proved.
N>

The De la Vallée-Poussin means VN(f;cos 9) are polynomials of degree
+
< N and therefore belong to D(A) for all N € Z . For VN(f;cos 0) we now de-
rive a Bernstein type inequality, which is much stronger than (4.2.8) (cf.

Butzer-Scherer [20], p. 137).

5.7.2. Lemma. Let £ e X and let A and VN(f;cos 9) be defined as in lemma
5:T«1s Then,

(5.7.5)  |lavy(gse) ]y < 2(erN] [ 2] ]y

Proof. By (5.7.4) we have

™
||AVN(f;’)||X = |I[O T¢f(')AVN(cos ¢)o(a’8)(¢)d¢|lx
™
- N(N+a+8+1)l|JO{VN_1(cos $)-Vy (cos ¢)%T¢f(-)p(“ e)(¢)d¢||X
< N(N+a+B+1) ||f|| J | (cos ¢)-Vy(cos ¢)|p(“’6)(¢)d¢
I'(N+o+B8+1

N(N+a+8+1)|lf||X T(a+1)T(N+8+1)

™
. J (cos $22| (veg)-(rvarsr1)cos® 2o > (9)a
0

S TN+8)T (0*1)

™
NT (N+a+B+2) ||f||x {J fasa g)2a+3(cos %)2N+28+1d¢
0

(g2 1) $20+1 ) 2N+28+1
’ Jo gt (sin 97 (eos D) ol

(et ]| -
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By (5.7.3) and (5.7.5) all the conditions of theorems 2.4.2 and 2.4.3

are satisfied. We summarize the results as follows:

5.7.3. Theorem. The Fourier-Jacobi series (1.3.1) of f € X is V-summable to
f in X. The process {VN, NeZ*} is saturated with order N-1. The saturation
class F(X,V) is the class Lip(2,X). Moreover, the following statements are

equivalent for 0 < 8 < 1, 1 < g<wor f =1, q = =

) £ e (D)) oy s

§ 3 0
ii) {n wV(n;f;X)}neZ+ € 13.
5.8. THE JACOBI POLYNOMIAL KERNEL

The formula

I (N+B+1)T(N+1)T (a+k+2)T (a+1)
T (N+o+B+k+2)T (N+a+k+2)T (k+1)

(a+k+1 ,B)(CO

(5.8.1) Ry s 0) =

w R

N
[ (N+n+a+B+k+2) T (N-n+k+1) (a,B)_(a,B) + +
nZo I (N+n+o+B+2)T (N-n+1) n n (cos 8)  (NeZ, keR")

is due to Szegd [L6], section 9.L4. The proof uses the formulas (1.1.1) and

(1.1.9). We shall study the polynomial kernel {Jéa?k+1’s)(cos 6)}N€Z+ , de-
Ed

fined by (see Bavinck [10])

(5.8.2) Jéa:k+1’8)(cos 0)

_ __ I'(N+o+B+2) T (N+a+k+2)T (k+1) (a+k+1,8)
T T(N+B+1) T (N+k+1)T (a+k+2) T (a+1)

(cos 0).

The convolution of f € X with the kernel (5.8.2) generates a summation
method for the Fourier-Jacobi expansion (1.3.1) of f, which we will call the

Jacobi means of order k. The factors are

P (N+1)T(N+a+8+2)T (N+n+o+8+k+2 )T (N-n+k+1)
T (N+a+B+k+2)T (N+k+1)T (N+n+o+B8+2)T (N-n+1)

(n<N),
(5.8.3) CN(n) =
0 . (n>N).

+ . .
In the case k € Z the factors can be written in the form
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k
11 -—2) (n<N)

0 (n>N)

where A == n(n+a+p+1). The representation (5.8. 4) shows that for k € Z* this
summatlon method is a possible generalization of the typical means (see
Butzer and Nessel [18], p. 262).

From the estimate (1.2.8) with A = k+1, p = 1, u = 0 we may conclude
that there exists a A € R* such that

™
(5.8.5) J |J§a:k+1’s)(cos 6)]0(**#)(6)a0 < A uniformly for all N « i,
O : 4

if k > a+% Since the factors C_(n) tend to 1 as N tends to ®, it follows

that if k > o+3 the kernel JNa:E+1 S)(cos #) is an approximation kernel,
which implies that

u+k+
(5.8.6)  lin {8 g5y - 211y = 0 (k>ot}) .

X

We now derive a limit relation of the form (2.4.2).

5.8.1. Lemma. Let A be the operator of the factor sequence type with fac-
+k+
tors n(n+o+p+1), n € P, and let J§a1k ! B)(f;cos 9), N € Z* denote the

Jacobi means of order k (k>a+}) of the expansion (1.3.1) of £ € D(A), then

(a+k+1 B)

(5.8.7) lim ||N {y (£3-)-2(+)} = (=K)A£(+) ][]y

N-

Proof. The following identities are valid for f e D(A):

(5.8.8) Jé?;k+2’8)(f;cos 0) - Jé“:kTQ ) (£.c05 6)
- N(N+a£§11;E;ﬁ;&:??51213+k+2) (a+k+1’8)(Af;°°S 0),
(5.8.9) Jé?:k+2’6)(f;cos 6) - J§“7k+‘ ) (£;cos 0)
! (ot 1.8) (ho s 6).

= = (N+k+1) (N+o+B+k+2) “N,1
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By (5.8.6) and by repeated application of (5.8.8) we obtain (k>a+3)

(at+k+2,8)
(5.8.10)  [|£(+) - Iy (£5+3] 1y
v (21+k+a+B+2) (at+k+1,8),
2 (1) 1=§+1 l(l+a+B+1)(l+ki1)(l+a+6+k+2),|Jl,1 (Af")llx'
If we put
- v (21+k+a+B+2) — -
(5.8.11) dy = & l=%+1 1(1+a+B+1) (1+k+1) (1+a+B+k+2) L (W)
then, applying (5.8.9) and (5.8.6) we find
||d§1{f(-)—J§?Tk+1’B)(f;-)} - EE= D],
(k+1) (o+k+1,B)
< J *TO(Af3.) - AF(¢)
z e REA I
-1
dy (0+k+1,B)
¥ NEHT) (N+atB+Er2) II°N?1 (ar5+) - as() ]y
d;
+ |lag()]], 15 | =o(1) (o) .

k T (N+k+1) (N+a+B+k+2)

By using (5.8.11), relation (5.8.7) follows.

(a+k+1,8)
N,1
clealry belongs to D(A) and by (4.2.8) and (5.8.5) we may conclude that

Since J (f;cos 8) is a polynomial in cos § of degree < N, it

A T8) (e

¥ < owv®| ||, (1>a+d).

X
All the conditions of theorems 2.4.2 and 2.4.3 are satisfied. We finally ob-
tain

: . . . +k+
5.8.2. Theorem. The Fourier-Jacobi series (1.3.1) of £ ¢ X is J(a k 1’8)—
summable to f in X (k>a+3). The process {Jéa7k+1’8), NeZ'} is saturated with
= ]
order N2, The saturation class F(X,J(“+k+1’6)) is the class Lip(2,X). More-
over, the following statements are equivalent for 0 < 6 < 1, 1 < qQ<L®or

6 =1, q= o
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ii)

£ € (X,D(A))e

{n

26

QK ?

L]

q
wJ(n;f;X)}nez+ € l*.
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CHAPTER VI SOME GENERAL RESULTS ON POSITIVE KERNELS

This chapter deals with the approximation processes which are genera-
ted by the convolution of f € X with a positive kernel. It turns out that
for norm convergence of such a process for an arbitrary f € X it is neces-
sary and sufficient that the process converges in the norm for the function
REG’B)(cos 6). Furthermore, we show that all strong approximation processes,
which are generated by the convolution of f € X with a positive polynomial

((X,B)(

kernel of degreeN, approximate the function R1 cos 0) with an order
which does not exceed CN_2. This is proved by constructing the optimal posi-
tive polynomial kernel of degree N. In the trigonometric case (a=B=-3) these
results are due to Korovkin [35]. In the remainder of this chapter we gener-
alize a theorem of De Vore [23] which determines the saturation order and
the saturation class of a family of positive convolution operators, satisfy-
ing a certain condition on the Fourier-Jacobi coefficients of the kernel.

Finally, some applications of this theorem are given (see also Bavinck [9]).

6.1. RELATIONS BETWEEN TRIGONOMETRIC MOMENTS AND JACOBI COEFFICIENTS

The following expansion is a simple consequence of (1.1.1):

(6.4.1) dain g)gm

o M )rmar) § e et Ensattat) - p(008) (o4 )
=0

r(a+1) m-n+1)T (m+n+a+B+2)T(n+1) “n

(meZ+).

For a kernel {Kx(cos 6)})‘EA the trigonometric moment of order 2m (meZ') is
defined by

m™
(6.1.2)  T(K,;2m) = J (sin 22" K, (cos 8)p(*>#)(6)as.
0

From (6.1.1) we derive for m ¢ Z¥

(6.1.3) T(Kx;Zm) =

_ T(m+1)T(m+a+1) © k+1 (2k+a+B+1)T (kta+B+1) A
- T'(a+1) kz1('1) I'(m-k+1)T (m+k+a+B+2)T (k+1) (1'Kx(k))'
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Here the term k = 0 is eliminated by putting 6 = 0 in (6.1.1). Conversely,
formula (1.1.8) leads to

(6.1.4) 1- K;(k) =

k
_ I(k+1)T(a+1) m+1 T (k+o+B+mt+1) .
T T(k+o+B+1) mz1('1) T (k-m+1)T (m+a+1)T (m+1) T(Kx’em)’

Hence, we easily obtain from (6.1.3)

+1 A
(6.1.5) T(K,32) = E%§1§ (1-£)(1)
and
A
6o SN (o)) [oterer) )
. T(K,32)  (a+B+3)(oarBel) | a+Br2 = Ay
)

Also, from (6.1.4) and (6.1.5) we conclude

A
o 2% sersn)
tT 1—KA(1) ot+p+2
A

I'(k+1)T(o+2) % ( 1)m I (k+a+B+m+1) T(Kx;2m)
" (o#B+2)T (kta+p+1) o 07 T (k-m+1)T (mta+1)T (w+1) T(K, ;2)

Similar relations between trigonometric moments and Fourier coefficients
have been established by Stark [44]. We also have the following theorem,
which generalizes a result of Gdrlich and Stark [31] (see also Stark [LL]).

6.1.1. Theorem. Let {Kx(cos 6)}>\EA be a positive kernel. Then the following

assertions are equivalent:

A
1'Kx(k) _ k(k+a+B+1) (keZ+)

a+BR+2

i) 1lim -
A 1-KA(1)
A
1-K, (2) _ 2(a+B+3)
T atBH2

ii) lim A
A 1-KA(1)

T(Kx;h)

111) lim ETEIZET =

A0

Proof. Relation ii) is a trivial consequence of i). Relation iii) follows
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from ii) by (6.1.6). Since 0 isin2 2’2_1 and the kernel {Kx(cos e)}keA is

positive, it is obvious that

(K, 32m) < T(K, ;4) (meZ®, w2).

T(KA;Zm)

Therefore, relation i1ii) implies lim ETE;EET_

Ao

=0, m > 2. Thus, by formula
(6.1.7) relation i) follows.

6.2. APPROXIMATION PROPERTIES OF POSITIVE KERNELS

If {Kx(cos e)}AeA is a positive kernel, then the following theorem
shows that the process Kx(f;cos 6) is a strong approximation process on X

if and only of the test function Rga’g)(

cos 6) is approximated in the X -
norm. For a similar theorem for Fourier series we refer to Butzer-Nessel

[18], section 1.3.3.

6.2.1. Theorem. 1If {Kx(cos e)}AeA is a positive kernel, the following as-

sertions are equivalent:

i) lim IIKA(f;-) - f(-)||X =0 (feXx),
>0
.. . (a,B) (a,B)
ii) lim ||X, (R;%*F/;4) = Ry *2P/ (1) =0,
St AV 1 IlX
iii) 1lim T(KA;2) =0,
A>
" (a,8)
iv) lim J Kx(cos 8)p ***/(6)ae = 05 for each h, 0 < h < 7.
Ao Jh -

Proof. 1t is obvious that i) implies ii) since Rga’B)(cos 0) € X. If we

assume ii) we have

lim ||KA(R$a’B)(cos 8);+) - Rga’s)(-)llX =
A0

(a,8)
1

(a

™
= 1lim ||J Rga’s)(')K (cos ¢)LR (cos ¢)-1]p ’B)(¢)d¢|lx

A0 0 A

lim ||R$a’8)(~)[K§(1) - 1111

A0

= 0.



68

Hence, lim [1_KA(1)] = 0, which by (6.1.5) implies iii). If iii) is assumed,
>

then by the inequality

m

(sin 2)2 KA(COS e)p(“’s)(e)de

n
J (sin 202 K, (cos e)p(“’B)(e)de 3_J >

(
0 L h

m
> (sin 202 J Kx(cos e)p(“’B)(e)de,
h

relation iv) follows. Relation iv) implies i) by theorem 3o 1alhs

Since the norm convergence of Kx(f;cosﬁ ) to f(cos 6) holds if and only

if

{6.2,1) lim (1-K§(1)) =0,

A

we may expect that the rate of convergence will also be determined by the
rate of convergence of (6.2.1). The following direct theorem which is a gen-

eralization of a theorem of Korovkin [35], p. 72, confirms this.
6.2.2. Theorem. Let f ¢ X and the kernel {Kx(cos 6)}A€A be positive. Then

(6.2.2) ||Kx(f;-) - f(-)||X (1-K |[fll w(/1-K (1);f;X)).

Proof. By the H8lder-Minkowski inequality we have

1%, (£5-)-£C) | |4 ||f (r,£(+)-£(+))K, (cos ¢)p(°"8)(¢)d¢||x

| A

m (a,B)
[0|IT¢f<->-f(->||x K, (cos 006 (4)aol |

Thus, it follows from proposition L.1.2. iii) and formulav(6.1.5) that for

each 1 > 0

| A

™
[Cates o530, (eos 61 610

|1y (e -2y < |

| A

A

m™
I K, (cos ¢)o(a’8)(¢)[CmaX(1,¢ u f——||f|| +w ;£3X) }lag
0 u

| A

ctg 2l | rutys50) max( 1,04 (1-K3(1)),
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where C and C1 are constants. The theorem follows by putting
1
A -
w= (1K,(1) 72

When we restrict ourselves to positive polynomial kernels, it is possi-
ble to construct the kernel for which the rate of convergence is optimal,

. A . . .
that is 1 - KA(1) or T(K,;2) is minimal.

A2

6.2.3. Lemma. Let HN (NeZ*) ve the class of all positive polynomial kernels

of degree < N. Among all kernels which belong to HN’ the kernel
wr(la’s)sinze1 n Réu’e)(cos 6) 5
(6.2.3) FN(cos B) = (on+o+B+1) (cos 8-cos 61 n)
b

has the minimal trigonometric moment of order 2. Here n = [g] + 1 and 61 n
bl
is written for the smallest value of 6 for which Réa’s)(cos 0) vanishes.

Proof. We are looking for

m™
(6.2.4) min J (sin %)2 pN(cos ¢)p(a’8)(¢)d¢
pNenN 0
1
= 3(1-27B1 ey J x by (%) (1-2)*(14x) Pax) .

pNeHN -1

When we write n = [g] + 1, then x pN(x) is a polynomial of degree < 2n-1. It
is a well-known fact (Szegd [L6], section 3.4), that the integral of any
polynomial of degree < 2n-1 with respect to the weight function (1—x)a(1+x)6

can be computed exactly by means of the Gauss-Jacobi quadrature formula

),

(x

1 n
a B _
I_1 Py (x) (1-%)"(14x)" ax = 121 A n Ponog

i,n

> >
where 1 x1’n > x2’n ¥ e > xn,n 1 denote the zeros of R

Ai n are the Christoffel numbers, which are all > 0 and have the following
L]
representation (Szegd [46], (15.3.1)):

éa,B)(x) and

o+B+1 (a,B)_. 2 a  (a,B) -1
& n BLL ei,n(dx Rn (X))x=cos ei n]
’

(6'2'5)-Ai,n = (en+a+B+1) [w

i=1,2, ..., n.

Hence, the problem reduces to that of finding



T0
n
(6.2.6) m:ﬁ ‘21 Ai,n xi,n pN(x. ).
Py *

Since by (3.1.1) we have

1 n
a B
620 | p0(0%m0® ax= 1A mylx o)
P | 1=1
_ 2a+8+1
and 1 > x > x > .. > X > -1 it follows that the maximum in (6.2.6)
1,n 2,0 n,n
will be reached by the polynomial FN(x) such that FN(xi n) =0,
b
i=2, ..., n. This implies that
(6.2.8) A,  Fy(x, )= 2*F*
e 1,n "N'"1,n
and
1 o B a+B+1
(6.2.9) x FN(X)(1—X) (1+x) dx = X4 2
2

It is easy to see that the polynomial kernel {FN(cos e)}NeZ+ has the form

(2—)? (n=[33+1)

1
(6.2.10) F (x) = —
N CN x—x1,n

where

n )2 (a,B)

T R(G’S)(COS e)
J P (6)as .

0 cos 6-cos 61,n

Using (6.2.5) and (6.2.7) we obtain

c = (2n+a+B+1)

N w(a’B)sin2e
n 1s
Also, formulas (6.2.9) can be proved directly from the representation
(6.2.10), since by the orthogonality of the polynomials Ria’s)(x)
1 (! Rr(la’B)(x) 2 O, B
L[ G, ) (1-0%00° ax
N /-1 ? 1,n
1 (1 (a,8) R(a,s)(x) a B
= —J R * P (x) 2 (1-x)%(1+x)" ax = o.
C n X=X
N ‘-1 1,0
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Hence we conclude by (6.2.4), (6.2.9) and (6.1.5)

Eiéig_ (T—COS 9 ) 5

(6.2.11) 1 - Fll\;(T) = Slart) -

or, by (1.2.3),

A ~ O+B+2 2
V- P 2 gy 9

s

(aver2) (51)2

e ()
(a+1) (2n+o+B+1)

N2 (N»>e)

Q

Here, jga) is written for the first zero of the Bessel function Ja(x).

+ be a positive polynomial kernel of

5“’6)(-)|{X} does

6.2.4. Corollary. Let {pN(cos e)}NeZ
degree < N. Then the sequence {N2||pN(R$a’B)(cos 8);+) - R

not tend to zero as N »> o,

Hence, even for an infinitely differentiable function such as
Rga’s)(cos 6), the degree of approximation by processes with a positive
kernel cannot be better than O(N-2), N > ., The corresponding result in the
case of approximation by positive trigonometric polynomial operators is due
to Korovkin [35], p. 127. The method followed in the proof was communicated

orally to the author by R.A. De Vore.

6.3. SATURATION OF A CLASS OF POSITIVE OPERATORS

For approximation processes which are generated by the convolution of
f € X with a positive approximation kernel {Kx(cos e)}AeA , satisfying one
of the conditions stated in lemma 6.3.1, we determine the saturation class.
The corresponding result in the trigonometric case is due to De Vore [231],
who generalizes a theorem of Tureckii [48]. We first prove the equivalence

of two different conditions on the kernel in the following lemma.

6.3.1. Lemma. Let {Kx(cos e)}AeA be a positive kernel. Then the following

conditions are equivalent:

. . + + .
i) There exists a number CA € R* such that for each k ¢ Z' there is a



T2

Ak) e RY with

1-K§(k)
— > C, k(k+a+p+1) (A>A(k)) 5

A
1-Kx(1)

x + :
ii) There exists a number Cj € R" such that for each 0 < € < 7 there is a
A(e) with

(a,8)

€
f (sin g)2 Kx(cos 8)p (8)dse

0 2

20 JO (sin 202 K, (cos e)p(“’e)(e)de (A>A(e)).

Proof. In order to simplify the notation we write

(6.3.1) dux(cos p) = Kx(cos e)p(a’ﬁ)(e)de .
We first show that ii) implies i). If we take e < L/(2k+a+B+2) and
A > A(e), where A(e) is given by ii), we derive by using (1.2.5) and (6.1.5)

(a,B)

m
1 - Ki(k) = Jo (1-Rk (cos 6)) dux(cos 9)

|V

€ (a,8)
fo (1_Rk“’ (cos 6)au,(cos ©)

| \%

€
c k(ktatBt1) J (sin %)2 dux(cos 6)
0

a o+1

m
k (k+o+B+1 .82
2 e, % CB Jo (sin 2) dux(cos 9)
c C
_ _"a’B A
= —n k(k+a+8+1)(1—Kx(1)).
caCB

Therefore, i) holds with A(k) = A(e) and CA ey e

= CA iﬁigigl , We choose

€ =g, and we consider the measures defined by (XeA)

We will now show that i) implies ii) with Cq
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<p<
0 (0<6 eo)

dv, (cos 6) =

\
T g7 aleos 010

T (6)ae (eojﬁiy).

Then for all A € A

0 _I ™ 9 P
J dvk(cos 8) < J (sin E) dux(cos 0)
. 2 0
0 (sin Eg) T(KA;Z)
0,-2
= (sin 5—) .
Thus,
™ E
J 11 - 5% (cos 8)}av, (cos ©) < 2(sin 292,
0 2
We choose ko so large that
cA ko(ko+a+8+1)(u+8+2) €

. 0,-2
INETED) > (sin E‘) -

Hence,

1 €0 (a,B)
K o) JO {1 - Rko (cos 6)}dux(cos 8)

™
T T(K ;2) Jo {1 = RﬁZ’B)(cos 6)}du, (cos )

- J" {1 - Ria’s)(cos 6)}dvx(cos 8)
0 0

" (a,8)

1
if‘(xk;e‘)‘f Lt

(cos 6)}duk(cos 8)
0 0

cA ko(ko+a+8+1)(a+8+2)

2(a+1)

)

By virtue of condition i) and (6.1.5) we have for A z_A(k0



Th

Jeo (o,8)
{1 ~ >/ (cos 0)}ap, (cos ©)
0 "k ’

) (0+B+2)

> C, k,(k +a+B+1 2(a+1)

T 9,2
' o( 0 Jo (sin 5) dux(cos 0).

Finally, by (1.2.4) it follows that

€0, .82 (a+1) Jeo (a,8)
(sin #)° au,(cos 6) > {1~ *®/(cos 6)}du, (cos 6)
Jo 2 A ko(k0+a+8+1) 0 Rko A
> @ ﬁiﬁ+_2). rT (sin _6_)2 da (COS e)
— "8 2 5 2/ M s

which proves lemma 6.3.1.

6.3.2. Theorem. Let {Kx(cos e)}AeA be a positive approximation kernel
satisfying either condition i) or ii) of lemma 6.3.1 and let f € X. Then the
process {KA, AeA} is saturated with order (1—K:(1)) and the saturation class
F(X,K) is the class Lip(2,X).

Proof. On account of lemma 6.3.1 we may assume that the kernel {Kx(cos )}
satisfies both conditions i) and ii) and we will interchange them appropri-
ately.

We first show that the process {KA’ €A} is saturated with order
(1-K§(1)). If f € X and

1%, (£5) = £()| 1y = 0 (1=K (1)) (=),

then for all k € Z*

A

k) - fA(k)Kx

A

(k) = 0(1-KX(1)) (X)) .

In view of condition i) this implies Mk) =0, k € Z* and therefore f is a
constant. On the other hand the function fo(cos 8) = Rga’B)(cos #) is an ex-

ample of a non-constant function which satisfies

11, (295 = 2001 = HESE )11, .

A

A(1)}' The

Hence, the process {KA’ AeA} is saturated with order {1 - K
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'trivial' subspace in definition 2.4k.1 is the space of constant functions
here.
We now wish to characterize the saturation class F(X,K). An element

f € X belongs to F(X,K) if and only if
! (a,B) A
IlfO (Ty£(+)-£(+)) Ky (eos ¢)p 7 (9)as| |, = 0(1-K (1)) (A=),

or equivalently

¢

||fﬂ (T £()-£(+))
0 (sin %)2

dy, (cos ®) ||, =0(1) (o),

where

(ar8+2) (sin )2 , (cos 4)0(**) ($)ag
dwx(cos ¢) = .

(a+1)(1_K§(1))

By (6.1.5) we have llwkllM = 1 (xeA), and consequently it is clear that
f e F(X,K), if £ ¢ Lip(2,X).
We still have to prove that f e F(X,K) implies f € Lip(2,X). If A de-
notes the operator defined by (4.1.3), then we will first show that for
f € D(A), satisfying

(6.3.3)  []£(+) - K (£5)]], < A(1-K}(1)) (=),

A

where A is a positive constant, the following inequality is valid:
¥ 3 < 2 .

(6.3.4)  ||agf|y < ca+[£]])

Here C is a positive constant independent of f.

Since the measures {wk}AeA all have norm 1, there exists a sequence

{Aj}jeZ+ and a measure Y such that {wk } converges weakly* to Y. By condi-

Jd
tion ii) and the weak* convergence it follows that for each € > 0

€ €
(6.3.5) [ w=1mJ an, > ¢, .
0

0 s ;T F
m
We choose €y SO small that € 5_5 and
‘s B+2
(6.3.6) J dy < == with S > 2427 7,
— 8
(0,e,)

0



76

For £ € D(A) satisfying (6.3.3) we have

m T £(+)-£(+)
IJ —L——-Q—- av(cos <15)l|X

0 (sin %)
m T £(+)-£(+)
< lim Ilf —Q——————E;—- ay, (cos ¢)]] f.gg%%g A
joe 0 (sin %) j
Hence,
€ T¢f(-)—f(-)
(6.3.7) I I ————— av(cos o) [
0 (sin E)
at+B+2 " T¢f(')'f(')
oy b l‘J ——— 5 W(cos 01y
€ (sin E)
s, , 217l
— a+1 €
(sin 2—0)2

From (4.1.7) it follows that
T¢f(')-f(')
lim —_

0" (sin %)2

In virtue of (6.3.5) and (6.3.6) we have

1 -
- (—mAf(’))HX— 0.

ey T E()=B(x)
(6380 |I[ ° Lt aueos 0l
0 (sin %)
ooy el - 1] TR avees
> (1-2) ¢, — |lag]], - 4 a¥(co .
s’ "B o*1 X (0,,) (sin %)2 cos X
Since by (4.1.7) and (4.1.8)
T, £()-£(*) B+1
0 2
Wllxi a+1l|AfHX > 0<¢i'121,
2

we derive from (6.3.8) and (6.3.6)

€ T¢f(-)—f(-)

639 I av(cos 8]
0 (sin %)2 X
(6] B+1 .
A 1 _ B2 1
> (1= D) oy o Hlally - g2 s Hael |y 2 sray G ety s
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+
since we have chosen S > 2+26 2.

Hence (6.3.9) and (6.3.7) yielad

2(a+B+2)

b (a+1
[ag] ] < Blexiet) y oy o) ey
- C_(sin —9)2
B 2
which establishes (6.3.4), if we choose C = max(§£925+2) R h(a+;) )
= c_(sin =2)2
B 2

If we take an arbitrary element of F(X,K) such that

[£Ce) - k(£5)[], < A1k} (1)) (AeA),

X

then we study the convolution of f with a positive polynomial kernel of

degree < N (we may take the De la Vallée-Poussin kernel VN(cos 0) defined by

(5.7.2)). Then the function fN(cos 6) = VN(f;cos 8) clearly belongs to D(A)

and furthermore we have for each N e ZV

[Hghe] =& )

Wi g = TR () = ((exvy )k, ) ()]

X
= [ (vgx(ek,*0) ()]
= Hvglly HeC) - g, (25911
< M1-K3(1) (Aeh).

Since [|fN||X < ||f]|X , it follows from (6.3.4) that
gl 1y < ol 5] 1,) < clas]]]]).

Hence for ¢ > 0 we derive from (L4.1.7) and (4.1.8)

T £ (*)-£ () B-1
N N 2
- < 25 Hlaggl g < csllel ), w2 ™.

If we take the limit as N > » we obtain

T, £(+)-£(+)
||



78

which is equivalent with f e Lip(2,X). This completes the proof of theorem
6.3.2.

6.4. APPLICATIONS

We shall utilize the results of the preceding sections in order to
derive the saturation class of some approximation processes with a positive
kernel, for which a limit relation of the form (2.4.2) is not known, so that
the method used in chapter V fails.

We first consider the process, which is generated by convolution of

f € X with the kernel

(6.4.1) J§?2k+1’6)(cos 9) = CN[R§u+k+1’B)(cos 6)]2 (keR, NeZ+),

where

1

1 _ [T o(o¥k+1,8)
(6.5.2) ¢ = JO LR (

2 p(a,B)(

cos 6)] 9)de .

From (1.2.8), where we choose A = k+1, p = 2 and successively u = 0 and

u = 1, we conclude that the trigonometric moment of order 2

T(Jéa;k+1’8);2) = ¢y Jn [R§a+k+1’8)(cos 6)12 o(®*1:8) (5)ag
’ 0

=o(1) (N>e)

(a+k+1,8)
N,2
strong approximation process on X if k z_—%. Furthermore, if we take k Z_%,

if k > -3. Hence, by theorem 6.2.1, the process J (f;cos 6) is a

formula (1.2.8) with A = k+1, p = 2 and for u the values 0, 1 and 2 leads to

-2

N (k>3 , Noe),

(6.4.3)  w(a{ETE) 5 5
LN-Z log N (k=%s Noe) ,
(6.4.1) (L)) o (a(a{ ) o) (W)

Theorem 6.1.1 shows the equivalence of (6.4.L4) with the relation



9

=gttt B) R0 5

; N,2 n(n+o+B8+1) +
lim 2 = (neZ™),
Noveo 1_(Jéu;k+1,6))A(1) o+B+2

b

which implies that condition i) of lemma 6.3.1 is satisfied. Applying theo-
rem 6.3.2 and formula (6.1.5) we obtain

(o+k+1,8)

6.4.1. Theorem. The process {J (cos 6), NeZ'} is saturated with or-

N,2
der e if k > 3 and with order N™2 log N if k = }. The saturation class is

Lip(2,X).

We have already used the kernel (6.4.1) with k = 1 in chapter IV in the
proof of theorem L.2.L. We now investigate another approximation process
generated by convolution with a positive approximation kernel, the general-
ized Jackson kernel. In the case of Fourier series this kernel is often used
to prove direct theorems (see Lorentz [37]). The kernel is defined by

. 0
(6.4.5) Ly p(cos 0) = CN’r(ﬂFr (NeZ*, reZt),
sin 3
where

6)de.

T sin NE
-1
Gl [

2\2r (a,B)
Wyr 0 sin Q') . :
2

From the well-known estimates % < sin g-:_g for 0 < 6 < m and 1% < cos g <1

for 0 < 6 f_g'we easily derive the asymptotic relation for N » =

’ 5 N2r—2a-2u—2 (r>a+p+1),
T sin NE op (a+u 8)
(6.4.6) J (—___E—) P >"7(8)d6 ® < log N (r=a+u+1),
0 sin >
1 (r<a+p+1).

Relation (6.L4.6) implies that the trigonometric moment of order 2

. .9
T sin N—=
oy 2.2r (o+1,B)
M%Jﬁ>-cMrh<;:Ea b (6)ao
2

= 0(1) (N"‘”),

if r > a+1. Hence, by theorem 6.2.1, we conclude, that for f € X the process

Ly r(f;cos 6) is a strong approximation process on X if r > a+1. Further-
, 2
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more, if we take r > a+2, formula (6.4.6) leads to

-2

N (r>at+2, Noe),
(6.4.7) T(LN,r52) =

N_2 log N (r=u+2, N+m),
(6.4.8) T(Ly, r;h) = O(T(LN,r;e)) (Noeo) .

By theorem 6.1.1, relation (6.4.8) is equivalent to

A
1—LN (n)
. o _ n(n+a+B+1) +
lim = ey (neA™),

A
N-o 1-LN’r(1)
which implies condition i) of lemma 6.3.1. Consequently, application of

theorem 6.3.2 and formula (6.1.5) yields

+. . ; -
6.4.2. Theorem. The process {LN r(cos 0), NeZ } is saturated with order N 2
=i H]
if r > o2 and with order N e log N if r = a+2 (r€Z+). The saturation class

is Lip(2,X).

The last approximation process with a positive kernel we consider is
the process generated by the kernel FN(cos 6) defined by (6.2.3). This ker-
nel is the generalization to Jacobi polynomials of the Fejér-Korovkin kernel
(see Butzer-Nessel [18], section 1.6.1). As an immediate consequence of

(6.2.4) and (6.2.9) we have

o) = 1(1_
T(FN,Z) 3(1-cos 61,n).

For the notation see lemma 6.2.3. We now compute T(FN;h):

m

(Bl = 3 J (1-2cos 6+cosze)FN(COS e)p(a’s)(e)de

0

ST - 1 (1-2x+ 2)F (x) (1-x)*(1+ )de
= 2a+8+3 » - XTX N X -X X
S N Y )2_2(1 Yk (1=x2 ) IF (x){1-x)* (1+x) Pax
= 2a+8+3 A X—X1’n - -X1’n X —X1,n N X)\1=X X
2
1_}(1 n

)2

= (19
= T{2n+o+p+1) a1 *1,n
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Hence
T(FN;M) (1+x, )
1 = 1 I L 1 S 1 s =
Hm gre oy T B ey 2% )1 =0

N> N’ N

Thus, by theorem 6.1.1, condition i) of lemma 6.3.1 follows and we conclude:

6.4.3. Theorem. The process {FN(cos 8), NeZ+} is saturated with order N_z.

The saturation class is Lip(2,X).
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CHAPTER VII CHARACTERIZATION OF CERTAIN CLASSES OF FUNCTIONS

This last chapter is devoted to the characterization of certain classes
of functions which occur in the preceding chapters. In section 7.1 we give
necessary and sufficient conditions for a function f on [-1,1] to belong to
the domain of the operator A, defined in (L.1.3). Next, we characterize the
domain of the operator D1, the fractional differentiation operator of order
1, by means of the conjugate function f, which can be introduced in a way
similar to the work of Muckenhoupt and Stein [38] on ultraspherical expan-
sions. The method to obtain the characterizations for D(A) and D(D1) is
taken from Berens, Butzer and Pawelke [13]. Finally, we direct our attention
to the spaces of K-interpolation between the space X and the domain of the
fractional differentiation operator of order y, in terms of which we have
characterized the spaces of non-optimal approximation of certain summation

methods in chapter V. We show that the spaces (X’D(DY))G 0<y<2,

»q3K °
0<6 <1, 1< g <= coincide with the spaces of K-interpolation

P 4 . . . 0y
X,D(A hich th = ® the L hit —X) .
(x,D( ))ey/Q,Q;K which in the case q are the Lipschitz spaces Llp(2 ,X)

7.1. CHARACTERIZATION OF D(A)

In this section the following theorem is proved.

7.1.1. Theorem. TFor f,g € X the relation

A

(7.1.1) n(n+a+8+1)f (n) = ¢’ (n) (neP)

is valid, if and only if f(cos 6) is locally absolutely continuous almost
(a,s)(e)gg is absolutely continuous al-

most everywhere on [-1,1] and vanishes in the points -1 and 1, and

everywhere on (-1,1), the function p

(1.1.2) - & (B (6) & f(cos 6)7 = p

(o,B)
dae (

8) g(cos 0)
almost everywhere on [-1,1].
Proof. 1If we presuppose (7.1.1), then the differential operator P<%E)’ de-

fined in (1.1.6), works on the Weierstrass approximation process (section

5.1) in the following way:
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P(Eg) Wtf(cos 8) = th(cos 8).

If we integrate twice, we obtain

0 n
Wtf(cos B) = wtf(cos ) = Js {p(a’B)(n)}_1 dn Jo p<a’8)(r)wtg(cos T)drt.

+
From the norm convergence of W f to f for t > 0 we conclude, that there

t
exists a sequence {ti}isZ+ such that W, f(cos 6) converges to f(cos 6) al-

t
i
most everywhere, for ti 3 gt (Rudin [L43], theorem 3.12). Hence

n

0
f(cos 0) = f(cos €) - J {p(cl’ﬁ)(n)}_1 dn J g(cos T)p(a’B)(T)dT a.e.

€ 0

where the right-hand side converges for every € > 0 and for all 6 € (0,m).

Thus f is differentiable almost everywhere on (0,7) and

0
0 -
seleos 0 - 50)(0))7" [ g(eos 10 (*F) (1)ar ae.
0
It follows that the function p(a,B)(e) af(cos ) is absolutely continuous

dae
5 v A

a.e. on [0,n], vanishes at 6 = 0 and, by the hypothesis g (0) = 0, also at

6

= m. Moreover,
d
P(Eg) f(cos 8) = g(cos 6) a.e.

(the assertions are everywhere if X = C).

For the converse part we presuppose (T7.1.2). Then

gA(n) = - JZ Réa’s)(cos 9) %E {p(a’B)(e) %5 f(cos 6)}d6, n € P.

If we integrate by parts twice, we get

dae dé n

gA(n) - fﬂ L [p(u,B)(e) a2 R(a’B)(cos 6)] f(cos 6)ae
0

= Jw n(n+a+8+1) Ria’s)(cos 8)f(cos e)p(“’S)(e)de
0

n(n+a+B+1) fA(n) 5 ’ n e P.
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(a,8) gy af(cos 6)

a0 vanishes at 6 = 0 and 6 = .

We have used the fact that p

The proof is complete.

T.2. THE CONJUGATE FUNCTION

It has been suggested by Askey [1], that some parts of the work of
Muckenhoupt and Stein [38] on the conjugate series of ultraspherical expan-

sions can be generalized to Jacobi series. If we take f € X with the expan-

sion
f(cos 8) ~ z fA(n)w(a’B)R(a’S)(cos 9)
0 n n
and the Abel-Poisson means (section 3.3)
(7.2.1) A (fjcos 0) = z - fA(n)w(a’B)R(a’B)(cos 8),
T el n n

then the conjugate Abel-Poisson sum Ar(f;cos 0) can be defined by

(7.2.2) Xr(f;cos 8)
=l E rn fA(n)w(a’B)R(a+1’6+1)(cos 8) sin D ses 2
a+1 = n n-1 2 2

at+B+1

If we put u = A_(f;cos 6) and v = r p(“’B)(e) Kr(f;cos §), then u and

n
v satisfy the equations

LOHBT p(a,B)(

(7.2.3.a) rv = - 8)u, ,
r 0

_ ra+8+1 p(OL,B)(e)ru .

(7.2.3.b) Ty = b

By the method developed by Askey [1], theorem 1, the generalization of

M. Riesz' theorem can be proved.
7.2.1. Theorem. If £ e LP, 1 < p < », then we have
a A (f;- <M ||£(

) [ RIESTIN

b) There exists a function ? € LP such that
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tim_ [|A (£54) - T()||_=o
1 s P
and
<M ||s .
EIL <o lel
c) lim_ Xr(f;cos B) = }(cos 6), for almost all 6, 0<6<m.

2

The function f(cos 6) is called the conjugate function of f(cos 8).

T.3. CHARACTERIZATION OF D(D1)

The concept of the conjugate function is used in the following theorem,
which by corollary 3.4.6 gives a characterization of the domain of the frac—

tional derivative of order 1.
7.8.1. Theorem. TFor f,g € X the relation

A A
(7.3.1) nf (n) = g (n) (neP)
is valid if and only if f € X, the function D(a’B)(S) ;(cos 8) is absolutely
continuous almost everywhere on [-1,1] and vanishes at -1 and 1, and the re-

lation

(7.3.2) gg [p(“,e)(e);(cos 6)1 = o(a’e)(e)g(cos 8)

holds almost everywhere on [-1,1].

Proof. We first assume that (7.3.1) is satisfied for f and g € X. As we
have mentioned in section 7.2, the functions u = Kr(f;cos 8) and

= rm+8+1 p(a’B)(e) Xr(f;cos 6) satisfy the equations (7.2.3). From (7.2.3)
we deduce, using (7.2.1) and (7.3.1)

‘Q_{ra+8+1 p(u,B)(e)

a+B+1  (a,B)
ae T P

(7.3.3) Kr(f;cos 8)} = (8) Ar(g;cos 9).

It follows from (7.3.1) that f has a representation of the form

(a,8)

(7.3.4.)  f(cos 0) = fA(O)wO + (g*h)(cos 0) ,
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where

h(cos 6) ~ cos 9)

n

n-1 w(a,B)R(a,B)(
n n

1

o~ 8

In section 1.5 we have shown that h is a continuous function in each compact
subinterval of (0,7] and that

—2u-1) 6 > O+.

h(cos 6) = 0(6
Thus, for 1 < p < 1/(20+1) the function h belongs to P. By lemma 1.4.1. iv)
we may conclude from (7.3.4) that f belongs to IP. Hence, by theorem T.2.1
it follows that T € LP and consequently f € L'. Integration of (7.3.3)

yields
(a,B) " o (a,B)
(7.3.5) 0 %P/ (0) A_(f;cos 0) = J A_(g;cos T)p %P ryar .
r g *

For r > 1, the left-hand side converges almost everywhere to

p(“’B)(e) T(cos 6) by theorem T.2.1. c). Since

° (,8)
[J [Ar(g;cos 1)-g(cos 1)lp %P (t)ar|
0

| A

||Ar(g;-)—g(-)||1

o(1) (r17),

the right-hand side of (7.3.5) converges almost everywhere to

[*]
J g(cos r)p(a’s)(r)dT, which implies that the following relation holds al-
0

most everywhere:

6
(7.3.6) p(a’B)(e) f(cos 8) = I g(cos 1) p(a’B)(r)dT ;

0
At 6 = 0 the right-hand side vanishes and also at 6 = m, since gA(O) = 0.
Moreover, differentiation of (7.3.6) leads to (7.3.2), which establishes the
first part of the theorem.

For the proof of the converse we deduce from (7.3.2)

g (n)

Jﬂ g(cos 6) Rﬁa’e)(cos 9) p(“’s)(e)de
0

™
= Jo Rﬁa’s)(cos 8) %g[p(a’e)(e) F(cos 6)1d6, n € P.
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If we take into account that p(a,B)(e) E(cos 0) vanishes at 6 = 0 and 6 = 7

and if we use formula (1.1.9), we obtain after integration by parts

m

i 1 a4l
f(cos ) Rgf;1’8+1)(cos e)p(a+§’6+2)(9)d6,

=}
|

_ n(n+o+B+1) J

a+1 0

+
nel.

(a,B)

Since p (9) E(cos 0) is absolutely continuous, relation (7.3.6) holds.

Thus we may conclude

|(eos 0] < [lell, o™ )",

which implies that felP for 1< p<1+ ! . Hence,
2a+1
T o ~ 1 g4l
J [F(cos 8) - K (3008 8)7 RHTET) (cog 0)p(@+3:8+2) ()49
0
§_||Ar(f;') - f(')||P =0(1) (r17).

We now investigate

(a+1,8+1)(

(a+2 ,8+3)
1 6)o (6)ae

cos s

Eigigigill J Kr(f;cos e)R
0

at1

+
nel.

If we substitute for Kr(f;cos 6) the expansion (7.2.2) and integrate term by

- . +
term, noticing that the polynomials R(uﬂ’S 1)

- (cos 8) are orthogonal with
(a+1 ,B+1)(

respect to p 8), we obtain

a+1,8+1)

a+%,5+§)(
"

0)de

3 i esaiin J (cos 6)0(

g (n) = lim_ e

m ~ (
A (f;cos e)Rn
1 r

0

1ip BlotarB+l) Tk (k)" mi“’s)

=17 (at1)? k=1

fﬂ Réf:1’8+1)(cos 6)R

0

(f+1’8+1)(cos e)p(a+1’6+1)(6)d6

n-1
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= lim_
1 (at+1)

2
E_LEiﬁigill ran(n)w(a’B) [m(f+1’6+1)]—1

n n-1

A
nf (n) , n e Z+,

which completes the proof of theorem T.3.1.

T.4. CHARACTERIZATION OF THE SPACES (X,D(Dy))Y 4K
b b

This last section is devoted to the following theorem:

7.4.1. Theorem. For 0 <y <2 and 0 < 6 < 1, 1 < q <« the following state-

ments are equivalent for f e X:

i) fe (X,D(DY))e,q;K >
ii) fe (X,D(A))Ye/2’q;K

Proof. This theorem is a direct consequence of theorem 2.1.6, if we able to
show that

(7.%.1) (x,D(4))

D(DY) < (X,D(4))

<
y/2,15K ¥/2,°3K

We first prove the second inclusion. If f € D(DY)’ there exists a func-
tion g € X, such that f = IYg, where IY denotes the fractional integration
operator, introduced in section 5.5. We have shown that f = IYg € Lip(y,X).
Hence, by theorem 4.2.2 the second inclusion follows.

For the proof of the first inclusion in (7.4.1) we need some theorems
on spaces of best approximation quoted in section 2.2. For the subspaces
B (n€Z+) are chosen the spaces of the polynomials in cos 6 of degree < n.
On account of the inequality (5.5.2) and definition 2.2.4 we know that D(Dy)
is a space of the class Di(X) and thus, by lemma 2.2.5 we have for the space

of best approximation X$ 1 the inclusion
b

2 £ < (D

(1 ) v ( Y)

Furthermore, we show that D(A) is a space of the class DZ(X).'The fact that
(X) follows from definition 2.2.4 and the
(X) by the

D(A) is a space of the class Dg

formulas 4.1.5 and 4.2.2. The space D(A) belongs to the class Dg
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inequality (4.2.8). We are now in a position to apply theorem 2.2.6 to con-

clude that

(Th.3) X4z (KDA)) )y 4o -
Combination of (7.4.2) and (7.4.3) leads to the first inclusion of (7.Lk.1).

This proves the theorem.

Theorem 7.4.1 enables us to characterize in terms of the spaces of K inter-
polation between X and D(A) all the spaces of non-optimal approximation,

that occur in chapter V.
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SAMENVATTING

In dit proefschrift worden sommatiemethoden voor reeksontwikkelingen in
termen van Jacobi polynomen bestudeerd. De Jacobi polynomen Rﬁa’s)(x) vormen
een ruime klasse van orthogonale polynomen, met als belangrijke speciale ge-
vallen Chebyshev polynomen (a=B=-3), Legendre polynomen (a=B=0) en
Gegenbauer of ultraspherische polynomen (a=B), die in het geval o = B = Eéé
spherische harmonischen zijn in R™. Verder kunnen voor een aantal discrete
waarden van o en B de Jacobi polynomen geinterpreteerd worden als spherische
functies op symmetrische ruimten van rang 1 (Gangolli [25]). Wanneer een
functie f formeel wordt ontwikkeld in een Fourier-Jacobi reeks, dan hoeft
deze reeks niet te convergeren, zodat het zinvol is om sommatiemethoden erop
toe te passen. Sommatiemethoden voor de Fourier-Jacobi reeks van een functie
f kunnen worden opgevat als approximatieprocessen voor de functie f. In dit
proefschrift wordt de snelheid onderzocht, waarmee een dergelijk proces de
functie benadert en tevens worden die functies gekarakteriseerd, die met een
voorgeschreven snelheid worden geapproximeerd door het betreffende proces.
Bij vele van deze processen treedt het verschijnsel van saturatie op. Er be-
staat dan een optimale snelheid van benadering, die alleen bij functies be-
horende tot een triviale klasse kan worden overtroffen, terwijl deze snel-
heid bij minstens &&n niet-triviale functie wordt bereikt. Voor de sommatie
methoden die in dit proefschrift voorkomen wordt deze optimale snelheid (sa-
turatieorde) opgespoord en verder wordt de klasse van functies bepaald, die
met deze optimale snelheid kunnen worden benaderd (saturatieklasse).

De laatste tijd hebben zich belangrijke ontwikkelingen voorgedaan, zo-
wel in de theorie van de Jacobi reeksen als in de approximatietheorie. Het
werk van Askey en Wainger leidde o.a. tot de ontwikkeling van convolutie-
algebras voor Jacobi reeksen [5] en hun dualen, Jacobi coefficienten [6].
Gasper [27, 28] bakende in het (a,B8) vlak het gebied af, waar de convolutie-
algebra voor Jacobi reeksen kan worden gedefinieerd en ook bepaalde hij het
gebied, waar de gegeneraliseerde translatieoperator, die gebruikt wordt bij
de definitie van de convolutie, een positieve operator is. Het analoge pro-
bleem voor de duale convolutie werd ook door Gasper opgelost [26, 3]. De
convolutiealgebra voor Jacobi reeksen is een van de belangrijkste hulpmid-
delen in dit proefschrift. Er zal steeds van worden uitgegaan, dat de gege-
neraliseerde translatie een positieve operator is, dat wil zeggen dat o > B
en dat tevens aan een van de volgende voorwaarden moet zijn voldaan:'B z_—%

of a + 8 > 0, B > -1. Dit levert de restricties, die aan a en B in dit
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proefschrift zullen worden opgelegd.

Na in de eerste paragrafen van hoofdstuk I enkele feiten over Jacobi
polynomen en Jacobi reeksen te hebben vermeld, wordt in paragraaf 1.4 de
convolutiestructuur behandeld. In paragraaf 1.5 wordt aandacht geschonken
aan een speciale Jacobi klasse Jacobi reeksen. De hier verkregen resultaten
blijken in de volgende hoofdstukken van groot nut te zijn.

Het begrip saturatie in de approximatietheorie is ingevoerd door Favard
in 1947. Gedurende de volgende jaren is door vele auteurs aan dit onderwerp
gewerkt en werden er algemene methoden ontwikkeld om de saturatieklasse te
bepalen van families van convolutieoperatoren op de reéle as, op de Rn, op
de eenheidscirkel in R2, op de n-dimensionale torus, op de eenheidsbol in
R®, enz. Voor historische details zij verwezen naar [18], paragraaf 12.6. De
van Peetre [39] afkomstige methoden, om intermediaire ruimten tussen twee
Banach ruimten te construeren, vormen een zeer geschikt kader om saturatie-
klassen en klassen van niet-optimale approximatie te karakteriseren. Butzer
en Berens [16] maakten hiervan gebruik bij het bestuderen van halfgroepen
van operatoren op Banach ruimten. Algemene families van operatoren op Banach
ruimten werden met behulp van deze intermediaire ruimten behandeld in Berens
[12], Butzer en Scherer [20, 21]. In concrete gevallen zijn deze algemene
resultaten over approximatieprocessen op Banach ruimten bijzonder nuttig.
7ij geven namelijk aan, welke ongelijkheden of limietrelaties voor de be-
treffende approximatieprocessen voldoende zijn om conclusies te kunnen trek-
ken over hun saturatieorde, saturatieklasse en klassen van niet-optimale ap-
proximatie. De benodigde stellingen over approximatieprocessen op Banach
ruimten staan vermeld in hoofdstuk II. Voor de bewijzen wordt de lezer ver-
wezen naar [12], [16]1, [20], [21] en [111].

In de eerste paragraaf van hoofdstuk III worden kernen en approximatie-
kernen ingevoerd. Wanneer de ruimte X behoort tot een bepaalde klasse func-
tieruimten, die door geschikte normkeuze Banach ruimten gemaskt kunnen wor-
den, dan levert de convolutie van f e X met een approximatiekern een ap-
proximatieproces voor f in de X norm. Vervolgens worden sommatiemethoden
voor Jacobi reeksen gedefinieerd en met iedere sommatiemethode wordt een
kern geassocieerd. Als deze kern een approximatiekern blijkt te zijn, dan
levert de betreffende sommatiemethode, toegepast op de Jacobi reeks van
f € X, een proces dat in de X norm naar f convergeert. Dit is voor veel
klassieke sommatiemethoden het geval.

Het belangrijkste deel van hoofdstuk IV wordt gevormd door stellingen
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van het Jackson en het Bernstein type, waarin de gladheid van de functie in
verband wordt gebracht met de snelheid waarmee een functie met polynomen van
de graad N kan worden benaderd. De gladheid van de functie wordt hier gede-
finieerd door middel van de continuiteitsmodulus ten opzichte van de gegene-
raliseerde translatie. Als de ruimte van continue functies met de supremum-
norm wordt beschouwd, dan blijkt deze continuiteitsmodulus equivalent te
zijn met de gewone symmetrische continuiteitsmodulus.

De auteur behandelt in hoofdstuk V een aantal min of meer klassieke
sommatiemethoden en karakteriseert de functies die een zekere approximatie-
snelheid toelaten door deze processen. De bewijsmethoden zijn ontleend aan
de algemene theorie betreffende approximatieprocessen op Banach ruimten.

Processen die ontstaan door convolutie van f € X met een positieve
kern, vormen het onderwerp van hoofdstuk VI. Wanneer de kern positief wordt
verondersteld kunnen de voorwaarden voor normconvergentie van het proces
aanzienlijk verzwakt worden. Daar staat tegenover, dat de approximatiesnel-
heid van processes met een positieve polynoomkern meestal beperkt is voor
niet-constante functies. In paragraaf 6.3 wordt een saturatiestelling gege-
ven voor processen met positieve kernen, die aan een speciale voorwaarde
voor de Fourier-Jacobi coé&fficiénten voldoen. Met behulp van deze stelling
wordt in paragraaf 6.4 de saturatieorde en de saturatieklasse van een aantal
processen met een positieve kern bepaald.

Tenslotte wordt in hoofdstuk VII een nadere karakterisering gegeven van

zekere functieklassen, die in de voorafgaande hoofdstukken zijn opgetreden.



