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Abstract

We consider the problem of minimizing a given n-variate polynomial f over the hypercube [−1, 1]n.

An idea introduced by Lasserre, is to find a probability distribution on [−1, 1]n with polynomial density

function h (of given degree r) that minimizes the expectation
∫
[−1,1]n

f(x)h(x)dµ(x), where dµ(x) is a

fixed, finite Borel measure supported on [−1, 1]n. It is known that, for the Lebesgue measure dµ(x) = dx,

one may show an error bound O(1/
√
r) if h is a sum-of-squares density, and an O(1/r) error bound if

h is the density of a beta distribution. In this paper, we show an error bound of O(1/r2), if dµ(x) =(∏n
i=1

√
1− x2i

)−1

dx (the well-known measure in the study of orthogonal polynomials), and h has a

Schmüdgen-type representation with respect to [−1, 1]n, which is a more general condition than a sum

of squares. The convergence rate analysis relies on the theory of polynomial kernels, and in particular

on Jackson kernels. We also show that the resulting upper bounds may be computed as generalized

eigenvalue problems, as is also the case for sum-of-squares densities.

Keywords: box-constrained global optimization, polynomial optimization, Jackson kernel, semidefinite

programming, generalized eigenvalue problem, sum-of-squares polynomial
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1 Introduction

1.1 Background results

We consider the problem of minimizing a given n-variate polynomial f ∈ R[x] over the compact set K =

[−1, 1]n, i.e., computing the parameter

fmin = min
x∈K

f(x). (1.1)

This is a hard optimization problem which contains, e.g., the well known NP-hard maximum stable set and

maximum cut problems in graphs (see, e.g., [15, 16]). It falls within box-constrained (aka bound-constrained)

optimization which has been widely studied in the literature. In particular iterative methods for bound-

constrained optimization are described in the books [1, 5, 6], including projected gradient and active set

methods. The latest algorithmic developments for box-constrained global optimization are surveyed in the

recent thesis [14]; see also [7] and the references therein for recent work on active set methods, and a list

of applications. The box-constrained optimization problem is even of practical interest in the (polynomially

solvable) case where f is a convex quadratic problem, and dedicated active set methods have been developed

for this case; see [8].

In this paper we will focus on the question of finding a sequence of upper bounds converging to the global

minimum and allowing a known estimate on the rate of convergence. It should be emphasized that it is in

general a difficult challenge in non-convex optimization to obtain such results. Following Lasserre [9, 10],

our approach will be based on reformulating problem (1.1) as an optimization problem over measures and

then restricting to subclasses of measures that we are able to analyze. Sequences of upper bounds have been

recently proposed and analyzed in [4, 3], in the present paper we will propose new bounds for which we can

prove a sharper rate of convergence. We now introduce our approach.

As observed by Lasserre [9], problem (1.1) can be reformulated as

fmin = min
µ∈M(K)

∫
K

f(x)dµ(x),

where M(K) denotes the set of probability measures supported on K. Hence an upper bound on fmin may

be obtained by considering a fixed probability measure µ on K. In particular, the optimal value fmin is

obtained when selecting for µ the Dirac measure at a global minimizer x∗ of f in K.

Lasserre [10] proposed the following strategy to build a hierarchy of upper bounds converging to fmin.

The idea is to do successive approximations of the Dirac measure at x∗ by using sum-of-squares (SOS)

density functions of growing degrees. More precisely, Lasserre [10] considered a set of Borel measures µr

obtained by selecting a fixed, finite Borel measure µ on K (like, e.g., the Lebesgue measure) together with

a polynomial density function that is a sum-of-squares (SOS) polynomial of given degree r.

When selecting for µ the Lebesque measure on K this leads to the following hierarchy of upper bounds

on fmin, indexed by r ∈ N:

f (r)

K
:= inf

h∈Σ[x]r

∫
K

h(x)f(x)dx s.t.

∫
K

h(x)dx = 1, (1.2)

where Σ[x]r denotes the set of sum-of-squares polynomials of degree at most r.

The convergence to fmin of the bounds f (r)

K
is an immediate consequence of the following theorem, which

holds for general compact sets K and continuous functions f .



Improved convergence rates for Lasserre-type hierarchies 3

Theorem 1.1 [10, cf. Theorem 3.2] Let K ⊆ Rn be compact, let µ be an arbitrary finite Borel measure

supported by K, and let f be a continuous function on Rn. Then, f is nonnegative on K if and only if∫
K

fg2dµ ≥ 0 ∀g ∈ R[x].

Therefore, the minimum of f over K can be expressed as

fmin = inf
h∈Σ[x]

∫
K

fhdµ s.t.

∫
K

hdµ = 1. (1.3)

In the recent work [3], it is shown that for a compact set K ⊆ [0, 1]n one may obtain a similar result

using density functions arising from (products of univariate) beta distributions. In particular, the following

theorem is implicit in [3].

Theorem 1.2 [3] Let K ⊆ [0, 1]n be a compact set, let µ be an arbitrary finite Borel measure supported by

K, and let f be a continuous function on Rn. Then, f is nonnegative on K if and only if∫
K

fhdµ ≥ 0

for all h of the form

h(x) =

∏n
i=1 x

βi

i (1− xi)ηi∫
K

∏n
i=1 x

βi

i (1− xi)ηi
, (1.4)

where the β′is and η′is are nonnegative integers. Therefore, the minimum of f over K can be expressed as

fmin = inf
h

∫
K

fhdµ s.t.

∫
K

hdµ = 1, (1.5)

where the infimum is taken over all beta-densities h of the form (1.4).

For the box K = [0, 1]n and selecting for µ the Lebesgue measure, we obtain a hierarchy of upper bounds

fHr converging to fmin, where fHr is the optimum value of the program (1.5) when the infimum is taken over

all beta-densities h of the form (1.4) with degree r.

The rate of convergence of the upper bounds f (r)

K
and fHr has been investigated recently in [4] and [3],

respectively. It is shown in [4] that f (r)

K
− fmin = O(1/

√
r) for a large class of compact sets K (including

all convex bodies and thus the box [0, 1]n or [−1, 1]n) and the stronger rate fHr − fmin = O(1/r) is shown

in [3] for the box K = [0, 1]n. While the parameters f (r)

K
can be computed using semidefinite optimization

(in fact, a generalized eigenvalue computation problem, see [10]), an advantage of the parameters fHr is that

their computation involves only elementary operations (see [3]).

Another possibility to get a hierarchy of upper bounds is grid search, where one takes the best function

evaluation at all rational points in K = [0, 1]n with given denominator r. It has been shown in [3] that these

bounds have a rate of convergence in O(1/r2). However, the computation of the order r bound needs an

exponential number rn of function evaluations.

1.2 New contribution

In the present work we continue this line of research. For the box K = [−1, 1]n, our objective is to build a new

hierarchy of measure-based upper bounds, for which we will be able to show a sharper rate of convergence in
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O(1/r2). We obtain these upper bounds by considering a specific Borel measure µ (specified below in (1.7))

and polynomial density functions with a so-called Schmüdgen-type SOS representation (as in (1.6) below).

We first recall the relevant result of Schmüdgen [19], which gives SOS representations for positive poly-

nomials on a basic closed semi-algebraic set (see also, e.g., [17],[11, Theorem 3.16], [13]).

Theorem 1.3 (Schmüdgen [19]) Consider the set K = {x ∈ Rn | g1(x) ≥ 0, . . . , gm(x) ≥ 0} where

g1, . . . , gm ∈ R[x], and assume that K is compact. If p ∈ R[x] is positive on K, then p can be written as

p =
∑
I⊆[m] σI

∏
i∈I gi, where σI (I ⊆ [m]) are sum-of-squares polynomials.

For the box K = [−1, 1]n, described by the polynomial inequalities 1−x2
1 ≥ 0, . . . , 1−x2

n ≥ 0, we consider

polynomial densities that allow a Schmüdgen-type representation of bounded degree r:

h(x) =
∑
I⊆[n]

σI(x)
∏
i∈I

(1− x2
i ), (1.6)

where the polynomials σI are sum-of-squares polynomials with degree at most r − 2|I| (to ensure that the

degree of h is at most r). We will also fix the following Borel measure µ on [−1, 1]n (which, as will be recalled

below, is associated to some orthogonal polynomials):

dµ(x) =

(
n∏
i=1

π
√

1− x2
i

)−1

dx. (1.7)

This leads to the following new hierarchy of upper bounds f (r) for fmin.

Definition 1.4 Let µ be the Borel measure from (1.7). For r ∈ N consider the parameters:

f (r) := inf
h

∫
[−1,1]n

fhdµ s.t.

∫
[−1,1]n

hdµ = 1, (1.8)

where the infimum is taken over the polynomial densities h that allow a Schmüdgen-type representation (1.6),

where each σI is a sum-of-squares polynomial with degree at most r − 2|I|.

The convergence of the parameters f (r) to fmin follows as a direct application of Theorem 1.1. A main

result in this paper is to show that the bounds f (r) have a rate of convergence in O(1/r2). Moreover we will

show that the parameter f (r) can be computed through generalized eigenvalue computations.

Theorem 1.5 Let f ∈ R[x] be a polynomial and fmin be its minimum value over the box [−1, 1]n. For any

r large enough, the parameters f (r) defined in (1.8) satisfy:

f (r) − fmin = O

(
1

r2

)
.

As already observed above this result compares favorably with the estimate: f (r)

K
−fmin = O

(
1√
r

)
shown

in [4] for the bounds f
(r)
K based on using SOS densities. (Note however that the latter convergence rate holds

for a larger class of sets K that includes all convex bodies; see [4] for details.) The new result also improves

the estimate: fHr − fmin = O
(

1
r

)
, shown in [3] for the bounds fHr obtained by using densities arising from

beta distributions.

We now illustrate the optimal densities appearing in the new bounds f (r) on an example.
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Example 1.6 Consider the minimization of the Motzkin polynomial

f(x1, x2) = 64(x4
1x

2
2 + x2

1x
4
2)− 48x2

1x
2
2 + 1

over the hypercube [−1, 1]2, which has four global minimizers at the points
(
± 1

2 ,±
1
2

)
, and fmin = 0. Figure

1 shows the optimal density function h∗ computed when solving the problem (1.8) for degrees 12 and 16,

respectively. Note that the optimal density h∗ shows four peaks at the four global minimizers of f in [−1, 1]2.

The corresponding upper bounds from (1.8) are f (12) = 0.8098 and f (16) = 0.6949.
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Figure 1: Graphs of h∗ on [−1, 1]2 (deg(h∗) = 12, 16) for the Motzkin polynomial.

Strategy and outline of the paper

In order to show the convergence rate in O(1/r2) of Theorem 1.5 we need to exhibit a polynomial density

function hr of degree at most r which admits a SOS representation of Schmüdgen-type and for which we

are able to show that
∫

[−1,1]n
fhdµ − fmin = O(1/r2). The idea is to find such a polynomial density which

approximates well the Dirac delta function at a global minimizer x∗ of f over [−1, 1]n. For this we will use

the well established Polynomial Kernel Method (KPM) and more specifically we will use the Jackson kernel,

a well known tool in approximation theory to yield best (uniform) polynomial approximations of continuous

functions.

The paper is organized as follows. Section 2 contains some background information about the polynomial

kernel method needed for our analysis of the new bounds f (r). Specifically we introduce Chebyshev poly-

nomials in Section 2.1 and Jackson kernels in Section 2.2, and then we use them in Section 2.3 to construct

suitable polynomial densities hr giving good approximations of the Dirac delta function at a global minimizer

of f in the box. We then carry out the analysis of the upper bounds on fmin in Section 3.1 for the univariate

case and in Section 3.2 for the general multivariate case, thus proving the result of Theorem 1.5. In Section

4 we show how the new bounds f (r) can be computed as generalized eigenvalue problems and in Section 5

we conclude with some numerical examples illustrating the behaviour of the bounds f (r).
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Notation

Throughout, Σ[x] denotes the set of all sum-of-squares (SOS) polynomials (i.e., all polynomials h of the form

h =
∑k
i=1 pi(x)2 for some polynomials p1, . . . , pk and k ∈ N) and Σ[x]r denotes the set of SOS polynomials of

degree at most r (of the form h =
∑k
i=1 pi(x)2 for some polynomials pi of degree at most r/2). For α ∈ Nn,

Supp(α) = {i ∈ [n] : αi 6= 0} denotes the support of α and, for α, β ∈ Nn, δα,β ∈ {0, 1} is equal to 1 if and

only if α = β.

2 Background on the polynomial kernel method

Our goal is to approximate the Dirac delta function at a given point x∗ ∈ Rn as well as possible using

polynomial density functions of bounded degrees. This is a classical question in approximation theory. In

this section we will review how this may be done using the polynomial kernel method and, in particular,

using Jackson kernels. This theory is usually developed using the Chebyshev polynomials, and we start

by reviewing their properties. We will follow mainly the work [20] for our exposition and we refer to the

handbook [2] for more background information.

2.1 Chebyshev polynomials

We will use the univariate polynomials Tk(x) and Uk(x), respectively known as the Chebyshev polynomials

of the first and second kind. They are defined as follows:

Tk(x) = cos(k arccos(x)), Uk(x) =
sin((k + 1) arccos(x))

sin(arccos(x))
for x ∈ [−1, 1], k ∈ N, (2.1)

and they satisfy the following recurrence relationships:

T0(x) = 1, T−1(x) = T1(x) = x, Tk+1(x) = 2xTk(x)− Tk−1(x), (2.2)

U0(x) = 1, U−1(x) = 0, Uk+1(x) = 2xUk(x)− Uk−1(x). (2.3)

As a direct application one can verify that

Tk(0) =

0 for k odd

(−1)
k
2 for k even

, Tk(1) = 1, Uk(1) = k + 1, Uk(−1) = (−1)k(k + 1) for k ∈ N. (2.4)

The Chebyshev polynomials have the extrema

max
x∈[−1,1]

|Tk(x)| = 1 and max
x∈[−1,1]

|Uk(x)| = k + 1,

attained at x = ±1 (see, e.g., [2, §22.14.4, 22.14.6]).

The Chebyshev polynomials are orthogonal for the following inner product on the space of integrable

functions over [−1, 1]:

〈f, g〉 =

∫ 1

−1

f(x)g(x)

π
√

1− x2
dx, (2.5)

and their orthogonality relationships read:

〈Tk, Tm〉 = 0 if k 6= m, 〈T0, T0〉 = 1, 〈Tk, Tk〉 = 1
2 if k ≥ 1. (2.6)
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For any r ∈ N the Chebyshev polynomials Tk (k ≤ r) form a basis of the space of univariate polynomials

with degree at most r. One may write the Chebyshev polynomials in the standard monomial basis using the

relations:

Tk(x) =

k∑
i=0

t
(k)
i xi =

k

2

b k2 c∑
m=0

(−1)m
(k −m− 1)!

m!(k − 2m)!
(2x)k−2m, k > 0

Uk−1(x) =

k−1∑
i=0

u
(k)
i xi =

b k−1
2 c∑

m=0

(−1)m
(k −m− 1)!

m!(k − 1− 2m)!
(2x)k−1−2m, k > 1.

See, e.g. [2, Chap. 22]. From this, one may derive a bound on the largest coefficient in absolute value

appearing in the above expansions of Tk(x) and Uk−1(x). A proof for the following result will be given in

the Appendix.

Lemma 2.1 For any fixed integer k > 1, one has:

max
0≤i≤k−1

|u(k)
i | ≤ max

0≤i≤k
|t(k)
i | = 2k−1−2ψ(k) k(k − ψ(k)− 1)!

ψ(k)!(k − 2ψ(k))!
(2.7)

where ψ(k) = 0 for k ≤ 4 and ψ(k) =
⌈

1
8

(
4k − 5−

√
8k2 − 7

)⌉
for k ≥ 4. Moreover, the right hand side of

(2.7) increases monotonically with increasing k.

In the multivariate case we use the following notation. We let dµ(x) denote the Lebesgue measure on [−1, 1]n

with the function
∏n
i=1

(
π
√

1− x2
i

)−1

as density function:

dµ(x) =

n∏
i=1

(
π
√

1− x2
i

)−1

dx (2.8)

and we consider the following inner product for two integrable functions f, g on the box [−1, 1]n:

〈f, g〉 =

∫
[−1,1]n

f(x)g(x)dµ(x)

(which coincides with (2.5) in the univariate case n = 1). For α ∈ Nn, we define the multivariate Chebyshev

polynomial

Tα(x) =

n∏
i=1

Tαi
(xi) for x ∈ Rn.

The multivariate Chebyshev polynomials satisfy the following orthogonality relationships:

〈Tα, Tβ〉 =

(
1

2

)|Supp(α)|

δα,β (2.9)

and, for any r ∈ N, the set of Chebyshev polynomials {Tα(x) : |α| ≤ r} is a basis of the space of n-variate

polynomials of degree at most r.

2.2 Jackson kernels

A classical problem in approximation theory is to find a best (uniform) approximation of a given continuous

function f : [−1, 1]→ R by a polynomial of given maximum degree r. Following [20], a possible approach is
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to take the convolution f
(r)
KPM of f with a kernel function of the form

Kr(x, y) =
1

π
√

1− x2π
√

1− y2

(
gr0T0(x)T0(y) + 2

r∑
k=1

grkTk(x)Tk(y)

)
,

where r ∈ N and the coefficients grk are selected so that the following properties hold:

(1) The kernel is positive: Kr(x, y) > 0 for all x, y ∈ [−1, 1].

(2) The kernel is normalized: gr0 = 1.

(3) The second coefficients gr1 tend to 1 as r →∞.

The function f
(r)
KPM is then defined by

f
(r)
KPM(x) =

∫ 1

−1

π
√

1− y2Kr(x, y)f(y)dy. (2.10)

As the first coefficient is gr0 = 1, the kernel is normalized:
∫ 1

−1
Kr(x, y)dy = T0(x)/π

√
1− x2, and we have:∫ 1

−1
f

(r)
KPM(x)dx =

∫ 1

−1
f(x)dx. The positivity of the kernel Kr implies that the integral operator f 7→ f

(r)
KPM

is a positive linear operator, i.e., a linear operator that maps the set of nonnegative integrable functions on

[−1, 1] into itself. Thus the general (Korovkin) convergence theory of positive linear operators applies and

one may conclude the uniform convergence result

lim
r→∞

‖f − f (r)
KPM‖

ε
∞ = 0

for any ε > 0, where ‖f−f (r)
KPM‖ε∞ = max−1+ε≤x≤1−ε |f(x)−f (r)

KPM(x)|. (One needs to restrict to subintervals

of [−1, 1] because of the denominator in the kernel Kr.)

In what follows we select the following parameters grk for k = 1, . . . , r, which define the so-called Jackson

kernel, again denoted by Kr(x, y):

grk = 1
r+2 ((r + 2− k) cos(kθr) + sin(kθr)

sin θr
cos θr)

= 1
r+2 ((r + 2− k)Tk(cos θr) + Uk−1(cos θr) cos θr),

(2.11)

where we set

θr :=
π

r + 2
.

This choice of the parameters grk is the one minimizing the quantity
∫

[−1,1]2
Kr(x, y)(x − y)2dxdy, which

ensures that the corresponding Jackson kernel is maximally peaked at x = y (see [20, §II.C.3]).

One may show that the Jackson kernel Kr(x, y) is indeed positive on [−1, 1]2; see [20, §II.C.2]. Moreover

gr0 = 1 and, for k = 1, we have gr1 = cos(θr) = cos(π/(r + 2))→ 1 if r →∞ as required. This is in fact true

for all k, as will follow from Lemma 2.2 below. Note that one has |grk| ≤ 1 for all k, since |Tk(cos θr)| ≤ 1

and |Uk−1(cos θr)| ≤ k. For later use, we now give an estimate on the Jackson coefficients grk, showing that

1− grk is in the order O(1/r2).

Lemma 2.2 Let d ≥ 1 and r ≥ d be given integers, and set θr = π
r+2 . There exists a constant Cd (depending

only on d) such that the following inequalities hold:

|1− grk| ≤ Cd(1− cos θr) ≤
Cdπ

2

2(r + 2)2
for all 0 ≤ k ≤ d.
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For the constant Cd we may take: Cd = d2(1 + 2cd), where

cd = 2d−1−2ψ(d) d(d− ψ(d)− 1)!

ψ(d)!(d− 2ψ(d))!
and ψ(d) =

0 for d ≤ 4⌈
1
8

(
4d− 5−

√
8d2 − 7

)⌉
for d ≥ 4.

(2.12)

Proof. Define the polynomial

Pk(x) = 1− r + 2− k
r + 2

Tk(x)− 1

r + 2
xUk−1(x),

with degree k. Then, in view of relation (2.11), we have: 1− grk = Pk(cos θr). Recall from relation (2.4) that

Tk(1) = 1 and Uk−1(1) = k for any k ∈ N. This implies that Pk(1) = 0 and thus we can factor Pk(x) as

Pk(x) = (1− x)Qk(x) for some polynomial Qk(x) with degree k − 1. If we write Pk(x) =
∑k
i=0 pix

i, then it

follows that Qk(x) =
∑k−1
i=0 qix

i, where the scalars qi are given by

qi =

i∑
j=0

pj for i = 0, 1, . . . , k − 1. (2.13)

It now suffices to observe that for any 0 ≤ i ≤ k and k ≤ d, the pi’s are bounded by a constant depending

only on d, which will imply that the same holds for the scalars qi. For this, set Tk(x) =
∑k
i=0 t

(k)
i xi and

Uk−1(x) =
∑k−1
i=0 u

(k)
i xi. Then the coefficients pi of Pk(x) can be expressed as

p0 = 1− r + 2− k
r + 2

t
(k)
0 , pi =

r + 2− k
r + 2

t
(k)
i −

u
(k)
i−1

r + 2
(1 ≤ i ≤ k).

For all 0 ≤ k ≤ d the coefficients of the Chebyshev polynomials Tk, Uk−1 can be bounded by an absolute

constant depending only on d. Namely, by Lemma 2.1, |t(k)
i |, |u

(k)
i | ≤ cd for all 0 ≤ i ≤ k and k ≤ d,

where cd is as defined in (2.12). As k ≤ d ≤ r, we have r + 2 − k ≤ r + 2 and thus |pi| ≤ 1 + 2cd

for all 0 ≤ i ≤ k ≤ d. Moreover, using (2.13), |qi| ≤ d(cd + 1) for all 0 ≤ i ≤ k − 1. Putting things

together we can now derive: 1 − grk = (1 − cos θr)Qk(cos θr), where Qk(cos θr) =
∑k−1
i=0 qi(cos θr)

i, so that

|Qk(cos θr)| ≤
∑k−1
i=0 |qi| ≤ d2(1 + 2cd). This implies |1− grk| ≤ (1− cos θr)Cd, after setting Cd = d2(1 + 2cd).

Finally, combining with the fact that 1− cosx ≤ x2

2 for all x ∈ [0, π], we obtain the desired inequality from

the lemma statement. 2

2.3 Jackson kernel approximation of the Dirac delta function

If one approximates the Dirac delta function δx∗ at a given point x∗ ∈ [−1, 1] by taking its convolution with

the Jackson kernel Kr(x, y), then the result is the function:

δ
(r)
KPM(x− x∗) =

1

π
√

1− x2

(
1 + 2

r∑
k=1

grkTk(x)Tk(x∗)

)
.

See [20, eq. (72)]. As mentioned in [20, eq. (75)–(76)], the function δ
(r)
KPM is in fact a good approximation

to the Gaussian density:

δ
(r)
KPM(x− x∗) ≈ 1√

2πσ2
exp

(
− (x− x∗)2

2σ2

)
with σ2 ≈

(
π

r + 1

)2 [
1− x∗2 +

3x∗2 − 2

r + 1

]
. (2.14)
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Figure 2: The Jackson kernel approximation δ
(r)
KPM to the Dirac delta at x∗ = 0 for r = 8, 16, 32, 64. The

corresponding scatterplots show the values of the Gaussian density function in (2.14) with x∗ = 0.

(Recall that the Dirac delta measure may be defined as a limit of the Gaussian measure when σ ↓ 0.) This

approximation is illustrated in Figure 2 for several values of r.

By construction, the function δ
(r)
KPM(x − x∗) is nonnegative over [−1, 1] and we have the normalization:∫ 1

−1
δ

(r)
KPM(x − x∗)dx =

∫ 1

−1
δx∗(x)dx = 1. Hence, it is a probability density function on [−1, 1] for the

Lebesgue measure. It is convenient to consider the following univariate polynomial:

hr(x) = 1 + 2

r∑
k=1

grkTk(x)Tk(x∗), (2.15)

so that δ
(r)
KPM(x − x∗) = 1

π
√

1−x2
hr(x). The following facts follow directly, which we will use below for the

convergence analysis of the new bounds f (r).

Lemma 2.3 For any r ∈ N the polynomial hr from (2.15) is nonnegative over [−1, 1] and∫ 1

−1
hr(x) dx

π
√

1−x2
= 1. In other words, hr is a probability density function for the measure

(
π
√

1− x2
)−1

dx

on [−1, 1].
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3 Convergence analysis

In this section we analyze the convergence rate of the new bounds f (r) and we show the result from Theorem

1.5. We will first consider the univariate case in Section 3.1 (see Theorem 3.3) and then the general multi-

variate case in Section 3.2 (see Theorem 3.6). As we will see, the polynomial hr arising from the Jackson

kernel approximation of the Dirac delta function, introduced above in relation (2.15), will play a key role in

the convergence analysis.

3.1 The univariate case

We consider a univariate polynomial f and let x∗ be a global minimizer of f in [−1, 1]. As observed in

Lemma 2.3 the polynomial hr from (2.15) is a density function for the measure dx
π
√

1−x2
. The key observation

now is that the polynomial hr admits a Schmüdgen-type representation, of the form σ(x)+σ1(x)(1−x2) with

σ0, σ1 sums-of-squares polynomials, since it is non-negative over [−1, 1]. This fact will allow us to use the

polynomial hr to get feasible solutions for the program defining the bound f (r). It follows from the following

classical result (see e.g. [11, Thm 3.23 (i)]), that characterizes univariate polynomials that are nonnegative

on [−1, 1]. (Note that this is a strengthening of Schmüdgen’s theorem (Theorem 1.3) in the univariate case.)

Theorem 3.1 (Fekete, Markov-Lukàcz) Let p(x) be a univariate polynomial of degree m. Then p(x) is

nonnegative on the interval [−1, 1] if and only if it has the following representation:

p(x) = σ0(x) + (1− x2)σ1(x)

for some sum-of-squares polynomials σ0 of degree 2dm/2e and σ1 of degree 2dm/2e − 2.

We start with the following technical lemma.

Lemma 3.2 Let f be a polynomial of degree d written in the Chebyshev basis as f =
∑d
k=0 fkTk, let x∗ be

a global minimizer of f in [−1, 1] and let hr be the polynomial from (2.15). For any integer r ≥ d we have:∫ 1

−1

f(x)hr(x)
dx

π
√

1− x2
− f(x∗) ≤ Cf

(r + 2)2
,

where Cf = (
∑d
k=1 |fk|)

Cdπ
2

2 and Cd is the constant from Lemma 2.2.

Proof. As f =
∑d
k=0 fkTk and hr = 1 + 2

∑r
k=1 g

r
kTk(x∗)Tk, we use the orthogonality relationships (2.6)

to obtain: ∫ 1

−1

f(x)hr(x)
dx

π
√

1− x2
=

d∑
k=0

fkTi(x
∗)grk. (3.1)

Combining with f(x∗) =
∑d
k=0 fkTk(x∗) gives:

∫ 1

−1

f(x)hr(x)
dx

π
√

1− x2
− f(x∗) =

d∑
k=1

fkTk(x∗)(grk − 1). (3.2)
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Now we use the upper bound on grk − 1 from Lemma 2.2 and the bound |Tk(x∗)| ≤ 1 to conclude the proof.

2

We can now conclude the convergence analysis of the bounds f (r) in the univariate case.

Theorem 3.3 Let f =
∑d
k=0 fkTk be a polynomial of degree d. For any integer r ≥ d we have:

f (r) − fmin ≤
Cf

(r + 1)2
,

where Cf = (
∑d
k=1 |fk|)

Cdπ
2

2 and Cd is the constant from Lemma 2.2.

Proof. Using the degree bounds in Theorem 3.1 for the sum-of-squares polynomials entering the decom-

position of the polynomial hr, we can conclude that for r even, hr is feasible for the program defining

the parameter f (r) and for r odd, hr is feasible for the program defining the parameter f (r+1). Set-

ting Cf = (
∑d
k=1 |fk|)

Cdπ
2

2 and using Lemma 3.2, this implies: f (r) − fmin ≤ Cf

(r+2)2 for r even, and

f (r) − fmin ≤ Cf

(r+1)2 for odd r. The result of the theorem now follows. 2

3.2 The multivariate case

We consider now a multivariate polynomial f and we let x∗ = (x∗1, . . . , x
∗
n) ∈ [−1, 1]n denote a global

minimizer of f on [−1, 1]n, i.e. f(x∗) = fmin.

In order to obtain a feasible solution to the program defining the parameter f (r) we will consider products

of the univariate polynomials hr from (2.15). Namely, given integers r1, . . . , rn ∈ N we define the n-tuple

r = (r1, . . . , rn) and the n-variate polynomial:

Hr(x1, . . . , xn) =
n∏
i=1

hri(xi). (3.3)

We group in the next lemma some properties of the polynomial Hr.

Lemma 3.4 The polynomial Hr satisfies the following properties:

(i) Hr is non-negative on [−1, 1]n.

(ii)
∫

[−1,1]n
Hr(x)dµ(x) = 1, where dµ is the measure from (1.7).

(iii) Hr has a Schmüdgen-type representation of the form: Hr(x) =
∑
I⊆[n] σI(x)

∏
i∈I(1− x2

i ), where each

σI is a sum-of-squares polynomial of degree at most 2
∑n
i=1dri/2e − 2|I|.

Proof. (i) and (ii) follow directly from the corresponding properties of the univariate polynomials hri , and
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(iii) follows using Theorem 3.1 applied to the polynomials hri . 2

The next lemma is the analog of Lemma 3.2 for the multivariate case.

Lemma 3.5 Let f be a multivariate polynomial of degree d, written in the basis of multivariate Chebyshev

polynomials as f =
∑
α∈Nn:|α|≤d fαTα, and let x∗ be a global minimizer of f in [−1, 1]n. Consider r =

(r1, . . . , rn), where each ri is an integer satisfying ri ≥ d, and the polynomial Hr from (3.3). We have:∫
[−1,1]n

f(x)Hr(x)dµ(x)− f(x∗) ≤ Cf
n∑
i=1

1

(ri + 2)2
,

where Cf = (
∑
α:|α|≤d |fα|)

Cdπ
2

2 and Cd is the constant from Lemma 2.2.

Proof. As f =
∑
α:|α|≤d fαTα and Hr =

∏n
i=1 h

(ri)(xi) =
∏n
i=1(1 + 2

∑ri
ki=1 g

ri
ki
Tki(xi)), we can use the

orthogonality relationships (2.9) among the multivariate Chebyshev polynomials to derive:∫
[−1,1]n

f(x)Hr(x)dµ(x) =
∑

α:|α|≤d

fαTα(x∗)

n∏
i=1

griαi
.

Combining with f(x∗) =
∑
α:|α|≤d fαTα(x∗) this gives:∫

[−1,1]n
f(x)Hr(x)dµ(x)− f(x∗) =

∑
α:|α|≤d

fαTα(x∗)(

n∏
i=1

griαi
− 1).

Using the identity:
∏n
i=1(griαi

− 1) =
∑n
j=1(g

rj
αj − 1)

∏n
k=j+1 g

rk
αk

and the fact that |grkαk
| ≤ 1, we get:

|
∏n
i=1(griαi

− 1)| ≤
∑n
j=1 |g

rj
αj − 1|. Now use |Tα(x∗)| ≤ 1 and the bound from Lemma 2.2 for each |1− grjαj |

to conclude the proof. 2

We can now show our main result, which implies Theorem 1.5.

Theorem 3.6 Let f =
∑
α:|α|≤d fαTα be a n-variate polynomial of degree d. For any integer r ≥ n(d+ 2),

we have:

f (r) − fmin ≤
Cfn

3

(r + 1)2
,

where Cf = (
∑
α:|α|≤d |fα|)

Cdπ
2

2 and Cd is the constant from Lemma 2.2.

Proof. Write r − n = sn + n0, where s, n0 ∈ N and 0 ≤ n0 < n, and define the n-tuple r = (r1, . . . , rn),

setting ri = s + 1 for 1 ≤ i ≤ n0 and ri = s for n0 + 1 ≤ i ≤ n, so that r − n = r1 + . . . + rn. Note that

the condition r ≥ n(d + 2) implies s ≥ d and thus ri ≥ d for all i. Moreover, we have: 2
∑n
i=1dri/2e =

2n0d(s + 1)/2e + 2(n − n0)ds/2e, which is equal to r − n + n0 for even s and to r − n0 for odd s and thus

always at most r. Hence the polynomial Hr from (3.3) has degree at most r. By Lemma 3.4 (ii),(iii), it
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follows that the polynomial Hr is feasible for the program defining the parameter f (r). By Lemma 3.5 this

implies that

f (r) − fmin ≤
∫

[−1,1]n
f(x)Hr(x)dµ(x)− f(x∗) ≤ Cf

n∑
i=1

1

(ri + 2)2
.

Finally,
∑n
i=1

1
(ri+2)2 = n0

(s+3)2 + n−n0

(s+2)2 ≤
n

(s+2)2 = n3

(r+n−n0)2 ≤
n3

(r+1)2 , since n0 ≤ n− 1. 2

4 Computing the parameter f (r) as a generalized eigenvalue prob-

lem

As the parameter f (r) is defined in terms of sum-of-squares polynomials (cf. Definition 1.4), it can be

computed by means of a semidefinite program. As we now observe, as the program (1.8) has only one affine

constraint, f (r) can in fact be computed in a cheaper way as a generalized eigenvalue problem.

Using the inner product from (2.5), the parameter f (r) can be rewritten as

f (r) = min
h∈R[x]

〈f, h〉 such that 〈h, T0〉 = 1, h(x) =
∑
I⊆[n] σI(x)

∏
i∈I(1− x2

i ),

σI ∈ Σ[x], deg(σI) ≤ r − 2|I| ∀I ⊆ [n].
(4.1)

For convenience we use below the following notation. For a set I ⊆ [n] and an integer r ∈ N we let ΛIr
denote the set of sequences β ∈ Nn with |β| ≤ b r−2|I|

2 c. As is well known one can express the condition

that σI is a sum-of-squares polynomial, i.e., of the form
∑
k pk(x)2 for some pk ∈ R[x], as a semidefinite

program. More precisely, using the Chebyshev basis to express the polynomials pk, we obtain that σI is a

sum-of-squares polynomial if and only if there exists a matrix variable M I indexed by ΛIr , which is positive

semidefinite and satisfies:

σI =
∑

β,γ∈ΛI
r

M I
β,γTβTγ . (4.2)

For each I ⊆ [n], we introduce the following matrices AI and BI , which are also indexed by the set ΛIr and,

for β, γ ∈ ΛIr , with entries:

AIβ,γ = 〈f, TβTγ
∏
i∈I

(1− x2
i )〉,

BIβ,γ = 〈T0, TβTγ
∏
i∈I

(1− x2
i )〉.

(4.3)

We will indicate in the Appendix how to compute the matrices AI and BI .

We can now reformulate the parameter f (r) as follows.

Lemma 4.1 Let AI and BI be the matrices defined as in (4.3) for each I ⊆ [n]. Then the parameter f (r)

can be reformulated using the following semidefinite program in the matrix variables M I (I ⊆ [n]):

f (r) = min
MI :I⊆[n]

∑
I⊆[n]

Tr (AIM I) such that M I � 0 ∀I ⊆ [n],
∑
I⊆[n]

Tr (BIM I) = 1. (4.4)

Proof. Using relation (4.2) we can express the polynomial variable h in (4.1) in terms of the matrix
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variables M I and obtain:

h =
∑
I⊆[n]

∑
β,γ∈ΛI

r

M I
β,γTβTγ

∏
i∈I

(1− xi)2.

First this permits to reformulate the objective function 〈f, h〉 in terms of the matrix variables M I in the

following way:

〈f, h〉 =
∑
I

∑
β,γM

I
β,γ〈f, TβTγ

∏
i∈I(1− x2

i )〉
=
∑
I

∑
β,γM

I
β,γA

I
β,γ

=
∑
I Tr (AIM I).

Second we can reformulate the constraint 〈T0, h〉 = 1 using:

〈T0, h〉 =
∑
I

∑
β,γM

I
β,γ〈T0, TβTγ

∏
i∈I(1− x2

i )〉
=
∑
I

∑
β,γM

I
β,γB

I
β,γ

=
∑
I Tr (BIM I).

From this follows that the program (4.1) is indeed equivalent to the program (4.4). 2

The program (4.4) is a semidefinite program with only one constraint. Hence, as we show next, it is

equivalent to a generalized eigenvalue problem.

Theorem 4.2 For I ⊆ [n] let AI and BI be the matrices from (4.3) and define the parameter:

λ(I) = max
{
λ | AI − λBI � 0

}
= min

{
λ | AIx = λBIx for some non-zero vector x

}
.

One then has f (r) = minI⊆[n] λ
(I).

Proof. The dual semidefinite program of the program (4.4) is given by:

sup
{
λ | AI − λBI � 0 ∀I ⊆ [n]

}
. (4.5)

We first show that the primal problem (4.4) is strictly feasible. To see this it suffices to show that Tr (BI) > 0,

since then one may set MI equal to a suitable multiple of the identity matrix and thus one gets a strictly

feasible solution to (4.4). Indeed, the matrix BI is positive semidefinite since, for any scalars gβ ,∑
β,γ

gβgγB
I
βγ =

∫
[−1,1]n

(
∑
β

gβx
β)2
∏
i∈I

(1− x2
i )dµ(x) ≥ 0.

Thus Tr (BI) ≥ 0 and moreover Tr (BI) > 0 since BI is nonzero.

Moreover, the dual problem (4.5) is also feasible, since λ = fmin is a feasible solution. This follows from

the fact that the polynomial f−fmin is nonnegative over [−1, 1]n, which implies that the matrix AI−fminB
I

is positive semidefinite. Indeed, using the same argument as above for showing that BI � 0, we have∑
β,γ

gβgγ(AI − fminB
I)β,γ =

∫
[−1,1]n

(f(x)− fmin)g(x)2dµ(x) ≥ 0.

Since the primal problem is strictly feasible and the dual problem is feasible, there is no duality gap and the

dual problem attains its supremum. The result follows. 2
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5 Numerical examples

We examine the polynomial test functions which were also used in [4] and [3], and are described in the

appendix to this paper.

The numerical examples given here only serve to illustrate the observed convergence behavior of the

sequence f (r) as compared to the theoretical convergence rate. In particular, the computational demands

for computing f (r) for large r are such that it cannot compete in practice with the known iterative methods

referenced in the introduction.

For the polynomial test functions we list (Table 1) the values of f (r) for even r up to r = 48, obtained by

solving the generalized eigenvalue problem in Theorem 4.2 using the eig function of Matlab. Recall that for

step r of the hierarchy the polynomial density function h is of Schmüdgen type and has degree r.

For the examples listed the computational time is negligible, and therefore not listed; recall that the

computation of f (r) for even n requires the solution of 2n generalised eigenvalue problems indexed by subsets

I ⊂ [n], where the order of the matrices equals
(
n+br/2−|I|c

n

)
; cf. Theorem 4.2.

Table 1: The upper bounds f (r) for the test functions.

r Booth Matyas Motzkin Three-Hump
Styblinski-Tang Rosenbrock

n = 2 n = 3 n = 2 n = 3

6 145.3633 4.1844 1.1002 24.6561 -27.4061 157.7604

8 118.0554 3.9308 0.8764 15.5022 -34.5465 -40.1625 96.8502 318.0367

10 91.6631 3.8589 0.8306 9.9919 -40.0362 -47.6759 68.4239 245.9925

12 71.1906 3.8076 0.8098 6.5364 -47.4208 -55.4061 51.7554 187.2490

14 57.3843 3.0414 0.7309 4.5538 -51.2011 -64.0426 39.0613 142.8774

16 47.6354 2.4828 0.6949 3.3453 -56.0904 -70.2894 30.3855 111.0703

18 40.3097 2.0637 0.5706 2.5814 -58.8010 -76.0311 24.0043 88.3594

20 34.5306 1.7417 0.5221 2.0755 -61.8751 -80.5870 19.5646 71.5983

22 28.9754 1.4891 0.4825 1.7242 -63.9161 -85.4149 16.2071 59.0816

24 24.6380 1.2874 0.4081 1.4716 -65.5717 -88.5665 13.6595 49.5002

26 21.3151 1.1239 0.3830 1.2830 -67.2790 11.6835

28 18.7250 0.9896 0.3457 1.1375 -68.2078 10.1194

30 16.6595 0.8779 0.3016 1.0216 -69.5141 8.8667

32 14.9582 0.7840 0.2866 0.9263 -70.3399 7.8468

34 13.5114 0.7044 0.2590 0.8456 -71.0821 7.0070

36 12.2479 0.6363 0.2306 0.7752 -71.8284 6.3083

38 11.0441 0.5776 0.2215 0.7129 -72.2581 5.7198

40 10.0214 0.5266 0.2005 0.6571 -72.8953 5.2215

42 9.1504 0.4821 0.1815 0.6070 -73.3011 4.7941

44 8.4017 0.4430 0.1754 0.5622 -73.6811 4.4266

46 7.7490 0.4084 0.1597 0.5220 -74.0761 4.1070

48 7.1710 0.3778 0.1462 0.4860 -74.3070 3.8283

We note that the observed rate of convergence seems in line with the O(1/r2) error bound.

As a second numerical experiment, we compare (see Table 2) the upper bound f (r) to the upper bound

f (r)

K
defined in (1.2). Recall that the bound f (r)

K
corresponds to using sum-of-squares density functions of
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degree at most r and the Lebesgue measure. As shown in [4], the computation of f (r)

K
may be done by

solving a single generalized eigenvalue problem with matrices of order
(
n+br/2−|I|c

n

)
. Thus the computation

of f (r)

K
is significantly cheaper than that of f (r).

Table 2: Comparison of the upper bounds f (r) and f (r)

K
for Booth, Matyas, Three–

Hump Camel and Motzkin Functions.

r
Booth Function Matyas Function

Three–Hump Camel

Function
Motzkin Polynomial

f (r)

K
f (r) f (r)

K
f (r) f (r)

K
f (r) f (r)

K
f (r)

6 118.383 145.3633 4.2817 4.1844 29.0005 24.6561 1.0614 1.1002

8 97.6473 118.0554 3.8942 3.9308 9.5806 15.5022 0.8294 0.8764

10 69.8174 91.6631 3.6894 3.8589 9.5806 9.9919 0.8010 0.8306

12 63.5454 71.1906 2.9956 3.8076 4.4398 6.5364 0.8010 0.8098

14 47.0467 57.3843 2.5469 3.0414 4.4398 4.5538 0.7088 0.7309

16 41.6727 47.6354 2.0430 2.4828 2.5503 3.3453 0.5655 0.6949

18 34.2140 40.3097 1.8335 2.0637 2.5503 2.5814 0.5655 0.5706

20 28.7248 34.5306 1.4784 1.7417 1.7127 2.0755 0.5078 0.5221

22 25.6050 28.9754 1.3764 1.4891 1.7127 1.7242 0.4060 0.4825

24 21.1869 24.6380 1.1178 1.2874 1.2775 1.4716 0.4060 0.4081

26 19.5588 21.3151 1.0686 1.1239 1.2775 1.2830 0.3759 0.3830

28 16.5854 18.7250 0.8742 0.9896 1.0185 1.1375 0.3004 0.3457

30 15.2815 16.6595 0.8524 0.8779 1.0185 1.0216 0.3004 0.3016

32 13.4626 14.9582 0.7020 0.7840 0.8434 0.9263 0.2819 0.2866

34 12.2075 13.5114 0.6952 0.7044 0.8434 0.8456 0.2300 0.2590

36 11.0959 12.2479 0.5760 0.6363 0.7113 0.7752 0.2300 0.2306

38 9.9938 11.0441 0.5760 0.5776 0.7113 0.7129 0.2185 0.2215

40 9.2373 10.0214 0.4815 0.5266 0.6064 0.6571 0.1817 0.2005

It is interesting to note that, in almost all cases, f (r) > f (r)

K
. Thus even though the measure dµ(x)

and the Schmüdgen-type densities are useful in getting improved error bounds, they mostly do not lead to

improved upper bounds for these examples. This also suggests that it might be possible to improve the error

result f (r)

K
− fmin = O(1/

√
r) in [4], at least for the case K = [−1, 1]n.

Finally, it is shown in [4] that one may obtain feasible points corresponding to bounds like f (r) through

sampling from the probability distribution defined by the optimal density function. In particular, one may

use the method of conditional distributions (see e.g., [12, Section 8.5.1]). For K = [0, 1]n, the procedure is

described in detail in [4, Section 3].
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Appendix

A. Proof of Lemma 2.1

We give here a proof of lemma 2.1, which we repeat for convenience.

Lemma 2.1 For any fixed integer k > 1, one has:

max
0≤i≤k−1

|u(k)
i | ≤ max

0≤i≤k
|t(k)
i | = 2k−1−2ψ(k) k(k − ψ(k)− 1)!

ψ(k)!(k − 2ψ(k))!
(2.7)

where ψ(k) = 0 for k ≤ 4 and ψ(k) =
⌈

1
8

(
4k − 5−

√
8k2 − 7

)⌉
for k ≥ 4. Moreover, the right hand side of

the equation increases monotonically with increasing k.

Proof. We recall the representation of the Chebyshev polynomials in the monomial basis:

Tk(x) =

k∑
i=0

t
(k)
i xi =

k

2

b k2 c∑
m=0

(−1)m
(k −m− 1)!

m!(k − 2m)!
(2x)k−2m, k > 0

Uk−1(x) =

k−1∑
i=0

u
(k)
i xi =

b k−1
2 c∑

m=0

(−1)m
(k −m− 1)!

m!(k − 1− 2m)!
(2x)k−1−2m, k > 1.

So, concretely, the coefficients are given by

t
(k)
k−2m = (−1)m · 2k−1−2m · k(k −m− 1)!

m!(k − 2m)!
, k > 0, 0 ≤ m ≤

⌊
k

2

⌋
,

u
(k)
k−1−2m = (−1)m · 2k−1−2m · (k −m− 1)!

m!(k − 1− 2m)!
, k > 1, 0 ≤ m ≤

⌊
k − 1

2

⌋
.

It follows directly that t
(k)
k−2m = k

k−2mu
(k)
k−1−2m and thus |t(k)

k−2m| > |u
(k)
k−1−2m| for m < k

2 and all k > 1 which

implies the inequality on the left hand side of (2.7).

Now we show that the value of max0≤m≤b k
2 c |t

(k)
k−2m| is attained for m = ψ(k). For this we examine the

quotient

|t(k)
k−2(m+1)|

|t(k)
k−2m|

=
(k − 2m)(k − 2m− 1)

4(m+ 1)(k −m− 1)
=
k2 − 4mk + 4m2 + 2m− k
4mk − 4m2 − 8m+ 4k − 4

. (A.1)

Observe that this quotient is at most 1 if and only if m1 ≤ m ≤ m2, where we set m1 = 1
8

(
4k − 5−

√
8k2 − 7

)
and m2 = 1

8

(
4k − 5 +

√
8k2 − 7

)
. Hence the function m 7→ |t(k)

k−2m| is monotone increasing for m ≤ m1 and

monotone decreasing for m1 ≤ m ≤ m2. Moreover, as bm1c ≤ m1, we deduce that |t(k)
k−2dm1e| ≥ |t

(k)
k−2bm1c|.

Observe furthermore that m1 ≥ 0 if and only if k ≥ 4, and m2 ≥ k
2 for all k > 1.

Therefore, in the case k ≥ 4, max0≤m≤b k
2 c |t

(k)
k−2m| is attained at dm1e = ψ(k), and thus it is equal

to |t(k)
k−2ψ(k)|. In the case 1 < k ≤ 4, max0≤m≤b k

2 c |t
(k)
k−2m| is attained at m = 0, and thus it is equal to

|t(k)
k | = 2k−1.

Finally we show that the rightmost term of (2.7) increases monotonically with k. We show the inequality:

|t(k)
k−2ψ(k)| ≤ |t

(k+1)
k+1−2ψ(k+1)| for k ≥ 4. For this we consider again the sequence of Chebyshev coefficients, but

this time we are interested in the behavior for increasing k, i.e., in the map k 7→ |t(k)
k−2m|. So, for fixed m,
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we consider the quotient

|t(k+1)
k+1−2m|

|t(k)
k−2m|

=
2k−2m(k + 1)(k −m)!m! (k − 2m)!

2k−1−2mk(k −m− 1)!m! (k + 1− 2m)!
= 2 · k + 1

k
· k −m
k + 1− 2m

,

which is equal to 2 if m = 0, and at least 1 if m > 0 since every factor is at least 1. Thus, for m = ψ(k), we

obtain:

|t(k)
k−2ψ(k)| ≤ |t

(k+1)
k+1−2ψ(k)|. (A.2)

Consider the map φ : [4,∞) → R, k 7→ φ(k) = 1
8

(
4k − 5−

√
8k2 − 7

)
, so that ψ(k) = dφ(k)e. The map

φ is monotone increasing, since its derivative φ′(k) = 1
8

(
4− 16k

2
√

8k2−7

)
=
√

8k2−7−2k
2
√

8k2−7
is positive for all

k ≥ 4. Hence, we have: ψ(k) ≤ ψ(k + 1). Then, in view of (A.1) (and the comment thereafter), we have

|t(k+1)
k+1−2m| ≤ |t

(k+1)
k+1−2(m+1)| if m ≤ ψ(k + 1), and thus

|t(k+1)
k+1−2ψ(k)| ≤ |t

(k+1)
k+1−2ψ(k+1)|. (A.3)

Combining (A.2) and (A.3), we obtain the desired inequality: |t(k)
k−2ψ(k)| ≤ |t

(k+1)
k+1−2ψ(k+1)|. 2

B. Useful identities for the Chebychev polynomials

Recall the notation dµ(x) to denote the Lebesgue measure with the function
∏n
i=1

(
π
√

1− x2
i

)−1

as density

function. In order to compute the matrices AI and BI we need to evaluate the following integrals:

〈Tα, T βT γ
∏
i∈I

(1− x2
i )〉 =

∏
i∈I

∫ 1

−1

Tαi
(xi)Tβi

(xi)Tγi(xi)(1− x2
i )dµ(xi) ·

∏
i6∈I

∫ 1

−1

Tαi
(xi)Tβi

(xi)Tγi(xi)dµ(xi).

Thus we can now assume that we are in the univariate case. Suppose we are given integers a, b, c ≥ 0 and

the goal is to evaluate the integrals∫ 1

−1

Ta(x)Tb(x)Tc(x)dµ(x) and

∫ 1

−1

Ta(x)Tb(x)Tc(x)(1− x2)dµ(x).

We use the following identities for the (univariate) Chebyshev polynomials:

TaTb =
1

2
(Ta+b + T|a−b|), TaTbTc =

1

4
(Ta+b+c + T|a+b−c| + T|a−b|+c + T||a−b|−c|),

so that

TaTbTcT2 =
1

8
(Ta+b+c+2 + T|a+b+c−2| + T|a+b−c|+2 + T||a+b−c|−2|

+T|a−b|+c+2 + T||a−b|+c−2| + T||a−b|−c|+2 + T|||a−b|−c|−2|).

Using the orthogonality relation
∫ 1

−1
Tadµ(x) = δ0,a, we obtain that∫ 1

−1

TaTbTcdµ(x) =
1

4
(δ0,a+b+c + δ0,a+b−c + δ0,|a−b|+c + δ0,|a−b|−c).

Moreover, using the fact that 1− x2 = (1− T2)/2, we get∫ 1

−1

TaTbTc(1− x2)dµ(x) =
1

2

∫ 1

−1

TaTbTc(1− T2)dµ(x) =
1

2

∫ 1

−1

TaTbTcdµ(x)− 1

2

∫ 1

−1

TaTbTcT2dµ(x),
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and thus∫ 1

−1

TaTbTc(1− x2)dµ(x) =
1

8
(δ0,a+b+c + δ0,a+b−c + δ0,|a−b|+c + δ0,|a−b|−c)

− 1

16
(δ0,a+b+c−2 + δ0,|a+b−c|−2 + δ0,|a−b|+c−2 + δ0,||a−b|−c|−2).

C. Test functions

Booth Function n = 2, fmin = f(0.1, 0.3) = 0, f([−1, 1]2) ≈ [0, 2 500]

f(x) = (10x1 + 20x2 − 7)2 + (20x1 + 10x2 − 5)2

= 250(T2(x1) + T2(x2)) + 800T1(x1)T1(x2)− 340T1(x1)− 380T1(x2) + 574

Matyas Function n = 2, fmin = f(0, 0) = 0, f([−1, 1)]2) ≈ [0, 100]

f(x) = 26(x2
1 + x2

2)− 48x1x2 = 13(T2(x1) + T2(x2))− 48T1(x1)T1(x2) + 26

Motzkin Polynomial n = 2, fmin = f(± 1
2 ,±

1
2 ) = 0, f([−1, 1)]2) ≈ [0, 80]

f(x) = 64(x4
1x

2
2 + x2

1x
4
2)− 48x2

1x
2
2 + 1 = 4(T4(x1) + T4(x1)T2(x2)

+ T2(x1)T4(x2) + T4(x2)) + 20T2(x1)T2(x2) + 16 (T2(x1) + T2(x2)) + 13

Three-Hump Camel Function n = 2, fmin = f(0, 0) = 0, f([−1, 1)]2) ≈ [0, 2 000]

f(x) =
56

6
x6

1 − 54 · 1.05x4
1 + 50x2

1 + 25x1x2 + 25x2
2

=
56

192
T6(x1) +

1625

4
T4(x1) + 58725

64 T2(x1) + 25T1(x1)T1(x2) + 12.5T2(x2) + 14525
24

Styblinski-Tang Function n = 2, 3, fmin = −39.17 · n,f([−1, 1)]2 ≈ [−70, 200]

f(x) =
n∑
j=1

312.5x4
j − 200x2

j + 12.5xj =

n∑
j=1

(
625

16
T4(xj) +

225

4
T2(xj) +

25

2
T1(xj) +

275

16

)

Rosenbrock Function n = 2, 3, fmin = 0, f([−1, 1)]2) ≈ [0, 4 000]

f(x) =

n−1∑
j=1

100(2.048 · xj+1 − 2.0482 · x2
j )

2 + (2.048 · xj − 1)2

=

n−1∑
j=1

[
12.5 · 2.0484 T4(xj)− 100 · 2.0483 T2(xj)T1(xj+1) + (0.5 + 50 · 2.0482)2.0482 T2(xj)

+50 · 2.0482 T2(xj+1)− 4.096T1(xj)− 100 · 2.0483 T1(xj+1) + 1 + 2.0482(37.5 · 2.0482 + 50.5)
]
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