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THIJE BooNKKAMP, J. H. M. TEN 

Residual Smoothing for Accelerating the ADI Iteration Method for 
Elliptic Difference Equations 

Residuale Glattung ist eine einfache Technik zur ErhOhung der Konvergenzrate von Iterationsverfahren fur elliptische 
Differenzengleichungen. In die&er Arbeit kombinieren wir die residuale Glattung mit dem ADI-Iterationsverfahren. Dies 
kann auf verschiedene Weise erfolgen. In geeigneter Weise angewandt kann residuale Glattung die Anzahl der Iterationen 
betrachtlwh verringern und damit auch die Rechenzeit fur das A.DI-Schema reduzieren. Die Parameterwerte des geglatteten 
ADI-Schemas werden so gewahlt, daft die hoch- wie auch die niederfrequenten Komponenten im Itemtionsfehler sehr gut 
gedampft werden. Durch die residuale Gliittung werden auch die anderen Komponenten im Pehler geeignet gedampft. Nume
dsche Beispiele zeigen die Leistungsfahigkeit des geglatteten A.DI-Schemas gegenuber dem ADI-Schema. 

Residual smoothing is a simple technique to increase the rate of convergence of iterative methods for elliptic difference 
equations. In this paper, we combine residual smoothing with the ADI iteration method, which can be done in several ways. 
When applied in the proper way, residual smoothing can considerably reduce the number of iterations and thus the computing 
time of the ADI scheme. The parameter values of the smoothed ADI &cheme are chosen sucli that the high- and low-frequency 
components in the iteration error are damped very well. Due to the residual smoothing, the other components in the error are 
also properly damped. Numerical examples demonstrate the performance results of the ADI scheme and the smoothed ADI 
scheme. 

PeaH.a;yaJibHOe crJialR:irnamre f.!BJIJieTCfl npOCThIM MeTO.IJ;OM .Il;Jlfl yc1mpemrn ClWpOCTlt: CXOJJ;HMOCTH :iuepaunoH
HhIX MeTO.IJ;OB JJ;Jlfl perneHHJI 3JIJIHilTHlJeCRHX pa3HOCTHhIX ypaBHem<Iii. B 3TO:i:t CTaTbe coqeTaeM pean:.o:yaJib
HOe crJiaiRHBaaue c HTepauHOHHLIM MeTO.O:OM aJibTepmi:pyrom:e:x HanpaBJieHHH (A.Jl.H B aHrH:ttCROfi Jll'ITepa
TYPbI - a.o;ecb MAH), qTo MO'IKHO ;a;eJiaTb paaJIH'IHhIM o6paaoM. EcJIH np:e:MeHHeTCH pean.o:yaJibHOe crna
ffiHBa:i-rne npaBHJlbH.bIM o6pa30M, 3TOT MeTOJJ; 3HaquTeJibHO MO'IKeT yMeHbWaTb 'IHCJIO HTepau;uH H TaHHM 
oopaaoM H Bpel\rn Bbl'IHCJieHHf.! cxeMhI MAH. 3Ha'Iemrn napaMeTpoB crJiameHHoit cxeMhI MAH B1>16Hpa10-
TCH TaR, 'ITO BbICOHO'!aCTOTHble H mt:3RoqacTOTHhle KOMnoHeHTbl B OWH6Re HTepau:i:rn: TOpM03Hpy!OTCH 
oqeHb xopomo. Bnaro.o:apH pean.o;yaJihHOro crJiamHBamrn OCTaJibHbie ROMllOHeHThl B OIIIHORe TOiHe TOpMO
a:e:pylOTCf.! ;a;oJI>HHhlM o6paaoM. q:e:cJieHHhle npHMepbr ;a;eMOHCTp:e:py10T npoHaBOJl:MTeJihHOCTb cxeMbI MAH 
n crJiaiReHHo:!t cxeMhI MAH. 

l. Introduction 

We consider the first boundary-value problem for the two-dimensional elliptic partial differential equation (PDE) 

(p(x, y) u.,)., + (q(x, y) u 11) 11 - w(x, y) u = f(x, y) , (x, y) E Q = [O, I] X [O, I], (I.I) 

where p(x, y) > 0, q(x, y) > O and w(x, y) ~ 0. As a special case of (1.1) we employ the Poisson equation 

u.,., + ul/'!/ =f(x, y) (l.2) 

as a model problem. 
For space discretizatio11, we cover Q with a uniform space grid with gridsize h, where h = Ij(M + I) and JJf 

is the number of internal gridpoints in x- and y-direction. Space discretization .of (I.I), using standard central 
differences, yields a difference system 

D.,.,U + D 1111 U =B. (1.3) 

In (1.3) U is a vector, with components U.;j, and Bis a vector originating from the right hand side] and the bound
ary conditions for u. The component Uij is the finite difference approximation to u(ih, jh ). The matrices D.,., and D11y 
in (1.3) are the finite difference replacements of respectively 

S~ (p(x, y) 6
8x)- ! w(x, y) and 1y ( q(x, y) 8

8y )- ! w(x, y) 

and are defined by 

(D.,.,U);J := : 2 (Pi-<1121.i U;-1,j - (P;-<112>.i + Pi+Cl/2J,j) UiJ + Pi+c112>.iUi+1,;) - ! w;;Uu, (l.4a) 

I I 
(D1111 U);; := ,.2 (q;,;-c112Pi,J-1 - (qi,;-c112> + qi,HC1/2l) U.;i + qi,HClt2>U;,H1) - 2 wi;TJ;;, (l.4b) 

with PH(l/2),; = p((i + I/2) h, jh) (analogous definitions for q1,;±c1;2) and W;j). The matrices D.,., and D 11y are tridiago· 
nal, symmetric and negative definite. 

For the iterative solution of (1.3) we examine the ADI scheme of PEACEMAN and RACHFORD [3, 5]. For the 
model problem, the ADI scheme is.known to be a fast scheme if one.chooses.its p~rameter values in t?e right way. 
However the scheme is verv sensitive to the parameter values used, i.e., the iteration count grows rapidly when the 
the com;utation is carried ~ut away from the optin:al parameter values. '!'herefore, th~ ADI s~heme i~ in general not 
a fast iteration technique. It is the purpose of this paper to apply residual smoothing for improvmg the rate of 
convergence of the ADI scheme an?, most importantly,. to make th~ scl;eme l~ss sensitive. ~o the. choice of the 
parameter values. This paper is inspired by [2], where residual smoothmg is applied to Jacobi 1terat10n. 
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The contents of the paper is the following. In Section 2 a short outline of the theory of residual smoothing is 
given. The ADI scheme and the smoothed ADI scheme are discussed in Section 3 and parameter values for both 
schemes are given in Section 4. Section 5 is devoted to a numerical comparison between the ADI scheme and the 
smoothed ADI scheme. This comparison also involves a nonlinear example. In Section 6, an alternative smoothed 
ADI scheme is briefly discussed. Some conclusions are formulated in Section 7. 

2. Residual smoothing 

In this section we give a short outline of the theory of residual smoothing as a means of accelerating the convergence 
of iterative methods for elliptic difference equations. For a more extensive treatment of the special type of explicit 
residual smoothing used here, the reader is referred to [2]. 

Consider the linear system 

AU=B, (2.1) 

obtained by discretizing a linear elliptic boundary value problem. We assume that A has negative eigenvalues. Itera
tive methods for solving (2.1) are based upon the splitting A= P -Q, where P isanon-singularandeasily invert· 
ible matrix [l, 5]. The iteration scheme thus takes the form 

pun+1 = QU'll + B, 

or equivalently, in residual form, 

pun+1 = PU'll - (AU'll - B). 

(2.2) 

(2.2') 

The idea of residual smoothing is now to multiply the residual in (2.2') by a matrix S such that the condition 
number of SA is much smaller than the condition number of A. The iteration scheme then reads 

(2.3) 

Thus, instead of solving (2.1), we solve the preconditioned system SAU= SB with the original iteration method. 
Following [2], Sis taken of the form S = Pt(D), where Pt(z) is a polynomial of degree k satisfying Pk(O) = 1 

and Dis a scaled difference matrix with eigenvalues in the interval [ -1, O]. In order to analyse the residual smooth
ing technique we choose 

1 
D=-A, 

e 
(2.4) 

where e = e(A) is the spectral radius of A. In [2], for this choice, an optimal smoothing matrix S = P 1,(D) is derived, 
in the sense that SA has negative eigenvalues and the smallest possible condition number. The condition number 
y(A) of a matrix A is defined as y(A) = e(A)/b(A), where b(A) is the in absolute value smallest eigenvalue of A. 
The polynomial P1t(Z) is given by 

Ti,+1(1 + 2z) - 1 
Pk(z) = 2(k + 1)2 z ' (2.5) 

where T1c(z) is the kth degree Chebyshev polY'uomial of the first kind. Because of the factorization properties of the 
Chebyshev polynomials, the smoothing matrix S can be computed very efficiently if k = 2q - 1 for some positive 
integer q. 

We emphasize, however, that in actual computations we do not use the difference matrix D defined by(2.4), 
because it is much too expensive in the general case. Instead, for one-dimensional problems, the matrix Dis given by 

0 
1 -2 

1 
1 

-2 1 

1 -2 1 
0 

l 

(2.6) 

For two-dimensional computations we do not use the two-dimensional analogue of (2.6) because the computation 
of S = Pk(D) is then not attractive [2]. Therefore, we consider an alternative which only uses one-dimensional 
smoothing matrices. The residual r = A U'll - B in (2.2') can in the two-dimensional case be written as r = DzzU" + 
+ D1r11 U'll - B (Of (1.3)). The residual is then smoothed by applying the one-dimensional smoothing matrix to Dn 
and/or Dw. In other words, let the residual r be arranged in a two-dimensional array in the natural way, then r is 
smoothed by applying the one-dimensional smoothing matrix to all rows and/or columns of r. 
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3. ADI- and smoothed ADI iteration 

Consider equation ( 1.3) 

AU= B' A= Dxx + Dyy. (3.1) 

The ADI scheme for (3.1) can be written in residual form as [5] 

(Dxx - J111) U* = (Dxx - Vil) un - (Aun - B)' (3.2a) 

(Dyy - J121) un+i = (Dyy - Y2I) U* - (.AU* - B)' (3.2b) 

where vI> Y2 > 0 and are supposed to be independent of n. 

The first stage (3.2a) of the A_DI scheme is implicit in x-direction and explicit in y-direction. This suggests to 

apJ?lY in .(3.2a) a smoothing ~atrix Sy for the preconditioning of Dyy. In other words, we multiply each column of the 
residual m (3.2a) by a (one-dimensional) smoothing matrix Sy, where Sy is such that SyDyy has the smallest possible 

condition nnmber. In the same way, we apply a smoothing matrix /jx at the second stage (:1.2b) for the precondition
ing of D,,,,. 1Gach row of the residual in (3.2b) is then multiplied by a (one-dimensional) smoothing matrix 8,,. The 
smoothed ADI (SADI) scheme then reads 

(Dxx - v11) U* = (D,._,. - 1111)(]n - ,§u(AUn - B), 

(Dyy -1121} [Jn+l = (Dyy - Y21} U'~ - S,,(AU* - B}. 

(3.3a) 

(B.3b) 

In the analysis, the operators Sx and S11 are defined by S,, = PJ.: (~ Dxx) and Sv = P1c (;
2 

Dvy) where (11 = e(Dxa) 

and [?2 = e(Dyy)· vVe emphasize once more, that in practice the matrices_! Dxx and _1:_ Dyy are replaced by diffe-
e1 e2 

rence matrices like the one defined in (2.6). The degree k of the polynomial P"(z} will be specified later. 
If Dxx - -} (Y1 - v2) 1 and Dyy +-} (v1 - v2 ) I are negative definite then the ADI scheme is convergent [5]. 

Likewise, the SADI scheme is convergent 1f D= - Dyy + S,,A - (v1 - 112 ) I and -Dxx + Dyy + S11A + (Y1 - v2) I 
are negative defin#e. The proof is along the same lines as the proof for ADI. 

In order to get an indication about the performance of both the ADI scheme and the SADI scheme, we consider 
the eigenvalues of the iteration matrix of both schemes. These eigenvalues are called the damping factors of the 
1"teration scheme. In the remainder of the paper we consider the following two cases: 

case 1: e(Dxx) = e(Dyyl = e, o(Dxx) = o(Dyy) = o, 

case 2: 1?i = e(Dxx) =J: e2 = e_(Dyy), 01 = o(D,.,,) # o2 = o(D1111). 

For simplicity, we take v1 = y 2 = Y, unless stated otherwise, and assume that Dxx and D 11y commute. 
First, we restrict ourselves to case 1. The damping factor of the ADI scheme is given by 

,_. (J,,, + Y) (A 11 + v) 
-':; = t(/l.,,,}.y; l') = ·(-,--·-----)-(,---), (3.4) 

Jl.3,-11 Ay-V 

where},,, and ./i.11 are the eigenvalues of Dxx and D 11y, respectively(/,,., Av < 0). It is convenient to write ~as a function 
of the scaled eigenvalues µx := Ax/rJ. and µ 11 := A11 /(!, so that 

·- , (flx + m) (µ 11 + w) .;; = ~(µ,., µ 11 ; co J = ---------, 
(/,tx -- w) (µ 31 - w) 

(3.5) 

where m: = v/(!. The parameter w should be chosen in the range 0 < w < 1 [5]. In Big. 1 ~(µ,,, µy; w) is plotted for 
µ,, = µ 11 and for w = 1, 10-1, 10-2, 10-s. For µ 31 =aµ,, (a =J: 1) the graph of)~(µ,,, µy; w)) displays a similar behaviour. 

From (3.3) one can easily see that the damping factor of the SADI scheme is given by 

,_. ./i. 11 - v - P"(/l.x/e) (?.,, + l. 11 ) Ji.,, - v - P1c(l,y/f2) (Xi: +Au) (3 .. Ba) 
q; = ~(}.,,, A. 31 ; v) = -----,- · , ---- • 

Ax - l' Ay - 'JJ 

or equivalently as a function of µx and µy 

~ t ) flv - <JJ - Pk(µ.,,) (µ,,, + µ 11) µx - w - P,,(µ 11 ) (µ,, + µ 11 ) 
~ = <,;(µx, µ 11 ; W = ·~--------

µx - W µ 31 -w 
(3.6b) 

Note that $.(µx, µ 31 ; w) = 1 in all points where Pk(µ,_,,) = P1c(µ11 ) = 0. This implies that we should not it~rate w~t-h _a 
fixed value of k and w. Therefore, we consider cyclic methods where k = kq and w = Wq, kq and Wq bemg periodic 
functions of q: kq = kq+N, Wq = Wq+N with N fixed. In our experiments we choose kq = 2q - 1 (q = 0(1) N - l) 
since then the smoothino· matrices can be computed very efficiently [2]. The integer N will be specified later. In
stead of.; = ~q(µ,,, µ 31 ; o>:) we thus consider the average darn.ping factor 

N-1 

ex =rx(µ,,,µy;Wo,··· ,W.v-1) := [lll.(;q(µa;,ft11;Wq)!]1 1N. (3.7) 
q=O 

Since ~0(-1, -l;Wo) = (~:-~ tr and .(;q(-1, -l;wq) = 1 for q>O, we choose evo= 1 in order to damp the 

eigenvector components in the iteration error which correspond to values of µx, flu close to -1. These components 

31 • 
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Fig. la. The damping factors for the ADI scheme and the average damplug 
factors for the SADI scheme on the interval -1 ;;; µ ;;; O for"' = 1, 10-i, lo-•, 
lO·•. - - - - - - ADI, -- SAD! 
Fig. lb. The damping factors for the ADI scheme and the average damping 
factors for the SADI scheme on the interval -0.1 ;:;;; µ ;;; 0 for ., = 10-1, 10-•. 
• -- ··-ADI, -- SADI 

are the high frequency components. Likewise, the low frequency components correspond to values of µx, µ 11 close to 0. 
The other Wq values are chosen equal: Wq = w for q > 0. The average damping factor ix = ix(µx, p11 ; w) := C¥.(µz, µ 11 ; 

1, w, ... , w) of the SADI scheme is also plotted in Fig. 1. for µz = µ 11, N = 6 and w = 1, 10-i, 10-2, 10-s. Also in 
this case, the graph of ix(µz, aµx; w) (a =I= 1) is very similar to the graph of C¥.(µz, µ 11 ; w). 

Comparing both damping factors, we see that for small w-values (lo-s < w < 10-2) the SADI scheme has 
substantial better damping properties than the ADI-scheme. In particular, with the exception of the lowest ones 
(µ::::::: 0), SADI damps all error components with a factor of a least 0.6. 

4. Choice of the parameter values 

In this section we derive parameter values for the SADI scheme. The derivation of parameter values for the ADI 
scheme (3.2) is extensively described in [5], therefore we only present the results. 

The.damping factor ;(A.z>Av; -v) of the ADI scheme in case 1 is given by (3.4). We choose the v-parameter to 
minimize the function 

1Jl=1JJ(-v;e,o):= max 1;(A.z,A.11 ;v)I. (4.1) 
-e;:;;A.,,At,;O;-b 

Asymptotically, the eigenvector corresponding to the maximum damping factor dominates the error. Therefore, in 
order to minimize the number of iterations, we have to minimize 1JJ(v; e, o). We emphasize, however, that this only 
applies if we compute the solution sufficiently accurate. For moderate accurate computations, the v-value thus 
obtained can be far from optimal, i. e., the corresponding number of iterations is far from minimal. A simple ana
lysis gives that the optimal parameter is given by v* = (oe)1f2 [5). 

Example 1: Consider the Poisson equation. The eigenvalues Az and Au of Dzx and D1111 are given by Aa;,i = 
= A.21,i = - ~ sin2 (~ ih), i = 1(1) M,2n with h = l/(M + 1). In this case e(D,,x) = e(D,,11;) = e ~ ~ and 

o(D,,,,) = o(Dyy) = o :::::::n2, so that v* ~ -,;· 

In case 2, the function 1P to be minimized is defined by 

1P = 1P(-v; ev 01, e2, Cl2) := max l;(A.z,A.v; v)I. (4.1') 
-e,:;;;.a.,;;;-a, 
-e,;:;;.a,;:;;-a, 

Assume that e1Cl1 < e202• Then one can prove the following result for the ADI scheme [5): if (l1 ~ o2 01· (l1::;:; (l2 and 
01fl2 > 02fl1 then v* = (01e1)112, and if e1 ~ f>2 or e1:::;; e2 and 01!!2 < 02!!1 then v* = (02e2)1i2. 

Consider the SAD! scheme. In case 1, the damping factor ;(A.a:,.411 ; v) is given by (3.6a). Since ~(Aa:,A.11 ; v) = 1 
for all Az> Av for which P1c(Az/e) = P,.,(J.v/e) = 0, we have to iterate with varying k = lcq and v = Vq (see Section 3). 
Therefore, instead of;= ;a(Az,A.11 ; '.liq) we consider the average damping factor"' defined by (cf. (3.7)) 

N-1 

IX = 1X(Ax, Av; Vo, ••• , '.II N -1) = : [ JI I ;(A.:i:, Av; 'V q) I ]1/N • 
g=O 

(4.2) 

In order to damp the high frequency components, we require ; 0(-Q, A.11 ; v0) = -;0(A.z, -e; v0) = 0, which gives v0 = f!· 
For the other Ya·values we choose '.liq= v, q > 0. This -v-value is chosen to minimize IX(-o, -o; 11) := !X(-o, -o; 
e. v, ... 'v) because of the following reasons: 
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(i) the lowest frequency eigenvector corresponding to Ax= A11 = -o has often a large weight in the error, 
(ii) the eigenvalue },x = A11 = -o is either known or can be approximated. 

In this way we construct a SADI scheme which damps the high- and low-frequency components in the itera
tion error very well. It turns out that a SADI scheme constructed this way also damps the remaining error compo
nents very well, as illustrated before in Fig. 1. 

So consider lX( -o, -o; 'J.!), which can be written as 

with 

((e _ a)2N-1 , )11N 
lX(-o, -o;v) = e +a q!!i ~a(-o, -o;v) • (4.3a) 

( ( 0) 9(J )2 ;a(-o, -a; 'J.!) = 1 - Pk, -; 0 ~ v , k = 2q - 1' q = 1(1) N - 1. (4.3b) 

If ;q(-o, -o;v) = 0 for some q>O thenlX(-o, -o;v) = 0, and thuslX(--o, -a;11) is minimal. From (4.3b) one 

can ea~ily s_ee that ~a(-o, -o; v) = 0 if 11 = vk = o (2Pk (- ~)- i), provided P1c(- ~)>_!_.A Taylor series 
expans10n yields e e 2 

P1c(--~)= l -a1c ~, a" :=-}k(k +2), (4.4) 

if b1c := :5 (! r (k + 1)4 < 1. Fork sufficiently small, this condition is fulfilled and 11k is approximately given by 

Vk = c1cc'l, c1c := 1 - 2ak ~-In our numerical experiments we take 11* = 111 = o (see Table 1). 
(! 

Example 2: Consider again the Poisson equation for which e = 4/h2 and o = n 2• In this case we have 

P1c ( _ ~) = 1 _ ~; (;1 ~ \Y. b1c = 3~~ (~ ~\r. C1c = 1 _ ~2 (~ ~ \r. 
These values fork = 2q - 1 (q = 1(1) 5) and for M = 39 are given in Table 1. Note that the value c31 does not 

make sense since P31 ( = %-) < ! . For the general elliptic .case one finds similar results since the ratio ! = O(h2) 

just as for the Poisson equation. 

Table 1. P1c(-6/eh b1t- and c1c-values for the Poisson 
equation fork= 2• - I(q = 1(1) 5) and M = 39 

k P1c(-6/e) b1c Ok 

1 0.9979 1.69* 10-s 0.9959 
3 0.9918 2.71*10-5 0.9836 
7 0.9671 4.33* 10-4 0.9342 

15 0.8684 6.93* 10-3 0.7368 
31 0.4736 1.11 * 10-1 -0.0528 
--·----------·----------

In case 2, the damping factor of the SADI scheme can be written as (cf. (3.6a)) 

t _ t(i , . , ) _Au - 112 - P1c(?cx/e1) (A,, + A11). Ax - 111 - Pk(A11 j(22) (Ax+ Ji.11 ) 
.,, - .,, /•x, ll.y, Jl1, 1'2 - · i , i • 

Ax - 'Vi ll.y - 'J.!2 
(4.5) 

Note that in (4.5) we assume that v1 # v2• The corresponding average damping factor is given by (4.2) with, ,; = 
= ~ q(A,,, 211 ; v1q, v2q) defined by ( 4.5 ). For the damping of the high frequency components we require ; 0 ( -e1, A.11 ; 

v1°' v20 ) = ,;0 (Ax, -e2 ; v10, 'J.!~0 ) = 0, which implies that we indeed should iterate with two different ii-values ( cf. (3.3) ). 
This gives V10 = e2 and V20 = e1· For q > 0 we choose P1q = Vi and 1'2q = V2· These two values are chosen to minimize 
ex( -01 , -o2 ; vv 112 ), which can be written as 

(
(! c'J (! (J lV-1 )l/N 

o.:(-01, -02; 'J.!1, P2) = l ~ o1. - 2 + s.2 II j~q(-01, -02; P1, Vz)I , 
(!2 1 (!1 U2 q=l 

(4.6a) 

with 

~ (-b -o · v v) = 1 - P1r, - - • • l - Pk - - ·--- • " ' ( ( 01) 01 + 02) ( ( 02) 01 + 02) 
q l> 2, l> 2 (!1 02 + 112 l/2 01 + V1 

(4.6b) 

Also in this case, if ; a( -o1, -o2 ; v1 , v2) = 0 for some q > 0 then ix( -o1 , -o2 ; 111> v2 ) is minimal as a function of v1 

and 112 • From (4.6b) one can readily see that this condition is fulfilled if v1 =111,k = P1c(-02j(!2) (o1 + o2) - b1 or 
v2 = v2,k = P1t(-01 /e1 ) (o1 + o2) - o2 provided that P1r,(-02/e2) > 01 /(01 + '52) or !'Tc(-01 /(!1 ) > 02/(01 + b2). ~ubsti
tution of the approximation P1c(-o-t/(!-t) = 1- akoif[!i, i = 1, 2 (see (4.4)), then yields the following express10n for 
v1,k and ii2 ,1c: v1,1c = o2 - a1c(c'l2/e2) (o1 + o2) and ii2 ,1c = o1 - a1c(o1 /e1) (o1 + o2). As in case 1, we choose the following 
approximation: iit = v1,1 = o2 and 'J.!~ = v2,1 = 01. 
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For the computation of the parameter values for both schemes the values of fJ(D11x1J), o(Du11 ), e(Dzz) ande(Dyy) are 
4 

required. As we have seen, for the Poisson equation e(Dzx) = e(Duu) = h2 and o(Dxx) = o(Duu) =n2• For the general 

elliptic equation (1.3) these values can only be approximated as follows. Consider the general matrix Dam defined by 
(l.4a).Letp := max p(x> y),p := min p(x, y) and analogousdefinitionsforq,q, wand!:£· LetthematricesDxzand 

O;ix,y~l - O;:;!o:,y;il - -
!2_.,., be defined by replacing Pi±(l/2),j and w;3 in (1.4a) by p and w respectively J! and'!£· In other words, D.,,,= pb;r,r. -
- -} wl and Q.,,, = po.,x - i- 'f!?.l, with o.,,, denoting the standard central difference approximation to 82/8x2• Then 
one can easily show-that 

eCI!=l < e(D.,.,) < e(Dra) and o(!2.,,,) < C>(Dza;) < C>(D.,.,) • 

The values e(D:i;.,) and C>(D:t!!!) can then be approximated by 

1( - ) 2_ l_ ) 
e(D:i;x) = 2 e(Dxa;) + eW:ex) = h2 (P + J!) + 4 (w + !:£ 

and 
1 (s - s D ) n2 - 1 - ) l'J(Dxx) = 2 u(Dxx) + u(_xz) = 2 (P + J!) + 4 (w + !:£ • 

In the same way one finds 

D 2 _ 1 _ · n 2 _ 1 _ 
e( 1111) = h2 (q + <f..) + 4" (w + '!!?.) and o(D11y) :::::: 2 (q + <f..) + 4" (w + !:£) • 

5. Numerical examples 

In this section we present a few numerical examples, in order to compare the ADI scheme and the SADI scheme. 
We restrict ourselves to Dirichlet problems. The solution is computed for h = ti;, fa, to with the parameter 
values derived in Section 4. In addition, we compute the solution for h =fa for several 1•-values, in order to check 
whether the 'JI-values derived in Section 4 are good enough. Further, to demonstrate the power of residual smoothing, 
we apply the SADI scheme to a nonlinear problem. 

For the degree k of the smoothing matrices we choose k = kq = 2q - 1, q = 0(1} N - 1, such that kN-l is 
the largest kq smaller than ll1 = h-1 - 1. The reason for this is, that for kq > M for some q, the computation of the 
smoothing matrices becomes cumbersome. Thus for h = fo, fa, to we choose, respectively, N = 5, 6, 7. We 
emphasize once more that the choice kq = 2q - 1 admits an efficient computation of the smoothing matrices [2], 
which is a prerequisite for accelerating the ADI scheme. In all computations, the initial approximation is defined 
by forming linear interpolations of the boundary values on x = 0, x = 1 and on y = 0, y = 1, respectively, and 
by taking the average value of these functions. The iteration is stopped if the scaled residual 

JIAU" - BJl1 
r(n) := JJAUO - BJl1 (5.1) 

has dropped below a certain tolerance TOL. 
The examples we consider are the following. 

Example 1 [4, p. 427]: 

Uzx + u 1111 = f(x, y) , u(x, y) = 3 ex+11 (x - x2) (y - y2) , f(x, y) = 6xy eHll (xy + x + y - 3) , 

4 
e = e(D,.x) = e(Du11) = k2 , C> = ~(D,,,.) = C>(D1111) = n 2 • 

Example 2: 

(e'" u,.):i; + (eY •u, 11) 11 = f(x, y) , 

2 

u(x, y) = (xy)a, f(x, y) = 3xy((2 + x) y2 e'" + x2(2 + y) e11) , 

e = e(D:e,.) = e(Dw) = h2 (e + 1), 
n2 

() = {}(Dm) = o(D1111 ) = 2 (e + 1) • 

Example 3: 

(e-aJll u,,),. + (e:tll u11)v - (x + y) u = f(x, y) , 

u(x, y) = (xy)3 , f(x, y) = 3xy3(2 - xy) e-lllll + 3x3y(2 + xy) e"ll - (x + y) (xy)a, 

1 2 1 ln2 1 
e1 = e(D,.a;) = -;· h2 (e + 1) + 2' o1 = C>(D,.,,) = e 2 (e + 1) + 2 , 

2 1 n2 1 
e2 = e(D1111 ) = h,2 (e + 1) + 2, o2 = {}(Dvv) = 2 (e + 1) + 2 . 
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Example 4: 

(e" u.Ji: + (eu u11 )11 - w(x, y, u) = 0, u(x, y) = (xy)2 , w(x, y, u) = 2(x2 + y2) (1 + 2x2y2) e". 

Note that the matrices D,.o: and D1111 commute for the first two examples butnotfor the third one. Note that 
Example 4 is a nonlinear problem. Like the ADI scheme, the SADI scheme can be applied to nonlinear problems in 
a straightforward manner. We have included this example, in order to show the power of the residual smoothing 
technique. 

Consider the first three examples. First we present results for h = -io, f-o, fo obtained with the 11-values 
derived in Section 4. The results are collected in Table 2, which contains the following values: the total number of 
iterations n0, the average reduction factor r defined by r := r(n0)1'"• (cf. (5.1)) and the computing time (CT) in 
seconds needed for the iteration process. For the tolerance we take TOL = I0-8 ; similar results are obtained for 
larger values of TOL. From Table 2 we see that, especially on the finer grids, the SADI scheme needs much less 
iterations than the ADI scheme, which results in a considerable reduction of CT. 

Next we present results obtained on a 40*40 grid for several v-values, with the purpose of testing the v-para
:meter values derived in Section 4. Case 1 (e = e(D,.,.) = e(D 1111), c5 = ~(D,.,.) = o(D1111)) applies to the first two examples. 

* Instead of v, consider for these two examples the scaled parameter w = vfe· One can readily see that w* = ~ = 
( c5 )i12 0 e 

= e = 0.039269908 for the ADI scheme and w * = e = 0.001542126 for the SADI scheme. Case 2 (e1 = 
= e(D,.,.) =I= (!2 = Q(D1111), 01 = o(D,.,.) =I= 02 = o(D1111)) applies to Example 3. J.,et in this case w := 11/e1 , then one can 

easily see that for the ADI scheme w* = ( 01) 1
'
2 = 0.040696. Since e2 = e e1 and o2 = e c51, it is obvious to choose 

!/1 0 
'Jl1 = e 11 and Vz = v for the SADI scheme. The w*-value is then given by w * = -..! = 0.001656164. The number of 

r.!1 
iterations, for TOL = 10-s, are presented in Table 3. We may conclude that the parameter values derived in Sec-
tion 4 are fairly good since the corresponding number of iterations is nearly minimal. Furthermore, we see that in 
the range 10-a < w < 10-2, the SADI scheme is less sensitive to the choice of the parameter values than the ADI 
scheme. Thus, an w-value which differs a little from the w*-value can lead to considerably extra computing time 
:for the ADI scheme, but not so for the SADI scheme. 

Consider Example 4. Application of the ADI scheme or the SAD! scheme to this nonlinear problem requires 
at each iteration the solution of a set of nonlinear tridiagonal systems, for which we use Newton iteration. Results 

Table 2. The n0 -, r- and CT-values for the first three examples 

ADI 

h,-1 example 1 example 2 example 3 

no r CT no r OT no r OT 
-----· -----
20 58 0.73 0.702 67 0.76 1.263 76 0.78 1.397 
40 116 0.85 5.301 138 0.87 11.069 155 0.89 11.042 
80 231 0.92 41.196 279 0.94 76.486 312 0.94 86.092 

SADI 

h,-1 example 1 example 2 example 3 

no r CT no r OT no r OT 

20 18 0.33 0.369 21 0.42 0.512 26 0.49 0.747 
40 21 0.40 1.781 27 0.49 3.306 34, 0.58 4.080 
80 25 0.45 9.219 31 0.55 15.490 43 0.64 17.712 

Table 3. The n0-values for h =lo and various values of w, for the first three examples 

w example 1 example 2 example 3 

ADI SADI ADI SADI .ADI SADI 

5* 10-2 147 200 143 188 166 159 
10-2 100 41 267 39 220 34 

5* lo-a 199 21 >500 26 440 31 
lo-a >500 22 >500 27 >500 37 
w* 116 21 138 27 155 34 

---·--··---

Table 4. The n0-, r- and CT-values for Example 4 

h,-1 ADI SADI 

no r OT no r CT 

20 27 0.71 13.013 12 0.45 5.961 
40 95 0.91 194.378 14 0.51 30.030 
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----------------------------------------------
for h =lo, -Jo and for TOL = I0-4 are presented in Table 4. The best w-values are experimentally found to be 
w* = 10-1 for the ADI scheme and w* = 10-2 for the SAD! scheme. From this table we see that residual smoothing 
leads to a considerable saving of the number of iterations and hence also of the computing time. Note that in this 
case the gain in computing time is even more than for the first three examples, since one ADI iteration is now very 
expensive compared to the computation of the smoothing matrices. 

6. An alternative smoothed ADI scheme 

In this section we briefly consider an alternative to the SADI scheme (3.3). For this purpose, we rewrite the ADI 
scheme (3.2) in the one-stage form 

(D.,., - Vil) (D1111 - V2l) un+i = (D.:z - Vil) (D1171 - v2ll U 11 + (v1 + V2) (Aun - B). (6.1) 

The idea is now to multiply the residual in (6.1) by the smoothing matrices S:r; and §71 (see Section 3): 

(D.,x - Vil) (Dyy - V2l) U11 +1 = (D:r;x - Vil) (Dvu - V21) U11 + (v1 + V2) S71Sz(AU11 - B). (6.2) 

For brevity, we restrict ourselves to case 1 and assume that v1 = v2 = v. The damping factor of scheme (6.2), as a 
function of µ., and µ 11 can then be written as 

i: 1:( , l 2w(µz + µ 11) p ) p ) 
.,, ='ii µ:r;,µ71;W1 = + ( ) ( )• 1c(µ., 1c(µy' 

µz-W µ 11 -w 
(6.3) 

where w = v/e. The corresponding average damping factor ix is then given by (3.7) with.;= .;a(µ:r;, µv; wa) defined 
in (6.3). In order to damp the high frequency error components, we choose w0 = I and wa = w for q = 1(1) N - I 
(see Section 3). The average damping factor ix= 1X-(µz, ~; w) is plotted in Fig. 2 for µz = µ 71, N = 6 and w = 1, 10-i, 
l0-2, I0-3• Comparing Fig. I and Fig. 2 it is apparent that the S.ADI scheme gives a much better "overall" damping 
of the iteration error than the alternative scheme. 

As an illustration, we apply the alternative scheme (6.2) to Example 1 for h =lo and for various values of 
the parameter w. For the tolerance TOL we take TOL = I0-8• The results are presented in Table 5. From Table 3 
and Table 5 one can readily see that scheme (6.2) is slightly faster than the ADI scheme, however, much slower 
than the SAD! scheme. Thus, the SAD! scheme is clearly to be preferred to the alternative scheme (6.6). 

W=1 

o.o~~-~~-~~ 

-1.0 -0.8 -a.6 -0.1. -02 ao 

w =10-2 
1.0 

0.2 

0:q_o -o.s -a.6 -o.4 -02 o.o 

1.a 

0.8 

0.6-

w=10-~ 

a.OI'----'---'---'---'----' 
-1.0 -o.s -06 -a.4 -0.2 a.a 

w =1a-3 
1.0 

0. 
Fig. 2. The average <lamping factor for scheme (6.2) for w = 1, 10·1 

o.o i~~w~ 
-1.0 -0.8 -0.6 -a.4 -0.2 a.o 

Table 5. n0-values for h =lo and various w-values for Example l 

w 5* 10-2 lo-z 5* 10-3 10-s 

219 79 105 229 

7. Concluding remarks 

In this paper we considered residual smoothing as a means to accelerate the convNgence of the ADI scheme for 
elliptic difference equations. Concerning this technique we note the following. 
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(i) ltesidual smoothing can be easily applied to general elliptic problems, even to nonlinear problems, to speed 
up iterative methods such as the ADI method. 

(ii) For a proper choice of the degree of smoothing k (k = 2q - 1 for some integer q > 0), residual smoothing 
can be implemented very efficiently. 

(iii) Residual smoothing can be combined with the ADI scheme in several ways. \iVhen it is applied in the 
right way, as is done for the SADI scheme (3.3), residual smoothing can lead to a considerable reduction of the 
number of iterations and the computing time for the ADI scheme. 

(iv) The parameters for the SADI scheme are chosen such that the high- and low-frequency components in the 
iteration error are rapidly damped. Due to the residual smoothing, the other components in the error are also pro
perly damped. 

(v) For a certain range of the parameter values, the SADI scheme is much less sensitive to the choice of 
these values that the ADI scheme. 
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