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Mathematical morphology is a theory on morphological transformations which
form the basic components for a number of algorithms in quantitative image
analysis. In this paper we present an overview of the basic principles of
mathematical morphology, and initiate a generalization of the theory by taking
the object space to be an arbitrary complete lattice.

1. PRINCIPLES OF MATHEMATICAL MORPHOLOGY

1.1, Introduction

A person who comes into touch with image processing for the very first time
will probably be overwhelmed by the enormous amount of literature that
appears every year, and it is not unlikely that he or she will be deterred by the
dispersion which characterizes the field. A first branch, which is beyond the
scope of this paper, originates from classical signal analysis, and its basic tools
are convolution and (Fourier, Karhunen-Loeve) filtering methods. Most of the
operations are linear and sometimes even reversible, which means that its per-
formance is not attended with loss of information. For a rather complete
account of this approach we refer to ROSENFELD and Kak [l1]. A second
branch in image processing is formed by mathematical morphology, a some-
what axiomatic theory containing elements of integral geometry, stereometry
and stochastic geometry.

Essentially, mathematical morphology is a theory on morphological transfor-
mations and functionals, which, if chosen properly, make it possible to meas-
ure useful geometric features of images. The main body of the theory was
developed at the Centre of the Paris School of Mines at Fontainebleau in
France, and its success is due in part to the fact that the theoretical research
kept pace with the development of an image analysis system, called the ‘tex-
ture analyser’. The books of MATHERON [9] and SERRA [12] (see also [1,3]) pro-
vide a complete overview of the theory of mathematical morphology, the main
idea of which is captured by the following quotation from the Preface of [12]:



“The notion of a geometrical structure, or texture, is not purely
objective. It does not exist in the phenomenon itself, nor in the
observer, but somewhere in between the two. Mathematical mor-
phology quantifies this intuition by introducing the concept of
structuring elements. Chosen by the morphologist, they interact
with the object under study, modifying its shape and reducing it to
a sort of caricature which is more expressive than the actual initial
phenomenon...”

A morphological transformation of an image (a subset of R" or Z") is
obtained by taking in a prescribed manner unions and intersections of a
number of translates of this set and its complement. The collection of transla-
tion vectors involved constitutes the so-called structuring element. In practice
one can reveal certain geometrical information about objects by sequential
application of morphological transformations involving cleverly chosen struc-
turing elements: it is clear that the number of possibilities is unlimited.

An important feature of (nontrivial) morphological transformations is their
irreversibility: the transformed image contains less information than the origi-
nal one. Or in mathematical terms: morphological transformations are not
injective.

In the discrete case morphological transformations bear much resemblance
to cellular automata (or cellular logic) transformations. Such transformations
are performed by giving each pixel a new state depending on its old state and
the old state of its neighbours: see [4,10]. An implicit consequence of the
specific structure of a morphological transformation, which is of great practical
value, is that one can use the build-in parallelism of the computer.

This paper consists of two parts. In the first part we survey some of the basic
Fheory, whereas in the second part we indicate how this theory can be general-
ized to complete lattices. In the following section we present the basic transfor-
mations of mathematical morphology, namely dilation, erosion, closing and
opening. The step from the continuous to the discrete space, involving the digi-
talization of images, can be justified if one can supply the continuous object
space (whose elements are sets) with a topology. The introduction of a topol-
ogy also enables one to prove robustness of transformations. In Section 1.3 we
present such a topology. At that place we also discuss the basic principles,
which, according to Serra’s philosophy, define the morphological transforma-
tions. These principles include translation invariance and semi-continuity. At
the end of Section 1.3, we formulate some mathematical questions raised by
these principles. Together with the inborn impulse of any mathematician to
generalize whatever he can lay hands on, these questions have been our main
motivation to strive for a more axiomatic algebraic approach.

~ Such an algebraic approach is initiated in Part 2. There the basic assumption
is that the underlying object space forms a complete lattice. In Section 2.1 we
survey the relevant results of lattice theory. In Section 2.2 we give an abstract
definition of dilation and erosion: this definition depends on the choice of a
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commutative automorphism group on the lattice (being the generalization of
the translation group on R" or Z"). Under some extra assumptions we can give
a complete characterization of dilations and erosions. MATHERON [9] has
proved that every increasing translation invariant transformation can be writ-
ten as an intersection of dilations, or equivalently, as a union of erosions. In
Section 2.3 we prove an abstract version of this theorem. Finally, in Section
2.4, we speculate about what has to be done in the future.

1.2. Dilation and erosion, closing and opening
Throughout this section, let E be the Euclidean space R" or the discrete space
Z". Essential is that £ is a commutative group. Let ®(£) be the space of all
subsets of E. A binary image can be represented by a subset X of E. We call X
the object and “X(E) the object space. If X CE and h €E then we denote by X,
the translate of X along A:

Xy = {x thixeX}.

If X,YCE then we say that X hits Y, X{Y, if XNYz=J. Let 4 be an arbi-
trary subset of E. The dilation of a set X by the element 4 is defined by

X®A = (heE:A,0X).
The erosion of X by A is defined by

XS4 = (heE:4,CX).

We call 4 the structuring element. It is an easy exercise to show that the dila-
tion of an image gives the same result as the erosion of its background, i.e.

(XDAY = X OA

Here X¢ denotes the complement of X. We say that dilation and erosion are
complementary (or dual) operations. Let the Minkowski addition & and sub-
traction © of two sets X, Y CE respectively be given by

X®Y = X
yeY ’
XOY = NX,
ye¥

Then we have the following relationships:

X®A = XPA

XS4 = XOA,
where 4 = —A = {—a:a€A). The incredulous reader may verify this. Typi-



cal properties of dilation are

(i) (XDA), = X, 04,

(i) (UX)®4 = JX,B4)
il

il

where / is an arbitrary finite or infinite index set, and X, CE, ie/. Thus dila-
tion is distributive with respect to union and invariant under translation. Simi-
lar properties hold for erosion

() (XS4), = X,04.
(i) (NX)04 = N(X,04).
il

il

dilation of X by 4 erosion of X by 4

FIGURE 1. Dilation and erosion in the continuous case
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FIGURE 2. Dilation and erosion in the discrete case

®  points which belong to X
points which belong to X @4 but not to X
points which belong to X but not to X©4

The underlining in 4 denotes the location of the origin.
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One can easily prove the following algebraic relations:

(X®A)BB

XD(ADB)

(XOA4)OB

XS(ADB)

i

X®AUB) = (XBA)U(XDB)

XO(AUB) = (X&A)N(XOB).

These relations have the important practical implication that dilations and ero-
sions with a structuring element which is too large to be handled by the
hardware at one stage can be decomposed. Although it is true that dilation
and erosion have a very simple algebraic structure, their importance is enor-
mous. Perhaps this is most clearly illustrated by a theorem of MATHERON [9]
which we state below. But first we give some definitions.

Let ¥ be a mapping from the object space “N(£) into itself. We say that ¥ is
increasing if

XC Y=W(X)CW(Y).

Note that dilation and erosion are increasing transformations. We call ¥
translation invariant if

W(Xy) = (VX))

for every XCE and heE. The complementary (or dual) mapping ¥* of ¥ is
defined by

V(X)) = (P(X)).
The kernel V' of a mapping ¥ is defined by
1= {ACE:0e¥(4)}.
The kernel of the dual mapping ¥" is denoted by \".

MATHERON'S THEOREM. Ler W: "N E)—NE) be an increasing, translation invari-
ant mapping. Then

Y(X) = JXOA) = M (XDA),
A4 A¥
for every X CE.

Note that the second equality follows from the first by duality. In Section 2.3
we shall prove an abstract version of Matheron’s Theorem.

Two important increasing, translation invariant transformations on (E) are

the closing and the opening. The closing and the opening of a set X by a struc-
turing element A are respectively defined by
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X4 = (X®4)64

X, = (XOA4)DA.

Closing and opening are complementary transformations. Some straightfor-
ward manipulations show that for every X CE:

X, CXcx4,

Le., closing is an extensive operation whereas opening is anti-extensive. Further-
more, both operations are idempotent:

(XY = X4, (X4 = X4

Morphological transformations which are increasing and idempotent are
sometimes called morphological filters or M-filters. Note the analogy with the
ideal band-pass filter from classical signal analysis.

ﬂ\

L

(]

closing of X by A opening of X by 4

F1GURE 3. Closing and opening in the continuous case

We conclude this section by indicating an application of the opening. This
operation makes it possible to define size distributions. This goes roughly as
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follows. An object built up of several smaller and larger isolated grail}s is put
through a sequence of smaller and smaller sieves. Then a size distribution of X
is given by the function r—area(X,,), where A is a compact convex structuring
element (its shape may be chosen according to the shape of the grains), and
r >0 is a measure for the width of the sieve.

So far, the objects under study are considered as subsets of the continuous
Euclidean space R”, or the discrete space Z". Eventually, one is also interested
in grey-valued images. Although such objects do not a priori fit into the
framework, it is possible to extend the theory to account for them as well.
There are at least two ways to do this. The first way is to represent each grey-
valued image by a continuum of sets, the so-called cross sections. To every
cross section one can apply the original morphological transformation, thus
obtaining a new continuum of sets representing the transformed grey-valued
image. The second way is to represent an image by its umbra (the graph
together with all points in its shadow) which is a set again. To this set one can
apply a morphological transformation yielding an umbra again, and from this
the transformed grey-valued image is easily obtained. This is all we are going
to say about this matter, and we refer the interested reader to Serra’s book [12]
and to a paper by STERNBERG [13]. For the rest of this paper we shall restrict
to binary (i.e. black-white) images.

1.3. Morphological transformations

From Matheron’s theorem we learned that dilation and erosion are very
important transformations, since they are the building blocks of all increasing
translation invariant transformations on (E). A moment of reflection tells us
that they also constitute the basis for all decreasing, translation invariant map-
pings. Namely, if X—®(X) is decreasing (i.e., XCY=®(Y)C®(X)), then the
mapping X—®(X*) is increasing and Matheron’s theorem yields that

D(X) = | J(XOA),
A
where <1l = {4 CE:0eP(4)).

An example of a transformation which needs to be neither increasing nor
decreasing is the hir-or-miss transformation, which can e.g. be used to detect
corner points of objects. Here the structuring element consists of two com-
ponents A and B. Its definition goes as follows:

X®[4,B] = (heE:4,CX and B,C X} = (X®A)N(XDBY.

We present an example in Figure 4.
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FIGURE 4. The hit-or-miss transformation can be used to detect corner
points. ® and @ belong to X and O belongs to X®[A4.B].
The structuring element consists of a component 4
given by @ and B given by O.

As a next step one can define the thinning X—X\ X®[A,B] and the thick-
ening X—XU(X®[A4,B]). The thinning and thickening operation form the
basis for a whole collection of algorithms which transform sets into figures
with exotic names like skeleton, homotopic pruning, skiz, and pseudo-convex hull.
We refer the inquisitive reader to chapter XI of Serra’s book. At this place it is
important to mention that Serra works on the hexagonal grid, and that he
chooses the structuring elements accordingly.

The hit-or-miss transformation also forms the foundation for the definition
of a topology on a space of subsets of E. A topology is indispensable to esti-
mate errors committed in digitalizing images and to prove (or disprove)
robustness of certain image transformations. Around 1974, G. MATHERON [9]
. and D.G. KenNDALL [7], independently of each other, laid the foundations for a
general theory of random sets, and it is not too surprising that these break-
throughs have had a strong impact on the development of mathematical mor-
phology. We give a very short outline of Matheron’s approach. Also see [1].

Let E be a topological space which is locally compact, Hausdorff, and separ-
able (i.e., E admits a countable base). Of course, the example we have at the
back of our mind is £ = R". We shall introduce a topology, the so-called hit-
or-miss topology, on K E), the space of all closed subsets of E, but we do not
refrain from noting that we might as well have chosen the open subsets. Let
K C E be compact and G C E open. We define

F = (XeRE): XNK = @)
G = {XeHE): XNG #* B).

The hit-or-miss topology on %E) is defined by the base elements
F N G; N - N%;,, where K is compact, and G, is open, i = L..,m. In
other words, the sets % and %; form a subbase for the hit-or-miss topology.
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FIGURE 5. F| and F, both belong to the base element & N5, NG,

The space “{£) equipped with the hit-or-miss topology is compact, HausdorfT,
and separable. Note that E is not required to be compact but only locally
compact: see MATHERON [9, Theorem 1.2.1]. A random closed set is by
definition a random element of {E) with the Borel s-algebra. In fact, every
random closed set is specified by the probability distribution p[KNX = @]
where K ranges over all compact subsets of E.

Let ¢ be a mapping from an arbitrary topological space S into *\E). Then
is upper-semi-continuous (u.s.c.) if for any compact set K C E, the set
¢ () is open in S. Analogously, y is lower-semi-continuous (l.s.c.) if for any
open set G C E. the set  '(5%;) is open in S. If the topological space S
admits a countable base, in particular if § = (E), then there exist some easy
criteria for upper- and lower-semi-continuity: see [9]. [12]. For the basic
transformations of mathematical morphology, MATHERON [9] has obtained the
following continuity results:

1 X - X®4 is continuous on S(E) 1l A 1s compact

(i) X - X644, X - X' and X — X, are upper-semi-continuous if A is
compact.
Actually, Matheron proved a much stronger result.
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In Chapter I of his book [12]. Serra treats at length four principles which,
according to his philosophy, every transformation has to satisfy in order to get
the predicate ‘morphological’. These principles, which we discuss below. are
unmistakably inspired by practical considerations.

The first principle, concerning translation invariance, excludes transforma-
tions which require knowledge of the position of the object of interest. In
mathematical terms:

V(Xy) = (¥(X)h (I

Frequently, an object has to be magnified or reduced before one can work
with it. For transformations one wants to apply, this means that they have to
be compatible under change of scale. Denoting the transformation by ¥y,
where A is the scale parameter, we can write the second principle abstractly as

VA(AX) = A (X), (I1)

where AX = {Ax: xeX}.
The third principle says that local knowledge of the object is sufficient to
obtain local knowledge about the transformed image:

VXVbounded Z’aboundcd ZZ[\I’(XOZ)]QZ' = \I/(X)OZ’ (”I)

Note that this definition allows that Z depends on X: in practical cases this
will almost never occur. '
The last principle says something about stability of the transformation:

¥ is semi-continuous with respect to the hit-or-miss topology. (IV)

Note that this last principle implicitly assumes that ¥ maps closed sets on
closed sets.

The basic transformations dilation, erosion, closing and opening indeed satisfy
the four principles if the structuring element is compact and nonempty. As far
as the applications are concerned, these principles are quite satisfactory. But
they also evoke a number of questions in a theoretician’s mind. Let us state
some of them. (1) Is it possible to give a complete characterization of all mor-
phological transformations? Matheron’s theorem only gives a partial answer to
this question. (2) As we already mentioned, the fourth principle includes the
assumption that the object space should be K E) instead of P(£). But the alge-
braic structure of these two spaces are completely different (see Part 2 below).
For example, we do not have a natural complement on ‘{£), which means in
particular that the definition of the hit-or-miss transformation needs to be
adapted. (3) The specific structure of dilation and erosion shows that transla-
tion plays a very special role. Why is this? Can this role be assigned to
another group operation on E, rotation for instance? Note that rotation invari-
ance is not included in the four principles.

These and other questions have motivated us to look for a more abstract
approach, not so much because we expect new applications, but merely
because we hope that such an approach gives a better understanding.
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2. TOWARDS AN ALGEBRAIC APPROACH

2.1, Some basic results from lattice theory . .
In this preliminary section we survey some of the basic results on luttlces.. _F(;r
a complete account of the theory we refer to the monographs of BIRKHOFF (2]
and Gratzek [6]. o o
A set L owith a partial ordering relation <'is called a /amf-e 1f for any finite
nonempty subset K of L the supremmon v K and infimum /\K'CXISI..RCCHH ,Ihat
@ v I 1s called the supremum of K if x < a for every xeK anq lf a<ua’ for
any other such clement ¢’ A similar definition holds for the infimum. We
shall write v v instead of {x.'} and x Ay instead of A{x.y}. It is easily
seen that

VE ey T Xe X VY = (2.1)

Wewrite v < 1 if v < pand v 5= 1 A lattice L can contain at most one ele-
ment ¢ which satisties e <<y for all x & L. If such an element exists we denote
it by 0 and call 1t the zero of L. Similarly, there can exist at most one element
b such that v < b for all v ¢ L. Such an element. if present. is called the unit
of L and 1s denoted by 1A lattice with a zero and a unit is called bounded.
The latuce 1 called distributive 1f

X)) = (Ve An) (2.2a)
(xvy)r(x vz, (2.2.b)

t
Il

for every xnz € L. Let L be a bounded lattice. We say that x possesses a
complement v il

x oy =0 vy = L (2.3)

The bounded lattice L is called complemented if any of its elements has a com-
plement. [U1s an easy exercise to show that in a bounded distributive lattice an
clement v can have at most one complement which is then denoted by x".

Di MORGAN'S IDENTUIES. Ler x,y be elements of the bounded, distributive lat-
tce Lowath complements x* and v* respectively. Then xVy and x Ay possess com-
plements as well, and

A complemented. distributive lattice is called a Boolean larrice. Every Boolean
lattice can be considered as an algebra with the binary operations v and A,
and the unary operation ». Considered this way, L is called a Boolean algebra.
In & number of cases the lattice L is only “half-complemented” in the sense that
only one of the relations in (2.3) is satistied. A Browwerian lattice is a lattice L
m which for every couple, a.b € L the set {v:a \x<b) contains a greatest
element bia. the relanve pseudo-complement of a in b: below we shall present
an example. If L 15 a Boolean lattice, then, of course. b:w = bva'. In a

18



Brouwerian lattice with a zero, the element x* = O:x is called the pseudo-
complement of x. Note that, by definition, x* is uniquely defined. A theorem in
[2] says that every Brouwerian lattice is distributive. It is not hard to figure out
how dual Brouwerian lattices should be defined.

A lattice L is called complete if any subset K (finite or infinite) has a
supremum and an infimum. If L is a nonempty complete lattice then one gets,
by taking K = L, that L has a zero and a unit. It is easily deduced from (2.2)
that in any distributive lattice L the relations

XAV x) = Vi (x Ax;) (2.4a)
XV(Nicix) = N f(xvVx;) (2.4b)

are valid for any finite index set /. In a complete Boolean lattice these rela-
tions hold for any infinite index set as well. A lattice in which (2.4a) is valid
for an arbitrary index set is called infinite-supremum-distributive, whereas the
lattice is called infinite-infimum-distributive if (2.4b) holds. It is relatively easy
to show that a complete lattice is Brouwerian if and only if it is infinite-
supremum-distributive, and in that case b:a = V {x:anx<b}.

Let L be a lattice with a zero. An element £ € L is called an atom if x < £
implies that x = 0. Analogously, an element & of a lattice with a unit is called
a dual atom if § < x implies that x = 1. Atoms are denoted by Greek sym-
bols and dual atoms by Greek symbols with a prime. We denote the set of all
atoms by A. An aromic latrice is a lattice in which every element is the
supremum of the atoms it dominates, i.e.,

X = \/gixé

Similarly, we define dually atomic lattices.

The reader who wishes to know more about lattices and the relation with set
theory may consult [2,5,6,8]. For those who had enough, we present some
examples. It goes without saying that our choice is highly influenced by the
application we have in mind.

EXAMPLES

(a) Let E be some nonempty set. Then P(E) is a complete lattice with the
partial ordering: X <Y if X C Y, ie, X is included in Y. The
supremum and infimum correspond to the union and intersection respec-
tively. With the set complement 9(E) becomes a Boolean lattice. More-
over, ¥(E) is atomic where the atoms are of the form {e}, where e € E.
At this point we mention the following important general result. Every
complete, atomic Boolean lattice L is isomorphic to the field ¥(A), where
A is the set of all atoms of L.

(b) If E is a nonempty topological space, then we denote by % E) the space of
all closed subsets of E. If we define (a ‘bar’ denoting closure)

NaX, = O1X,
iel
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voX = U l”\“'

for an arhitrary index set [ and arbitrary elements X, € “{(E). then ‘(£ is
o complete, daxmhulm lattice  which s mtmm mhmum distributive.
Moreover. if E is a Ti-space (ie. every singleton {e} with e € E iy
closed). then AE) 1~ atomic. In this case. anon 2] calls "HE) a T)-
lattice,
The space <(E) of all open subsets of the topological space £ is a com-
plete. distributive latuce which is infinite-supremum-distributive, hence
1[} iv 4 Brouwerian lattice with pseudo-complement  X* =(X). If
A X, then we call X a regular open set. We leave it as an exercise to
the rmdu to verify that the space of all regular open subsets forms a
complete Boolean lattice.

(¢} As a final example we mention the lattice consisting of all functions f
mapping a set £ mnto the closed interval [0, 1], with the pointwise ordering:

fsg e flsgy), Vg

Note that this lattice is relevant in the context of grey-value images. The
supremum  and infimum are  respectively defined by (fvg)x)=
max|f(vhg(x)) and (fghx)=min{f(x)g(x)}. It is obvious that this
lattice 1s complete and distributive.  Furthermore, it is worth noticing that
the latuce of example (a) lies embedded in the present one, where the
embedding operation 1s given by X—1,, XCE. Here 1y is the charac-
teristic function corresponding to the set X.

The remainder of this section ts devoted to lattice morphisms. Let L be a lat-
tiwe. A mapping f from L into L is called a (lattice) endomorphism if f preserves
fimite intima and suprema, Le.,

Fyy = fov e (2.5a)
faeyy = fonfo) (2.5b)
for every x| m addition, f1s a bqeullon then fis called an auromor-
phosm. In that case f ', the inverse mapping, also satisfies (2.5). Suppose that

s an Jutumurphnxm If L 1s a bounded lattice then f(0)=0 and f(1)=1. If,
moreover. L s a Boolean lattice, then £ also preserves complements:

FTy = (fao” (2.6)

Finallv. of L s a complete lattice then the relations (2.5) remain valid for
mfinite suprema and infima:

f"{“"x IR ‘\";lr If(*\‘r)
060 = A ).

Every mupping f:L—L satisfying at least one of the relations (2.5a), (2.5b) is
Increasing. e,
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X<y = f(xX)<f(») 2.7)

The converse does not hold.
For future use we state the following lemma.

LEMMA 1. Ler L be a lattice with a zero, and let A be the (possibly empiy) set of
atoms. If fis an automorphism on L, then f leaves A invariant.

PROOF. If A is empty then the lemma is trivially satistied. So assume that
As£ 0, and take £ A. We must show that f(&eA. Assume that there is a
Y €L such that y<<f(§). Then f“(y)<§, hence f‘”‘(v)ZO. But this implies
that y=0. Thus f(§) is an atom. O

2.2. Dilation and erosion

In this section we shall give an abstract definition of dilation and erosion on
an arbitrary complete lattice. In Section 1.2 we have considered dilation and
erosion on the complete Boolean lattice ‘NE), where E was R" or Z". We
recall that two basic properties of dilation were:

() (TWX)DA = T,(XDA)
(i) (U, X84 = U, (X,84),

where T, X=X, i.e., T, is translation along a vector A€ E. We note that the
family of translations 9={T},:h€E} forms a commutative group of automor-
phisms on the lattice (E). Erosion is characterized by similar properties, the
only difference being that in (ii) union has to be replaced by intersection.
These two properties of dilation and erosion are used as the premises for an
abstract definition. Assume for the remainder of this section that L is a com-
plete lattice. Let & be a commutative group of automorphisms on L. For nota-
tional convenience we shall write Tx instead of T(x) if Ted. A mapping
Y:L—L is called a J-mapping if ¢ commutes with every T:

WTx)=TY(x), Te9 xel.

We say that  is a J-dilation if

(i) ¢ is a J-mapping

W) YViepx) = Viepx),

for every index set /. Similarly, a mapping ¢:L—L is called a ‘i-erosion if in
(i1) the supremum is replaced by the infimum.

If L is a Boolean lattice, then the dual of a J-dilation is a J-erosion and con-
versely (the dual f/~ of a mapping f on a complemented lattice is defined by
F(x)=(f(x7))"). Let @ be an arbitrary subset of 9. It is easy to check that
the mapping

Wx) = V5o Tx (2.8)
is a 9-dilation and that
o(x) = NreoTx (2.9)
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is 4 “-erosion. Note that these expressions are nothing but straightforward gen-
eralizations of the original definitions: see Section 1.2. For the rest of this sec-
tion we will restrict our attention to “i-dilations. It should be clear by now
that dilation and erosion are just complementary notions. We address our-
selves to the following question: 1s every “-dilation of the form (2.8)? It turns
out that we can give an aflirmative answer to this question under two extra
assumptions.

ASSUMPTION. L s atomic.
Assump1ioN. For every couple éme A there is a 7€' such that TE=n.
If the latter assumption is satisfied. we call the automorphism group roral.
Now let ¢:L—L be a “-dilation. Define ¢ C7 by

Ted e TESHE).
where £ is an arbitrary atom of L. By using that ¢ is a “-mapping and that *7
is total. one easily obtains that ¢ is independent of the choice of & Further-
more. one gets immediately that

vV T x|‘T€ = ‘Mg) £€\
We can even show equality. Suppose. namely, that we have strict inequality.
Then. since L is atomic, there exists an atom 7 such that n<<y(£) but not
<V T¢ From the fact that <7 is total we know that n=T"¢ for some
T'evi. Hence T'E<y(é). yielding that T"ed. But this implies that n<V . ;TE,
a contradiction. Thus we have proved that

ViaTE = ). el

But now we are almost done. Consider namely an arbitrary element x of L.
Then v =V, & Thus

1M\) 4’(\/53\5) = \/gS\\l’(‘g) = v&s,\'vTv u'Tg
Vi Ve TE = Vi oT(Vee b)) = Vo o T

This proves the main result of this section.

I

THEOREM 1. Ler L be a complete, atomic luitice and let <5 be a total commutative
group of automorphisms on L. Then every I-dilation y is of the form

Yx) = Vg ,Tx

We can state a similar result for erosions on dually atomic lattices. Notice
that o is the analogue of the structuring element of Section 1.2. It is time to
give some examples.

22



EXAMPLES

(a)

(b)

Consider .the complete atomic (and dually atomic) Boolean lattice “\(E).
where £ is R" or Z". Let 7 be the group of all translations T}, heE.
Then every ‘i-dilation is of the form

V(X) = Vg TX,

or equivalently,

\I’(X) - UhtATWhX = Uh»A‘X‘h - X@A,

where A CE is given by: heA if and only if T_,ed. So in this case the
class of all S-dilations (and of course of ‘-erosions) coincides with the ori-
ginal class.

In exactly the same way we obtain a complete characterization of -
dilations on the complete, atomic lattice ‘{R"). where T is again the trans-
lation group. In this case every S-dilation ¥ is of the form

V(X)) =17, X

By duality, we also get a complete characterization of ‘-erosions on the
complete, dually atomic lattice S(R").

An advantage of our approach is that we are free to choose any automor-
phism group we want to: it is only required that this group is commuta-
tive and total. An interesting example is provided by the rotation-
multiplication group. Consider the complete, atomic Boolean lattice
€\ {0}). Let *-> be the complex multiplication on C. Let 7. be the
automorphism given by

T.X = {xz: xeX}.

If z=re'® in polar coordinates, then 7. can be interpreted as a combina-
tion of a rotation by an angle # and a multiplication with factor r. Then
S={T.: zeC\ {0}} forms a commutative automorphism group which is
total. Needless to say that the performance of dilation and erosion in this
example is completely different from the classical situation. In the discrete
case a polar grid is required: see Figure 6 below.
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Fiotre 6. The polar gnd of example (b)

(¢} As u fingl example. we menuon the following vanant of example (b).
Consder the Boolean latice 7€) and the total commutative automor-
phism group = {T.: =€} defined by

LY = (voixe Xy

NI A 18,
e .

where = 22 =(r + 1) fz e
2.3 Increasing transformations and Muatheron’s theorem
From Matheron's theorem we learned that every increasing translation invari-
ant transformation on I £). where £ 1s R” or Z", can be written as an inter-
section of dilations, or, alternatively, as a union of erosions. In the present
section we will show that this result can be established within our framework.
But before stating and proving this generalization, we present an alternative
formulation of the results obtained in the previous section. Actually, this refor-
mulation 18 suggested by the examples above. In these examples the automor-
phism group 7 is isomorphic with a group structure on A, the set of all atoms.
This s no comncidence but just an alternative formulation of our second
assumption. To see this, assume that L is a complete atomic lattice, and that 7
1y 2 total commutative automorphism group on L. First we note that, if for
some Tye and some £\ we have Ty&=§, then this holds for every ne.\,
which amounts to saving that T, 1s the identity mapping. Suppose namely
that yel. Then there s a Ted so that n=T§  Hence
Tyn=T,T{=TT{=Té=n.

Now fix an arbitrary we A, We call w the origin. For every £€ A there exists
a Tgevsuch that Tee=§ Thus we can define an operation + on A as fol-
lows:

§+n =TTy &nel

This detiniion makes sense because it is independent of the particular choice
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of T¢. It is easy to see that (A,+) is a commutative group with identity w.
Conversely, every commutative group operation + on A ‘generates’ a total
commutative automorphism group on L. Let —¢ denote the inverse of £ with
respect to the group operation +.

It should be clear by now how one can rewrite (2.8) and (2.9) in terms of
the group operation +. Let ¢ be given by (2.8) and define uel by:
a :\/Tr dT‘]w. Then

Yx) = xBa 1= Vogox .o = V(& agnxs£0}, xel

Here x, ={¢{+a: £<x}. Similarly the S-erosion of (2.9) can be written as:

Px) = xQa 1= NaaX - = V{ a;<x}, xelL.
Before we give the abstract version of Matheron’s theorem, we recall that a
mapping f :L—L is increasing if x <y implies that f(x)<f(y).

THEOREM 2. Let L be a complete, atomic lattice, and let f: L—L be an increas-
ing ‘.T—mapping, then

f(x) = Voo (xSa).
where \={aeL: w<f(a)} is the kernel of f.

PROOF. We show that £<f (x) if and only if {< \/ad(xéa).
(1) Let é<f(x). Then w<T _f(x)=f(T_zx). Hence y:=T _;xeV by
definition. Thus

\/,,(ry(x'@a) = xey = ,Viéy = An<y0"§)—n
= Ml = TNy ) = Tew = &

(i1) Conversely, assume that {<V, 5 (xéa). So there is an element gV
such that
¢ x8a = Ny<aX —q-

Therefore é<x_, for every 7 satisfying n<<a. But this implies that
N=<x ¢, for every n<<a. Thus

a = vnéun = X ¢

and by the increasingness of the mapping f, f(a)<f(x _;). Since ae%,
we find that w<f(a)<f(x_¢), hence =T w<Tf (x ¢)=f(x), which
proves the result. [J

Similarly one can show that on a complete, dually atomic lattice every increas-
ing transformation can be written as the infimum of J-dilations. On a com-
plete, atomic Boolean lattice both characterizations hold.
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24 Condludimg remuarks
As o tinst step towards an abstract algebraic approach, the results obtained so
far mav seem quite satsfactory. However, as we will indicate below, a lot
remains to be done. But let us first give a brief summary of our results.

I 2 s g complete. atomue lattice, eg. L= (R"), then every “-dilation ¥ is
of the form

vy vbg ae

for some w- L. Furthermore, every increasing “-mapping is a supremum of
erosions. Similarly, if L1 a complete. dually atomic lattice, e.g. L~n(lR”
then every “-erosion tukes the form

Olv) xR, vel,

for some ¢ L. and every mcreasing \-mappmg is an infimum of “-dilations.
These results become more lr.m\parcnl if L 1s a complete Boolean lattice. In
that case. the assumpuion that Loas atomic is cqunmlem to the assumption that
£1s dually atomie, and -dilations and C-erosions are dual mappings. We
recall that a complete. atomie Boolean lattice L is 1somorphic with the field
AL where A s the set of all atoms, and that every total, commutative auto-
morphism group on L induces a group structure on .\, Thus. algebraically
speaking. there 1y no distnction between this case und the original case
deseribed in Part T where L= (R"): see also Section 2.2, Example (a).

Let L be a complete latuce and let 7 be a total, commutative automorphism
group on L. We define M7 (L) as the set of all increasing -mappings on L.
3esides -dilations and v-erosions, this set also contains compositions of these
ransformations such as “-closings and “-openings. On the set M ' (L) we can
define the partial order < by:

Psg e V) < gy

Then M " (L) becomes a wmplete lattice with supremum and infimum respec-
uvely given by

(/- gHxX) = fove(x), xel
(fgix) = fa)gle), xel

These observations imply that every “-mapping which is obtained from -
dilations and “-erosions by means of suprema, infima, and compositions is
increasing: no such thing as the hit-or-miss transformation can be obtained in
this wayv. If. however. I is a Boolean lattice then the mapping x—f(x") is a
decreasing -mapping if fe M (L). Replacing the complement by the
pseudo-complement, we can do the same trick if L is a Brouwerian lattice.

In Section 1.3 we have argued, following Serra. that a theory of transforma-

fions 18 not very mmmngful if one cannot give shape to the notion of (semi-)
continuity, which requires a topology on lhe lattice L. In the second part of
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this paper we have consistently omitted to speak ahout topological aspects
Here we shall somewhat retrieve this omission by mentioning in a few lines an
important result that can be found in the literature. We will certamly come
back to this point in the future. It needs no explanation that a topology on 1.
has to be related to the ordering relation. and that the automorphism group
should have the right continuity properties with respect to this topology.

The lattice *{R") of all closed subsets of R” with the opposite ordering
(X<Yuf YCX) s a so-called continuous lattice. On a continuous lattice one
can define the so-called Lawson topology. On the lattice “¥R") this topology
coincides with the hit-or-miss topology (see [3] for more details). This observa-
tion which we consider to be an extra justification of our approach, may serve
as an underlining of the assertion that thinking about mathematical generaliza-
tions is not only a pleasant pass-time (it is, of course). but may also give a
deeper understanding of the onginal theory.

ACKNOWLEDGEMENT
The author gratefully acknowledges a number of fruitful discussions with
Gerard Gerritse (Catholic University of Nijmegen).

REFERENCES

1. AJ. BADDELEY (1986). Stochastic geometry and image analysis. J.W. DE
BakkER, M. HAZEWINKEL, J.K. LENSTRA (eds). Mathematics and Com-
puter Science, CWI Monograph I, North-Holland, Amsterdam, 2-20.

2. G. BIRKHOFF (1967). Lattice Theory (3rd ed.), AMS, Providence.

COMPUTER VISION, GRAPHICS AND IMAGE PROCESSING 35. (1986). Spe-

cial issue on Mathematical Morphology.

4. M.J.B. Durr, T.J. FOUNTAIN (eds.) (1986). Cellular Logic Image Process-
ing, Academic Press, London.

5. G. Gierz., K.H. HormaNN, K. KEIMEL, J. Lawson, M. Mistove, D.
Scorr (1980). A Compendium of Continuous Lattices, Springer, Heidel-
berg.

6. G. %ERATZER (1978). General Larttice Theory, Birkhduser Verlag, Basel.

7. D.G. Kenparr (1974). Foundations of a theory of random sets. E.F.
HARDING, D.G. KENDALL (eds.). Stochastic Geomerry, Wiley, New York.

8. K. KURATOWSKI, A. MOSTOWSKI (1976). Ser Theory (2nd ed), North Hol-
land, Amsterdam.

9. G. MATHERON (1975). Random Sets and Integral Geomerry, Wiley, New
York.

10. K. Preston Jr., MJ.B. Durr (1984). Modern Cellular Automara: Theory
and Applications, Plenum Press, New York.

11. A. RoOSenreLD, A.C. Kak (1982). Digital Picture Processing (2nd ed.),
Academic Press, New York.

12, J. SERRA (1982). Image Analvsis and Mathematical Morphology, Academic
Press. New York.

13. S. STERNBERG (1986). Grayscale morphology. Computer Vision, Graphics
and Image Processing 335, 333-355.

bl

27



