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INCOMPLETE LAPLACE INTEGRALS: UNIFORM ASYMPTOTIC EXPANSION 
WITH APPLICATION TO THE INCOMPLETE BETA FUNCTION* 

N. M. TEMMEt 

Abstract. The incomplete Laplace integral 

1 f co -- l'~-t e-='f(t) dt 
f(A) " 

is considered for large values of z. Both A and a are uniformity parameters in [O, co). The basic approximant 
is an incomplete gamma function, that is, the above integral with f = 1. Also, a loop integral in the comple)( 
plane is considered with the same asymptotic features. The asymptotic expansions are furnished with error 
bounds for the remainders in the expansions. The results of the paper combine four kinds of asymptotic 
problems considered earlier. An application is given for the incomplete beta function. The present investiga. 
tions are a continuation of earlier works of the author for the above integral with a = 0. The new results 
are significantly based on the previous case. 

Key words. uniform asymptotic expansion of integrals, incomplete gamma function, incomplete beta 
function, incomplete Laplace integral, construction of error bounds 

AMS(MOS) subject classification. 41 A60, 30 F15, 33 A15, 44 AlO 

1. Introduction. This paper is the third in a set dealing with uniform asymptotic 
expansions of Laplace type integrals. The previous papers are [11) and [12). In the 
present paper, we consider the integral 

(1.1) 

where z is a large parameter and f is holomorphic in a domain n that contains the 
nonnegative reals; A, a and z are real variables for which the integral is properly 
defined. Say, a~ 0, A ~ 0 and z > 0. An interpretation of F0 (z, 0) follows from 

lim F.1 ( z, a) = f O( ) 
A_,..0 l.r Q 

if a> 0, 
if a=O. 

The second case follows from integration by parts. 
We are interested in the asymptotic expansion of (1.1) for z ~ oo which is uniformly 

valid with respect to both A and o: in [O, oo). The parameters A and a may be coupled 
with the large parameter z, or they may range independently through the uniformity 
interval. For a description of the various asymptotic features, four different cases with 
their own asymptotic phenomena can be distinguished. 

(i) o: fixed, A fixed. For this classical case Watson's lemma gives an expansion. 
When o: = 0, f(t) is expanded in powers of t, when o: > 0, t"- 1f(t) is expanded in 
powers of t - a. See [ 6, p. 113]. 

(ii) a~ 0, A fixed. An incomplete gamma function (i.e., (1.1) withf = 1) is needed 
to describe the uniform transition of a= 0 to a> O; [ 4], [8], [9] and [14) are appropriate 
references. The asymptotic feature is the possible coalescence of two critical points: 
t = 0 (an algebraic singularity) and t =a (end-point of integration). 
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(iii) a= 0, A E;; 0. The saddle point of t>- e-•r, which occurs at t =µ,:=A/ z, may 
coalesce with t = 0, the end-point of integration. In that event (i.e., when µ, ~ O) the 
saddle point disappears, since e-•r does not have a saddle point. No extra special 
function is needed to describe this feature; in fact the (complete) gamma function, 
which is incorporated in (1.1) for normalization, can handle this case. See [11] and [12]. 

(iv) a> 0 (fixed), A~ 0. Whenµ,:= A/ z is larger than a, the saddle point is inside 
the interval of integration; otherwise it is outside. This transition can be described by 
using an error function. A transformation gives an integral of the form 

Loo e-·",g(u) du, 

and here the transition occurs at T/ = 0. See [10]; similar cases are considered in [2] 
and [13]. 

These four cases are combined in our approach, where a ~ 0, A ~ 0. As in case 
(ii), the basic approximant is the incomplete gamma function. However, in case (ii) 
the full ranges of both parameters of this approximant are not completely exploited. 
As discussed in [7], it is expected that a two-variable approximant is needed to handle 
a three-variable case as in (1.1). 

Apart from combining four existing methods, our results are interesting in view 
of applications. We consider the well-known incomplete beta function lx(p, q), and 
we give an expansion for large values of p, valid uniformly with respect to both x and 
q; xe[0,1], qE:O. Since Ix(p,q)=I-/1_x(q,p), the parameters p and q are inter
changeable. So we solve an open problem mentioned in [10], where the incomplete 
beta function is considered as belonging to case (ii), as well as to case (iv). A transition 
from one case to another was not available at that moment. 

The plan of the paper is as follows. In§ 2 we give the formal expansion of (1.1). 
It appears that an essential part of the expansion is that of the complete integral ( 1.1) 
with a = 0. Subsequent sections give representations of the remainders, conditions on 
f, the asymptotic nature of the expansions and the construction of error bounds. In 
§ 8 we consider analogous results for loop integrals in the complex plane. A loop 
integral with essentially the same asymptotic features as (1.1) has the form 

f t->.. e" f(t) dt. 
t-a 

For a = 0 it reduces, just as ( 1.1 ), to a form that we considered earlier. Section 9 gives 
two new expansions for the incomplete beta function 

Terminology. We call a variable fixed when it is independent of z, A and a. A 
sequence of functions {t/I,} is called an asymptotic scale when, for s = 0, 1, · · ·, 1/1.+1 = 
o(tfl.) as z-+oo. The formal series I~= 0 f.(z) is said to be an asymptotic expansion of 
F(z) with respect to the scale {l/I.}, if for n =O, 1, 2, · · · 

n 

(1.2) F(z)- L fn(z) = o(tfln) as z-+ 00. 
s=O 

In this case we write 

(1.3) F(z)- I f.(z), {l/I,} as z -+ oo. 
s=O 

In uniform expansions it is required that the "o" symbols in (1.2) and in the definition 
of the scale hold uniformly (with respect to a, A orµ,= A./ z in certain domains, say). 
See [3]. 
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2. Uniform expansions: construction of the formal series. Before considering the 
general case (1.1), we repeat the procedure for F>-(z, O), which will be denoted by 

(2.1) 1 f"" F ( ) =-- tA-I e-z'J(t) dt 
A z r(A) 0 • 

This function and its expansion play an essential role in the expansion of (1.1). The 
following integration by parts procedure takes into account the role of the critical 
point: the saddle point of tA e-zr, i.e., the point t = µ, where 

(2.2) µ = A/z. 

We write 

(2.3) f(t) = f(µ) + (t- µ,)g(t), 

and we obtain 

where we assume that integrated terms at t = 0, t = oo vanish, and 

f ( t) = t .!!._ ( t) = t .!!._ f ( t) - f ( µ). 
I dtg dt f-J.L 

Repeating this process, we obtain the formal expansion 
co 

(2.4) FA(z)-z-A L fs(µ)z-s, z..,,co, 
s=O 

where f 0(t) = f(t) and 

(2.5) I (t)=t.!!_fs(t)-fs(µ,) 
Js+J dt t-µ ' s =O, 1, · · ·. 

For the general case (1.1) we again take (2.3) as the first step. Now we have an 
integrated term at t = a. It is not difficult to see that we obtain the formal expansion 

oo aA e-az oo 

FA (z, a) - z-AQ(A, az) .. ~/(µ)z-s + zr(A) s~o B,( a )z-', (2.6) 

where fs(µ) are the same as in (2.4), B.(a) are defined by 

(2.7) Bs(a) fs(a)-fs(µ)' 
a-µ 

s=O, I,···, 

and Q(a, x) is the incomplete gamma function ratio 

(2.8) 1 f "° Q( a x) =-- ta-I e-' dt 
' f(a) x • 

z..,, oo, 

We observe that the first series in (2.6) does not depend on a; in fact we recognize 
the expansion given in (2.4). Furthermore, the integrated terms at t =a, which generate 
the second series, all vanish when a ..,, 0. 
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These observations lead us to the representation, including the definition of a new 
function BA, 

(2.9) 

which should not be interpreted as an asymptotic relation, but as an exact identity. 
We consider the incomplete gamma ratio as a known function, of which the asymptotic 
features are well known (see [ 10]). For numerical aspects concerning this function see 
[5]. As mentioned above, the asymptotic expansion of FA(z), i.e., (2.4), is also settled 
earlier. More details on this point will be given below. So we are left with the function 
BA (z, a), of which the asymptotic expansion formally follows from the second series 
in (2.6). 

A somewhat different method used to obtain the expansion for BA (z, a) is based 
on a differential equation for this function. By differentiating (2.9) with respect to a, 
we easily obtain 

(2.10) 

Substitution of (2.4) and of the formal series 

(2.11) 
00 Bs(a) 

BA(z, a)- L -s-
s=o z 

into (2.10) shows that this equation is formally satisfied if 

(2.12) 
(µ,-a)Bs(a)=fs(µ)-aB:_1(a), 

B0 ( a) = [f( a) - f(µ,) ]/ (a - µ,). 

s = 1, 2, ... ' 

Here, and in (2.10), the prime denotes differentiation with respect to a. It easily follows 
that (2.12) generates the same coefficients B,( a) as those defined in (2.7). Therefore, 
by using (2.9), we again arrive at (2.6). 

The following integral 

(2.13) ( ) 1 f <> A - I - ''f( ) d EA z, a = f(.A) 
0 

t e - t t 

is strongly related to (1.1). It has a similar representation as (2.9). When we use the 
following complementary relations 

(2.14) EA (z, a)+ FA (z, a)= FA (z ), Q(A, az) + P(A, az) = 1, 

we obtain 

(2.15) 
aA e-az 

EA(z, a)= P(A., az)FA(z)- zf(A) BA(z, a). 

Consequently, when we give expansions for FA (a) and BA (z, a), the results can be 
used for both integrals (1.1) and (2.13). The function P(a, x) again is an incomplete 
gamma function, with representation 

(2.16) ( ) 1 f x a-1 -r d P a, x = -- t e t. 
f(a) o 
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3. Representations for the remainders. We introduce remainders for (2.4) and 

(2.11) by writing 

n-1 

(3.1) zAF>.(z)= L fs(µ,)z-'+z-"Jn, 
s=O 

n-1 

(3.2) B;..(z,a)= L B_.(a)z-s+z-"Bn, 
s=O 

where n = 0, 1, 2, · · · . When n = 0 the sums are empty and they have to be replaced 
by 0. 

The procedure leading to (2.4) yields for fn the representation 

(3.3) 
- z A-I -zt A f oo 

In= r(A) 0 t e 'fn(t) dt. 

To obtain a representation for Bn, we write (2.9) in the form 

(3.4) BA(z, a)=ze''"a-A I: tA-I e-z'[f(t)-z"FA(z)] dt. 

Writing 

and using integration by parts in the form 

we obtain 

Repeating this, and using the recursions 

Bn = Bn(a) + Z- 1 Bn+I, 

we finally have 

(3.5) 

where n = 0, 1, 2, · · · . For n = 0 this equals the starting point (3.4 ). An equivalent 
representation is 

(3.6) Bn = -za-A e'" I' t),-I e-zt[fn(t)- Jn] dt, 

which easily follows by writing J:' = J~ -J~ and using (3.3). 
The availability of both forms (3.5) and (3.6) is important in the analysis to be 

given below. Namely, for bounding Bn we always have an integral in which the saddle 
point µ, is not an interior point of the interval of integration. 

The above representations for fn and Bn are formally obtained. In the next section 
we give the conditions on f to justify the above results, and to discuss the asymptotic 
nature of the expansions. 
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4. Assumptions on f. We consider real values of a, A and z, with a, A ;£; O, z > 0. 
We accept that f depends on the uniformity parameter µ defined in (2.2). The reason 
is that in applications usually a transformation to the standard form is needed, which 
yields a function f depending on µ. In [ 12] a detailed discussion of such a transforma
tion is given. By means of several examples, it is shown that the assumption f depends 
on µ, may be relevant and quite acceptable. The parameter a plays a completely 
different role, and we do not suppose that! depends on it. The example in § 9 on the 
incomplete beta function shows more details on the transformation to the standard 
form {1.1), and on the role of a and µ,. 

The analysis is based on the assumption that f is holomorphic in a domain of the 
complex plane. Again, for applications in the theory of special functions, this condition 
is quite natural. Another point is that part of the analysis runs rather elegantly when 
using complex function theory. However, the construction of the expansions, the 
representations of the remainders in (3.3), (3.5), and the construction of error bounds 
can also be given for functions f belonging to continuity classes Ck([O, oo)). When 
k < oo we cannot, of course, define the complete expansions (2.4), (2.11). 

We assume that f is holomorphic in a simply connected domain n of the complex 
plane; n may depend onµ and n should contain IR+. We suppose that the distance 
d(t) from tEIR+ to the boundary an of n is increasing according to the following 
requirement: 

(4.1) d(t):?; do(o+ tt, t$; 0. 

where 8, d0 and K are fixed, 5, d0 > 0, and ! ~ K ~ 1. 
It follows that, for large µ,, the singularities off are rather far from the saddle 

point t = µ,, this distance being O(µ, "). This condition is important for investigating 
the asymptotic nature of the expansion (2.4). The requirement that (4.1) holds for any 
positive t, and not only for t =µ,is important for expansion (2.11). 

A geometrical interpretation of ( 4.1) is as follows. Let D, be the disc around t E IR+ 
with radius d0(5+ t)". Then the above condition implies that n contains the subset 

(4.2) n0 = U D,. 
t~O 

When K = ! the boundary ano Of no is a parabola; that is, 

(4.3) ano = {t = u + ivl v2 = dMu + o +~d~)}. 
When K = 1 we have two possibilities depending on d0 : 

(i) 0<d0 ~1, n 0 is a sector with vertex at t=-8 such that larg(t+o)I~ 
arcsin (d0 ); when d0 = 1 this sector is the half-plane Re t ;£; -8. 

(ii) do> 1, no= IC. 
It is clear that for ! < K < 1 the Set no is something "between" a parabola-shaped 

domain and a sector. Geometrically, values of K larger than unity make no sense, 
although the analysis will accept such values. 

We also need a growth condition on fin n0 • We assume that, whenµ, is fixed, f 
is of algebraic growth at infinity. That is, 

(4.4) M(µ,)=sup(l+ltl-p)lf(t)I 
re!l 

should exist for all finite values ofµ, in [O, oo). Condition (4.4) will not exclude functions 
in (1.1) that can be written as 

f(t) = eu'j(t), O" fixed in IC. 

When in such a decomposition j meets the above conditions, we absorb the exponential 
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part of this splitting into exp ( -zt) of ( 1.1 ), just by a shift in the large parameter z. 
Afterwards, we proceed with j 

5. Estimates for ls( t), fs(µ) and B.( a). The conditions on f yield estimates for the 
functions fs(t) defined in (2.5) and for the coefficients!,.(µ,). With the help of these 
estimates, the asymptotic scales for the expansions (3.1), (3.2) are chosen. 

Let 0, be the subset of 0 0 defined by 

(5.1) 

where D, is a disc around t with radius r(B+t)\ with 0<B<8,0<r<d0 , §and r 
fixed. Then the derivatives off at t can be written as 

(5.2) f(s)(t) =~ f j( T) dT 
21Ti C, ( T- t)s+I ' 

where er is the boundary of I51. 
It follows that we can assign numbers K,, not depending on t and µ, such that 

s=O, 1,2, · · ·, 

for all t En" and all µ, E [O, oo ). That is, 

(5.3) s=O, 1,2, · · ·, 

with t En" uniformly with respect to µ, in [O, oo). 
The functions fs(t) defined in (2.5) are analytic in n. They can be expressed in 

terms of the derivatives off, as follows from their definition. For I-values near µ,, the 
functions cannot be estimated by repeated application of (2.5), owing to the factors 
1/ ( t - µ,) and powers of it. Another approach is using the mean value theorem on 

d II fs(t)=t- f;-1[µ,+T(t-µ,)]dT 
dt 0 

= t L Tf%-1[µ, + T(t- µ,)] dT, 

which givesfs(t)=hf;_1(T.), where T5 is a value between t andµ. By repeating this, 
we obtain 

(5.4) 
s-1 

fs(t) = t I pJ<s+j+ii< 1j), 
j=O 

s?;; 1, 

where Tj are between t and µ,, and pj is a homogeneous polynomial of degree j of j 
variables, all between t and µ,. The coefficients of p1 do not depend on µ, and t. 

Therefore, we have 

PJ = (1 + µ + tYO(l), 

J(s+j+I)( 7j) = M(µ)(l + µ, + t)P-(s+j+l)i<O(l), 

with µ,?;; 0, t ~ 0. It follows that (5.4) can be written as 

(5.5) fs(t) = tM(µ,)(l + µ, + 1y-i-s"O(l), K = 2K -1, s = 1, 2, ... ' 

for all t En,, uniformly with respect to µ, E [O, oo). 

l 
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The values f.(µ.), which are the coefficients of the expansion (2.4), can be 
written as 

s-1 

J.(µ) = J.L L <Jjµjj<s+j+l)(µ. ), 
j=O 

s= 1,2, · · ·, 

where 4 are fixed numbers. An estimate as in (5.5) reads 

(5.6) f.(µ)= µM(µ.)(l + µy-1-si<O'(l), K=2K-1, S=l,2,···, µ60. 

The coefficients Bs(a) defined in (2.7) can be estimated by means of 

Bs(a)= f J;[µ.+T(a-µ.)]dT=f;('Ts), 

where Ts is between µ. and a. Therefore, 

Bs(a)=-1-f J;('T) 2 dT, 
27Ti c. ( T- 'Ts) 

where c, is a circle in 0, around 'Ts with radius 0'(1+Tst=0(1 + µ. + ar. By using 
(5.5), it follows that 

(5.7) B.(a)=M(µ)(l+µ.+a)p-si<-"O'(l), s=O,l,···, 

with a,µ. 6 0. 
Example 5.1. Whenf(t) = 1/(1 + t), we have p = K = 1, and M slightly larger than 

1. The first coefficients B0 , B 1 are 

B0 ( a ) = - 1 / [ (a + 1 ) ( µ. + 1)], 

which confirms (5.7). 
To conclude this section we consider limiting values of Bn at a = 0 and a = oo. 

For a-+ 0 we write t = aT in (3.6). We obtain 

(5.8) jj" =J" - fn(O) at a= 0. 
µ. 

This expression is regular at µ. = 0. To see this, replace (5.8) by 

From (2.5) we see that fn(t)/ t is regular at t = 0, when n 61. Hence, using (3.3), we 
obtain 

(5.9) Bn=f~(O)+ I'" e-z'fn+1(t)C 1 dt ata=0,µ.=0,andn=0,1,· · ·. 

For the limiting value of Bn at a = oo, consider (3.5) in the following form: 

(5.10) Bn = z Lx' (1 + t)A-l e-azt[fn(a(l + t))- Jn] dt. 

Using (5.5), and considering a » µ., we can easily estimate B" as a-+ oo. For instance, 
when p- ni< = 1 and lim,-+oofn(t)/ t exists (and is L), we have 

(5.11) Bn = L at a = oo, µ, finite. 
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6. The asymptotic nature of the expansions. First we discuss the expansions (2.4), 
(3.1), although the complete integral (2.1) is considered in the previous paper [12]. 
However, there we mainly investigated an expansion somewhat different from (2.4) 
and, therefore, it is appropriate to consider (2.4), (3.1) in the present set-up once again. 

6.1. The asymptotic nature of (3.1). We introduce the asymptotic scale { ifl,z-•} by 
writing 

(6.1) 
I/lo= M(µ.)(1 + µ,)P, 

1/1. = µ,M(µ.)(1 + µ.y-i-•i<, s = 1, 2, ... ' 

which is suggested by (5.6). Since we allow f to depend on µ.,we have to use a scale 
that reflects the possible growth off when µ. ranges in the domain [O, oo). With the 
above scale we are able to control the behaviour of the remainder Jn defined in (3.3). 

It is easily verified that {if!,z-•} is a uniform asymptotic scale with z as large 
parameter and µ. as uniformity parameter in [O, oo ). Moreover, when K > ! (i.e., K. > 0) 
it also is an asymptotic scale forµ.~ oo, uniformity with respect to z E [z0 , oo), z0 being 
a fixed positive number. Observe that for K <!the scale fails to be uniform with respect 
toµ. on [O, oo), but it still is on compact subsets of [O, oo). 

THEOREM 6.1. For the expansions (2.4), (3.1) we can write 

00 

(6.2) z>.F>.(z)- L fs(µ.)z-•, 
s=O 

uniformly with respect to µ. = A/ z in [ 0, oo). 
Proof It is sufficient to show that Jn= O(if!n), where Jn is defined in (3.3). The 

interval of integration in (3.3) is split up as follows: 

(6.3) 

where 

a_= [O, L], d+=[t+, oo), t± = µ ± e(µ. + lY, 

with e fixed, and small enough such that [L, t+] lies inside n, of (5.1). When L 
happens to be negative, we replace it by 0. Fort E [L, t+] we have t = O(µ. ). Therefore, 
(5.5) yields 

f.(t) = µ.M(µ.)(1 + µy-i-s;;O(l), s = 1, 2, .... 

Hence, (3.3) can be written as 

(6.4) fn=L+I++O(if!n) asz,oo, 

where J± are the contributions to (3.3) from a±. They are of order O(t/!n), also. It is 
possible to show more: they are asymptotically equal to 0 with respect to the scale 
{I/!,}. That is, I±= 0(1/!m) for any m as z~ oo, uniformly with respect to µ E"[O, oo). 

Again, the proof can be based on the estimates given in (5.5). In [12, § 3.4] a 
detailed analysis is given for proving that contributions from a± for similar integrals 
are asymptotically negligible. This analysis will not be repeated here. D 

6.2. Two lemmas for (3.2). The next step is to consider (3.2), and to estimate the 
remainder defined in (3.5), (3.6). The analysis boils down to the following two lemmas, 
the results of which are formulated in terms of strict inequalities. So we are able to 
use them once again in § 7 for deriving strict error bounds. 
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LEMMA 6.1. Consider the function 

( 6.5) g( a, ,\, z) = a -A e':a L" t" e -zr dt, 

where 0 ;ii a ;iiµ,,µ=,\/ z. Let' be de.fined by ~'2 =a - µ,+µ,log(µ,/ a),' 6 0. Then for 
z>O 

(6.6) . { a a' ift} g(a, A, z);iimm ( ) ,-- - . 
µ, - a z µ, - a 2' 

Proof Write g in the form 

g(a, A, z) = L' e-z</>(r) dt, <f>(t)= t-µ, log t-a+µ, log a. 

Integrating with respect to </>, we have for 0 ~ a < µ, 

f 00 t 
g(a,A,z)= e-z<t> __ d</>S( a ) , 

o µ,-t µ,-a z 

which gives the first possibility in (6.6). To obtain the second one we write 

<f>(t)=~w2 +,w, w6-?, 

with the corresponding relations 

t = 0 +-? w = +oo, t =a+-? w =O, t = µ, +-? w = - ?, 

where ? is defined above. Now we obtain 

g(a, A, z) = tX) e-z[w'/ 2+Mf(w) dw, f(w) = t(w+?). 
µ, - t 

We have 0 ~f( w) ;iif(O), w s 0. To verify the upper bound, we write 

2 1-x+x log x 
f (w)=2t ( )2 , x-1 

µ, 
x=-. 

t 

The x-part of this is monotonically decreasing on the x-interval [1, co); x =µ,/a 
corresponds to w = 0. Hence we obtain f( w) ~a( I(µ, - a). It follows that 

( ) <~ f co -zw'/2 d g a, A, z = e w, 
µ,-a o 

which gives the second possibility in (6.6). This proves the lemma. D 
LEMMA 6.2. Consider the function 

(6.7) Gq(a,A,z)=a-"e'"'(l+a)-q J~ t"- 1 e-z1(1+t)qdt, 

where a 6 0, µ,~a,µ,=,\/ z, q fixed, q ER Let? be de.fined by 

µ, <0, 

Then for z>O 

(6.8) . { 1 t Ji;} G 0(a, ,\, z) ~mm ( ) ,-- -2 · a-µ,za-µ, z 
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Furthermore, when 0 ~ µ ~ a, 

(6.9) Gq(a, A., z) = O'[ G0(a, A., z)] as z-+ oo, 

uniformly with respect to a, µ,. 
Proof We first consider G0 , for which we obtain 

Joo dt f"" d<f> 1 G0(a, A., z) = e-z<f>(t)_= e-•4> __ ~ , 
"' t 0 t-µ, (a-µ)z 

where cf>(t) is the same as in Lemma 6.1. Observe that this result also holds for negative 
values ofµ,. For the second possibility in (6.8), we proceed withµ~ 0. We again write 
!w2 +(w = <f>(t), w~ -(,now with the correspondences 

t =oo-w=oo, t= a-w =O, t = µ,-w = -(. 

It follows that 

Go( a, A., z) = {''° e-z[w2f 2+'w1f( w) dw, 

with/( w) = ( w + ()/(t- µ). Using 

! 2( ) = 3_ X - log X - 1 S/2(0) 
w µ, (x -1)2 - ' 

t 
x=-~ 1, 

µ, 

we obtain the second choice in (6.8). 
When q ~ 0 the proposition (6.9) is trivial. Writing 

G = 1 + µ G +a-" e"''(l + a)-q-1 f"" (1 + t)qd(e-''t") 
q+I 1 + OI q - Z oc ' 

we obtain by performing integration by parts 

1+µ, 1 q q 
Gq+t =--Gq+ 2 Gq-t + ) Gq. 

I+a z(l+a) z(l+a) z(l+a 

Since q is fixed and O~ µ,~a, the result (6.9) follows by recursion, say from negative 
q-values. 0 

Remark 6.1. The first alternatives in both (6.6) and (6.8) grow indefinitely when 
a-+µ,, whereas the other ones remain finite. We have 

(/(µ,-a)-+ 1, (/(a-µ,)-+1, 

for (6.6), (6.8), respectively. Therefore, the second alternatives give a bound for g and 
G0 valid for the whole range of parameters given in the lemmas. The first bound is 
given since it is sharp when z is large and a andµ are bounded away from each other. 
A more uniform description, which includes both alternatives in (6.6), (6.8), is possible, 
by using a bound in terms of an error function. That is, in fact, g and G0 can be 
estimated by 

f(O) J"" e-z[w212+M dw = /(0) (; e•,212 erf c((rz[2). 
0 "\/2:; 

We take ( = 0 because it gives a very simple and manageable result. 

6.3. The asymptotic nature of (3.2). We proceed with (3.2), and we estimate the 
remainder Bn defined in (3.5), (3.6). We use the asymptotic scale {x.z-s} defined by 

(6.10) s=O, 1,2, · · ·, 
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z is the large parameter, a and µ are uniformity parameters. The choice of scale is 
suggested by (5.7). 

THEOREM 6.2. For the expansions (2.11) and (3.2) we can write 

00 

(6.11) B>..(z, a)- I B.(a)z-', 
s~O 

uniformly with respect toµ, a in [O, oo). 
Proof All 0-symbols in the proof hold uniformly with respect to µ and a m 

[O, oo); the large parameter is not needed in some results. 
It is sufficient to show that Bn of (3.5) or (3.6) is O(x" ). Write 

(6.12) n =0, 1, 2, · · ·. 

Since B"(a) = O(xn ), we proceed with Bn+I ·That is, we consider (3.5), (3.6) for n;:;; I. 
We have two cases. 

(i) O~a~µ. In (3.6) we use 

Jn= 0(1/Jn) = µM(µ,)(1 + µ +ay-i-n"'O(l), 

fn(t) = tM(µ)(l + µ + ay- 1-""0(l), 

where the first line follows from Theorem 6.1 and the second one from (5.5). The 
estimate for fn(t) gives in (3.6) a contribution 

(6.13) zM(µ)(l + µ + a)p-l-niig(a, .A, z)O(l), 

where g is defined in (6.5). The above estimate for Jn gives in (3.6) a contribution 

zµM(µ)(l + µ + a)p-i-m<a-A e'"O'(l) t" tA-l e-zt dt 

(6.14) =M(µ)(l+µ+ay-1-m<a-Ae"zO(l) t' e-z'dt>. 

= zM(µ)(l + µ + a)P-1-"''[g(a, .A, z)O'(l) + O(z-1)]. 

From Lemma 6.1 it follows that 

g(a, .A, z) = 0(-./a/z) = 0((1 +µ+at /vz]. 
Neglecting the term O(z-1) in the last line of (6.14), we conclude that both (6.13) and 
(6.14) are estimated by 

.JZM(µ)(l + µ+ay-1-nK+K(J(l). 

Taking into account that in ( 6.12) z- 1 Bn+i has to be considered, we obtain 

jjn = O(xn) + M(µ)(l +µ+a y-1-(n+l)K+K(J(z-1/2) = O'(xn). 

This finishes the first part of the proof. 
(ii) 0 ~µ~a. In this case the starting point for ii" is (3.5). For Jn we take the 

representation as in the previous case, for fn(t) we consider (5.5). We integrate by 
parts in the contribution from fn· Starting with (6.12) and using Lemma 6.2 twice, with 
q = 0 and with q = p-1-(n + l)i<, we obtain the required estimate ii"= O(xn). D 

As remarked after the introduction of the scale functions "1s in (6.1), the large 
parameter z and the uniformity parameter µ are interchangeable, only if K > ! . It is 
important enough to formulate this property as a theorem. 
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THEOREM 6.3. Let!< K ~ 1. Then in (6.2) µ may act as the large parameter and 
z as the uniformity parameter. In (6.9), a (orµ,) may act as large parameter,µ, (or a) 
and z as uniformity parameters. The uniformity domain for µ, and a is [ 0, oo), for z it is 
[ z0 , co), z0 being a fixed positive number. 

Proof The proof follows easily from the properties of the asymptotic scales used 
in (6.2) and (6.11), and from the proofs of the earlier theorems. D 

Remark 6.2. The above theorems are formulated and proved for real values of 
the parameters. By slight adaptation of the scales they hold for complex values of a 
and µ,, as long as these values are restricted to n, introduced in (5.1). Some care in 
the interpretation of (1.1) is needed when a assumes complex values around the origin, 
since t11. is not single valued. However, the many-valuedness of F11. ( z, a) is completely 
described in (2.9) by the known functions Q(A, az) and a11.. From (3.6) it easily follows 
that B>. (z, a)= B0 is regular at a= 0, and in fact inn,. See also (5.8). Another problem 
is: How do we handle complex values of z? The holomorphic function! in (1.1) allows 
the contour of integration to be deformed. When doing so, we can extend the domains 
for the parameters z, a and µ, considerably. We will not go into further details here 
for this complicated technical problem. 

Remark 6.3. It is tempting to take {.fs(µ,)z-"'} and {B .. (a)z-s} as asymptotic scales 
in (6.2) and (6.1.1). However, the conditions on f do not imply that they have this 
property. When they do not the theorems may still be applicable; however, rather 
useless expansions may arise. It is instructive to consider what is happening in the 
case f(t) = 1 +exp (-t). 

7. Error bounds for the remainders. The theorems of the previous section are based 
on the concept of generalized asymptotic expansions. The estimates for proving the 
asymptotic properties are given in terms of 0-symbols. So far, no information is 
available on the sharpness of these estimates, say in terms of exact error bounds. That 
is, it would be interesting to have available an estimate in the form 

(7.1) µ iE;; 0, Z iE;; Zo > 0, 

instead of Jn= O(tfln), used in Theorem 6.1. When fn(µ) happens to vanish, (7.1) can 
be modified. Kn in (7.1) may depend on z andµ. 

The required form of the bound (7.1) reflects the expectation that ln will not 
deviate too much from fn(µ). For slowly varying functions f, say for f(t) = 1/(1 + t), 
this surely will be true, especially when z is large. However, the scale functions tfln, Xn 
are constructed in terms of the global estimate M(µ), introduced in (4.4). Consequently, 
the asymptotic scales used in the theorems may be too rough to describe what is really 
happening in the asymptotic expansions. 

To show this by way of a simple example, we consider f(t) =exp [µ/(1 + t)]. It 
is easily verified that is satisfies the conditions of§ 4; n = C\ { -1}, 0 0 is the half-plane 
Ret~-5, where O<S<l. In (4.4), p=O and M(µ)=exp[µ./(1-5)], which is 
exponentially large, when µ is large. However, we expect that the remainder Jn in the 
expansion (3.1) is comparable withfn(µ), which is only algebraic inµ. Therefore, the 
theorems of the previous section are applicable, but the chosen asymptotic scales are 
not able to control the remainders of the expansion in a realistic way. This is especially 
true for expansion (6.2); for (6.9), which is more global in character due to the second 
uniformity parameter, the chosen scale may be more suitable. We want to emphasize 
that in this example only the scales default, whereas the expansions themselves are 
appropriate and may be of interest. The above noticed imperfections (see also Remark 
6.3) are inherent in the definition of generalized asymptotic expansions. We have 
chosen this framework in order to be able to describe precisely the propositions and 
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what we want to prove. We consider this important in asymptotics, especially when 
one or more uniformity parameters are involved. On the other hand, we have the need 
of constructing sharp error bounds for the remainders in the expansions, so that we 
can interpret the expansions in a realistic way. An ideal procedure would be a 
combination of both approaches, but in this stage, for lack of a unified approach, we 
prefer to discuss them separately. 

7.1. Error bounds for (3.1). As remarked earlier, the quantities fs(µ,) and B.« a) 
may be grossly overestimated by the global upper bound M(µ,) introduced in (4.4). 
A better approach, say for arriving at (7.1), seems to be to give a sharp estimate for 
fn(t) near t = µ,, whereas the estimate "far away" of this saddle point may be rather 
crude. To be more explicit, we need a comparison function w(t, µ,), w: IR+ x IR+...;. [l, oo), 
that satisfies the condition w(µ,, µ,) = 1, and that may be large outside an interval 
around t = µ,. We suppose that we can assign quantities Mn, which may depend onµ, 
and which are strictly larger than unity: 

(7.2) Mn~ 1 +en, Cn fixed and positive, 

such that for all t ~ 0 we have 

(7.3) 

Furthermore, we suppose that it is easy to calculate or estimate the integral 

(7.4) If._ I :5 Mnlfn(µ,)lzA J."° r"-l e-zl (t ) dt 
" - f(A) o w 'µ, ' 

obtained from (3.3) by boundingfn(t) in this way. Whenfn(µ,) happens to have zeros 
on (0, ro), (7.3) and (7.4) have to be modified, say by replacing lf,.(µ,)I by 8"+1/,.(µ,)I, 
8n >0. 

Since f, and hence all fn, have algebraic growth on [O, ro) (see (4.4)), it will be 
sufficient that w( t, µ) = O[ exp ( crt)] for some positive a. This suggests as a possible 
choice w( t, µ) = cosh [er( t - µ,) ], which meets all requirements formulated thus far. 
Substituting this into (7.4), we obtain 

(7 .5) 

~f00 
tA-l e-zr cosh[a(t-µ,)]dt=4[(1-o-/z)Ae-O"µ+(l+a/z)Ae"IL) 

f(A) o 

= eJ[ cosh (!Ao-2 / z2) ], 

as z...;. oo. When <T = 0(1) (µ ~ O), this contribution to the right-hand side of (7 .4) is 
quite acceptable, so long as A= o(z2). But for a uniformity domain [O, oo) it is 
unacceptable. 

This brings us to a further requirement that 

(7.6) _z_ tA-l e-z'w(t µ,) dt = 0(1) A Jco 
f(A) o ' ' 

as z...;. oo, uniformly with respect to µ, E (0, oo ). 
For several reasons the following comparison function is very convenient: 

(7.7) u~O, 

where a- may depend onµ,, but not on t. Forµ,= 0 we define w"(t, O) =exp (a-t). This 
choice fits better in the dominant part tA e-zi of (7.4) than the cosh-function tried before. 

For (7.3) we write 

(7.8) 
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and (7.4) becomes 

(7.9) 

where 

(7.10) 

as z 'oo. Compared with (7.5), this result is much more acceptable, since now we have 

{7.11) Qn=l+O'(z- 1) asz,oo, 

uniformly with respect to A orµ in [O, oo). Especially, large values of A are in favor 
in (7.11). The only condition is that an in (7.8) is fixed or a bounded function ofµ 
on [O, oo). In this event z -an can be viewed as large parameter in Qn, although z >Un 
is enough. 

For the construction of error bounds it is sufficient that fn ( t) is continuous on 
[O, oo), i.e., that f belongs to the continuity class C 2n([O, oo)) (see (5.4)). A different 
point is that, as remarked earlier, a slight modification is needed when f,, (µ) = 0. A 
special case is µ = 0, where fn,Jn vanish for n G: 1. In that case we can define crn = 0. 
When we construct error bounds, the assumption (4.4) on the algebraic growth is only 
needed for t G: 0. Another assumption on f may be that an of (7.8) is a bounded 
function of µ. A proper choice of Mn, for instance by making Mn a function of µ,, 
will yield a wide class of admissible functions f. The construction of error bounds is 
not enough to investigate the nature of the asymptotic expansion. However, when 
an, MnJn(µ)/f(µ) (f(µ);t:.0) are bounded functions ofµ on [O,oo) for each n~O, 
then we can use the Poincare-type scale {z-s}, and the uniformity with respect to µ 
in [O, oo) easily follows. 

A possible approach to compute Mn and an of (7.8) is to start with trial values 
of Mn satisfying (7.2). Then we compute 

(7.12) Un= supjn(t), µ fixed in [O, oo), 
15:0 

where 

(7.13) j, (t) =log lfn(t)/[MJn(µ)JI 
n t - µ - µ log ( t / µ.) ' 

For two examples we have computed a-values. A third example is considered in 
§ 9 for the incomplete beta function. 

Example 7.1. f(t) = 1/(1 + t). We have 

µ.(µ-2) t(µt-µ -2) 
!2(µ) = (1 + µ.)5' fi(t) = (1+µ)3(1+1)3" 

Since fhi) vanishes at µ = 2, we replace it by 

! *( ) = µ(l +lµ.-21) 
2 µ, (1 + µ)5 . 

We consider three choices of M2 and we obtain a 2 via (7.12) for several values ofµ,. 
We also show corresponding values of Q2 of (7.9) for z = 5. For larger values of z, Q2 

is closer to unity. The results are shown in Table 7.1. It follows that the remainder 
z-2J2 of (3.3) is rather close to the first neglected term z-2/ 2{µ) for the values ofµ 
and z used in the table. Larger values ofµ and z confirm this tendency even better. 
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TABLE 7.1 

Mi= 1.1 M2 = 1.5 M2 =2.0 

µ. U2 Q2 U2 Qi U2 02 

0 0 1 0 I 0 I 
I -0.64 0.9397 -0.87 0.9210 -0.98 0.9120 
5 0.02 1.0023 -0.01 0.9989 -0.04 0.9960 

10 0.04 1.0038 0.00 1.0004 -0.01 0.9993 
25 0.11 1.0108 0.03 1.0031 0.01 1.0014 
50 0.08 1.0079 0.02 1.0024 0.01 1.0014 

100 0.05 1.0047 0.01 1.0014 0.00 1.0001 

Example 7.2:..f(t) =exp [µ./(1 + t)]. We use (7.3), (7.7) with n =0, which gives a 
bound (7.8) for lo of (3.3), i.e., for z>-F>.(z) of (2.1). The results are shown in Table 
7 .2, again with z = 5. 

TABLE 7.2 

Mo= 1.1 M0 = 1.5 M0 =2.0 

µ. Uo Qo Uo Oo Uo Qo 

0 0 1 0 1 0 1 

1 0.38 1.0417 0.03 1.0027 -0.02 0.9976 

5 0.66 1.0737 0.31 1.0329 0.26 1.0270 

10 0.46 1.0501 0.26 1.0276 0.25 J.0259 

25 0.21 t.0221 0.21 1.0216 0.21 J.0213 

50 0.18 1.0187 0.18 1.0185 0.18 1.0184 

100 0.16 1.0162 0.16 1.0161 0.16 1.0161 

7.2. Error bounds for (3.2). For the construction of error bounds for the remainder 
of expansion (3.2), we use as comparison function wu(t, a), with Wu defined in (7.7). 
The comparison function wa-(t, µ.) may yield unrealistic bounds, when a and µ, are 
not of the same size. In Theorem 6.2 we used (6.10) in order to get rid of the factor 
z in (3.5), (3.6). However, this factor is neutralized by the expression/,, ( t )- Jn in the 
integral (the minus-sign is important here). In the following error analysis this 
expression will not be replaced by lfn(t)j + llnl· 

We write 

(7.14) n=O, 1, · · ·. 

When gn(a) # 0, we estimate gn as follows: 

(7.15) jgn(t)j~ Mnlgn(a)jwT.(t, a), 

where Mn satisfies (7.2) and w is defined in (7.7). We consider two cases. 
(i) 0 ~a~µ.. Starting point is (3.6); (7.15) has to be considered for t E [O, a]. 

We obtain 

IBnl ~ zMnet"'T.,-il ea(z-T .. >lgn(a )j L" til-<>T .. -1 e-(z-T .. )l dt. 

Integration by parts gives 

jBnj;;;; zMn jgn(a)j[l+(z-Tn)g(a,A-aTn,Z-Tn)], 
,\ -aTn 
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where g is defined in ( 6.5). In Lemma 6.1 it is supposed that in g( a, A, z) the parameters 
satisfy O 2:. a 2:. A/ z. In the present g-function this relation holds as well. The only 
condition is z > Tn. For a better representation of the above bound for fin we write 

The first factor at the right equals 1/ (1- aTn/ µ,z) which is 1 + 0( z- 1) as z ~ ro, uniformly 
with respect to a and µ,, 0 2:. a 2:. µ,. The second factor lgn (a )I/µ, is properly defined 
in the limitµ,~ 0, as follows from a similar argument as used for (5.8). By using Lemma 
6.1 we obtain for z > Tn 

(7.16) 

where fi and [ are defined by 

(7.17) ~[2 =a-fi+fi1og(µ:/a), [~O, 

The conditions 0 2:. a 2:. µ, and z > Tn imply 0 2:. a 2:. fi. 
(ii) 02:. µ, 2:. a. We consider (7.15) fort~ a. Representation (3.5) gives for z > Tn 

!Rn! 2:. zMnlgn(a)IGo(a, A - aTn, z- rn). 

Using Lemma 6.2, we obtain 

(7 .18) I - I M,,lgn(a)I . - ; 1 } 
Bn 2:.( _)( )mm{l,~'\/27T(Z-rn). a-µ, 1-rn/Z 

When A - aTn < 0 we define [ = +oo, otherwise it is defined by (7 .17), with 0 2:. ii 2:. a. 
Remark 7.1. The numbers[, Mn and Tn in (7.16) and (7.18) need not be the same. 

When a~ fi, [has to be combined with the factor 1/ (fi - a), as explained in Remark 
6.1. 

Remark 7.2. We can write gn(t) of (7.14) in the form 

(7.19) 

Bounds for ln+i follow from (7.8). Contributions owing to g"(t) are as in (7.16), (7.18) 
with gn(a) replaced by in(a). Observe that (see (2.7)) 

in(a)/(a - µ,) = Bn(a), 

which shows up in (7.18) when we use (7.19). There is something to recommend about 
the approach based on (7.19). The point is that gn of (7 .14) may be difficult to evaluate 
without the splitting in (7.19). Furthermore, M,. and r,. of (7.15) may depend on z. 
However, this dependence will be very weak when z is large. 

8. A loop integral with analogue asymptotic features. In previous papers [ 11], [ 12] 
we stated the analogy between the following integrals: 

(8.1) 

(8.2) 
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where (8.1) is the complete integral given in (2.1). The contour in (8.2) starts and ends 
at t = -oo (respectively, with arg t = -71", arg t = 7i ), and encircles the origin in positive 
direction. The analogy, from an asymptotic point of view, is that of their asymptotic 
expansions: 

00 

(8.3) zAFA(z)- L fJµ)z-5, 
s=O 

00 

(8.4) z-AGA(z)- I (-1) 5ls(µ)z-s, 
s=O 

as z ~ ro; (8.3) is considered in the present paper, for instance in (2.4). The construction 
of (8.4) is based on the same integration by parts procedure, by using Hankel's integral 
for the reciprocal gamma function. That is, (8.2) reduces to z\ when f is the identity. 
Conditions on f, especially the domain of holomorphy, have to be modified, before 
we can state that (8.2) has (8.4) as a uniform expansion with z as the large parameter 
and µ=A/ z as uniformity parameter. 

It seems that the following integral 

(8.5) G ( ) f(A + 1) -A zt ( ) df f (O+) 

A z, a = . t e g t --
27T"Z -oo t-a 

is the relative of FA (z, a) defined in (1.1 ). That is, (8.5) has four asymptotic phenomena 
that are in some sense equivalent to the four discussed in§ 1 for (1.1). However, the 
asymptotic expansions show an interesting difference, although the characteristics of 
both are exactly the same. 

8.1. Uniform approximation for loop integrals. We suppose that the contour in 
(8.5) cuts the positive real axis at the point t0 • We first give (8.5) for g = 1. Multiplying 
by exp ( -az) and differentiating with respect to z, we obtain (8.2) with!= 1. Integrating 
with respect to z, and taking into account some limiting values, we obtain two forms 
for (8.5) with g= 1: 

(8.6) ) -A ,,,{y(A, az), 
GA (z, a = Aa e (-l)f(A, az), 

t0 > a, 

0< t0 < a, 

where y(a, x), f(a, x) are incomplete gamma functions. The transition from one form 
to the other in (8.6) also follows from (8.5), by shifting the contour across the pole at 
t =a, and using y(a, x) + f(a, x) = r(a). 

Suppose now that O<t0 <a. Writing g(t)=g(a)+[g(t)-g(a)], we obtain 
for (8.5) 

(8.7) 

where 

G. (z) = r(A +.1) t-A-i ezrh(t) dt, f (O+) 

21TZ -co 

(8.8) 
g(t)- g(a) 

h(t)=t . 
t-a 

Therefore, assuming appropriate conditions on g, and hence on h, the asymptotic 
expansion of GA (z) is given in (8.4) with ls(µ) replaced by h5 (µ.). The latter are 
generated as ls(µ.) in (2.5), with fo replaced by h and ls by hs. 



1656 N. M. TEMME 

We conclude that, apart from normalization, (8.7) has with (8.4) a similar 

expansion as F>.. (z, a) in (2.6). An interesting difference is that now the incomplete 

gamma function does not multiply a full asymptotic expansion but just one term 

involving g( a). This gives a simpler asymptotic problem. For instance, the construction 

of error bounds only applies to G;. (z ), i.e., for the complete integral (8.2), where f is 
replaced by h of (8.8). 

A representation for the remainders in the expansion of G>..(z) in (8.7) follows 
by writing 

n-1 

(8.9) z-;.G;.(z)= L (-l)shs(µ)z-'+(-l)"z-"hn, 
s~o 

(8.10) 

where h"(t) is generated by the recursion (2.5), with starting function h0 = h defined 
in (8.8). 

8.2. Error bounds for loop integrals. For the construction of error bounds, we 
select a special contour in (8.10). Writing 

we see that the imaginary part of the phase function will vanish, when we take 

p = p ( ()) = µ()/sin 0, -1T < () < 1T. 

This defines the path of steepest descent through the saddle point t = µ. Integrating 
(8.10) with respect to the parameter () along this contour, we use 

1 dt 1 dp 
--=--+i 
t d() p d() ' 

giving 

(8.11) 

where 

t = p e;8 = µ.[ () cotg () + iO], 

(8.12) 
~ 1 dt 
hn(f) =tl d()h"(t), 

() 
</>(O) = -() cotg ()+log-.-+ 1. 

sm () 

A bound for h" is obtained by writing as in (7.8) 

(8.13) lhn(t)I;;;::; M"lhn(µ,)I eµ.s"q,<ei, 

where Mn satisfies (7.2), Sn< z, and where it is assumed that h"(µ,) rf 0. We obtain as 
in (7.9) 

(8.14) lhnl ~ MnQnlhn(µ)I, 

where Qn = 1/[(1- Sn/ z)QnJ. We have used that (8.10) reduces to unity when h" equals 
unity. 
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Observe that to compute error bounds for the expansion (8.9), exactly the same 
comparison function is used as in (7.8); the forms are different owing to the mapping 
H8. 

Remark 8.1. Representation (8.7) is obtained under the condition 0< t0 < a, where 
t0 is the point where the contour of (8.5) cuts the real positive axis. When (8.5) is 
presented with to> a, G>.(z, a) has representation (8.7), with f(A, az) replaced by 
-y(A, az). This complementary relation is of the same kind as for the real integrals 
described in (2.14), (2.15). 

9. The incomplete beta function. We use the incomplete beta function in the 
notation 

(9.1) 1 f x Ix(p, q) = B( ) r"-1(1-T)q-1 dT, 
p, q 0 

where B(p,q)=f(p)r(q)/f(p+q) is the complete beta function. The asymptotic 
problem is to give an expansion of Ix(P, q) with pas large parameter and xE[O, 1) 
andµ,= q/p E [O, oo) as uniformity parameters. We can use 

(9.2) 

to interchange the role of p and q. For information on Ix(p, q) we refer to [1, p. 944]. 
In [10] we considered the asymptotic problem for Ix(p, q) for more restricted ranges 
of the parameters. We believe that the expansions of this section are new in the sense 
that the uniformity domain ofµ or q is the complete interval [O, co). Earlier results 
prescribed q to belong to a compact subset of (0, oo) (case (ii) of§ 1), or p/ q to a 
compact subset of (O, oo) (case (iv)). Extension to complex values of the parameters 
is possible, but will not be considered here. 

To describe the asymptotic features of (9.1) in more detail, we compute the saddle 
point of TP(l - T)q. It occurs at 

(9.3) To=-P-. 
p+q 

When p + q is large, the value Ix( p, q) is very small when x < T 0 , and it is close to 
unity when x> To. When To is restricted to a compact subset of (0, 1), this transition 
can properly be described by an error function (normal distribution function); when 
10 -+ 1 the basic approximant is an incomplete gamma function. We will show that this 
function can handle the complete uniformity domain for q, i.e., [O, oo). It is essential 
to transform (9.1) to the standard form (1.1), by means of a rather complicated 
transformation. 

9.1. Transformation to standard form. A first transformation 1-+ e -T gives 

(9.4) I ( ) 1 f"" (1- e-.,.)q-l e-p.,. dT. 
x p, q B( ) p, q -logx 

Comparing this with (1.1), we observe that it has the standard form when A= q, z = p 
and f(t) = [(1- e-'T)/ T ]q-i. However, for several reasons this choice off will not give 
a uniform expansion for the q-interval [O, oo). One reason is that large values of q will 
have much influence on coefficients fs(µ), B,(a). Observe that for f dependence only 
on µ is assumed in § 4, and not on A. 

A better way for transforming (9.4) in (1.1) is to use the mapping T--+t(T) 
defined by 

(9.5) T-µ, log (1-e-.,.) = t- µlog t+A(µ), 
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where µ, = q/ p. The left-hand side has a saddle point at 

(9.6) T 1 =log(µ,+ 1) =-log T 0 , 

the right-hand side at t = µ,. To make the mapping properly defined we require the 

correspondences 

(9.7) T=O~t=O, T= T1~f = µ,, T = +oo ~ t = +oo. 

The middle one gives 

(9.8) A(µ,)= (1 +µ,)log (1 + µ,) - µ,. 

The point T =-log x, the lower end point of integration in (9.4 ), is mapped to t =a, 
which is defined by the implicit relation 

(9.9) -log x- µ,log (1-x) =a - µ,log a+ A(µ,), 

with corresponding points 

(9.10) x=O~a=+oo, X=T0~a=µ,, x= l~a =O. 

Observe that the middle one satisfies (9.9) due to the choice (9.8). In fact, the mappings 
(9.5) and (9.9) are the same, up to parametrization. 

The transformed version of (9.4) is 

-pA(µ.) f oo 

(9.11) Ix(p, q) ;( ) tq-i e-p'J(t) dt, 
p, q a 

where 

(9.12) 
t dT t- µ, 

f(t)=l-e-r dt=l-(1+µ,)e-r· 

The regularity of the transformation (9.5), and that off, is extensively discussed 

in [ 12, § 4]. From that analysis it follows that f satisfies the conditions of § 4. In ( 4.1) 

we have to take K = L and d0 and 8 both somewhat less than ,/2;. 0 0 is a parabola
shaped domain, and for the number p in ( 4.4) we take p = 1 (which follows easily 

from (9.12)). The function f is positive on [O, cx:i); /(0) = 1, f(µ,) = v'l +µ,.We verified 
numerically that 

/(t) 
sup--= l. 
'"'o 1 + t 
µ.$;0 

Therefore, M(µ,) of (4.4) will not deviate very much from unity, especially when 8 
and d0 are small. 

9.2. Uniform expansion of incomplete beta function. In the notation of (1.1 ), (2.1 ), 
(2.9), we can write 

(9.13) 

e-pA(µ.)f(p + q) 
Ix(p,q)= f(p) Fq(p,a), 

aq e-ap 

Fq(p, a)= Q(q, ap)Fq(p) + pf(q) Bq(p, a). 

However, the "complete" integral Fq(p) can be written in this case in terms of known 
functions. Since Ii( p, q) = 1, we have 

(9.14) ( + )p+q 
Fq(p)=epA(µ.)f(p)/f(p+q)= PP q e-qr(p)/f(p+q). 
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Although it is ?ossi~l~ to give for Fq( p) an expansion as in (2.4) (see [ 12, § 4] for a 
related expans10n), 1t is more attractive now to write (9.13) in the form 

aq e-"p+q( )p+q 
(9.15) Ix(p,q)=Q(q,o:p)+ B( ) _P_ Bq(p,a). 

p p, q p+q 

By using (9.9), and (2.11) we can write 

(9.16) 
xP(l-x)q 

Ix(p,q)=Q(q,ap)+ B( ) Bq(p,a), 
oo B,(o:) 

Bq(p, o:)- I --5 - asp~oo. 
s~o P p p, q 

It follows that we have only to consider the asymptotic expansion for Bq(p, a), which, 
however, is not the simpler one of (2.4), (2.11). The first coefficient is 

(9.17) 

with 

Bo( o:) = f (a) - f ( J.L), 
a-µ, 

a - J.L 
f(a) = 1-(1 + µ,)x' f(µ,) =.Jl + J.L· 

Special values are 

(9.18) B0(0) = Jf+;- l, 
J.L 

• I µ,-1+.Jl+j.L 
Bo(J.L)=hmf(o:)= , 

O<~µ. 3J.L 

and they satisfy O~ B 0 (0) ~ B0 (µ,) ~ B0 (oo), forµ,~ 0. 

B0(00) = 1, 

In fact, all B, ( o:) can be expressed in terms of o:, x and µ,, and those three are 
related by (9.9). When o: ~ µ,, an explicit representation of Bs(a) in terms of say x 

and µ, = q/ p is not possible, since (9.9) cannot be solved explicitly for a. Whenµ= 0, 
(9.5) reduces to the identity mapping and f of (9.12) becomes t/[1-exp (-t)]. The 

latter has singularities at t = ±21Ti, ±41Ti, · · · . Whenµ,> 0, singular points off originate 
from these points, of which ±27Ti are most important. The singular points off starting 

from ±21Ti (µ, = 0) are located in the half-plane Re t > 0. For large values of µ, they 
are approximately near µ + 2J7iil, exp ( ± i1T / 4 ). The value K = ! in ( 4.1) comes from 
,/µ;in this asymptotic value. The coefficients Bs(a) have the same domain of regularity 

as f(a). Since M(µ) = 0(1), p= 1, K =!. i< =0, we have for (5.7) 

(9.19) Bs(a)=O(I+µ,+a) 112 , s=0,1,2,···, µ,~O, o:~O. 

This estimate gives a good impression of the asymptotic nature of the expansion in 

(9.16), although the estimate for s = 0 seems to be too large (cf. (9.18)). 

9.3. Uniform expansion based on a loop integral. An interesting variant of (9.16) 

is obtained by using a contour integral for Ix( p, q) in the complex plane, and by 

applying the method of § 8. Consider the integral 

1 f c+ioo dt 
I=-. t-p(l-t)-q-=-· 

21Tl c-iOO ( X 
0< c< 1, 

with p + q > O and O < x <c. When t E (O, 1) the phases oft, (1- t) and of the multi
valued functions are zero. By deforming the contour around the negative axis, we 

obtain for p < 1 

sin 1Tp f 00 _ _ dT 
I=x-p(l-x)-q___ T P(l+r) q __ 

1T 0 r+x 
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where we used formulas 6.1.17, 15.3.1, 15.3.3, 15.3.4, 26.5.23 and 26.5.2 of[l]. It follow 
that 

(9.20) O<c<l, 

with 0 < x < c. The restriction p < 1, which is needed to evaluate the contour integn 
for I, can be dropped by using the principle of analytic continuation. We still nee 
the condition p + q > 0 for convergence at infinity. 

Representation (9.20) is the analogue of (9.1). To obtain standard form (8.5), w 
use the transformation T ~exp ( -T ). This gives 

P(l )qJ(O+) d 
(9.21) Ix(p,q)=x 2 -.x eP'(l-e-T)q 1 T T• 

m ~ -xe 

which is the analogue of (9.4). The contour cuts the positive real T-axis at a point 1 

such that To< - log x. A final transformation 

(9.22) T- µ,log (1- e-T) = t- µ,log t+ A(µ,), 

where µ, = q/ p and A(µ,) is given in (9.8), gives 

1 I (0+) g(t) 
(9.23) Ix(p,q)=xP(l-x)qe-q(l+q/p)P+q_. eP't-q--dt, 

27T1 -co t-a 

where a is defined in (9.9), and 

(9.24) g(t) 
t-a dT 

1-xeT dt" 

A relation for dT/ dt is given in (9.12). The contour in (9.23) cuts the positive t-axi 
at a point t0 satisfying t0 < a. Splitting off the pole, we obtain for (9.23) 

(9.25) Ix(p, q) = Q(q, ap) + xP(l -x)q e-q(l + q/ p y+qGq(p )/f(q+ 1), 

with G9 (p) as in (8.8). Here we used g(o:) = -1, which follows from (9.24) by l'Hopital' 
rule (observe that t =a corresponds with T =-log x in (9.22)). 

Observe that the transformations (9.5) and (9.22) are exactly the same. The rea 
corresponding points in (9.7) determine the mapping in the complex plane. Therefore 
no new correspondences have to be defined for (9.22). In fact, the mapping has aver 
global character. As remarked earlier, we have investigated the mapping (9.5) in [12: 
with emphasis on what is happening in a neighbourhood of IR+. However, the domai: 
of regularity extends to the full half-plane Re t ;a 0. To understand the mapping in th 
complex plane, it is instructive to see that the contours of steepest descent in (9.21) 
(9.23) are mapped onto each other. On these contours the imaginary parts in the left 
and right-hand side of (9.22) vanish. 

Comparing (9.15) and (9.25), we conclude that the function Bq(p, a) has (in th 
special case of this section) an asymptotic expansion which corresponds to that of ' 
"complete" integral (8.2). We have 

(9.26) B( a)=f(p+l)e-q(l+q/p)P+qG() 
q p, qf(p+q) q p' 

where Gq(p) is given in (8.8), with expansion as in (8.9); g is defined in (9.24). 
By using (7.10) and (8.9) we can write (9.26) in the form 

v1µ,+l f*(p) -
(9.27) Bq(p, a)=-µ,- f*(p+ q)p qGq(p), 

00 

p-qGq(p)- I (-l)'h.(µ,)p-•. 
s=O 
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Therefore, the approach based on a complex contour gives for Ix( p, q) a simpler 
asymptotic expansion and simpler error bounds than the approach based on, say, 
(9.11). The computation of the coefficients h.(µ,) is not a simple problem. Also, the 

bound for lhn(t)j in (8.13) has to be computed on a contour in the complex plane. But 
the form of the error bound (8.14) is much simpler than those obtained in § 7. 

To show some of the steps needed to evaluate the coefficients hs(µ,) in (9.27), we 
compute h0 (µ,) and its limiting form for a-;.µ,. We have, using h of (8.8) and g of (9.24), 

(9.28) 
µ,-a d-r 

g(µ,)=1-(1+µ,)x dt' 

where the derivative is evaluated at t = µ,. From (9.12), we have 

d-r 1 t - µ, 1 dt 
Iim-=--Iim =---
c-µ. dt µ,+lc~µ.l-(l+µ,)e-T µ,+ld-r' 

by using l'Hopital's rule. Hence 

dr 1 -----
dt J µ, + 1 

at t = µ,. 

The square root has a + sign, since -r is an increasing function of t on [O, ro). Earlier 
we computed g( a) = -1. So we have 

(9.29) ho(J.L) = _µ,_ [(µ, - a)/~+ 1], 
µ, - a 1 - (µ, + l)x 

µ, ¥- a. 

To evaluate this at a = µ,, we have to investigate the relation between x and a in more 
detail. From (9.9) it follows that 

dx 
a[(µ,+l)x-1]-=x(l-x)(a-µ,). 

da 

Substituting the expansion 

we obtain 

1 2 
x =--+ c1(a - µ,)+ c2(a -µ,) + · · ·, 

µ, + 1 

C1C2 = 3µ,(l ~ µ,)3[)1:: -1]. 
When a-;.µ,, h0(µ,) of (9.28) has the expansion 

Hence 

1[ 1-µ, J Jim h0 (µ,) = - 1- r--T< . 
a~µ. 3 vµ,+1 

It follows that B0(a) of (9.17) and h0 (µ,) of (9.29) are related by 

.Jµ,+1 
Bo(a) =--ho(µ,). 

µ, 
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A relation between the higher coefficients is obtained as follows. Comparing (9.16) 
with (9.27), we arrive at the formal identity 

We can expand 

00 -s J µ, + 1 f*( p) 00 s -s 
I B.(a)p =-- f*( + ) L (-1) h«µ,)p . 

s=O J.L P q s=O 

f*(p) 00 -s 

r *C + )- L: d.(µ,)p , p q s=O 
d0(µ,)=1, 

by dividing the two expansions for f*(p) and f*(p(l + µ,)) (see also [12, § 4]). Thus 
we obtain 

Jµ,+l s , 
B,(a)=-- L (-1) h,(µ,)d5 _,(µ,), 

j.L r=O 

which is (9.30) for s = 0. 

9.4. Some numerical results. We used the method of§ 7.2 to compute an upper 
bound for Bq( p, a). That is, we computed M 0 and r0 for (7.16), (7.18), and we evaluated 
the expression at the right-hand sides of these inequalities. For z = p = 10 ( 10) 100 
these expressions were evaluated at the x, µ-grid with x = 0.05 (0.05) 0.95, µ, = 1 (1) 
10. For each z the maximal value occurred at x = 0.05, µ = 1. The corresponding 
a-value for this x, µ-pair is 4.06254 · · ·.The upper bounds show an interesting feature. 
For z = 10 it is 0.97111 and it steadily increases to 0.97371 for z = 100. The ratio of 
this last upper bound and B0 ( a) of (9.17) ( =0.64933 · · ·) equals 1.500 · · · , which is 
the number M 0 that we used in (7.15), (7.16) and (7.18). We observe that the computed 
upper bounds are slightly less than M0 B0 ( a), and tend to this value when z increases. 
The choice M0 = 1.1 showed the same features: the upper bound of Bq(p, a) is slightly 
less than M 0 B0(a). 

The numerical experiments yield the following conclusion: 

sup Bq(p, a)= 1, p fixed, 

where the supremum is taken over x E [O, 1] (or a~ O) and µ, = q/ p E [O, oo). The 
maximum is assumed at x = 0 (a = oo) and µ = 0. See also ( 5.11); for n = 0 this limit 
L equals 1. Incidentally, (5.9) gives for n = 0 

(9.30) Bq(p, a)= p[log p-1/J(p )] 

at a = 0, µ = 0, where 1./f ( p) is the logarithmic derivative of the gamma function. This 
follows from well-known representations of this function, and from the fact that f of 
(9.12) equals t/(1-exp(-t)) at µ,=0. From (9.13) and the asymptotic expansion of 
the I/I-function, it follows that 

B0(p, O) =!+ O(p- 1) asp -HX). 

We conjecture that ~~ Bq(p, a)~ 1 for a E [O, oo) (or x E [O, 1]), and µ = q/ p E [O, oo), 
and for all p sufficiently large (say p ~ 10). 
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