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Lie algebras play an increasingly important role in several areas of modern control theory and filtering and 
estimation theory, and also, in fact, in many (other) areas of (stochastic) mechanics. This is especially true 
for the approach to (nonlinear) filtering theory via the Duncan-Mortensen-Zakai equation (also called the 
reference probability approach). The material in this tutorial corresponds to the second lecture of my series 
of lectures on filtering. It forms a separate coherent unit and contains all the definitions concepts and 
results specific to Lie algebra theory that are needed (so far) in this approach. This tutorial is a revised and 
expanded version of an earlier one with the same title which appeared in M. Hazewinkel, J.C. Willems 
(eds), Stochastic systems: the mathematics of filtering and identification, Reidel 1981, 95-108. 

1. DEFINITION OF LIE ALGEBRAS. ExAMPLES 

Let k be a field and Va vectorspace over k. (For the purpose of this volume it suffices to take k = R 
or (rarely) k =C; the vectorspace V over kneed not be finite dimensional.) A Lie algebra structure on 
Vis then a bilinear map (called bracket multiplication) 

[' ]: vx v ~ v (1.1) 

such that the two following conditions hold 

[u,u]=OforalluEV (1.2) 

[u, [v,w]] + [v, [w,u]] + [w, [u,v]] = 0 for all u,v,w, EV. (L3) 

The last identity is called the Jacobi identity. Of course the bilinearity of (1.1) means that 
[au +bv,w] = a[u,w] + b[v,w], [u,bv +cw]= b[u,v] + c[u,w]. From (1.2) it follows that 

[u,v] = -[v,u] (1.4) 

by considering [ u + v, u + v ] = 0 and using bilinearity. 

1.5. Example. The Lie algebra associated to an associative algebra 
Let A be an associative algebra over k. Now define a new multiplication (bracket) on A by the for­
mula 

[v,w] = vw - wv, w,vEA (1.6) 

Then A with this new multiplication is a Lie algebra. (Exercise: check the Jacobi identity (1.3).) 

1.7. Remark 
In a certain precise sense all Lie algebras arise in this way. That is for every Lie algebra L there is an 
associative algebra A containing L such that [ u, v] = uv - vu. I.e. every Lie algebra arises as a sub­
space of an associative algebra A which happens to be closed under the operation (u,v)f-+uv - vu. 
Though this "universal enveloping algebra" construction is quite important it will play no role in the 
following and the remark is just intended to make Lie algebras easier to understand for the reader. 
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1.8. Example 
Let Mn(k) be the associative algebra of all n X n matrices with coefficients in k. The associated Lie 
algebra is written gln(k); i.e. gln(k) is the n 2-dimensional vectorspace of all n Xn matrices \vith the 

bracket multiplication [A,B] = AB - BA. 

1.9. Example 
Let sln(k) denote the subspace of all n Xn matrices of trace zero. Because Tr(AB -BA)= 0 for all 
nXn matrices A,B, we see that [A,B]Esln(k) if A,BEsln(k) giving us an (n 2 -l)-dimensional sub-Lie­

algebra of gln(k). 

1.10. Example. The Lie algebra of first order differential operators with C00 -coefficients. 
Let Vn be the space of all differential operators (on the space F(IRn) of C00 -functions (i.e. arbitrarily 
often differentiable functions in x 1 ,. .. ,xn)) of the form 

n a 
X = ;~/i(x1 ,. .. ,xn) ax; (1.1 I) 

where the fi,i =I, ... ,n are C""-functions. Thus X:F(IR")~F(IR") is the operator X(<P) = ±li±e_aa . 
i=I x, 

Now define a bracket operation on Vn by the formula 

[X, YJ =~((;-~a: - g1 :~ a: ) (L 12) 
1,j I J J I 

if X = "'2.f;-aa , Y = ~1-aa . This makes Vn a Lie algebra. Check that 
X; Xi 

[X, Y](<J>) = X(Y(</>)) - Y(X(<f>)) for all <j>EF(IR"). 
More generally, cf the tutorial in differentiable manifolds and calculus in manifolds on this volume, 

one has the infinite dimensional Lie algebra of vectorfields V(M) on any differentiable manifold M. 

1.13. Example. Derivations 
Let A be any algebra (i.e. A is a vectorspace together with any bilinear map (multiplication) 
A XA~A; in particular A need not be associative). A derivation on A is a linear map D :A .-.?A such 

that 

D(uv) = (Du)v + u(Dv) (l.14) 

For example let A = IR[x] and D the operator ~.Then Dis a derivation. The operators (1.11) of the 

example above are the derivations on F(R"). Also in the case of the Lie algebra of smooth 
vectorfields V(M) on a differentiable manifolds M, one has that V(M) is the Lie algebra of deriva­

tions on the algebra F(M) of smooth, i.e. C00 , functions on M. 
Let Der(A) be the vectorspace of all derivations. Define [DI>D 2 ] = D 1D2 - D2D 1• Then [D1>D 2] 

is again a derivation and this bracket multiplication makes Der(A) a Lie algebra over k. 

1.15. Example. The Wey! algebra W1 

Let W 1 be the vectorspace of all (any order) differential operators in one variable with polynomial 

coefficients. I.e. W 1 is the vectorspace with basis xi dl , i,j E~ U {O}. (x; is considered as the opera-
dxl 

tor f(x)i-+x;f (x).) Consider W1 as a space of operators acting, say, on k[x]. Composition of opera­
tors makes W 1 an associative algebra and hence gives W 1 also the structure of a Lie algebra; cf. 
example 1.5 above. For example one has 

d2 2 d 2 d2 d d di di 
[x dx2 ,x dx] == Sx dx2 + 2x dx, [x dx ,x' dxl] = (i -j)x' dxi 
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1.16. Example. The oscillator algebra 

Consider the four dimensional subspace of W 1 spanned by the four operators+ d2
2 -+x2,x, dxd , 1. 

dx 
One easily checks that (under the bracket multiplication of W 1) 

l d2 l 2 d I d2 I 2 d 
[2 dx2 -2x ,x]= d:x' [2 d:x2 -2x 'dx]=x, 

d 
[dx'x]= 1, 

[+ ::2 -+x2 ,l]=[x,l]=[~,l]=O 

(1.17) 

Thus this four dimensional subspace is a sub-Lie-algebra of W 1. It is called the oscillator Lie algebra 

(being intimately associated to the harmonic oscillator). 

2. HOMOMORPHISMS, ISOMORPHISMS, SUBALGEBRAS AND IDEALS 

2 .1. Sub-Lie-algebras 
Let L be a Liealgebra over k and V a subvectorspace of L. If [ u, v] E V for all u, v EL, then V is a sub­

Lie-algebra of L. We have already seen a number of examples of this, e.g. the oscillator algebra of 

example 1.16 as a sub-Lie-algebra of the Wey! algebra W 1 and the Lie-algebra sln(k) as a sub-Lie­

algebra of gln(k). Some more examples follow. 

2.2. The Lie-algebra son(k). 
Let son(k) be the subspace of gln(k) consisting of all matrices A such that A +AT= 0 (where the 

upper T denotes transposes). Then if A,BEson(k) [A,B]+[A,B]T= AB-BA+(AB-BA)T= 

A(B+BT)-B(A+AT)+ (BT+B)AT-(AT+A)BT=O, so that [A,B]Eson(k). Thus son(k) is a 

sub-Lie-algebra of gln(k). 

2.3. The Lie-algebra tn(k). 
Let tn(k) be the subspace of gln(k) consisting of all upper triangular matrices. Because product and 

sum of upper triangular matrices are again upper triangular tn(k) is a sub-Lie-algebra of gln(k). 

2.4. The Lie-algebra spn(k). 

[ O In] 
Let Q be the 2n X2n matrix Q = _In 0 . Now let spn(k) be the subspace of all 2n X2n matrices A 

such that AQ + QA T = 0. Then as above in example 2.2 one sees that A,B Espn(k) ~ [A,B]Espn(k) 

so that spn(k) is a sub -Lie-algebra of gflin(k). 

2.5. Ideals 
Let L be a Lie-algebra over k. A subvectorspace I CL with the property that for all uEI and all vEL 

we have [u,v]EI is called an ideal of L. An example is s!;,(k)Cgf,,(k), cf example 1.8 above. Another 

example follows. 

2.6. Example. The Heisenberg Lie-algebra 

Consider the 3-dimensional subspace of W 1 spanned by the operators x, ~ , 1. The formulas ( 1.17) 

show that this subspace is an ideal in the oscillator algebra. 
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2. 7. Example. The centre of a Lie algebra 
Let L be a Lie algebra. The centre of L defined as the subset Z(L) = {zEL:[u,z] = 0 for all uEL}. 
Then Z (L) is a subvector space of L and in fact an ideal of L. As an example it is easy to check that 
the centre of gln(k) consists of scalar multiples of the unit matrix In. 

2.8. Homomorphisms and isomorphisms. 
Let L 1 and L 2 be a two Lie algebras over k. A morphism a:L 1 -'>L2 of vectorpaces (i.e. a k-linear 
map) is a homomorphism of Lie algebras if a[u,v ]=[a(u),a(v)) for all u,v EL 1• The homomorphism a is 
called an isomorphism if it is also an isomorphism of vectorspaces. 

2.9. Example 
Consider the following three first-order differential operators in two variables x,P 

a a a a 
a=(l-P1)ap-Pxa;, b=Pa;, c=a; 

Then one easily calculates (cf. (1.9)) [a,b]=c, [a,c]=b, [b,c]=O. Now define a from the oscillator 
algebra of example 1.16 to this 3-dimensional Lie algebra as the linear map 
I d1 I 2 d · 
2 dx2 -2x 1-+ a, x 1-+ b, dx 1-+ c, l i-+ 0. Then the formulas above and (1.17) show that a is a 

homomorphism of Lie algebras. 

2.10. Kernel of a homomorphism 
Let a:L 1 ~L1 be a homomorphism of Lie algebras. Let Ker(a)={uEL 1:a(u)=O}. Then ker(a) is 
ideal in L 1• 

2.11 Quotient lie algebras 
Let L be a algebra and I an ideal in L. Consider the quotient vector space LI 1 and the quotient mor­
phisms of vector spaces L ~LI!. For all ii.,vELII choose u,vEL such that a(u)=u, a(v)=v. Now 
define [U,V]=a[u,v]. Check that this does not depend on the choice of u,v. 

This then defines a Lie-algebra structure on LI I and a:L~L/ 1 becomes a homomorphism of Lie­
algebras. 

2.12. Image of a homomorphism 
Let a:L 1~L2 be a homomorphism of Lie algebras. Let lm(a)=a(L 1)={uEL2:3vEL 1,a(v)=u}. 
Then Im (a) is a sub-Lie-algebra of L 2 and a induces an isomorphism L 1 I Ker(a)~lm(a). 

2.13. Exercise 
Consider the 3-dimensional vector space of all real upper triangular 3 X 3 matrices with zero's on diag­
onal. Show that this a sub-Lie-algebra of gl3(1R), and show that it is isomorphic to the 3-dimensional 
Heisenberg-Lie-algebra of example 2.6 but that is not isomorphic to the 3-dimensional Lie-algebra 
sl2(R) of example 1.8. 

2.14. Exercise 

Show that the four operators x2 , ~22 , x ~ , 1 span a 4-dimensional subalgebra of W 1, and show 

that this 4-dimensional Lie algebra contains a three dimensional Lie algebra which is isomorphic to 
sl2(R). 
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2.15. Exercise 

Show that the six operators x 2 , d2
2 , x, dd , x dd , I span a six dimensional sub-Lie-algebra of W 1• 

dx x x 
Shows that x, :Jx , I span a 3-dimensional ideal in this Lie-algebra and shows that the corresponding 

quotient algebra is sf 2 (IR ). 

3. LIE ALGEBRAS OF VECTORFIELDS 

Let M be a C 00 -manifold ( cf. the tutorial on manifolds and calculus on manifolds in this volume). 
Intuitively a vectorfield on M specifies a tangent vector t (m) at every point m EM. Then given a C 00 -

function f on M we can for each m EM take the derivation off at m in the direction t (m ), giving us a 
new function g on M. This can be made precise in varying ways; e.g. as follows. 

3.1. The Lie algebra of vectorfields on a manifold M 
Let M be a C 00 -manifold, and let F(M) be the IR-algebra (pointwise addition and multiplication) of 
all smooth (=C 00 ) functions f :M~IR. By definition a C 00 -vectorfield on M is a derivation 
X:F(M)~F(M). The Lie algebra of derivations of F(M), cf. example 1.13, i.e. the Lie-algebra of 
smooth vectorfields on M, is denoted V(M). 

3.2. Derivations and vectorfields 
Now let M=W so that F(M) is simply the IR-algebra of C 00 -functions in XJ, ... ,Xn· Then it is not 
difficult to show that every derivation X:F(IR")~F(IR") is necessarily of the form 

n a 
X= L:g;- (3.3) 

i=l ax; 

with g;EF(IR"). For a proof cf. [4, Ch.l, § 2]. The corresponding vectorfield on IR" now assigns to 
xEIR" the tangent vector {g1(x), ... ,gn(x}l. 

On an arbitrary manifold we have representations (3.3) locally around every point and these expres­
sions tum out to be compatible in precisely the way needed to define a vectorfield as described in the 
tutorial on differentiable manifolds and calculus on manifolds in this volume. 

3.4. Homomorphisms of Lie algebras of vectorfields 
Let M and N be C 00 -manifolds and let a:L~ V(N) be a homomorphism of Lie algebras where L is a 
sub-Lie-algebra of V(M). Let cj>:M~N be a smooth map. Then a and</> are said to be compatible if 

cj>*(a(X)f)=X(<l>*(j)) for allfEF(N) (3.5) 

where <1>* is the homomorphism of algebras F(N) __. F(M),f f-+ </>*(/)= fo<J>. 
In terms of the Jacobian of</> (cf. [3]), this means that 

J(<J>)(Xm)=a(X)<l>(m) (3.6) 

where Xm is the tangent vector at m of the vectorfield X. 
If .p:M~N is an isomorphism of C 00 -manifolds there is always precisely one homomorphism of 

Lie-algebras a: V(M)~ V(N) compatible with</> (which is then an isomorphism). It is defined (via for­
mula (3.5)) by 

a(X)(j)=(<l>*)- 1 X(<J>*j), fEF(N). (3.7) 
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3.8. Isotropy suhalgebras 
Let L be a sub-Lie-algebra of V(M) and let m EM. The isotropy subalgebra Lm of Lat m consists of 
all vectorfields in L whose tangent vector vector in m is zero, or, equivalently 

Lm ={XEL:Xf(m)=O allfEF(M)} (3.9) 

Now suppose that a:L-+V(N) and cj>:M-+N are compatible in the sense of 3.4 above. Then it fol­
lows easily from (3.5) that 

a(Lm) C V(N)<tJ..m) (3.10) 

i.e. a takes isotropy subalgebras into isotropy subalgebras. Inversely if we restrict our attention to 
analytic vectorfields then condition (3.10) on a at m implies that locally there exists a <I> which is com­
patible with a [7]. 

4. SIMPLE, NILPOTENT, AND SOLVABLE ALGEBRAS 

4.1. Nilpotent Lie algebras. 
Let L be a Lie-algebra over k. The descending central series of L is defined inductively by 

C1L=L, Ci+ 1L=[L,C;L], i;;;;.l (4.2) 

It is easy to check that the C; L are ideals. The Lie algebra L is called nilpotent if en L = { 0} for n big 
enough. 

For each x eL we have the endomorphism adx :L -+ L defined by y i-. [x,y ]. It is now a theorem 
that if' L is finite dimensional then L is nilpotent iff the endomorphisms adx are nilpotent for all x EL. 
Whence the terminology. 

4.3. Solvable Lie algebras. 
The derived series of Lie algebras of a Lie algebra of a Lie algebra L is defined inductively by 

D 1L=L, D;+ 1L=[D;L,DiL], i;;;;.I (4.4) 

It is again easy to check that the D; L are ideals. The Lie algebra L is called solvable if Dn L = { 0} for 
n large enough. 

4.5. Examples 
The Heisenberg Lie algebra of example 2.6 is nilpotent. The Oscillator algebra of example 1.16 is 
solvable but not nilpotent. The sub-Lie-algebra of W1 with vector-space basis 

x 2, :;2 , x, fx, 1, x ix is neither nilpotent, nor solvable. The Lie-algebra tn(k) of example 2.3 is 

solvable and in a way is typical of finite dimensional solvable Lie algebras in the sense that if k is 
algebraically closed (e.g. K=C), then every finite dimensional solvable Lie algebra over k is iso­
morphic to a sub-Lie-algebra of some tn(k). 

4. 6. Exercise 
Show that sub-Lie-algebras and quotient-Lie-algebras of solvable Lie algebras (resp. nilpotent Lie 
algebras) are solvable (resp. nilpotent). 

4. 7. Abelian Lie-algebras 
A Lie algebra Lis called abelian if [L,L]={O}, i.e. if every bracket product is zero. 
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4.8. Simple Lie-algebras 
A Lie algebra L is called simple if it is not abelian and if it has no other ideals than 0 and L. (Given 
the second condition the first one rules out the zero- and one-dimensional Lie algebras.) These 
simple-Lie-algebras and the abelian ones are in a very precise sense the basic building blocks of all 
Lie algebras. 

The finite dimensional simple Lie algebras over C have been classified. They are the Lie algebras 
sln(C),spn(C),son(C) of examples 1.8, 2.4 and 2.2 above and five additional exceptional Lie algebras. 
For infinite dimensional Lie algebras things are more complicated. The socalled filtered, primiti~e, 
transitive simple Lie algebras have also been classified (cf. e.g. [2]). One of these is the Lie-algebra Vn 
of all formal vector fields L(;(x;, ... ,xn)-3° , where the f;(x) are (possibly non converging) formal 

X; 
power series in x I> ••. , Xn. This class of infinite dimensional simple Lie algebras by no means 
exhausts all possibilities. E.g. the quotient-Lie algebras Wn!IR·l are simple and non-isomorphic to any 
of those just mentioned. 

4. 9. Exercise 
Let V01g(IR") be the Lie algebra of all differential operators (vector fields) of the form 

2:{;(x 1, ••• ,xn).J- withf;(x 1, •.. ,xn) polynomial. Prove that Va1g(IR") is simple. 
uX1 

5. REPRESENTATIONS 

Let L be a Lie algebra over k and M a vectorspace over k. A representation of L in Mis a homomor­
phism of Lie algebras. 

p:L -7 Endk(M) (5.1) 

where Endk(M) is the vectorspace of all k-linear maps M --'> M which is of course given the Lie alge­
bra structure [A,B]=AB-BA. Equivalently a representation of Lin M consists of a k-bilinear map 

<J:LXM--'> M (5.2) 

such that, writing xm for <J(x,m), we have [x,y]rn=x(Yrn)-y(xrn) for all x,yEL, rnEM. The relation 
between the two definitions is of course <J(x,rn) = p(x )(rn ). 

Instead of speaking of a representation of Lin M we also speak (equivalently) of the L-module M. 

5. 3. Examples 
The Lie algebra gln(k) of all n X n matrices naturally acts on k" by (A, v) f-> Av Ek" and this defines a 
representation gl.(k)Xk" ~ k". The Lie algebra V(M) of vectorfields on a manifold M acts (by its 
definition) on F(M) and this is a representation of V(M). A quite important theorem concerning the 
existence of representations is 

5.4. Ado's theorem 
Cf. e.g. [l, § 7]. If k is a field of characteristic zero, e.g. k =IR or C and Lis finite dimensional then 
there is a faithful representation p:L--'>End(k") for some n. (Here faithful means that p is injective.) 

Thus every finite dimensional Lie algebra L over k (of characteristic zero) can be viewed as a 
subalgebra of some gln(k), and this subalgebra can then be viewed as a more concrete matrix 
"representation" of the "abstract" Lie algebra L. 
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5.5. Realizing Lie-algebras in V(M) 
A question of some importance for filtering theory is when a Lie algebra L can be realized as a sub­
Lie-algebra of V(M), i.e. when L can be represented in F(M) by means of derivations. For finite 

dimensional Lie algebras Ado's theorem gives the answer because (aij) f-'> "'2,aijxiJ- defines an injec-
ux1 

tive homomorphism of Lie-algebras gln(IR) - V(IRn) (Exercise: check this). 

6. LIE ALGEBRAS AND LIE GROUPS 

6.1. Lie groups 
A (finite dimensional) Lie group is a finite dimensional smooth manifold G together with smooth 

maps G X G - G, (x,y) f-'> xy, G - G, x ... x - l and a distinguished element e E G which make G a 
group. An example is the open subset of R"1 consisting of all invertible n X n matrices with the usual 

matrix multiplication. 

6.2. Left invariant vectorfields and the Lie algebra of a Lie group 
Let G be a Lie group. Let for all gEG, L :G~G be the smooth map x-gx. A vectorfield XE V(G) is 
called left invariant if X(L;f)=L;(Xf) for all functions f on G, where, of course, the left translate 
L;y of a function y is defined by (L;y)(x)=y(gx). Or, equivalently, if J(Lg)Xx=Xgx for all xEG, cf. 
section 3.4 above. Especially from the last condition it is easy to see that X f-'> x. defines an isomor­
phism between the vectorspace of left invariant vectorfields on G and the tangent space of G at e. 
Now the bracket product of two left invariant vectorfields is easily seen to be left invariant again so 
the tangent space of G at e (which is IR" if G is n-dimensional) inherits a Lie algebra structure. This is 

the Lie algebra Lie(G) of the Lie group G. A main reason for the importance of Lie algebras in many 
parts of mathematics and its applications is that this construction is reversible to a great extent mak­

ing it possible to study Lie groups by means of their Lie algebras. 

6.3. Exercise 
Show that the Lie algebra of the Lie group GLn(IR) of invertible real n Xn matrices is the Lie algebra 

gln(IR). 

7. THE ADJOINT REPRESENTATION 

Let L be a Lie algebra. Then there is a natural representation of L into the vectorspace L given by 

ad: L - End(L), ad(x)(v)=[x,y] (7.1) 

The Jacobi identity is precisely what is needed to show that ad([x,y])=ad(x)ad(y)-ad(y)ad(x). This 
representation is called the adjoint representation. It is the infinitesimal part of a representation 
denoted Ad of the group G of L in L. 

In the case G is a connected subgroup of GLn(k), so that L =Lie(G) is a subalgebra of gln(k) this 
representation can be written as 

Ad(g)(x)=gxg- 1, XEL,gEG (7.2) 

(One needs to prove of course that gxg- 1 is again in L.) In the more general and more abstract set­

ting of 6.2 above, this goes as follows. Let G be a Lie group and L its Lie algebra, i.e. the Lie algebra 

of left invariant smooth vectorfields on G. Again let Lg: G - G be defined by Lg(x) = gx and define 
ih:G - G by x i-+hxh- 1• Now observe that 

Lgih =ihLh-'gh 

It follows immediately that if the vectorfield ij,X is defined by 

(ii,X)(j)=X(ii,f) 
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that then ii, is left invariant if X is left-invariant. 
In case G=GLn(IR)clRnxn, we can identity the tangent space T8G at gEG with the space of nXn 

matrices IRnxn. The left invariant vectorfields then are of the form 

gi-+gA, gEG 

for some fixed A EIR. If X is a vectorfield then ij,X is the vectorfield defined by 

(ij,X)x =J(ih )(if 1 (x ))(X;;'(x)) 

Now ih(x)=hxh - I which is linear in x. So J(ih)(y)(v)=hvh -l for ally EG, v EIRnxn =Ty G. So if X is 
the left invariant vectorfield g 1-+ gA, then ii, is the vectorfield 

(ij,X)8 =J (ih)(ii; 1 (g))(X;;'(g)) = J (ih)(if 1(g))(h - lghA) 

= h(h- 1ghA)h- 1 =ghAh- 1 

which is indeed again of the same form, hence left invariant, and we see that the induced action on 
T,G = IRnxn is indeed A i-+hAh - I. This also serves to prove that if g EG C GLn(R), x EL Cgln(IR),L = 
Lie(G) then indeed gxg- 1 EL. 

For G=GLn(k), L=gln(k) there is a local diffeomorphism of a neighborhood of 0 in gln(k) to a 
neighborhood of e=ln EGLn(k) given by A 1-+ exp(A)=J + 1! + ~~ +··· and more generally exp 
takes a neighborhood in the subalgebra L of G into one around e E G. 

The particular case of (7.2) where g is of the form eA ,A EL, is of importance. One has 'the adjoint 
representation formula' 

(7.3) 

(From which it is clear that indeed eA Be-A E (a completion of) the Lie algebra generated by A and 
B). This formula is easily proved by induction. One needs ad(A)n(B)= ~ (-IY*·*A;BAj. 

i+j=n I. )· 
Occasionally in the literature this formula occurs under the name Campbell-Baker-Hausdorff formula 
(or Campbell-Hausdorff formula). This name, however, belongs more properly to the far deeper result 
that if A,BEL then eAeB is the exponential of some element in (a completion of) the sub-Lie-algebra 
of L spanned by A and B. This element can be expressed as an infinite sum (the C - B - H formula) 

I 1 I A +B+l[A,B]+U[(A,B],B]-U[[A,B],A ]+· .. 

(This result can be extended to the most general case: that of a free Lie algebra, either in terms of 
formal series identities, or by means of suitable completions.) 

8. POSTSCRIPT 

The above is a very rudimentary introduction to Lie algebras. Especially the topic "Lie algebras and 
Lie groups" also called "Lie theory" has been given very little space, in spite of the fact that it is 
likely to become of some importance in filtering (integration of a representation of a Lie algebra to a 
representation of a Lie (serni)group). The books (1, 4, 5, 6, 8, 9] are all recommended for further 
material. My current personal favourite is [9] with [4] as (a far more difficult) close runner-up; [6] is a 
classic and in its present incarnation very good value indeed. 
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