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A GROUFP THEORETIC INTERPRETATION
OF WILSON POLYNOMIALS

T.H.Koornwinder

0. Introduction. This paper is the second part (after /97)
of an informal account of a research activity which started with
the observation of & curiosity (namely two explicit orthogomal
bases mapped onto each other hy the Jacobi function tramsform),
but which grew out into a research program to complement Askey's
scheme of hypergeometric orthogonal polynomials with group theo-
retic interl_)retations and with further orthogonal system of hyper-
geometric nature but of nonpolynomial type.Here I will deal with
a group theoretic interpretation of Wilson polynomials as kernels
connecting with each other two canonical bases of harmonics on &
hyperboloid satifying a certain invariance condition.This is pre-
ceded by a similar interpretati.n of Racah polynomials inm connsc-
tion with spherical harmonics.These main results can be found in
§ 4,5.The earlier sections are sf imtrodusctory nature,

I. Jacobl and Wilson polyncmials mapped onto each other by

the Jacobi function transform. Hermite polynomials 4, are
orthogonal of degree » on the interval (-e , @@ ) with respect
to the weight function x —exp/-x% It is well-known that the
functions # — 4,/#/svo/-$%?/  form an orthogonal basis for

Z’/A’/ of eigenfunctions of the Pourier transform with ei-
genvalues ¢°7:
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A gimilar set of eigenfunctions exists for the Hankel transform
pair

9/4/ =///£/.7," [AE)E dt
(1.2) >

P1e) < 9030 % (A 4) A4

>

where

(1.3) LAY DR A S

denotes a Bessel function.An orthogonal basis for L%/, , £0¢)

of eigenfunctions of the Hankel transform with eigenvalue r-7)”
is given by the functions # — L, /¢*/¢“exp /-§¢%/ ,where the
Laguerre polynomials L,‘,‘ are orthogonal polynomials of degree
n on [0, e/ with respect to the weight function x = x=e-*
[e>-7/:

-0 2
(I.4) /l;‘/é'/!"e"“z‘ [Ad)at s Y-7)"Ly a3 ¥4

cf. /4,8.9 (3)/.
Let us next consider an analogue of (I.I) and (I.4) for the

Jacobi function transform.let « > -7, @8 € #,

(1.5)  are)= 8, ,r¢):<(2088)* Tf2c48)*""" 450

.

L= L, 4 a differential operator defined by
a el a’/
. (3
(1.6) [LujrE): = dt’ - A 7t us/t), ¢ €.

Let the Jacobi function ¢, = d,,/“"/ be the unique solution «
of

(1.7) Ly gurl-R%1konet)Yu,
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a9
which is C »even and satisfies «/0/:7 .It can be expressed
as. a2 hypergeometric function

(1.8) u“’”/c‘/-,/,' (F(Rope10ld), §(doBo9-02) nev;-06%)

ek Bt
(1.9) =/c#¢/ 2 /;z/‘l‘ﬂ*f‘ii/,{/a(-/'*/v-ldj;dfl; tn’¢)

The transform S~ 7 defined by

(1.10) Fra): s / Lre) b, fE)a )

is called the Jacobi function transform.

Noteworthy special cases are the Fourier-cosine transform
/<<£=-f) and the Mehler-Fock transform /« =/=0/ .See
for instamce /7/ and the survey /8) for details and background of
this transform.Group theoretic interpretations of (I.I0) highly
contribute to its significance.In particular,the spherical Fourier
transform of a Riemannian rank one symmetric space of the noncom-
pact type can be writtem in the form (I.IO).

For the inversion of (I.I0) consider a second solution £

of (I.7) which is,for ImA >0 ,uniquely determined by the
asymptotic behaviour

(I1.1I) $ure)z e T it art ~ o

and which,for A € €\ f-é,-2¢,... 2, ,is defined by analytic
continuation with respect to 4 .Then

(1.12) f,l"/‘/ia"/"{/f-xl AfiZ,
where
LePot-iR
2 Vol 2x7/a0 822
(1.13) €/R)=¢ 4/3)*
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it Z €D gyen (even ¢® -functions with compact sup-

port on # ) then (I.I0) can be inverted as
.y /2 -2

(1.14) 208)= 12977 J212)8s 12/ (4)) A,
-4

provided /B/ S o +1 ,otherwise we have to add & finite sum

£, (32)47a)8, ()

to the right hand side of (1.14),#here A runs over the poles of
A fc/A}))"7 in the upper half plane,all lying on the positive
imaginary axis,and the positive canstants Y/A/ are expressed
18 certain residues.For convenience, we will furher assume that

lB] &7,
There is a Paley-Wiener type theorem stating that Fdad ,; maps
peven one-to~-one onto the space of even entire analytic func-
tions of exponential type,rapidly decreasing on » ,which 1is
dense in L/, ;/20’/'_'/4//1//-30’4/ .There is a Plancherel
formula

(1.15) //{/d// 2ttt < f2m) " JIEOAY Jel AN Y,

which first can be derived for # ¢ .2 .The formula shows that
the transform J/ =~ ,; uniquely extends to an isometry of the
Hilbert space L°/#, ; 4/¢/alé) onto the Hilbert space

LYk, ram) Y efA))  aa).

Since @a/¢/ depends on A and ¢ in quite different
ways,we cannot expect to find eigenfunctions for the Jacobi fine-
tion transform as in (I.I),(I.4).But it is possible to give nice
explicit orthogonal bases of L'/lf,"; 4/¢/a¢/)  and LY, ,'/z#/_'
/c/l//"di/ which are mapped onto each other by the Jacobi
function tramsform.For this we need two other families of ortho-
gonal polynomials.

Jacobi polynomials are orthogonal polynomials of degree »~
on (~I,I} with respect to the weight function x-/f-*/"//**/"
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and with normalization A ﬂ"”///: et St .Important for-
mulas are

ety
7 2l [, Nk Bt unt; £ )1k

(1.16) B™)err)’0/™*len).

Wilson polynomials were introduced by Wilson /147 ,/15/ .In the
notation of J.Labelle's poster /I0/ they are given by

Wo/x% a, b c a) =fasbd), fare), /a A

(I.17)
~n,neasbrcra-7, atix, a-24
‘/';/ 1/)/)-0,1,2,.“.
asb, avc, avd
Note that the ‘/-; -hypergeometric function is a sum running
over 4,=07.. . ,n»n ,the wth term containing the factor

[avix), fa-ix), =/a‘+x’///aa-//’; x'/..: [fasn -//’u"//

which is a polynomial of degree # in x%* _It can be shown

that Wh is symmetric in the four parameters a b, c o LI

they are all real or if one or both pairs of them consist of

complex conjugates,a possibly remaining pair being real,then W,

is real-walued.If ,moreover, a, 4, ¢, o have positive real parts,

then the functions & ~— W, /*3)  are complete and orthogonal on
/&, with respect to the weight function

[lasix]l1beixn)/er ix)/ el v i x) 2

X r—e
(1.18) r'r2:x)

The desired orthogonal systems mapped onto each other by the
Jacobi function tramsform are now given by the following formula:
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(4
B Eoipn2y () (4, 5)
//cﬁ“/ [7-2¢8%)y T 8)4, o 1E) et
o

zzo(olﬂ*f/_'/‘{'///_’/ﬂ/-/{/‘-.‘-l ‘/,[,t)/'/'/f/j‘%i/*f—ldj/
(1.19) I T(E ks s Gt i 2o ) [[{[R-RB o5 44pme2)en)

Wy (A5 $ 5 imet), §[6-iust), F[arRr1), F(a-547)),

ﬂ,ﬂ,,« (”} ‘:“>_,'

This formula was derived for _« =& in /8,(9.4)/ and in full ge-
perality in /9 (3.3)] .A decisive hint for finding (I.I9) was
given by the paper of Boyer & Ardalam [2],vhere the special case
d:fp-3/2, pe6x - § is obtained in the group theoretic set-
ting of spherical principal series representatioms of the group

$0, (7, »/ .It is curious that Wilson polynomials were not yet
known at the time /27 was published.

It follows from the orthogonality relations for Jacobi and

Wilson polynohials that the functions
kBl z /J &/

£ fent) r-2¢42/
are orthogonal on /¢, Wwith respect to the weight function 4, ,,
and the functions at the right hand side of (I.I9) orthogonal on
#, with respect to the weight function 2 ~s28) " ferd))? ,
provided /8/ < A+7 . For other values of 4 the polynomials
x = W, /*?/ remain orthogonal,but with discrete masses supported
at the positive imaginary axis added to the orthogonality measure,
compatible with the added term to (I.I4),(I.I§) in the case /&/>
XA
2. Racah coefficients and polynomials. Wilson /I4/,/I5] ob-
tained his Wilson polynomials as a kind of amalytic comtinuation
of the orthogonality relations for Racah polynomials.These latter
orthogonality relations naturally follow from their group theore-
tic setting as Racah coefficients.lLet us briefly explain this.
Let f«r2/ be the group of 2x2 unitary matrices of de-
terminant I.Write
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G, » Gy Gy = PUL2)x PUL2)x $UIZ), *
GI

o= g (6,5 ) [i %4,

G, = d;‘a,/‘(:&lkc_'/_

Then we have the following scheme of subgroup inclusions

Let £=0,%,7 ... and let 74 be the (up to equvalence unique)
irreducible unitary representation of #£4/2/ of dimension 2€+7.
(See Vilenkin /I3,Ch.3/ for an account of the representation the-

ory of fu/2) .) In general a representation 7% of G,
will be contained with multiplicity higher than one in a repre-
sentation 7% e 7% o 7% of G, *6; > G, .But we can

decompose this multiple of ré into irredicible representa-
tions by using the irreducible representations of any of the in-
termediate subgroups in the abgve scheme,as we indicate in the
following scheme.

TS 7%e 7%

T @ 74 Tlr e 7% 7% 7%

o
Now each representation in the scheme occurs with multiplicity at
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most I in a representation occuring on & line immediately above
it.So,if AH/7/ denotes’ the subspaee of the representation
space of 7% e 7% o 1 consisting of all vectors behaving
according to the representation 7 of some sobgroup then we
have

-~

JOHT %0 TS n HITE),
72

y P p)
(2.1) bpryd g@HT O TIINHITE,

4847 beo r%intiiT?),

!

and each of the three decompositions is into subspaces irredicible
under 6, ,all behaving according to ré.

In general,if A is the representation space of the »~-
fold direct sum of am irreducible unitary representation 7 of
a compact group €& and if H-Oﬂ-y 7] and # = 0;., w;
are two orthogonal decompositions into irreducible subspaces then
there are intertwining isometrie_s 4[/- Y- Wy which are
compatible in the sense that ,4,0- 44,/- is independent of / .By
Schur's lemma two such choices Ay and 4;, differ at most
by a factor €xp/V-7/8¢; '}// for certain real ¢,,..., ¢, ,
¥%,--- ¥» .Now there is & unique ~»+,» matrix /€i;/ such that

-

”
V=E’ ‘l}‘l}vi V(V‘-,
Of course,the coefficients ¢;, satisfy a row orthogonality

(2’2) Ci',' C,,J s;‘-

Ms

-

it
and a similar column orthogonality.Now apply this to the first two
decompositions 'in (2.I).For fixed &, 4 , % and £o we will
obtain & unitary matrix /ecs;/ with £, and &y a8 row and
column indices.Racah /I2] (see also Biedenharn & Dam ./I/) computed
the matrix coefficients as elementary factors times terminating
«/5 -hypergeometric series of unit arguments,which should sa-
tisfy the orthogonality relations (2.2).These coefficients are
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called Racah coefficients of 64 -symbols,

Next Wilson /I4/,/15/ made the observation that the above

‘/f 's can be viewed as polynomials,which become orthogonal poly-

nomials in view of the orthogonality for the Racah coefficients.
By analytic interpolationbetween the discrete walues of the para-
meters &,,4,, & , &, a big class of orthogonal polynomials was
obtaoned : the Racah polynomials.

Racah polynomials are defined by

- el o - + &
(2.3) &/*ﬂ*’)f*é"f/,'i,ﬂ,r,6‘/-‘/;/”'” P, -% XeVeEre
n(r// A’&J’*f/)’.n-f

7

where & +7 or B+8+ 7 or Yy+<# equals a nonpositive inte-
ger-# .Let ~» 7rTun over 47, 2,.. # and let the hypergeomet-
ric series in (2.3) terminate with the 7™ term.Since /X
[reye8ev), is a polynomial of degree 4 in x/x+y+&+7/), R,
is indeed a polynomial of degree » in x/y+veé+7/ .The poly-
nomials A, satisfy a discrete orthogonality relation

.4
(2.4) ZoI,,/J'/X*)’*6’0///[,,,/4'/!')’¢3'+///;,=0, 7,
=

where the weights wj, can be given explicitly.

3. The Askey scheme of hypergeometriw orthogonel polynomials.
The orthogonality relation (2.4) can be obtained by taking resi-
due# in an orthogonality relation for "f,‘ -polynomials along a
complex contour.This last relation has another real form,which
yields the or hogonality for Wilson polynomials.Racah and Wilson
polynomials are,for the moment,the culmination of & scheme of hy-
pergeometri¥ ortjogonal polynomials,which are related by limit
transitions (the arrows below).This schehe is generally ascribed
to Askey,cf.Labelle /I0/;
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‘F’ v e \ /Rac =

s5/%  continuous Hahn duel Hahn
dual Hahn

5 72/  Meixmer- Jacobi. Me ixner Krawtchouk
Pollaczek .’//////’/,///4/’ \\\\\

,4'/Z/ Laguerre Charlier

°r %5 17/ \ /

2 ,t; 7o/ Hermite

The left column denotes the type of hypageometric function
and,in brackets,the number of parameters on which tha family -de-
pends.The Wilson,continuous dual Hahn,Meixner-Pollaczek,Jacobi ,
Laguerre and Hermite polynomials have an absolutely continuous
orthogonality measure,the other ones have a discrete measure,(For
simplicity,the continuous symmetric Hahn polynomials are omitted
in the scheme.)

Let me formulate some problems associated with the Askey
scheme:

I) Find group theoretic interpretations of all the families

of polynomials in the scheme.

2) Find also group theoretic interpretaions of the limit
transitions.

3) Extend the Askey scheme with nonpolynomial families of
orthogonal functions of the hypergeometric type (possibly
orthogonality in the generalized sense).

In this paper I only consider problem I for the case of the

Wilson polynomials.Section 2 suggests to look for this in some
noncompact real form of £Lr26)x8L(2,c)xPL/E) .In this
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I did not yet succeed,but I will present in § 4 a different group
theoretic interpretation of Racah polynomials,which admits more
easily analytic continuation to a noncompact case.

4. Racah polynomials,spherical harmonics and orthogonal

polynomials on the triangle. Let H,,’ denote the space of
spherical harmonics of degree » on the unit sphere #£°°7 in

#*° ,i.e.of the restrictions to i of homogeneous harmonic

polynomias of degree »~» on ®&” .See for instance Muller /II/
for the theory of spherical harmonics.The group o/»/ of real
orthogonal » =+, matrices acts irreducibly on 4 ,unitarily
inder the inner product from [2/#77/ .Denote this repre-
sentatimm by 75 .

LEMMA 4.I (cf. /6,Theorem 4.2/ ).Iet F¢ W) * ,write ele-
ments of WR°% as /x,v)c #°x#%® .Then , behaves accord -

ing to the representation 7,/ @ 7,° ofd/e/ = ofp) iff
- rfg-1, §P-722x/
(4.1 pres)= 1) vte) )0l E V21",

/) /w12 <4  Lfor certain Y. 4 .Purthermore , functions
of the form (4.I) are mutually orthogonal for different m» and
each 0/g/  -invariant /¢ A, ® can be written as a sum of
functions of the form (4.I) /m=47 ...,/ Ahm in

(4.1) denotes a Jacobi polynomial.)
Consider now the group J/p+g+z/ with subgroup J/»/~/g)
x Jdre) and intermediate subgroups as in the scheme:

a/p ' g ’z/\
Ofpeg/no/z) Ug+z)x Op/ Ofrep/x 0rg/
O/ x 013 )< 02/

The space of &/e/~&/g/x O/t) -invariant spherical harmonics of
degree Z» on £77%°%°7  has in general dimension >7 ,but
we can decompose it into subspaces of dimension 7/ by using irre-
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ducible representations of one of the intermediate subgroups in
the scheme:

LPrgre
”z”’ \
e 2 3 g-z , zep P
/71'01 ® ’0 ,;m @ ’; ”;m ® 7;

By iteration of Lemma 4.1 we get three different orthogonal bases

for the space of Jp/xOrg)x2rz/ -invariant functions in
Pr@rrx
Hon :
my (¥3-7, §- // /y/

Lm0 %, 2/ =1/ 2y A, N

(4.2) S #oe
g - /r2n

Bm f /, 2/z/%) pe/% 1% 120 % 7,
where m=0,7,...,n ,and two similar bases by cyclic permuta-
tion of both x, v, z and p, ¢,z

We now want to express these bases in terms of each other
and find the coefficients.Since G/p/*xd/g9/x g/:/ ~-invariant
preerr-7 only depend on /v/?  and /z/?  ,we
can rewrite the problem for functioms in « =/z/? and v =/v/*

functions on

o, A /‘ Beyel2mst) / Y,
(4.3) Am T, v) = /7-2ujf1-4)". Vr-2 7=/
where &< %z-7, B=F9-7, y< fp-7, and two similar families

obtained by cyclic permutation of both «,v, 7-«-v 2and £ 3,v,
for instance
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- R4 (8, vedk o 2med) 7y ol
(4.4) @, 7y 8., 12" B -2 LY ).

Let «,8,vy »-7 arbitrarily.It follows from the orthogonality
relations for Jacobi polynomials that both /2577 .

%87,
and [ﬂ,,'m /,,,_0,,1“_,,, form an orthogonal basis of the space

of polynomials # on ®*? of degree <~  for which

(4.5) // L, v/g V/a‘v’//-a-vjya’a av =0 |
u,v >0
usvet
for all polynomials g of degree <a. Pr,m respectively &,

are completely characterized up to a constant factor by the addi-
tional property

«, /B8,y ik g K-£
(4.6) By V)= 2 Z auesr-4) vtl

‘ mxm Pz ’

R4 2 iid n-€ yd
(4.7) Ry 12,V 2 & X bypt?-v) [7-e-y/°,

Hem f=0
for certain coefficients ase, 4,, with a, 4 _+#0 .Now
we have to find the coefficients in
« By 2 «ny _®AY

(4.8) Ry fuv) = Z e Fum [V

These were first obtained by Dunkl /3,Theorem I.7/ as 1imit case
of a similar formula for Hahn polynomials in two variables.How -
ever,there is a more direct approach by restricting (4.8) to the
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pboundary «=20 and then integrating both sides over ~fJ<v<7
with respect to the measure &m’r//%.?v/v"//—ld’;'v Ve
finally arrive at

“0, Y
».m, s = elementary factor

(4.9) g (ks sy o lf; Y, B, -n=T, de yens 1),

the Racah polynomial A4, Dbeing given by (2.3),which yields a
new group theoretic interpretation of Racah polynomials,

It would be interesting to give an intrinsic proof that the
coefficients considered here and in §2 must be the same.

5, Wilson polynomials and hyperboloid harmonics. Write ele-
ments of #°°%  as /x v/ € R R et Ho g be the
hyperboloid -/#/2+/v/%< 7 in 7% let HPP%/AeE) be
the class of hyperboloid harmonics of degree t.l—;’-/p»g/f 7,

i.e. of restrictions to ﬁlp" of c”-functions on
{/.r,v/ﬂ"”/-/x/’*/y/2>0] which are even,homogeneous of deg-
ree u-;/p'g/d and are annihilated by the operator

2% 2¢  2* 22
.1 a -4 1E e—— ., - - - .
(5.1) px “g,y 3‘,’1 MR 2x2 2% 23

The (moncompact) group Or/w, ¢/ of transformations which leave
2 2 . s e

the form -/4/"*/¥/ invariant,acts on 4, by a repre-

sentation denoted by Z‘J”g JAf A >0 then we can associate

with 2’,1”’ an irreducible unitary transformation of op.g)

in a way which I will not make precise here,cf.Faraut /5/ .Define

the Laplace-Beltrami operator UJp,g on Hp,g. by the rule

(5.2) a,; ,./Aﬁ,l -AQ;V/F///’,g.I

where ¢ 1is the restriction to Apg of a C®~function £
which is homogeneous of degree zero.Then //,."“ consists pre-
cisely of the even C“-functions on Ho,g which are ei-
genfunctions of 4dp,g¢  with eigenvalue -/1{/{/,009/—//?

The o)« 0fg)  -invariant elemenets of A% are pre-
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cisely the constant multiples of the Jacobi function
Ho,g 3 /ry) = f,,/!"” *"”/azc.rﬁ/x//.

There is on Mg an O/e, g/ ~invariant measure 4 (unique
up to a constant factor) which decomposes as

/o’/.r,y/a}aﬂ',yjr/ /"'/’_’ F/Eehié, yeht)
/X €8

t2-00 FeS
L282)" T fent) 8 Tt df v,

o/, dy being rotation invariant measures on the spheres.
More generally,write elements of #”*%*® as /x,v,2) €

iy 41T dd and consider Oyp/)*0/g/¥0O/r/ -invariant ele-
ments in H/’"’*' .These are functions only depending on /X/f
/’/z/ /z/* restricted to the hyperboloid -/x/%-/v/%s /2/% 1.
If we put w:=/¥/% v:=yv/° and write the functions as func-
tions in «, v then the property of being eigenfunctions of

[ translates into being eigenfunctions of

L:= 4«/#4.1/-—31 +8av 2% oév/fold-é%;

du? dud
(5.3) “ “
*(2/psg+ tju pr/-aaT +/2,{)n-g¢:/y.2g/—§\-/—
with the same eigenvalue -A’-/{/,oc-g/-//z .Note that the

operator L is elliptic on the quarter plane [/«,v/¢ #2fu,v >0}
and becomes singular at the boundary,while a is hyperbolic &and
generally admits distributional eigenfunctions.
The space of O/~ d/g)~o/t/ -invariant elements in
/&" 2 = is infinite-dimensional.We can decompose it by using
schemes of subgroups ahd corresponding representations analogous
to §4:
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Ofprg,z)

Ofprg)x Orz) Ofg, &/x Orp) Olp. t/)x 018/
O1p)x 0/2)x %/
P+, ®
/ z R \
pi:‘ ‘ .&‘\z}”l" ﬁ;p z': 'O ”—aa
rfe 7,8 e 7}

(The representations # are as in %4.) Note that one of the in-
termediate subgroups is compact but the two others are noncompact.
Decompositions using a noncompact subgroup will involve orthogo -
nal systems in the generalized sense and lead to direct integral
rather than direct sum decompositiond.A computation shows that,
corresponding to the representations 77;,,,"0 7 and z;‘q,z‘ LA
respectively,we have Ofp/)x0f3)x Or2/)  -inveriant elements é,,m

and ¥, . in HSE as follows.(They are written as func -
tions of &« =/¢/7 va/v/?)

’.Ln /"‘: V/: = ",l/ffl‘Q/*zm-" ft-f//at"‘/a‘ y/f/
(5.4)

(¥r-1, §3-7/

'/”"/’w//’n /':Tuﬁ,—v‘ ’
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-7 £
’i,ﬂ [u, V/: - ¢A{{P "/'//G:CIKM f/

(5.5)

in-Zrge f‘ fe- ,i - -5
,/U*,/fﬂ Fra-z/ 2‘¢/;/79 7,7 7{324‘!5/&/;/“’7/ ://

This is all in perfect correspondence with §4.In fact,the
above functions might be obtained from §4 by analytie continua-
tion.Now we have to make precise that each representaticm in the
last diagram occurs with multiplicity one in the representation(s)
in the row above.I will make this plausible by showing that each

O/p)x0fg)x Ot/ -invariant Qr-function (or 4% ~function)
on  AHpsg,: can be fully decomposed in terms of either the
functions ¢3,m or the functions ?ﬁ“u.(For convenience, in
order to avoid discrete components of the spectrum,we assume here
that @ « p+2 and ¢ < prgr2 2

Let # be an O//x¥O/g/x0/t/)  -invariant c®-function
with compact support on Hoeg,z and write it as a function
of fu,y/ € R, * IR, .The invariant measure on AHpeg,:z then
takes the form

PP Lo L7
(5.6) A/M,V/a’ao'vt- «iP7, 58 ’/1,“,,,/72 du dv.

It follows from the orthogonality relations for Jacobi poly-
nomials and the inversion formula for the Jacobi function trans-
form that we have the integral transform pair

(6 8/(2,m) = ) [ bl )by, m (04 10y ebes v,

tus)s Z [ aR(5 W (A,m)bsm V)
(5.7) Ao

m! rmegpefe-v)f2mefp-F3-1/
47 fme E0)l(me $3)

| 10 fpse o)t A1 s )2 ) |
rifeeg)-amiriia)
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It extends an isometry of L'//p, jf Afu,v)du v/ onto
L'f#, = Z,) with appropriate measure.
4 similar transform with ¥4, 1nvolves a Jacobi function
tramsform with unusuel imaginary parameter, which still can be
inverted by the methods of /7/, /8,§6/:

612) = Jrre)pl* T eyent)  Veht) ** ehs o
o

(5.8) Frer =287 [ 6/2)8) e femn)tT
4
’ [(ElRek-ivedf)fTE iR rdsty. 1) zdz
riced)/r/z)
Note that ¢/ "/ e)fche)” is real.Now combination of

(I.14) and (5.8) yields the integral tramnsform pair
o0 &
(% 4/(2, ) = / / 14,0/, i (10, V)4 fai,v) dadly,
66

(5.9) 2065~ [ [ AxGp [5z £ 2, ) Y4 e [15,8)

2g+2)-2
I P Cid% [(FleAe Lo-ca))/(F1A+ 3P, im) I°

o/ (20)1R) 1 (4 o § g0 2)- ) Y4 imn £ 12-0)ogf) |

/: @again extends to an isometry of L*-spaces.

For a completely neat treatment we should relate the trans-
forms 4, and /£; to the Pourier transform for general c™-
functions with compact support on & hyperboloid,cf.Faraut /5/,but
we omit it here,since it is not needed for the final appearance
of Wilson polynomials,

We can now state our final result

THEOREM 5.I. The identity
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3 s fi/"’/' ,/m
Yo, Z 24
™20 (ol (43 ($10+8) - Vpm

(5.10)

4.2 Pr2id <24 -
W../z-/-; = ’P:ul,j;tz g- xfz/‘k,n

is walid in the weak sense that (5.I0) holds with ¥, ,  replaced
v [(ARL)(Ak) @ $,,., b [£4)(a,m), torauy /¢
CYl0, )% [0, %))
The theprem follows from the identity

14
-2 r&r-7,
[142¢) :ﬂ;i “#3-7) 75) %, /%L:ﬁﬁfgz;ng/

o ipo- ‘g-
S1-i)EE ) ¥, 22 F r18p)r/#2)
san T 27

/4 1 po?;.,a P-2iR 2+ -2 _L-u-z/
4 /4 /74

¢A/;/"!‘9¢-Zn 7, §z- 7/, /

This formula,in its turn,can be proved by showing that the left
hand side satisfies the differential equation (I.7) with «= ;’p#
+$9+2m-1, f-fr-7 .Hence it must be equal to

Caup (3)e /X2 Gy pfRIE I

Gep

+ofe ag £ - oo,

/-.c-p-fjé/
On the other hand,by use of (5.5),estimates and asymptotics for
the Jacobi functions occurring there and the dominated conver-
gence theorem,it follows that the constants C, and C; are
equal to an elementary factor times the left hand side of (1.19)
with &, 8,8 A, 4 replaced by Fg-7, Iz -1, $p-7, 4, TR,
respectively,and that ¢, =6 .Then application of (I.I9) yields
(5.11).
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REMARE 5.2. It would be interssting to look for the kermel
which sends O/p)x0/g)x0/r)  -inveriant elements in V7 e
1abeled by ZFFe 7S to ones labeled by 2% 7,2  .It will be
a generalized orthogonal system,probably consisting of at least

+/55 -hypergeometric functions.

REMARK 5.3. Analogues of the results of sections 4 and 5 in
this paper have been obtained by Suslov /16] for Hahn polynomials
respectively continuous dual Hahn polynomials,but with one deg-
ree of freedom missing in the parameters.He did this in connec-
tion with the Schrddinger equation.It should be possible to ob-
tain his results as limit cases of the ones given here and to re-
1ate his results to /9 (5.I4)/.
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