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0. Introdkction. This paper is the second part (after /9)) 
of an informal account of a research activity which started with 
the observation of a curiosity (namely two explicit orthogonal 
bases mapped onto each other r;r the Jacobi function transform), 
but which grew out into a research program to complement Askey's 
scheme of hypergeometric orthogonal polynomials with group theo­
retic inter~retations and with further orthogonal system of hyper­
geometric nature but of nonpolynomial type.Here I will deal with 
a group theoretic interpretation of Wilson polynomials as kernels 
connecting with each other two canonical bases of harmonics on a 
hyperboloid satifying a certain invariance condition.This is prA­
ceded by a similar interpretat • .,n of Ra.ca•h polynomials in connec­
tion with spherical harmonics. These main resul ta can be found in 
§ 4,5.The earlier sections are ~f introd~otory nature. 

I. Jacobi and Wilson .E.Ql.y~cmials maimed onto ea.eh other b;r 
the Jacobi function transform. Hermite polynomials Hn are 

orthogonal of degree n on the interval ( - oo , - ) with respect 
to the weight function x-exp(-x'i .It is well-known tJvi:t: the 
functioI1s t - H,,(t!/1t.rp(·f r.") form an orthogonal basis for 

L 2 (R) of eigenfunctions of the Fourier tra.neform with ei­
genvalues i-n · 

... 
(I.I) (2r;-l/11,,(je-:/i~-iifed'e c r"f.l,,/A.)e"f< .... 
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A similar set of eigenfunctions exiats for the Hankel transform 

paix: 
... 

9(A.) •/,fit/~ fU)ia't 

" 
( I.2) 

"" 
/ft/ =/9!A./~ (.A i)At:IA. 

() 

where 

( I.3) 

denotes a Bessel function.An orthogonal basis for t.'/N,., it#) 

of eigenfunctions of the Hankel transform with eigenvalue f-1'),., 

is given by the functions i - L.:(ia/-t"'1yp(-f-4'i ,where the 

Laguerre polynomials L: are orthog~nal polynomials of degree 

"' on (O, .. ; with respect to the wei,ght function x - K"'1·" 

(Ii>-~): 

(I.4) ;-;.~ (it2}l"1·I'• -7.t (A.l)icll. •f-ljnL: fft.i/tl"",·i< 

" 

c!. /4,8.9 (3)]. 
Let us next consider an analogue of (I.I) and (I.4) for the 

Jacobi function transform.Let at > -1', .II £ If, 

( I.5) 

L • t.,.,,. a differential operator defined by 

( I.6) f.Lu)'/-4 1::1£ ... £1!.!.. ")u/i 1 i£11f {''/ { di 1 Al•) o'I I''/, . 

Let the Jacobi function ;,. • ;./"'-.PJ be the unique solution ~ 

of 
(I. 7) 
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which ie c"" ,even and eatis:t'iee 14(0/; I' 

as. a hypergeometric f'lUlction 

The transform /-} defined by 

(I .IO) ;(.A):" /;f'~}pA /l/A/t}d~ 
0 

ie called the Jacobi function transform. 

.It oan be expressed 

Noteworthy special cases are the Fourier-cosine transform 
1-'•,,I •-I) and the Mehler-Feck transform r"' =./$"= o/ ,See 
for instance /7/ and the survey /B] for details and background of 
this transform.Group theoretic interpretations of (I.IO) highly 
contribute to its significance.In particular,the spherical Fourier 
transform of a Riemannian rank one symmetric apace of the noncom­
pact type can be written in the form (I.IO). 

For the inversion of (I .IO) consider a second solution PA 
o:f (I.7) which ia,for ]MA >O ,uniquely determined by the 
asj'lilptotic behaviour 

(I .II) 

and which,for A ( 4'\{-i,-,ti, ... j, ,is defined by analytic 
continuation with respect to A .Then 

( I.12) I A• c/A}IA • ~/-A.)l_A, A. f 1 Z, 

where 

( I.13) 
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If ~ f .D even (even c• -functions with compact sup-

port on if ) then (I.IO) can be inverted as 

... 
(I.I4) /(1.j=-/211"/~/,l'/JI)#>,,. /t)/c/.1i)/-2a.,1J 

" 

proTided /-8 / ~ tl. ... f" ,otherwise we have to add a finite sum 

to the right hand eide of (I.I4) ,where A runs over the poles of 

A-/c(.A})-~ in the upper halt plane,all lying on the positive 

imagi:ll.ary axis, and the positive canst ants Y /Ji) a.re expressed 

is certain residues.For convenience, we will furher assume that 

/;9/~J.·f. 

~here is a Paley-\Wiener type theorem stating that .I - l maps 

J) even one-to-one onto the space of even entire analytic func-

tions of exponential type,rapidly decreasing on Jf' ,which is 

dense in L"(IR.; /217)"'/c/A)/-a <¥.'-} .There ill a Plancherel 

fomula 

... ..., 
(I.I5) /!~11.J/'4/il)l!l'I.,, (an-;-~Jf.AJ/ 1/cfA.J/- 3ol.tl, ... " 

which first can be derived for I' ( .[) .The formula shows that 

the transform /,... ./ uniquely extends to an isometry of the 

Hilbert space 1. 2 /lif,. ; A/i./a14/ onto the Hilbert space 

L 3(/R:,. ; (2tr)-f/&f,i)f"" 1111). 

Since P.ti (I.) depends on A and i in quite different 

ways,we cannot expect to find eigenfunctions for the Jacobi finc­

tion transform as in (I.I),(I.4).But it is possible to give nice 

explicit orthogonal bases of t.•(.1t,."u1(t/ait) and L 2//,R~ ;/.tu/-~ 

/cf.J) /" 3 f,M) wlHch are mapped onto each other by the Jacobi 

function transform.For this wa need two other families of ortho­

gonal polynomials. 

Jacobi polynomials are orthogonal polynomials of degt-ee /7 

on (-I,I' with respect to the weight function x- /.;-k/"/'1' .. 1r/_,. 
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-and with normalization ~ /,1.,.a~'I'./= /,t+1'/n/hl 
mulas are 

• Important for-

(I. I6) 

Wilson polynomials were introduced by ~ilson /I4j,/I5/.In the 
notation of J.Labelle's poster /IO) they are given by 

(I.I?) 

Note that the 4 1 
over Jr = °' t; ... ,,, n 

-hypergeometric function is a sum running 
,the Kth term containing the factor 

which is a polynomial of degree H in xz .It can be shown 
that W,, is symmetric in the four parameters 4, .6, c, a' • If 
they are all real or if one or both pairs of them consist of 
complex conjugates,a possibly remaining pair being real, then Ml,, 
is real-Yalued.If ,moreover, a, 6, c,d have positive real parts, 
then the functions K - W,, (.i-2) are complete and orthogonal on 

/~~ with respect to the weight function 

(I .18) 
x _ , r/o.••x/r/J,,"Jr/c .. 1KJr1c1~,:K/lz 

r/2ix) 

The desired orthogonal systems mapped onto each other by the 
Jacobi function transform are now given by the following formula: 
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( I.I9) 

2 2 " • 2111 ·;./.t•*'//-fJ"rf/fc .. i.,;. .f,., A.)/rflfr .. ;,... .. .,._ JAJJ 
nlr({f.t•JJ,. o•i,111 .2;,,.nJr({f-'-./J,.,,.,,,.. .. 2),.n) 

This formula was derived for,,,..•" in /8,(9.4)} and in i'ull ge­
nerality in /9 (3.3)] .A decisive hint for finding (I.I9) was 

given by the paper of Boyer & Ardalan[~},where the special case 

"z f p -.1/.z, )J. r. - f is obtained in the group theoretic set­

ting of spherical principal aeries representations of the group 

100 (*', ,o) , It is curious that Wilson polynomials were not yet 

known at the time /2] was published. 
It follows from the orthogonality relations for Jacobi and 

Wilson polynomials that the functions 

are orthogonal on IR,. with respect to the weight function ./J.l,.11, 

and the functions at the right hand side of (I.I9) orthogonal on 

JP, with respect to the weight function J. -/2r;-"/cf..<)/-.z 
pro"'f:ided /.11/ ~ ,,/,.-I .For other values of .JI the polynomials 

x .... W,, fJt2) remain orthogonal, but with disoreote masses supported 

at the positive imaginary axis added to the orthogonality measure, 

compati~le with the added term to (I.I4),(I.I5) in the case /.11/> 
6' .. .f. 

2. Racah coefficients and pol:rnomj.als. Wilson /I4/, /I5] ob­

tained his Wilson polynomials as a kind of analytic o:Q\ll.tinuation 

of the orthogonality relations for Raoah polynomials.These latter 

orthogonality relations naturally follow from their group theore­

tic settiDA as Racah coefficients.Let us briefly explain this. 

· Let §tl OJ be the group of 2x2 unitary matrices of de­

terminant I.Write 
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Then we have the following scheme of subgroup inclusions 

Let I'· P, f 1 ~ . • • and let T.!' be the (up to equvalence unique) 
irreducible unitary representation of J'll(2/ of dimension 2b-t. 

(See Vilen.kin /13,Ch.3/ for an account of the representation the-

ory of J'U/2/ • ) In general a representation r"• of Go 

will be contained with multiplicity higher than one in a repre­

sentation r"# • r'z • J"~ of G, "Gz " G, .But we can 

decompose this multiple of r"0 into irredicible representa­
tions by using the irreducible representations of any of the in­

termediate subgroups in the above scheme,as we indicate ln the 

following scheme. 

Now each representation in the scheme occurs with multiplicity at 
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most I in a representation occuring on a line immediately above 
it.So,if ll(T/ denotes' the subspe.e.e of the representation 
space of r"• tJJ T "• " r '~ consisting of all vectors behaving 
according to the representation T of some sobgroup then we 
have 

i• llfr l'.,zq; r'4jnll{rl!;,, 
1'11 

(2.I) H(r"1J: 

and each of the three decompositions is into subspaces irredicible 
under G., ,all behaving according to r'0 • 

In general,if H is the representation space of the n -
1 fold direct sum of an irreducible unitary representation T of 

a compact group <r and if J.I • ~':,. ~· and N • •.,l~~ ~ 
are two orthogonal decompositions into irre4ucible subspaces then 
there are intertwining isometries A1; : V,. - W;. which are 

-( 
compatible in the sense that AK,/ A1; is independent of i .By 
Schur' s lemma two such choices At; and Bi_,; differ at most 
by a factor ilKp(Y-7 (t6;, • "';/) for certain real {;0 ... , p,,, 
Yf, ... ")".., .Now there is a unique nJrn matrix (c,;J such that 

Of course, the coefficients c;,; satisfy a row o:tthogonali ty 

(2.2) 

and a similar column or•hogonality.Now apply this to the first two 
decompositions 'in (2.I).For fixed !~,I'.,~ and i'., we will 
obtain a unitary matrix (CJ.,1·) with ~.z and t:r6 as row and 
column indices.Racah (I2] (see also Biedenharn & Dam /I/) computed 
the matrix coefficients as elementary factors times terminating 

4 F, -hypergeometric series of unit arguments,whioh should sa­
tisfy the orthogonality relations (2.2).These ooeffioiente are 
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called Racah coefficients of 6) -symbols. 

Next Wilson /I4/,/I5/ made the observation that the above 

4 { 's can be viewed as polynomials,which become orthogonal poly­

nomials in view of the orthogonality for the Racah coefficients. 

By analytic interpolationbetween the discrete values of the para­

meters I'.,,,.,, I'd , i"s a big class of orthogonal polynomials was 

obtaoned : the Racah polynomials. 

Racah polynomials are defined by 

where et +I or JI.,. c,.. ~ or y.,. -1' equals a nonpositive inte­

ger- Al .Let /1 run over 4 1, 2, ... , N and let the hypergeomet­

ric series in (2.3) terminate with the nth term.Since f-x)1r 

(.1<+ y,.& .. _,JN is a polynomial of degrl!e />f in x(K+ y•S'~-tJ, R,. 

is indeed a polynomial of degree /1 in x/-t-+Y~o+.f'/ .The poly­

nomials Kn satisfy a discrete orthogonality relation 

(2.4) 
N 

L 11,,(lf(X•'Y .. G+l/)A',,./Jr/x .. y .. tf'+-tJ);;,,,. = o, /1)'m, 
)(:() 

where the weigb.ts ....-... can be given explicit.Ly. 

3. Tbe Askey scheme of hypergeometri~ orthogonal polynomials. 

The orthogonality relation (2.4) can be obtained by tall:ing resi­

due11t in a;n orthogonality relation for ... {' -polynomials along a 

complex contour.This last relation has another real form,which 

yields the or· hogonality for Wilson polynomials.Raca.h and Wilson 

polynomials are,for the moment,the culmination of a scheme of hy­

pergeoaetriw ort~ogonal polynomials,which are related by limit 

tra:nsitiollll (the arrows below).This scheme is generally ascribed 

to Aakey,cf.Labelle /IO}; 
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dual Hahn 

2~ /2/ 

/;ff/ 
or z'o f-1/ 

z~ /11/ Hermite 

The left column denotes the type of hypageometric function 

and,in brackets, the number of parameters on which tha family ·de­

pends.The Wilson,continuous dual Hahn,Meixner-Pollaczek,Jacobi , 

Laguerre and Hermite polynomials have an absolutely continuous 

orthogonality measure,the other ones have a discrete measure.(For 

simplicity,the continuous symmetric Hahn polynomials a.re omitted 

in the scheme. ) 

Let me formulate some problems associated with the Askey 

scheme: 
I) Find group theoretic interpretations of all the families 

of polynomials in the scheme. 

2) Find also group theoretic interpretaions of the limit 

transitions. 

;) Extend the Askey scheme with nonpolynomial families of 

orthogonal functions of the hypergeometric type (possibly 

orthogonality in the generalized sense). 

In this paper I only consider problem I for the case of the 

Wilson polynomials.Section 2 suggests to look for this in some 

noncompact real form of ft.(2,4/r.IL/:z,c)A-§L./ir/ .In this 
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I did not yet succeed, but I will present in§ 4 a different group 
theoretic interpretation of Raca.h polynomials,which admits more 
easily analytic continuation to a noncompact case. 

4. Raca.h polynomials.spherical harmonics and orthogonal 
II polynomials on the triangle. Let }(n denote the space of 

spherical harmonics of degree n on the unit sphere f"·' in 
Iii" ,i.e.of the restrictions to § 11 -' of homogeneous harmonic 

polynomials of degree " on .RP .See for instance Mtlller /II,/ 
for the theory of spherical harmonics.The group O/n) of real 
orthogonal "•n matrices acts irreducibly on H: ,unitarily 
inder _the inner product from L. 2 /:1"-'j .Denote this repre-
senta-dirii. by· 1':. 

LEMMA 4 •. I (cf. [6,Theorem 4.2/ ).Let /f 11:;• ,write ele-
ments of J"P•g as /x, 11/ ~ .lf'P" Jf9 .Then / behaves accord -
ing to the representation .irz; • P-0" oflJ/p/,, P/tJ) iff 

(4 .I) 

/Jr/.z• /11/l < f ,for certain Y • H,:,, .Furthermore ,functions 
of the form (4.I) are mutually orthogonal for different m and 
each OfiJ/ -invariant It 1-1:,,·• can be written as a sum of 
functions of the form ( 4. I) ( m • P, I, ... , n/ • ( Pn.,,. in 
(4.I) denotes a Jacobi polynomial.) 

Consider now the group P/p•g,.z/ with subgroup P/pJ1P/1JJ 
,. tJ{l,J and intermediate subgroups as in the scheme: 

The space of ~(p/.rt?/tJJ" tJ/~J -invariant spherical harmoni<.1s of 
degree .Zn on ~,. .. , •'1-' has in general dimension >~ ,but 
we can decompose it into subspaces of dimension I by using irre-
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ducible representations of one of the intermediate subgroups in 

the scheme: 

By iteration of Lemma 4.I we get three different orthogonal bases 

for the space of 0/p)Jr'(}fg)Jt tlf'il!) -invariant functions in 

#z;•9•c,. 

(4.2) 

where m = t1, .f, ... , 11 , and two similar bases by cyclic permuta-

tion of both x, Y, z and p, S!, z. 

We now want to express these bases in terms of each other 

and find the coefficients .Since O/p) .. tJ/9) ~ t7/~) -invariant 

functions on f 1""•1:-~ only depend on /Y/.z and /z/ 2 ,we 

can rewrite the problem for functions in " ~ /z/ 2 and v = /y/ 2 : 

(4.3) 
-',JIJ Y ftl.,lf•Y•:Zm+(j (." yj 

~ m' (U, v/· = ~-M /f-2u)(-f·U/"'. ~m , ff-2 +-// 
, 7-U / 

where "-• fz-1, ./J• fg--t, Y• fp-f, and two similar families 

obtained by cyclic permutation of both u,v, f-u-v and "'-,.13,Y/ 

for instance 
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Let "'-, ..s, Y ,,. - ~ a.rbi trar ily. It follows from the orthogonality 

relations for Jacobi polynomials that both ( P,,,";:'/,.,=o,-t, ... ,n 

and {tJ ""·"'·}. · 
A,111 m •.?,-. ~ .•. , H form an orthogonal basis of the space 

of polynomials I' on 11? 2 of degree ~ n for which 

(4.5) // //N,V/j1/u,v/14"-vP/-#'-'4-v)Yt:¥14a/v =0 
"~ v ~ () 
"(#. v <. 'f 

for all polynomials 9' of degree "'n. P,,,,,. 
are completely characterized up to a constant 
tional property 

respectively ~,.,,,. 
factor by the addi-

( 4 .6) 
... ~. )" .;. 

P,, ,,, /14, v/ = £. 
, ..,~,,, 

( 4. 7) ,,. ,,.r ' L 6,, r If- v) /./-u - v/ / 
e.11 • 

for certain coefficients a.,,,,, ""·" 
we have to find the coefficients in 

( 4. 8) 

These were first obtained by Dunkl /3,Theorem I.7/ as limit case 

of a similar formula for Hahn polynomials in two variables.How -

ever, there is a more direct approach by restricting (4.8) to the 
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boundary u • Q and then integrating both sides over tl< v .c ~ 
n (Al,'1',/ .J /J ,JY 

with respect to the measure r;t /"-2v/v /'"1"-~ t:lv .We 

finally arrive at 

111,.;16,Y 

c "· "'· H " elementary factor 

(4,9) 

the Racah polynomial -"n being given by (2.3),which yields a 

new group theoretic interpretation of Racah polynomials. 

It would be interesting to give an intrinsic proof that the 

coefficients considered here and in §2 must be t~e same. 

5. Wilson polynomials and hyperboloid harmonics. Wxite ele-

ments of 1"'•• as /K,Y/£.lt"'•R" .Let /-/p,fJ be the 

hyperboloid -/x/3 .. /Y/ 3• t' in RP"I- .Let 11~"'"/...lE I&) be 

the class of hyperboloid harmonica of degree /.). -f (P•9-J~ 1"/ .. 
l./p,g of C -functions on i.e. of restrictions to 

{f.r, Y) /A'P•tsj-Jx/ll+ /Y/2 > ()} 

ree iA - f/,o • 9-/+ ~ 

which are even,homogeneous of deg­

and are annihilated by the operator 

(5.I) 
j) z ~a c,' ?> 2 

A,,,,K-AJ,Y:. -::--a •... +--,, - -- - - "'~". 
ox., ~x.., ?>~ •• • ., , 9 

The (noncompact) group 0{,o, 9) of transformations which leave 

the form -/..t/ 3 .. /Y/z invariant,acts on 11;· • by a repre-

sentation denoted by t'./"·• .If A > o then we can associate 

with r .. /~ 9 an irredupible unitary transformation of O/,o,9-) 

in a way which I will not make precise here,cf.Faraut /5/.Define 

the Laplace-Beltrami operator Op,~ on II,,, •. by the rule 

(5.2) 

where I' is the restriction to 11,.,,,_ of a c--function r 
which is homogeneous of degree zero.Then 11./·• consists pre-

cisely of the even c•-functions on 11,o,,,_ which are ei-

genfunctions of Op,,_ with eigenvalue -A 3-(f/p•gJ-~)~ 
The O/,o),, ()/~) -invariant elemenete of II./''" are pre-
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cisely the constant multiples of the Jacobi function 

There is on l./p," an 17 /P. 9-) - invariant measure /4 (unique 

up to a constant factor) which decomposes as 

df , dt; being rotation invariant measures on the spheres. 

More generally,write elements of 111.P•'l•• as (x, Y, z) f 

Jf.P., /,f •"IA' t and consider O/,o)" 0/9)" ()/1:..) -invariant ele-

ments in µ~P•9•1t .These are functions only depending on /Jt/~ 

/V/z /z/ 2 restricted to the hyperboloid -/Jr/"-/Y/ 2+/z/"= (. 
/ l z 

If we put u: • /.r/, v: s/Y/ and write the functions as func-

tions in u, v then the property of being eigenfunctions of 

0 translates into being eigenfunctions of 

(5 .3) 

with the same eigenvalue -).2-(/f,""9/-~) 2 

operator L is elliptic on the quarter plane 

and becomes singula:b at the boundary,while tJ 

generally admits distributional eigenfunctions. 

.Note that the 

{fu, v) f M 2/11,v > oj 
is hyperbolic and 

The space o:f Ofp)" 17/'J)" 0/z.) -inTariant elements in 

H).'• ''. 1e is infinite-dimensional.We can decompose it by using 

schemes of subgroups a.hd corresponding representations analogous 

to §4: 
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(The representations Ii are as in ~4.) Note that one of the in­

termediate subgroups is compact but the two others a.re noncompact. 

Decompositions using a nonoompact subgroup will involve orthogo -

nal systems in the generalized sense and lead to direct integral 

~ather than direct sum deoompositiona.A computation shows that, 
P•'I- ~ 9,1; P 

corresponding to the representations fr,,,, • n;; and ~ " ~ , 

respectively,we have O(p)JttJ/IJ)xtJ(t) -invariant elements ~"''"' 

and Y"A,;J< ;i.n H/•9 , t as follows. (They are written as funo -

tions of u' ~ /-"/~ v • /Y/.11.) 

(5.4) 

/. ,f"'P.f/P-",/t-"/(_u•v) 
• f u .... / ,,, -;;;v ) 
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(5.5) 

This is all in perfect correspondence with §4.In fact,the 
above functions might be obtained from §4 by anaJ.iytic continua­
tion.Now we have to make precise that each representation in the 
last diagram occUl.'s with multiplicity one in the representation(s) 
in the row above.I will make this plausible by showing that each 

()(p)xO(fJ)X tJ(l:) -invariant Cc:00-function (or i. 2 -function) 
on llP•t, t can be fully decomposed in terms of either the 
functions ; 11 ,m or the functions ~,,...(For convenience, in 
order to avoid discrete components of the spectrum,we assume here 
that ~ 'pt-2 and 1: "P"'J."2 .) 

Let /' be an O/p)KO/i)xtJ/1:) -invariant c•-function 
with compact support on /lp,. 9 , t and write it as a function 
of (",v)f IR.,. "IK+ .The invariant measure on J./p•!,l: then 
takes the form 

(5.6) 

It follows from the orthogonality relations for Jacobi poly­
nomials and the inversion formula for the Jacobi function trans­
form that we have the integral transform pair 

( 5. 7) 

--(.r; ,-j/,i,m)" / /1'/11,v/~,t,,.,/u,v)A/u.v}dudv, 
d II 

.., 
/(u, v/ = E j t:IA(F, ///A,mj;,,_.,,, /u. v) 

m•IJ A•IJ 

ml r(11H f P .. /t.- ~j/2m• /P•I!- -1) 

""~r('Ar .. ;,..Jrfm• ft) 

·/ rfJ/a .. //p+tJ .. r) .. 2111--f'Jjr(/fi,t •ffP1-t-'l:)t-2m .. l)J r 
rf /r,...,,; .. 2,,,)rfo.) 
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It extends an isometry o! L 1 ((Jfl~J~ iJ(u,rt)tl1Jd11/ onto 
l.~f 1.t,. ,, Z .. ) with appropriate measure. 

A similar transform with ll;{,,... involves a Jacobi function 
tra:maform with unusual iaagina.ry parameter, which still can be 
inverte4 by the methods of /7/, /8,§6/: 

-(5.8) r(t/ "/ZfJ".)-'/Gf.l),p/"',iY//t)(c~tf· >" 

" 

Iote that ~:•, •rl l4/fi;1*tj'>' is real.Now combination of 
(I.14) and (5.8) yields the integral transform pair 

,,. .. 
(~/)(A,,,../= J / 1111,v/~,,,.,fu. v)A(u. v)dudv., 

II II 

"" ... 
(5 .9) /(u,Y) • j j t:IA~(,&'z l')/1,,M)'l',,.,,,,u(u, v) 

II II 

4./9 .. z)-2 a I 2 • r(l1ii. f.P-•;.JJrf/ftA.•/h i,sJ/ I 
· .-r(f,11Jr(n/r(/fi-4'•ff9..z;J-f')/r(f1t,... .. ff'J-r/•1/ . 

~ again extends to an isometry of 
For a completely neat treatment we should relate the trans­

forms ~ and Fa to the Fourier transform for general C ... -
!unctions with compact support on a hyperboloid,cf.Faraut [5},but 
we omit it here,since it is not needed for the final appearance 
of Wilson polynomials, 

352 

We can now state our final result 
THEOREM 5.I, The identity 



(5.IO) 

is valid in the weak 

by I Fa /J f Jt, ,,a J 
c{/o, -J,, I o, -JJ. 

sense that (5 .IO) holds with YA,,., replaced 

and ~A,,., by fr, /)/,l, ;w), tor any / ( 

The theorem follows from the identity 

(5.II) 

This formula,in its turn,can be proved by showing that the left 

hand side satisfies the differential equation (I. 7) with «• f!' ~ 
.Hence it must be equal to 

On the other hand, by use of (5.5),estimates and asymptotics tor 

the Jacobi functions occurring there and the dominated conver­

gence theorem, it follows that the constants c., and Ca are 

equal to an elementary tactor times the left hand side of (I.I9) 

with "'-,p,G,A,~ replaced by /9--f, f~--f, fp--f',_,u, ~A, 
respectiftly,and that C~ = Cz .Then application of (I.I9) yields 

(5 .II). 
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REM.ARK 5.2. It would be interesting to look for the kernel 

which sends O(p)11P(1J)XP/1:) -invariant elements in NA"'~f..r 

labeled by r;J·"• 11': to ones labeled by r:•• 1"l .It will be 

a generalized orthogonal system,prooably consisting of at least 

+1" -hypergeometric functions. 

REMARK. 5,3, Analogues of the results of sections 4 and 5 in 

this paper have been obtained by Suslov /I6/ for Hahn polynomials 

respecti'v.ely continuous dual Hahn polynomilials, but with one deg-

ree of freedom missing in the parameters.He did this in connec­

tion with the Schr~dinger equation.It should be possible to ob­

tain his results as limit cases of the ones given here and to re­

late his results to /9 (5.I4)}. 
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