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ABSTRACT 

We consider systems of linear differential and algebraic equations in which some 
of the variables are distinguished as "external variables." Two systems are called 
equivalent if the set of solutions for the external variables is the same for both systems. 
We give an operational form for this definition of equivalence, i.e., we describe a set 
of system transformations having the property that two systems are equivalent if and 
only if they can be taken into each other by transformations from that set. Next, an 
algorithm is described to transform a given system in general form to a system in 
minimal state-space form. This algorithm differs from existing methods in that it first 
takes the equations to first-order form, so that each subsequent step can be formulated 
and interpreted in state-space terms. We also compute the "structure indices" in 
terms of a state-space description in nonminimal form and use this to prove the 
minimality of the end result of the algorithm. Finally, an application is shown to the 
problem of ill-posedness of feedback connections. 

1. INTRODUCTION 

Two questions that are of fundamental importance in system theory are, 
firstly, when we call two system descriptions equival.ent (i.e., when we say 
that they represent "essentially" the same system) and, secondly, how we can 
transform a system in general form to an equivalent system in a suitable 
"standard" form. These questions have been discussed since the very begin
ning of modem system theory. In the early sixties, Kalman [15] and Gilbert 
[9] criticized the notion of equivalence based on equality of transfer func
tions, on the grounds that this puts :stable and unstable systems into the same 
equivalence class. Instead, an equivalence relation was stated for systems in 
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state-space form, based on similarity transformations in the state space. The 
notions of controllability and observability were used to describe the relation 
between the two notions of equivalence, and algorithms were developed to 
pass from a system description in transfer-matrix form to one in observable 
and controllable state-space form. 

It was soon recognized that it would be desirable to define equivalence of 
systems for descriptions more general than the state-space form. In 1970, 
Rosenbrock [26] defined such a concept for systems of higher-order linear 
differential equations and linear algebraic equations. This notion of equiv
alence, called "strict system equivalence" by Rosenbrock, was shown to have 
(after a slight extension; see also [27]) the following properties: (1) every 
system of the considered type is equivalent to a system in state space form, 
and (2) two systems in state-space form are equivalent in the sense of 
Rosenbrock if and only if they are equivalent in the sense of Kalman. The 
definition of strict system equivalence in [26] is "operational" in nature, i.e., 
two systems are said to be equivalent if they can be transformed into each 
other by applying operations of a certain prescribed type (see [26, p. 52]). 
Later, Wolovich [34] proposed a notion of equivalence in a more "intrinsic" 
form, based in part on the solution spaces. It was shown by Pernebo in 1977 
(24] that the definitions of Wolovich and Rosenbrock give rise to the same 
equivalence classes. 

In all of the abovementioned notions of equivalence (as well as in other 
versions by Morf [21] and Fuhrmann [7]), the distinction between inputs and 
outputs is essential. In 1979, J. C. Willems argued that, in many situations, it 
is neither necessary nor desirable to make such a distinction a priori. Rather, 
one should speak of "external variables," which may or may not be split up 
into input variables and output variables. From this point of view (which 
brings us, in fact, closer to the classical theory of differential equations), it is 
natural to define two systems of equations to be equivalent if the sets of 
trajectories that they allow for the external variables are the same. 

It should be noted that the same notion of equivalence was developed by 
Blomberg and coworkers as part of a prolonged effort in algebraic system 
theory during the sixties and seventies (see [3]). However, the definition in 
[3, p. 92] is restricted to systems in input/output form, so that a certain 
"regularity" constraint has to be imposed on the describing equations. 
Although the situation where this condition does not hold is considered also 
(see p. 89), attention is given almost exclusively to the "regular" case, so that 
the work by Willems is more general in this respect (while there is also, of 
course, the difference in viewpoint between "inputs/ outputs" and "external 
variables"). 

As shown by Willems [32] and by Blomberg and Ylinen [3, p. 173], the 
notion of "external" equivalence is essentially different from strict system 
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equivalence. When reduced to the category of systems in the usual input/ 
state/output form, systems that differ only in their nonobservable part will 
be externally equivalent, but not equivalent in the sense of Rosenbrock (or 
Kalman). On the other hand, not all systems that have the same transfer 
matrix are externally equivalent, since minimal state-space representations 
under this equivalence are not necessarily controllable (see [31, 32] and 
[3, Section 6.4]). Consequently, external equivalence is weaker than transfer 
equivalence but stronger than strict system equivalence. 

The contributions of the present paper are as follows. Firstly, we give an 
operational form for system equivalence in the sense of Willems; that is, we 
give a list of operations that take systems to equivalent systems, and show 
that the list is complete in the sense that if two systems are equivalent, then 
they can be transformed into each other by operations from the list. Of 
course, the hard part here is to prove the completeness. 

Secondly, we present an algorithm by which one can transform a given 
system of higher-0rder linear differential and linear algebraic equations to an 
equivalent system in minimal state-space form. The novelty about this 
algorithm is that it avoids polynomial operations. A preliminary step in the 
algorithm takes the equations to first-order form, by a simple reordering of 
data that doesn't require numerical processing. All further steps are for
mulated and can be interpreted in state-space terms, and it turns out that 
concepts developed in the geometric approach to linear system theory (see, 
e.g., [36, 19]) are of crucial importance. To the author's best knowledge, all 
previous algorithms which take a system in general form to state space form 
rely heavily on polynomial operations. Most authors (for instance [25; 34; 32, 
p. 596]) start from a reduced form in which no "internal variables" appear 
("AR form", in the terminology of [33]); polynomial operations are certainly 
necessary to arrive at this form (for instance, the Smith canonical form is 
employed in [32, p. 585]). Rosenbrock starts from the general form, but he 
uses the Smith form also [26, p. 53]. Wolovich and Guidorzi [35] show how to 
write down a state-space representation immediately from a certain form 
which is more general than the "AR" representation; however, to obtain this 
form, one still needs polynomial operations (reduction to row-column proper 
form). A disadvantage of the polynomial methods is that they are not easily 
transported outside the context of linear time-invariant systems. State-space 
methods have a much better record in this respect, as is evidenced, for 
instance, by the lively developments that are taking place in the field of 
nonlinear system theory (see, e.g., [13]). As to the algorithm of the present 
paper, a generalization of it to the nonlinear case has already been shown in 
[28]. A second reason to prefer state-space methods could be that they are 
easier to implement numerically. This is certainly true if one talks about 
traditional procedures which operate on constant matrices; however, numeri-
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cal methods for dealing with polynomials are currently in development. The 
present paper is, in itself, not concerned with issues of numerical robustness. 

The presentation of the algorithm is followed by some remarks on 
invariants under system equivalence. We show how to compute the "struc
ture indices" directly from a state-space description in general (nonminimal) 
form. As a corollary, we obtain the minimality of the representation that is 
produced by the algorithm. Finally, it is shown how the theory of the present 
paper can be used to obtain a better understanding of "ill-posed" feedback 
connections. 

2. OPERATIONAL FORM OF EXTERNAL EQUIVALENCE 

We first introduce some notation and terminology, and specify the precise 
conditions under which we shall work. The set of all infinitely differentiable 
functions from Ill (the time axis) to Ill is denoted by C00(R; Ill). This set is a 
vector space over IR and the operator of differentiation is a linear mapping of 
C00(R; Ill) into itself. Therefore, we can make C00(1R; IR) into a module over 
the ring IR [ s] of real polynomials in the variable s by the standard definition 

(2.1) 

No notational distinction will be made between a polynomial and its associ
ated differential operator. The product (C00(1R; IR)r of n copies of 
C00(1R; IR) can be identified in a natural way with C00(1R; IR" ), and we shall 
use the latter notation. In this way, C00(1R;IR") is also a module over IR[s]. A 
matrix of size k X n with entries in IR [ s] can now be considered as a module 
homomorphism from C00(R; IR ") to C00(1R; IR k ). The set of all such poly
nomial matrices is denoted by IR k x n [ s]. A square polynomial matrix is said to 
be unimodular if it has a polynomial inverse. It is easily seen that a 
homomorphism that is represented by a unimodular matrix is, in fact, an 
isomorphism. The ring IR [ s] is a subring of the field of rational functions 
denoted by IR ( s ). The rank of a matrix over IR [ s] is defined to be equal to its 
rank over IR(s). 

In this paper, we are concerned with submodules of C00(1R;Rq) that are 
given in the form Q[kerP] for some PEIRkxn[s] and QE!Rqxn[s]. These 
submodules are the solution spaces of systems of differential equations of the 
form 

P(D)~=O, 

Q(D)~=w, 

(2.2) 

(2.3) 



LINEAR SYSTEMS UNDER EXTERNAL EQUIVALENCE 5 

where D denotes derivative, the vector ~ (with n components) represents 
"internal" variables, and the vector w (with q components) represents 
"external" variables. (As a rule, internal variables will be denoted by Greek 
letters and external variables by Latin letters.) A system of the form (2.2)-(2.3) 
will be abbreviated as 2:( P, Q). Two systems 2:( P1, Q1 ) and 2:(P2 , Q2 ) are 
said to be (externally) equivalent [31] if Q1[ker Pi] = Q2 [ker P2]. 

We now list a number of transformations under system equivalence. 

PROPOSITION 2.1. Let P1 E1Rk,><n 1[s], P2 E1Rk2 >< 1»[s], Q1 E1Rqxn 1[s], 
and Q2 E1Rqxn2 (s]. Under each of the following conditions, the system 
2:(P1, Q1) is equivalent to the system 2:(P2, Q2 ). 

(1) TC (addition/deletion of trivially satisfied constraints): 

p = (P1 ) 2 0 , 

(2) RC ( reformuwtion of constraints): 

where U is unimoduwr. 
(3) CV (change of internal variables): 

where Vis unimoduwr. 
(4) IV (addition/deletion of inactive variabks): 

where R is an arbitrary polynomial matrix of compatible size. 
(5) IC (addition/ deletion of ineffective constraints): 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

where R 2 is an arbitrary polynomial matrix of compatible size., and R 1 has 
full row rank. 
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Proof. All statements are easy to verify. In connection with the transfor
mation IC, it should be noted that a polynomial matrix of full row rank 
represents a surjective homomorphism. (This is easily proved by reduction to 
the scalar case via the Smith form; see also [32, Proposition 3.3].) 1111 

We now proceed to show that this set of transformations under external 
equivalence is complete in the sense that if two pairs of polynomial matrices 
(P1, Q1) and (P2 , Q2 ) give rise to equivalent systems, then these pairs can be 
transformed into each other by transformations from the above collection. 
The proof uses two lemmas; the first one shows that every pair ( P, Q) can be 
transformed to a pair (R, I) where R has full row rank and I is the identity 
matrix, and the second one shows that two pairs of the latter form are 
equivalent if and only if they are related by a transformation of type RC. 

LEMMA 2.2. Let PEl!lkxn[s] and QEl!lqxn[s]. Then there exists a 
full-row-rank matrix RE Ill 1xq[ s] such that 2:( P, Q) is equivalent to ~( R, I). 

Proof. We can use IV and CV to do the following transformations: 

-Q) p ,(I (2.9) 

Now, the matrix ( - Q' P')' can be compressed to full row rank by elemen
tary row operations, i.e., there exists a unimodular matrix U such that 

( U 11 

U21 
~: )( -p Q ) = ( ~ ) , (2.10) 

where Z is of full row rank (see, for instance, [14, p. 375]). So, using 
transformation RC, we get 

( ( ~ -Q) p ,(I 0)) ~ ( ( ~~~ ~).co I))· (2.11) 

Applications of CV and of IC now lead to the desired form, with U21 playing 
the role of R. 1111 

The fact that every submodule of the form Q(ker P) can also be written in 

the form ker R for some polynomial matrix R has been proved in [32, 
Proposition 3.3]. Our proof here has been designed to show explicitly that tlie 
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transformation can be done by using operations from the list given in Lemma 
2.2. In fact, the proof shows that the following result is true, which is 
interesting enough to state by itself: 

COROLLARY 2.3. Let PEIRkxn[s] and QEIRqxn[s], and let Ube a 
unirrwdular matrix such that 

(2.12) 

where Z is of full row rank. Under these conditions, 

Q(ker P) = ker U22 . (2.13) 

We will also need the following result. 

LEMMA 2.4. Let P1 E IRpxq[s) and P2 E IR'Xq[s], and suppose that P1 is 
of full row rank. If ker P1 c ker P2, then there exists a unique matrix 
FE IR'xP[s] such that P2 = FP1. 

Proof. Because P 1 has full row rank, it is possible to select p columns 
from P1 such that the corresponding p X p matrix is invertible as a matrix 
over IR ( s ). It is no restriction of the generality to assume that P 1 = (Pu P 12 ) 

where Pu is invertible over IR ( s ). Let P2 be partitioned conformably as 
(P21 P 22 ). Now, note that ker P1 c ker P2 implies ker P11 c ker P21 . (Indeed, 
suppose that Pu~i = O; then 

(P11 P12 )( ~) = 0, (2.14) 

which implies 

( P21 P22 )(~)=0, (2.15) 

so that P21~ 1 = 0.) 
We claim that it is sufficient to prove that there is a polynomial matrix F 

satisfying P21 = FPu. To see this, let ~2 E C00(1R; IR q-p). Because P11 is 
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nonsingular, there exists ~ 1 E C""(IR; lliP') such that P11~ 1 = - P12~2 , i.e. 

(2.16) 

But then also 

(2.17) 

so that P22~2 = - P21~1 = - FP11~ 1 = FP12~2• It follows that P22 = FP12, so 
that, in all, P2 = FP1. 

Proving that P21 is a left multiple of Pu is the same as showing that Pu 
is a greatest common right divisor of P11 and P21• (For the basic facts about 
gcrd's, see, for instance, [17, p. 35], or [14, pp. 376-380], or [3, Appendix 
Al]). So, let G be an arbitrary gcrd of Pu and P21; then we want to show 
that there exists a unimodular matrix U such that Pu= VG. Since G is a 
right divisor of Pu, we already know that there exists a square polynomial 
matrix V such that Pu= VG. So all we have to show is that the determinant 
of V must be a nonzero constant, which will follow if we can prove that 
deg(det G) is equal to deg(det Pu)· Note that G must be nonsingular, 
because it is a square factor of a nonsingular matrix. From this, it follows that 
ker G is a finite-dimensional subspace of C00(1R, IR P ), and that the dimension 
of this subspace is, in fact, equal to deg(det G) (see, for instance, [4, Theorem 
2.3.5.2]). Likewise, ker Pu is a subspace of C00(1R,IR P) of dimension 
deg(det Pu)· We now use the matrix Bezout identity: there exist polynomial 
matrices X and Y such that G = XP11 + YP21• Together with the fact that 
ker Pu c ker P21, this implies ker P11 c ker G, and so deg(det Pu) ~ 
deg(det G). The reverse inequality is obvious because G divides P11• This 
completes the proof. • 

The above result has an interesting history. A claim to the. effect of the 
lemma appears already in a 1895 paper by Chrystal [5], but the result is not 
really proven in that paper. The same claim with the same incomplete 
argument turns up in the well-known textbook by Ince [12, p. 146]. A closely 
related statement is presented under the name "Inclusion Lemma" by Levy 
et al. in 1977 [16]. Their proof involves manipulation of Laplace transforms 
and initial conditions. In the book by Blomberg and Ylinen [3], essentially the 
same statement as the above lemma is given as Theorem 6.2.2. The proof 
takes several pages. Finally, the statement of the lemma is also given, without 
proof, by Willems [33, Section 4]. The corresponding statement in the 
discrete-time case has a straightforward proof if one uses the duality de-
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scribed in [33, 2nd proof of Theorem 5]; see (22]. It seems to be more 
difficult to construct a similar duality in the continuous-time case. 

The following corollary is straightforward. 

COROLLARY 2.5. Let PIE IRpxq[s] and P2 E IRrxq[s], and suppose that 
both PI and P2 have full row rank. If ker P1 = ker P2 , then p =rand there 
exists a unimodular matrix U such that P2 =UPI. 

Proof. By the lemma, there exist polynomial matrices F1 and F2 such 
that P2 = FIP1 and Pi= F2P2. So we have Pi= F2FiP1• Because Pi has full 
row rank, this implies F2F1 =I. Likewise, one has FiF2 =I. As a conse
quence, p =rand F1 and F2 are both unimodular. 1111 

It is now easy to derive the main result of this section. 

THEOREM 2.6. Let PIE IR kiXn 1[2], P2 E IR k2 X"2[ s], Q1 E IR qXn 1 [ s ], and 
Q2 E IR qxn2 [s ]. The system ~(PI, Q1) is equivalent to the system ~(P2 , Q2 ) 

if and only if the pair (P1, QI) can be transformed into the pair (P2 , Q2 ) by 
applying operations from the list given in Proposition 2.1. 

Proof. The "if" part has already been shown in Proposition 2.1. For the 
"only if" part, suppose that ~(P1,QI) is equivalent to ~(P2,Q2 ). From 
Lemma 2.2, we know that, using operations from the list of Proposition 2.1, 
we can transform (P1, QI) into (RI, I) and (P2, Q2 ) into (R 2, I), where both 
R1 and R2 have full row rank. The equivalence of the systems ~(R 1 , I) and 
2:(R 2,I) implies that kerR 1 =kerR 2• By Corollary 2.5, there must exist a 
unimodular matrix U such that R2 =URI, i.e., the systems described by 
(R 1, I) and (R 2 , I) are related by a transformation of type RC. Summarizing, 
operations from the list of Proposition 2.1 allow us to transform (PI, Q1) into 
(Rv I), then into (R 2, I), and then into (P2, Q2). Ill 

3. THE ALGORITHM 

In this section, we present an algorithm to transform a system in general 
form 

P(D)~=O, 

Q(D)~=w 

(3.1) 

(3.2) 

to one in minimal state-space form. The algorithm consists of a preliminary 
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step, which takes the system to first-order form by a process which does not 
involve computation but only a renaming of variables, and three subsequent 
reduction steps. Such reduction steps are expected to be necessary, since we 
start from a system in general form. Admittedly, it is possible to obtain a 
minimal state-space realization immediately from an "AR" description with a 
row proper matrix, as shown in [33, proof of Theorem 3]; but of course, this 
requires that the system be already given in a highly developed form. The 
fact that the representation produced by the algorithm has minimal state-space 
dimension will be proved in the next section. 

So, we start with a system in the general form (3.1)-(3.2). We first take 
the system to "first-order form," which is the same form as in (3.1)-(3.2) but 
with the added restrictions that P( s) should be of the form P 1 s + P0 , where 
P 1 and P0 are constant matrices, and that Q( s) = Q0 , a constant matrix. 

Preliminary Step 
As a temporary abbreviation, define Z(s) = (P'(s) Q'(s))'. Write 

For l = k, . .. , 0, define Z 1( s) by the Homer scheme: 

zk(s)=Zk, 

Z 1(s) = sz1+ 1(s)+ Z1 (Z=k-1,. .. ,0). 

(3.3) 

(3.4) 

(3.5) 

Note that this implies that Z 0(s) = Z(s). Using operations of the types IV, 
RC, and CV repeatedly, the following transformations are obtained: 

Z=zo~( I z1 ;o) = ( ;1 sZ 1 ~ zJ ~ ( ;1 ;:) 

-( ~ 0 

~}( ~ 
-s ;:)-I I 

z2 sZ2 + Z1 Zo z2 Z1 

I -s 0 0 
0 I 

~ (3.6) 
0 

0 0 I -s 
zk Z1 Zo 
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In other terms, we now have an equivalence ( P, Q) ~ ( P, Q) where 

I -s 0 0 
0 I 

F= Q=( Qk Qo). 
0 

0 0 I -s 
Pk P1 Po 

(3.7) 

The free parameters in the new matrices are just the coefficients of the 
polynomial matrices P and Q, so there is no computation involved in this 
step. Although we have phrased the transformations in the language of 
Proposition 2.1, the reader will undoubtedly have noticed that what we did 
was nothing else but the standard trick of replacing higher-order derivatives 
by new variables. 

Step One 
After a permutation of columns (transformation CV), our system is now in 

the form 

-B) 
D ' Q(s) = (H J). (3.8) 

(We adopt the convention that all symbols are redefined after a transforma
tion has been completed, to reduce the notational burden.) In what follows, 
we shall need some definitions and results on weakly unobservable subspaces 
that we now recall (see [36, 2, 1, 20]). Given a state-space system in standard 
form ~(A, B, C, D), a subspace V of the state space X is said to be weakly 
unobservable if there exists a feedback matrix F such that (A + BF)V c V 
and V c ker(C + DF). (If a subspace satisfies this property with F = 0, then 
it is called unobservable, whence the terminology.) It is easily seen that the 
sum of two weakly unobservable subspaces is again weakly unobservable, and 
that the zero subspace is always weakly unobservable, so that the set of all 
weakly unobservable subspaces for a given system ~=~(A, B, C, D) has a 
maximal element, which is denoted by V*(~). This subspace may be corn-



12 J. M. SCHUMACHER 

puted as the limit of a sequence of subspaces defined recursively by 

vo(:~:) = X, (3.9) 

Vk(~) = { x E X\3u s.t. Ax+ Bu E yk-l(~), Cx +Du= 0} 

(k = 1,2, ... ). (3.10) 

Another way to phrase the definition given above would be to say that a 
subspace V is weakly unobservable if and only if there exists a feedback 
matrix F and a decomposition of the state space X = X1E9X 2 , in which X1 

equals V, such that the following block matrix representations are obtained: 

A12 ) A , 
22 

B = ( !~), C+DF = (0 

It is easily seen that, if V1 and V2 are both weakly unobservable subspaces 
and V1 is contained in V2 , then there always exists a feedback matrix F such 
that (A+ BF)v; c v; and v; c ker(C + DF) for i = 1,2. As a consequence, 
one obtains the following proposition. 

PROPOSITION 3.1. A weakly unobservable subspace V for a given system 
~(A, B, C, D) is maximal (i.e., V = V*(~)), if and only if in any decomposi
tion of the form (3.11) the system ~2 = ~(A22 , B2 , C2, D) has V*(~ 2 ) = 0. 

Systems for which the largest weakly unobservable subspace is the zero 
subspace are sometimes called strongly observable. One has the following 
characterization of this situation (see [10, Theorem 5.1]). 

PROPOSITION 3.2. A system ~(A, B, C, D) with state-space dimension n 
is strongly observable if and only if 

rk( sl -CA - B) (- B) D =n+rk D 'Ifs EC. (3.12) 

These two propositions are useful in the proof of a lemma which will help 
to take the first step in our algorithm: the elimination of the constraints on 
the internal variables represented by the C and D matrices in (3.8). 
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LEMMA 3.3. Consider a system 2:(A, B, C, D). The corresponding system 
pencil can be written in the form 

( sl ~A 
0 
0 

sl - A 11 

(3.13) 

where U( s) is unirrwdular, and T is a constant nonsingular matrix. In fact, 
we may take A 11 to be a matrix representation for the restriction of A + BF to 
V*(.2:) for any F that satisfies (A+ BF)V* c V* and V* c ker(C + DF), 
whereas the columns of B1 form a spanning set for B[ker DJ() V* in V* 

Proof. Note that change of basis in state space and feedback are 
transformations that correspond to constant nonsingular row and column 
operations on the system pencil. Using Proposition 3.1, we can therefore 
write the pencil in the form 

-A12 

sl -A22 

C2 

-B l -;~, (3.14) 

where the 2 X 2 block in the lower right corner represents a strongly 
observable system. By constant column operations acting on the rightmost 
column of the above matrix, the pencil can be rewritten in the form 

-A12 

sl - A 22 

C2 

-B12 

0 

0 
(3.15) 

where now ker(B21 D{)' = {O}. According to Proposition 3.2, the 2 X 2 block 
in the lower middle of the above matrix has full column rank for all s E C. As 
is well known (see, for instance, [14, p. 379]), this implies that there exists a 
unimodular matrix V( s) such that 

(3.16) 

So, left multiplication by a suitable unimodular matrix will take our pencil to 



14 

the form 

-A12 

I 
0 
0 

-Ba 
0 
I 
0 

- B12 

0 
0 
0 

J. M. SCHUMACHER. 

(3.17) 

Further constant row operations will wipe out - A 12 and B11• Finally, the 
form (3.13) is reached by rearrangement of rows and columns. II 

We are now in a position to proceed with the algorithm. We start from a 
system description in the form (3.8). The above lemma shows that suitable 
operations of the types RC and CV will take this to something in the form 

P(•) ~ ( i 0 ) 0 0 , 
sl -A 11 B1 

Q(s) = ( H1 (3.18) 
0 

[note that Q( s) is only affected by the operation of type CV, which 
corresponds to the matrix T in the lemma, and so it will still be constant after 
the transformation]. Applying transformations of the types TC and IV, we 
obtain a system description in the form 

P(s)=(sI-A -B), Q(s) = (H J). (3.19) 

We shall call this the general state-space form. Although polynomial oper
ations were used to arrive at this form, their only function was to justify a 
deletion, so that the corresponding computations do not actually have to be 
carried out. Computationally, the reduction is done on the basis of calculation 
of the subspace V*(};(A, B, C, D)), plus some basis transformations. 

It is easy to interpret the first step of the algorithm, which has now been 
completed, if one recalls the interpretation of V*(L) as the largest "output
milling controlled invariant subspace" (see, for instance, [11]). Every solution 
~( · ) of the equations 

Ht)=AHt)+B11(t), 

C~(t)+D11(t)=O 

(3.20) 

(3.21) 

must belong to V*(};) for all t, so that we can restrict ourselves to this 
subspace. Also, the "driving variables" 11( t) can be restricted to those that do 
not lead out of this subspace. 
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Step Two 
The purpose of the second step of the algorithm is to transform a system 

in the general state-space form (3.19) to a description in the same form, but 
with the special property that the matrix J has full column rank. The 
significance of this property is the following. A system in general state-space 
form is described by the equations 

~(t) = A~(t) + B71(t ), 

w(t) = H~(t) + J71(t ). 

(3.22) 

(3.23) 

If I is injective, then the driving variables 71 can be solved from the external 
variables w, so that the system can be rewritten in a form in which 
it is driven by (part of) the external variables. This, of course, is absolutely 
essential if we want to arrive at the standard state-space form, in which the 
system is indeed driven by the external variables (remember that the external 
variables are, in the setting of [31], what are outputs and inputs in the usual 
setting). 

Again, we need some material from the geometric approach to linear 
systems; in fact, the concept that will be needed is just the dual of that of a 
weakly unobservable subspace. Let a standard state-space system 2: = 
~(A, B, C, D) be given. A subspace T of the state space X is said to be 
weakly controtlab"le if there exists an output injection matrix G such that 
(A+ GC)T c T and im(B +GD) c T. One way to explain the meaning of 
this definition is the following. Consider a direct-sum decomposition of the 
state space X = X 1EBX2 in which T = X2. Correspondingly, we have the 
system equations 

:ii{t) = A11x1(t)+ A12x2(t)+ B1u(t), 

i 2( t) = A21x1( t) + A 22x2( t) + B2u( t ), 

y(t)=C1x1(t)+C2x2(t)+Du{t). 

(3.24) 

(3.25) 

(3.26) 

Now, the requirements on T mean that there exists a matrix G1 such that 
A12 + G1C2 = 0 and B1 + G1D = 0. So Equation (3.24) above may be re
placed by 

(3.27) 

That is, the x1-<!omponent of the state (i.e., the "system modulo T*") is 
driven by the output y. 
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It is easy to see that the intersection of two weakly controllable subspaces 

is again weakly controllable, and that the full state space X is always weakly 

controllable. It follows that there exists, for any given standard state-space 

system }; =};(A, B, C, D), a unique minimal weakly controllable subspace, 

which will be denoted by T*(~). By the interpretation given above, one 

could say that "the part of the system that depends causally on the outputs is 

the system modulo T*." Consequently, the purpose of the second step of the 

algorithm will be to "divide out" T*(:Z:(A, B, H, !)). We proceed as follows. 

Our starting point is the system in general state-space form (3.19). The 

state space X can be decomposed as X = X 1 EB X 2 with X 2 = T. After a 

corresponding change of basis (constant transformations RC and CV), the 

system description can be given in the form 

p ( 8 ) = ( sl - An 
-A21 

-A12 

sl - A 22 

Transformations of the types IV and CV will take this to the form 

('I-Au -A12 - B1 n P(s) = -A21 sl - A 22 - B2 

H1 H2 J 

Q(s) = ( 0 0 0 -I), 

(3.28) 

(3.29) 

(3.30) 

(3.31) 

and for some time we shall only be concerned with transformations that do 

not affect Q( s ). We know that there exists G 1 such that A 12 + G 1 H 2 = 0 and 

B 1 +G 1/ = 0. A corresponding row transformation (RC) will transform P(s) 
to 

-c1) 
0 . 
I 

(3.32) 

The 2 X 2 block in the lower middle represents a system for which T* is the 

whole state space X2 (dual of Proposition 3.1). Let S be a nonsingular matrix 
such that 

(3.33) 
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where (Hi / 1) has full row rank. Using 5 in a row transformation and 
following this by row and column permutations, we can take P( s) to the form 

sl - A 22 -B2 -A21 0 
H1 Jl H1 51 2 1 

(3.34) 0 0 sl -Au -G1 

0 0 H2 1 52 

The 2 X 2 block in the upper left comer has full row rank for all s E C (dual 
of Proposition 3.2). Therefore, an application of transformation IC will 
reduce our system to the form 

(
sl-Au 

P(s) = H2 
1 

-G ) 
52 1 ) (3.35) 

Q( s) = ( 0 -1). (3.36) 

Now, define a matrix (T1 T2 ) by 

(3.37) 

so that S2T1 = 0 and S2T2 =I. A change of variables defined by this matrix 
transforms (3.35)-(3.36) into 

( 
sl -Au 

P(s) = Hf (3.38) 

{3.39) 

and by a further change of variables this is transformed into 

{3.40) 

(3.41) 

An application of transformation IV (supported by RC and CV) finally leads 
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to the following form: 

P(s)=(sl-A 11 +G1T2Hf -G1T1 ), (3.42) 

(3.43) Q( s) = ( T2Hf - Ti)· 

By definition [see (3.37)], the matrix T1 has full column rank. We now have a 
system in the general state-space form (3.19) with the special property that 
the direct feedthrough matrix ] from driving variables to external variables is 
injective. 'This implies that there exists a matrix G such that, in the notation 
of (3.19), H + G] = O; consequently, T*(A, B, H,]) = {O}. We see that we 
have, indeed, managed to "divide out" the subspace T*, so that the second 
step of the algorithm has been completed. 

The interpretation of this step is perhaps best shown in a simple example. 
Consider the system given by 

P( s) = ( s - 1 ) , 

Q(s) = ( 1 0 ). 

(3.44) 

(3.45) 

These equations simply say that the first derivative of the external variable w 
is an arbitrary C00 function. When the reduction step that has been described 
above is applied to this particular system, the result is P(s) = 1, Q(s) = 1. In 
other words, this result says that w itself is an arbitrary C 00 function, which 
is indeed an alternative description of the original system. So the function of 
the second step is the removal of integration steps between the driving 
variables and the external variables. Note that the function space that we 
work on is of crucial importance here: the same reduction would not be 
possible if we would use, for instance, the class of continuous functions rather 
than the C00 functions. 

If, in (3.19), the matrix ] is injective, then it is possible to select a number 
of rows in ] in such a way that the matrix formed from these rows is 
invertible. The driving variables can then be expressed in terms of the 
corresponding external variables which we therefore call "inputs," and the 
system can be written in an input/state/output form. For this reason, we 
shall call a system of the form (3.19) with ] injective a system in implicit 
i/ s / o form. 'This form can be made explicit in the way just described, but 
the final step may just as well be performed on the implicit form. 

Step Three 
We start from a system in implicit ijs/o form ([3.19], with ] injective). 

In the final step of the algorithm, we want to remove nonzero trajectories of 
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the internal variables that give rise to zero trajectories of the external 
variables. Clearly, this operation will be based on the subspace V*(A, B, H, !). 
By constant operations of the types CV and RC (effecting change of basis 
and feedback), the system can be transformed to 

- A12 

sl -A 22 

Q( s) = ( 0 H 2 J), 

- B1 ) 

-B ' 2 
(3.46) 

(3.47) 

where V*(A 22 , B2 , H2 , J) = {O} (see Proposition 3.1) and A11 is the restric
tion of some mapping A+ BF to the subspace V*(A, B, H, !). An applica
tion of operation IC will transform (3.46)-(3.47) into 

(3.48) 

' 
Q(s) = ( H 2 I). (3.49) 

The end result of the algorithm is a system in the form (3.19), for which 
both V* = {O} and T* = {O}. (For the latter property, note that the matrix ] 
has not been changed in the above reduction, so that it will still be injective.) 
A corollary of results in the next section (see also [32, Theorem 4.5]) will be 
that systems of this type have a minimal state-space dimension, i.e., any 
equivalent system in state-space form will have the same or a larger state-space 
dimension. Therefore, a system in the general state-space form which satisfies 
the property T*(A, B, H, J) + V*(A, B, H, J) = {O} will be said to be in 
minimal implicit i/s/o form. 

In the operations of the third step, the property T* = { 0} was not used, 
and this raises the question whether it is possible to interchange the second 
and the third step. In other words, is the property V* = { 0} preserved under 
the operations of step two? The answer is positive. In order to show this, we 
need two lemmas that have some independent interest. First, we recall some 
definitions and results from the theory of singular matrix pencils (see [8, 
Chapter XII]). Let K and L be constant (real) matrices of the same size. The 
associated matrix pencil is sK + L. Two pencils sK1 + L 1 and sK2 + L2 are 
said to be strictly equivalent if there exist invertible matrices R and T such 
that RK1T = K 2 and RL1T = L2. The column indices of the pencil are 
defined as the degrees of the polynomials in a minimal basis for the nullspace 
of sK + L, taken as a mapping between vector spaces over the field of 
rational functions. In particular, the pencil has no nonzero column indices if 
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and only if a polynomial p(s) satisfies the equation (sK + L)p(s) = 0 only if 
( sK + L )p k = 0 for all coefficients p k of p( s ). The finite elementary divisors 
of the pencil sK + L are the nontrivial factors (taken to the power with 
which they appear) in a decomposition into irreducible factors of the 
polynomials that arise in the Smith form of sK + L, considered as a poly
nomial matrix. In particular, the pencil has no elementary divisors if and only 
if the rank of the matrix sK + L is constant for all s EC. 

To a state-space system specified by matrices A, B, C, and D, we can 
associate a "system pencil" as in Lemma 3.3. It is well known that the 
following sequence of subspaces of the state space X is nonincreasing and 
converges in a finite number of steps to V*(A, B, C, D) (see [36, l]): 

v0(A, B, C, D) = X, (3.50) 

yi+ 1(A, B, C, D) = { x!3u s.t. Ax+ Bu E Vi( A, B, C, D) 

and Cx +Du= 0 } . (3.51) 

The following lemma shows how to "lift" this algorithm to the level of 
pencils; we also identify some invariants under strict equivalence. To alleviate 
the notation, we shall not write a symbol for the natural imbedding of 
subspaces of IR ni into IR n• ( n2 > n 1). 

LEMMA 3.4. Consider a pencil of n X l matrices sK + L. Define a 
sequence of subspaces of !Rn by 

V0(K,L)=imK, 

yi+ 1(K, L) =KL - 1vi(K, L). 

(3.52) 

(3.53) 

If R and Tare invertible matrices, of sizes n X n and l x l respectively, then 

Vi(RKT, RLT) = RVi(K, L) (3.54) 

for all j, so that the dimensions of the subspaces Vi( K, L) are invariants 
under strict equivalence. Moreover, if 

RKT= (~ ~) (3.55) 
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and if we write, with a corresponding partitioning, 

RLT= (~ ~), (3.56) 

then Vi( A, B, C, D) = RVi(K, L) for all j. 

Sequences of subspaces similar to the one defined in (3.52)-(3.53) were 
already used by Dieudonne in a 1946 paper on the Kronecker normal form 
[6] [see in particular p. 137; note that g(A,) in the notation of Dieudonne is 
V* in the notation used here]. The proof of the lemma is a standard induction 
argument and is therefore omitted. We now translate the condition 
"V*(A, B, C, D) = {O}" into pencil terms. 

LEMMA 3.5. Let a state space system ~(A, B, C, D) be given. The 
condition V*(A, B, C, D) = {O} holds if and only if the associated system 
pencil has no finite elementary divisors and no non.zero column indices. 

Proof. Let sK + L be a matrix pencil. From the definition, it is clear 
that the following properties hold (assuming compatibility of dimensions): 

Vi([o K],[o L])=Vi(K,L), (3.57) 

Vi([~].[~])= {O} EINi(K, L), (3.58) 

i( [K1 0 ] [L1 
V 0 K ' 0 2 

(3.59) 

This sets the stage for expressing the dimensions of the subspaces 
Vi( A, B, C, D) in terms of invariants of the associated system pencil, using 
the canonical form for pencils as derived in [8]. In [8, Chapter XII], it is 
shown that every pencil is equivalent to a pencil in "quasi-block-diagonal 
form" [i.e., one that is formed by building blocks of the type appearing in 
(3.57)-(3.59)] of which the separate blocks each have a canonical form. There 
are four types of canonical forms, and so it suffices to discuss the behavior of 
the V Lalgorithm for each of these. 

(1) Blocks corresponding to nonzero column indices. These blocks are of 
size n X ( n + 1), and their canonical form is K =(I 0), L = (0 I). Since K 
has full row rank, it is clear that for blocks of this type cine will have 
Vi(K, L) =Rn for all j. 
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(2) Blocks corresponding to nonzero row indices. These blocks are of 
size (n+l)Xn, and their canonical form is K=(I O)', L=(O I)'. It is 
straightforward to compute that, for blocks of this type, dim Vi( K, L) = n - j 
for j ~ n, and Vi(K, L) = {O} for j ~ n. 

(3) Blocks corresponding to finite elementary divisors. These blocks are 
square, and they can be brought to a form where K = In and L is in any 
canonical form under similarity (for instance, Jordan form). Since K is 
surjective, one will have Vi(K, L) =Rn for all j. 

(4) Blocks corresponding to infinite elementary divisors. These blocks 
are also square. In the canonical form, K is zero except for the superdiagonal, 
where it has ones; and Lis the identity matrix. Clearly, Vi(K, L) = im Ki+ 1, 

and since K is nilpotent, Vi(K, L) = {O} for all sufficiently large j. 

From the above, and from Lemma 3.4, it is clear that one will have 
V*(A, B, C, D) = {O} if and only if the canonical form of the associated 
pencil will have no blocks of the types 1 and 3. But this is what we wanted to 
prove. • 

REMARK. The proof technique that we have employed is clearly capable 
of providing explicit expressions for the dimensions of the subspaces 
Vk(A, B, C, D) in terms of the Kronecker invariants of the associated pencil. 
By dualization, it is possible to do the same for the subspaces Tk(A, B, C, D), 
and a combination of the two will also lead to expressions for subspaces such 
as Vk n Ti. In this way, one obtains a straightforward method to derive 
dimensional equalities of the type appearing in [18]. 

Now, let us come back to our original question: If we start from a 
state-space system satisfying V* = {O}, will the system still have the same 
property after we have applied the transformations of step two to it? Looking 
back at these transformations, we see that most of them are quite harmless, 
consisting of row and column operations and of trivial extensions or deletions 
which do not affect the property V* = {O}. (Note that this property is 
invariant under feedback.) However, the key step is in the application of 
transformation IC which takes (3.34), (3.31) to (3.35), (3.36). Stacking the 
matrices P and Q, we see that the transformation is of the form M( s) ~ C( s ), 
with 

B(s)) 
C(s) ' 

(3.60) 

and that it is applied, in step two, in a situation where A( s) has full row rank 
for all s EC [see remark following (3.34)]. Now, whenever A(s) in (3.60) is 
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surjective, one has the equality 

rkM(s) = rkA(s)+rkC(s), (3.61) 

and so if A( s) has, in addition, constant rank, then the constancy of the rank 
of C( s) will follow from the same property for M ( s ). Furthermore, if a 
minimal polynomial basis for ker M( s) consists of constant vectors, then this 
property is also inherited by C( s ). For, let p( s) be a polynomial vector such 
that C(s)p(s) = 0. Because A(s) is of full row rank for alls and hence has a 
polynomial right inverse, there exists a polynomial q( s) such that A( s )q( s) + 
B(s)p(s) = 0. So 

M( 8 ) ( q( s) ) = (A( s) 
p(s) 0 

B( s) ) ( q( s)) = O 
C(s) p( s) . 

(3.62) 

Therefore, all coefficients of the polynomial ( q( s )' p( s )')' are in the kernel of 
M( s ); but then all coefficients of p( s) are in the kernel of C( s ). This means 
that a minimal polynomial basis for C( s) will consist of constants. 

Summarizing, it is now clear from Lemma 3.5 that the property V* = { 0} 
will be preserved under the transformations of step two. Therefore, it is 
possible to do step three first and follow it by step two, without getting into 
an iterative loop. 

4. COMPUTATION OF THE STRUCTURE INDICES 

In this section, we shall derive expressions for the "structure indices," as 
defined in [33, Section 7], in terms of a general state-space representation. As 
a corollary, we shall obtain a proof for the minimality of the representation 
that is produced by the algorithm of the previous section. 

So, let us consider a system in general state space-form (3.19). Let the set 
of trajectories defined by (3.19) (i.e., the submodule (H J)[ker(sl - A B)] of 
C 00(R;Rq)) be denoted by !!fi (for "behavior"). Motivated by the develop
ments in [33], we introduce the following numbers: 

w<il(O)' )'lw E !!4}. (4.1) 

Since these numbers are defined directly in terms of the behavior !JI, it is 
clear that they are invariants under external equivalence. We are now going 
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to compute the numbers d j in terms of the matrices A, B, H, and J. One 
has 

d 0 =dim { H~0 + J11 0 l3t T/ s.t. ~=A~+ B11, ~(O) = ~0 , 11(0) = 11o} 

=dimim(H !), (4.2) 

because, for any ~o and lJo, there exists an 77EC 00(1R;IRm) such that 
11(0) = 'Y/o [take, for instance, the constant function lJ( t) = 170 ], and the 
equation ~=A~+ B11 will have a corresponding solution in C00(1R; IR n) that 
satisfies ~(O) = ~0 . Since tb = H~ + H =HA~+ HJ11 +Ji], we get, on the 
next step, 

. { ( H~o + lrio ) I · d 1 =dim HA~o + HllJo + 1711 3t T/ s.t. g =A~+ B11, g(o) = ~0 , 

d .. ( H 
= im1m HA 

J 
HB ~), (4.3) 

because, for any ~o' T/o, and T/1, there exists an 11 E C 00(1R; IR m) such that 
71(0) = T/o and i)(O) = 71 1 [take, for instance, the function 71(t) = 71 0 + 11 1t ], and 
the equation ~ = Ag+ B11 will have a corresponding solution in C 00(1R; IR n) 
such that g(O) = ~0 . Two things are obvious: first, we can go on like this, and 
second, it is useful to introduce some notation. Write 

Bk= (Ak-1B AB B), (4.4) 

H 

Hk= 
HA 

(4.5) 

HAk-1 

J 0 0 
HB J 

Jk = (4.6) 

J 0 
HAk- 2B HB J 



LINEAR SYSTEMS UNDER EXTERNAL EQUIVALENCE 

We have 

Also introduce the subspaces 

yk = (Hk)-1[im Jk], 

Tk = Bk[ker Jk]. 
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(4.7) 

(4.8) 

(4.9) 

It is not difficult to see (cf. [29, p. 356], [23]) that the sequence of subspaces 
Vk defined here coincides with the one defined in (3.50), (3.51), so that the 
notation is not ambiguous. Dually, the sequence Tk converges to the sub
space T* that was also discussed in Section 3. Now, note that 

(4.10) 

We are going to use this relation in order to obtain a number of dimensional 
relations. First, a linear mapping </> can be defined from im ] k + 1 to im J k 

simply by defining the action of </> to be the projection on the first coordinate 
(in a partitioning as in (4.10)). This mapping is clearly surjective, and the 
dimension of its kernel is 

So one has the dimensional equality 

Two other equalities can be obtained by letting the mapping (H 1 11) act on 
the spaces (Tk + V 1)E9Rm1 and Rn+ml (where m is the number of columns 
of B and n is the size of A). It should be noted that the kernel of the 
mapping is the same in each case. One gets 

dim[(Tk + V 1) E9Rm1] = dimker(HI JI)+ dim(H 1Tk + 11) (4.13) 

n+ml=dimker(H1 J')+dimim(H1 J 1). (4.14) 
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Let us write 

di . Jk rk= m1m . (4.15) 

Then, combining (4.7) with (4.12)-(4.14), one obtains the following relation, 
which is valid for all k and l: 

(4.16) 

We conclude that the numbers on the right must be invariants under external 

system equivalence. 
A few more manipulations will be needed to arrive at the desired result. 

The two sequences of subspaces (Vkh and (Tkh converge in a finite number 
of steps to limit subspaces which are denoted by V* and T*, respectively. 
Therefore, we get from (4.12) 

def 
rk+l - rk = dim.(HT* +im J) = m* ( k large). 

Using this in (4.16) with a sufficiently large value of k, we obtain 

d 1 = lm* +codim(T* + V 1). 

This, in turn, leads to 

dz+1-d1=m* ( l large). 

( 4.17) 

(4.18) 

( 4.19) 

It follows that m* is an invariant under external equivalence. But then it is 
seen from (4.18) that the numbers codim(T* + V 1) are also invariants. We 
now have enough material to draw the following conclusions. 

THEOREM 4.1. For a system L = L(A, B, H, J) in general state-space 
form (3.19), the following statements hold: 

(1) The minimal state-space dimension in any state-space representation 
equivalent to L is equal to codim(T*(L) + V*(L)]. 

(2) The minimal number of driving variables in any state-space represen
tation equivalent to L is dim[ HT*(~) + im J]. 
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(3) The observability indices in any minimal input/ state/ output repre
sentation equivalent to ~ are equal to 

(4.20) 

Proof. Let ~ be any state-space system equivalent to ~' and let X be 
the state space of }:. By what we have seen above, 

dim X ~ codim[ T*(}:) + V*(};)] = codim[T*(~) + V*(~)]. (4.21) 

On the other hand, it has been shown in Section 3 that it is possible to find a 
state-space representation~ equivalent to~ which has T*(}:) + V*(}:) = {O}, 
so that equality can be obtained in (4.21). This proves the first claim. 

To show (2), let }:(A, B, H, f) be a state-space representation equivalent 
to ~, and suppose that }: has m driving variables (i.e., f is a q x m matrix). 
We can write 

J'k+l - ( f 0 ) 
- hkf fk ' (4.22) 

and the first column block in the partitioned matrix has m columns. One has, 
therefore, 

m ~ rk jk+ 1 - rk fk = rk ]k+ 1 - rk Jk = dim[HT*(~) +im J] (4.23) 

(where we supposed k to be sufficiently large so that the final equality holds). 
On the other hand, consider any state-space representation }: equivalent to ~ 
which has T*(}:) = {O} and ker B nker f = {O}. (Such a representation is 
possible by the results of Section 3; the second requirement just means that 
ineffective driving variables are removed, which can be accomplished by 
transformations of the types CV and IC.) Taken together, the two require
ments imply that ker f = {O}. So, for such a representation, equality will hold 
in (4.23). 

Finally, the third claim is established immediately by using the fact that 
the numbers codim(T*+ Vk) are invariants under external equivalence, so 
that these may be computed in a minimal input/state/output representation. 
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In such a representation, it is easily seen that the subspaces V k coincide with 
the subspaces { x E X \ HAix = 0, i = 0, ... , k - 1}, so that ( 4.20) just ex
presses the familiar relation between the dimensions of these subspaces and 
the observability indices. • 

To be completely explicit, let us state the following corollary. 

COROLLARY 4.2. A state-space system ~(A, B, H, J) has minimal state
space dimension under external equivalence if and only if T*(~) + V*(~) = 
{O}. The number of driving variables is minimal if and only if ker I= {O}. 

Proof For the necessity of the condition in the second sentence, com
pare ( 4.22) and ( 4.23). The rest is immediately clear from what has been said 
above. • 

The statement concerning state-space minimality is also given in [32], but 
the proof in that paper is not fully detailed. Note, however, that the proof of 
Theorem 6 in [33] could be taken as an alternative. 

5. ILL-POSEDNESS OF FEEDBACK CONNECTIONS 

As an application of the material developed in this paper, we shall 
consider the feedback connection of two systems. Let two systems in 
input/state/output form be given by 

i;{t)=A1x;{t)+B1uh), 

y;{t) = C;x;( t) + D;u;( t) 

(5.1) 

(5.2) 

( i = 1, 2). When the second system is placed in a feedback loop for the first 
system, the connected system is described by (5.1), (5.2) and the additional 
equations (see Figure 1) 

uit)=yi(t), 

y(t) =yi(t), 

u 1( t) = u( t) + y2 ( t). 

(5.3) 

(5.4) 

(5.5) 

In discussions of such connections, the condition det(I - D2D1) .P 0 is usually 
imposed as a requisite for "well-posedness" of the connection (see, for 
instance, [4, p. 144] or [30, p. 100]). Our aim in this section is to analyze the 
nature of this condition and to see what happens when the condition is not 
fulfilled. 
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u u, - l:1 Yt y 
- -

Y2 
l:2 

U2 

FIG. 1. Feedback connection. 

In the notation of (3.1), (3.2), the connected system is described by 

( sl-A 0 -Bi -OB,), P(s) = 0 
1 sl-A 2 0 

C1 0 D1 -I 
(5.6) 

( c1 0 D1 _ovJ· Q(s) = 0 -c2 I 
(5.7) 

where the external variables are given by w = (y' u')'. We now apply the 
algorithm of Section 3 to these matrices. The system is already in first-order 
form, and so we can proceed with step one of the algorithm. In the notation 
of (3.19), we have 

(5.8) 

D=(O -I). {5.9) 

The matrix D obviously has full row rank, and hence there exists F such that 
C + DF = 0. Applying the corresponding transformation as well as the re
arrangement of (3.15), we obtain 

( sl-A 0 -Bi _oil,,). P,(s)- -:,c: sl-A2 - B2D1 
0 0 -I 

(5.10) 

( C1 0 D1 _ovJ· Q1(s)= -DC -C2 I-D2D1 2 l 

(5.11) 
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Elimination now leads to a system in state-space form (3.19) with 

(5.12) 

(5.13) 

This is the result of step one. The matrix I is injective, so step two is 
redundant in this application, and we could rewrite the system in input/ 
state/output form at this stage. To select the inputs, we have to pick a 
number of rows from the matrix I such as to form an invertible matrix. We 
see that the variable u(t) is an input if and only if the matrix I - D2D1 is 

invertible. So the "well-posedness" condition is a causality condition: It 
guarantees that one will be able to consider the system as being driven by the 
"inputs" u( t ). 

Finally, we apply step three. To do this, we have to compute the subspace 
V*(A, B, H, J). One has the following relations, where we use the notation 
O(C, A) for the unobservable subspace of the pair of output mapping C and 
state mapping A: 

V*(A, B, H, J) = V*( ( ~1 0 ) ( B1) ( C1 
A2 ' O ' 0 _ocJ, ( ~1 )) 

=V*( ( ~1 B1C2) ( B1) ( C1 
A2 ' 0 ' 0 D~C2 )' ( ~1 )) 

= o( ( c1 DiC2), ( ~1 Bl~2 ) )· 
{5.14) 

The pair of mappings appearing in (5.14) arises when the two systems 

:i1(t) = A1x1(t)+ B1u 1(t), (5.15) 

y1(t) = C1x1(t) + D1u 1(t) (5.16) 

and 

:i2(t)=A2xit), (5.17) 

Y2(t)=C2x2(t) (5.18) 
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are connected in series through ui(t) = y2(t). An alternative description of 
V*(A, B, H, J) is implied by the formula 

Vk(A, B, H, J) = ker( Cf DfCt), (5.19) 

which is easily proven by induction [the definitions of Cf and c; are as in 
(4.5), and of Df as in (4.6)]. It is seen immediately that the unobservable 
subspaces of the pairs (C1, A1) and (C2 , A2 ) will both appear in 
V*(A, B, H, !), as was to be expected. But even if both pairs are observable, 
there may still be a nonminimality, due to pole-zero cancellation. States are 
redundant if they give rise to a zercrinput output of the second system in 
Figure 1 that is at the same time a zer0-0utput input for the first system. One 
could remove the nonminimality by introducing a new external variable, 
equal to y2( t ); in fact, this is becoming more and more common as the 
definition of a feedback connection (with an extra input also added in order 
to generate the states of the second system, so that the stability of the 
connected system may be derived from input/output stability; see, for 
instance, [30, p. 103]). It would take us too far here to analyze the cancella
tion phenomenon more precisely; we shall be satisfied to draw the following 
conclusions. 

THEOREM 5.1. Consider two linear systems given by (5.1), (5.2), and 
suppose that these systems are connected through (5.3)-(5.5) with y(t) and 
u( t) as the new external variables. A state-space representation for the 
resulting system is given by (5.12), (5.13), and this representation is minimal 
if and only if the pair 

(5.20) 

is observable. The variables u( t) may be taken as inputs if and only if the 
matrix I - D2D 1 is invertible. 

In other words, our conclusion is that "ill-posed" connections are, from a 
certain point of view, not seriously ill. In principle, it might have been that 
the system would be restricted so much by the connection that the only 
feasible remaining trajectory for the external variables would be the zero 
trajectory. But such a collapse does not take place; indeed, redundancy in the 
system is caused only by nonobservability of the subsystems and by pole-zero 
cancellation, and these phenomena are not related to the issue of ill-posed
ness. 
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