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P.O. Box 4079, 1009 AB Amsterdam, The Netherlands 

After a brief introduction 1n multigrid methods we discuss some of the algo­
rithmic choices 1n the NUMVEC 1 Library routine MGZEB (which is a highly 
vectorised multigrid code tor the solution of linear systems resulting from the 
7-point discretisation of general linear 2n<J order ell1pt1c PDEs in two dimen­
sions). 
Since the relaxation process 1s the most expensive part of a mult1grid iteration 
cycle, we adapted the datastructure to avoid Cyber 205 stride-problems when 
executing zebra relaxation. 
After discussing the effects of vectorisation / choosing another datastructure, 
we will also have a glance at large problems on the Cyber 205 
The implementation is available 1n auto-vectorisable ANSI Fortran 77. 

I. INTRODUCTION 

In this paper we describe the algorithmic choices in the NUMVEC Library 
routine MGZER, a highly vectorised multigrid solver for elliptic PDEs, and we 
discuss some of its experimental results. Documentation of this routine can be 
found in [11]. 

Based on (scalar!) operation-counts [5] two of the more promising variants 
of the multigrid algorithm were developed simultaneously: MGD Iv by P.M. de 
Zeeuw (6, 7, 8, 17], using !LU-relaxation [4], the autovectorisable version of 
MGDl by P. Wesseling[l6] and the algorithm presented in the present paper, 
using zebra relaxation. 

The aim is to obtain a black-box linear system solver, written in autovec­
torisable ANSI Fortran 77, where the user remains unaware of the underlying 
multigrid algorithm. Some of the results were already presented in (6, 7]. 

In section 2 we describe the class of problems, to be solved. In sections 3, 
4, 5 we describe the general multigrid algorithm and the specific algorithmic 
choices in MGZEB. The structure of the Fortran implementation is given in sec­
tion 6. Sections 7, 8 are devoted to vectorisation in standard Fortran and 
what can be considered as fair performance measurements. In section 9 some 
experimental results are presented. In section 10 we shall have a glance at 
large problems (larger than central memory) on the Cyber 205. Finally, in the 
last section we formulate some conclusions. 

l. NUMVEC is a CWI library of NUMerical software for VECtor computers.in FORTRAN. 
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2. THE PRORLEM 

We consider the linear 2110 order elliptic PDE in two dimensions on Q C IR2 

± a,, l··_l_·l [-aa .. ]u+ 2:.2 a, rl_aa· ]u+aou =I 
i.) I dX, Xl I .~ I \. ( X, 

with variable coefficients and with boundary conditions on oQ = l'N LJ f/J 

[ aan ]u+a [ :s ]u+~u =Yon rN, 

u = g on I'D. 

The coefficients are arbitrary smooth functions of x and should satisfy the 
ellipticity condition. If this equation on a rectangle Q is discretised by means 
of a regular triangulation of the following form: 

then the resulting discretisation 

Ahuh = Jh 
can be a linear system with the following regular 7-diagonal structure. 

7-Point discretisation is the simplest discretisation which enables us to 
represent the cross-derivatives. It is the linear system that will be solved 
efficiently by means of a multigrid method [ 14). 
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On the rectangle Q a sequence of uniform computational grids Qk. k = 1 ( 1) I is 
defined by 

Qk = {(X1. X2)IX1 = Xo, +jh;,j = 0 (1) 2"}, 

where: h~ - 1 = 2h~. k = I ( - I) 2 and i = I, 2 . 
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We denote the spaces of grid-functions on Qk by s". Prolongation and restric­
tion operators are denoted by pk and rk 

p": sk-1_ Sk, rk-1: sk- s"-1 

and, if we do not want to specify the level, by p: sH- sh , R: sh- SH . 

3. PROLONGATION, RESTRICTION AND COARSE-GRID-APPROXIMATION. 

There are many possible choices for the prolongation and restriction operators 
[ 15]. In MGZEB for pk a piecewise linear interpolation over the edges of a 
coarse triangulation is used . 

• 
0 0 

• 0 • 

• a coarse-grid-point 
Pk with o a fine-grid-point 

In fact this is a natural choice in combination with a finite element discretisa­
tion with piecewise linear trial- and test-functions on the triangulation. 
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The corresponding restriction is the adjoint operator 

rk 1 = [Pk] T in the sense that 

(pkuk-1, v")k = (uk-l.rk-lv"k-1 'VvkES", 

with (u", v" )k = ~utvfi , the usual inner product on s", 
0 

which yields the following molecule for the restriction: 

[

1;2 V2 1 

l/2 1 IJij . 
V2 V2 
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Because this restriction is a weighted average over 7 points, the operators are 
also known as the 7-point restriction and prolongation. 

For the solution of the discrete system A 1 u1 = f by a multigrid method, we 
also need the discrete operators A k, k = I - 1 ( - 1) 1 on the coarser grids gk. 
Again several choices are possible. Since we want the user to supply only the 
matrix A 1 and the right hand side f on the finest grid, the code has to gen­
erate the coarse-grid-operators by itself. For this purpose Galerkin approxima­
tion is used: 

Ak-1 = rk-IAkpk,k = /(-1)2. 

We call this Galerkin approximation because the following equality holds: 

(A"pkuk-1,pkvk-l)k = (Ak-luk-1, vk-l)k-I 

'Vv"-1Esk-1. 

Another motivation for the use of Galerkin approximation can be found in 
[16]. 

4. THE MULTIGRID ALGORITHM 

A comprehensive treatment of the multigrid method can be found in [14]. To 
briefly explain the multigrid algorithm here, we first introduce a two level algo­
rithm, i.e. a multigrid algorithm with only two grids. 
The two level algorithm is a relatively simple defect correction process: 

• First a relaxation method such as GauB-Seidel is applied to smooth the 
error. Such relaxations generally damp the high-frequency error components 
far more efficiently than the low-frequency error components. 

• Secondly, the remaining (smoothed) error is transferred to the coarser grid 
by applying the restriction operator to the residual. Since the number of 
grid-points is much smaller on the coarser grid, the resulting system can be 
approximated far more efficiently, either by a direct solution process or 
-again- by applying a relaxation method. (On the coarser grid the error 
again has high-frequency components). 
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The correction thus found is transferred to the finer grid by means of the 
prolongation operator and added to the existing approximation. 

• Finally, the result can again be smoothed by a relaxation method. 

The former three steps are respectively called pre-relaxation. coarse-grid­
correction and post-relaxation. 

The two level algorithm is described in the following ALGOL-like fragment: 
proc tla = (ref[,,] real A, ref[.] real u, j) void: 

begin 

end 

top do relax( A 2, u2• j2) od; #pre-relaxation# 
f' : = r 1 (j2 - A 2 u2 ); #restriction of the residual# 
solve(A 1u 1 = f' ); #solve directly# 
u 2 + : = p2 u 1 ; #add prolongation of the correction# 
to q do relax( A 2 • u 2, / 2 ) od #post-relaxation# 

Clearly, the two level algorithm can be used recursively to approximate the 
system on the coarser grid. This yields the multigrid (correction storage) algo­
rithm described in the following ALGOL-like fragment: 

proc mgcs = (int level, ref[,,] real A, ref[,] real u, j) void: 
if level = 1 then 

else 

fi 

solve( A 1 u 1 = f') #solve directly# 

top do relax(A level, ulevel, fevel) od; #pre-relaxation# 
tevel - l : = r'evel - I <level - A level u level); #restrict the residual# 
ulevel-1 := 0; 
#coarse-grid-correction: recursive application of mgcs# 
to 0 do mgcs(leve/ _ l,A level -1, ulevel - 1, fevel - 1 ) od; 
ulevel +: = plevel ulevel - l; #add prolongation of the correction# 
to q do relax(A level, ulevel, fevel) od #post-relaxation# 

The integer values p, a and q define the 'strategy' of the multigrid algorithm 
and respectively denote the number of pre-relaxations, coarse-grid-corrections 
and post-relaxations. For two strategies, we show how is switched between the 
different levels of discretisation. 

For I = 4, a = I we obtain a so-called V-cycle: 

4 
level 

3 

2 

multigrid iteration cycle 
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and for I == 4. a = 2 we obtain a so-called W-cycle: 

4 

2 I level 

3 

multigrid 1terai'ron cycle 

We see that most relaxation sweeps are performed on the lower levels. Taking 
into account the amount of work per iteration. we see that the total work on 
the lower levels is less than the relaxation work on the finest level. 

5. THE RELAXATION METHOD 

Now the multigrid algorithm has been described and the restriction. prolonga­
tion and coarse-grid-operators have been chosen; we still have to decide for a 
relaxation method. 

Based on (scalar) operation counts [5] zebra relaxation is one of the promis­
ing ones. Also, for anisotropic problems. zebra relaxation is of special interest 
due to its excellent smoothing factors [14]. 

5. I. What is zebra relaxation? 
Consider the system 

Ax= b, 
n 

2: U1/KJ = bi , 
I 1 

i=l(l)n. 

The well-known (point-) Gauf3-Seidel relaxation is defined as follows: 

for i 1 (1) n, 

and block-Gauf3-Seidel relaxation: 

solve: 2: aiJx1 = b; - 2: a11 x1 
j E block, ; ~ block, 

E block 1 for I= l (1) · · · (®) 

Note that after the /-th stage of the latter relaxation-process the residual on the 
/-th block vanishes, analogous to point-Gauf3-Seidel relaxation, where for each 
point in turn the residual is zeroed. 

Zebra relaxation is a special case of the block-Gauf3-Seidel relaxation, where 
the blocks in the matrix correspond with the grid-lines in the mesh. Due to the 
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nature of the discretisation chosen, only information from neighbouring grid­
lines is needed when one line is being relaxed. For line-GauB-Seidel methods 
the systems ( ®) reduce to tridiagonal systems. 

A zebra relaxation sweep consists of two half-sweeps: relax the even lines 
first and then relax the odd lines, or conversely. To distinguish between both 
possibilities we call the relaxation even/ odd or odd/ even zebra relaxation. 

The separate stages (corresponding with the lines) of each half-sweep can be 
carried out simultaneously: if we relax the even lines we only need information 
of the (neighbouring) odd lines and vice versa. 

5.2. The choice even/odd- odd/even- zebra relaxation 
In the multigrid-context one often has to calculate the restriction of the resi­
dual. The chosen 7-point restriction was determined by the following stencil: 

This means that in every coarse-grid-point the restriction is a weighted average 
of 3 points on a coarse-grid-line and 4 points on the two neighbouring fine­
grid-lines. Let us have a closer look at the restriction after a zebra relaxation 
sweep has been performed. 

As we have noticed before, the residual on the last relaxed lines has van­
ished, so, as a side-effect, we never have to calculate that part of the residual 
explicitly. 

In the even/odd case, where we relax the odd lines last (i.e. the grid-lines 
that do not belong to a coarser grid) their contribution to the weighted average 
will be zero. This means, that the 7-point restriction effectively becomes a 3-
point restriction, as opposed to the effective reduction to a 4-point restriction 
in the odd/ even case: 

[ llV:1 ~2l · [ 112 I Yi J or n 

From a computational complexity point of view, the choice is obviously in 
favour of even/ odd zebra relaxation (the coarse-grid-lines first). 

5.3. The choice x-zebra I y-zebra 
Consider x-zebra, where the horizontal grid-lines correspond with the columns 
of two-dimensional arrays in the Fortran implementation: 

• the computation of the right hand sides of the tridiagonal systems is done 
with stride I (line-wise) 

• the simultaneous solution of those systems is done with stride nx X 2 (skip­
ping array-columns) 
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and y-zebra, vertical grid-lines corresponding with array-rows: 

• the computation of the right hand sides of the tridiagonal systems is done 
simultaneous, with stride 2 (skipping array-rows) 

• analogously, the simultaneous solution of those systems is also done with 
stride 2. 

Consequently, because of our preference for stride l, the most obvious choice 
is x-zebra relaxation. 

5.4. Solving the resulting tridiagonal systems 
With zebra relaxation we have to solve a tridiagonal system for every grid-line. 
GauB-elimination tums out to be the most efficient solution method for small 
systems [10, 12]. For example on the STAR-100, the predecessor of the Cyber 
205, GauB-elimination is more efficient than cyclic reduction for systems up to 
order 160 [ 12]. 

Since we only have to solve tridiagonal systems on grid-lines and since the 
remaining recurrencies involved can be handled simultaneously, we choose for 
GauB-elimination with storage of the LU-decompositions. 

Consider the following tridiagonal system: 

OJ bi Ui 

', ' 0 
C2 °','-... 

' ' ' ', ' bn -I 
Au 

fi 

=f 
0 ' '-, 

Cn On 

We can write A as the product of a lower- and an upper- triangular matrix: 

1, d! 1 b1 
' 0 ' ' 0 12 ', ', ', 

A = LU = ', ', ' '-
', '- '-, bn -l 

0 'I 'l 0 ' 
n 'd;l 

where 

di= l/a 1 

I; = C;d;-1 } 

d; = l /(a;-l;b;-d i = 2 (1) n. 

The tridiagonal system is solved by a forward substitution 

Lv = f of the following form: 

V; = Ji - I; V; _ i. = 2 (1) n, 
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followed by a backward substitution 

Vu = f of the form: 

u, = (v,-u;+ 1b,)d,. i = 11- I(·-!) l. 
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Storing the reciprocal of the diagonal elements during the decomposition stage, 
we avoid an expensive division during the backward substitution. 

The line-wise LU-decomposition contains a recursion and is therefore not 
immediately vectorisable. However, the quantities c;b; .. 1• i = 2 ( 1) n, could 
be computed before the computation of the d,. Also the computation of the /, 
could be delayed until all the values of d, have been obtained. Both these 
operations are vector multiplications and the line-wise LU-decomposition 
would look as follows: 

l; C;h; ---1 2 (1) /1 (vector) 

d1 I/ a 1 

d, I /(a;-t,d;. i) i = 2 (I) n 

I; C;d; . I i = 2 (1) /1 (vector). 

As mentioned before, the remaining recurrencies can be handled simultane­
ously due to the special ordering of grid-lines in a zebra relaxation sweep. 

5. 5. The choice of the datastructure. 
Assume a Cyber 205 with 2 vector pipes and consider the following loop [2]: 

DO 10 I= l,N,2 

10 U(I) = V(I) + W(I) 

With vector length L = N / 2 the total instruction timing (in clock-cycles) 
looks as follows: 

scalar mode 17 + 19L 

GATHER 2 x ( 39 + 5Ll4) 
ADD 51 + L/2 
SCATTER 71 + 5L/4 

vector mode 200 + 4.25L 

Equating the scalar and vector timing we note that the vectorised version is 
faster for L ;;;;i, 13. This is quite satisfactory, but when more GATHERS I 
SCATTERS are involved the break even point is often quite a bit higher. 
Opposed to a loop without a stride (thus only an ADD-instruction), we lose a 
factor 4 for short vectors (L = 2) and a factor 8.5! for long vectors 
(L ~ 65535). 

Since the relaxation process is the most costly part of a multigrid cycle and 
since half the work of a zebra relaxation sweep is still done with a stride > 1 
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when x-zebra is chosen, we have to look for another solution. Switching to y­
zebra and using another datastructure i.e. renumbering the lines and grouping 
the even and the odd lines together, all the work inside the zebra relaxation 
can be done with a stride equal to I. 

6. THE FORTRAN IMPLEMENTATION OF MULTIGRID CYCLING 
Although some algorithms can be described more elegantly in a recursive 
manner, it is often worthwhile to rewrite them in an iterative fashion. In our 
case the counter (in which the number of already performed coarse-grid­
corrections on a certain level is kept) is the only local variable to be 'stacked'. 
Because we can easily differentiate between distinct cases, it is also possible to 
fully exploit the usage of cheaper residual, norm and restriction calculations 
after a zebra relaxation is performed as explained in section 5.2. 

In order to avoid some Fortran details, the algorithm is again described in an 
ALGOL-like fragment: 

proc cycles = (int levels, p, a, q, ref L,]real A, ref [,]real u, j) void: 
begin 

[levels J int counter; 

if p = 0 and a >0 and levels> l then 
if ulevels = 0 #in both cases normal residual# 

then levels - I : = ievels - I ;evels 
else levels -· I : = ievels - I <levels - A levels u levels) 

fi 
fi; 

for mgit to maxit while lllevels -A leve15 u1evels11 >to! 
do 

down: 

if levels = 1 or a = 0 
then 

else 

top+ q do relax(A levels, ulevels, levels) od 

counter [levels] : = cr - l; #special initialisation# 
lev : = levels; 

ifp = 0 
then #down without pre-relaxation# 

if lev =/:- levels then 

fi; 

# lev =/:- levels, sop = 0 implies q =/:- 0! # 
dlev : = lev - A lev u lev #special residual# 

if lev =/:- levels or mgit =/:- 1 then 
# for lev = levels and mgit = 1 

the restriction is already computed on 
entry, otherwise p =/:- 0 or q =/:- 0 holds # 

lev - I : = r'ev - I d1ev #special restriction# 
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up: 

od 
end 

fi; 

fi; 
coun1a[lev - 1 J : = O; 
for Iv! from /cv - I by - l to 2 
do #(without pre-relaxation)# 

l"1 - 1 : = r1"1 1 l''1; #normal restriction# 
counter [Iv! - I] : = 0 

u 1 := 0 
else #down with pre-relaxation# 

for lvl from /ev by - l to 2 
do 

od 
fi; 

top do re/ax(A Iv!, u1"1, l"1) od: 
d 1v1 : = l''1 -A fvl u1''1; #special residual# 
l''1 -- I : = ~''1 - 1 d1"1: #special restriction# 
u 1"1 I := 0; 
counter [Iv! - I] : = 0 

#coarsest grid correction: also relaxation# 
lev : = 1; 
top + q do relax( A 1, u 1, f 1) od; 

lev +: = l; 
counter[lev] +:= l; 
if p = 0 and counter[/ev] = 1 

then ulev : = plev ulev -- I 

else Ulev +: = p/ev Ulev - I 

fi; 
to q do relax( A lev, u1ev, lev) od; 

if counter[lev ]<a then goto down fi: 
if lev <levels then goto up fi 

if q = 0 #no post-relaxation# 

fi 

then dleveL, : = levels -A levels ulevels #normal residual# 
else dlevels : =levels -A levelsulevels #special residual# 

On the finest grid counter [levels] is initialised to a - 1. Every time we go to a 
coarser grid, on invocation of a coarse-grid-corrections, the counter on that 
level is initialised to zero. Every time we go to a finer grid, the counter on that 
level is incremented hy one. If counter[l]<a we have to go down to the coar­
sest grid, otherwise we have to go up to the finest grid. This process ter­
minates when we reach the finest grid, where, due to its special initialisation on 
entry, counter[levels] = a after incrementation. 
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The former is demonstrated in the following figure for I == 4, a :::: 2: four lev­
els with a W-cycle strategy: 

4 ® : the number '#' is the value of counter [level] 2 

level 

3 0 2 

2 2 0 2 

0 0 0 

multigrid iterafi'on cycle 

7. SOME ASPECTS OF VECTORISATION IN STANDARD FORTRAN 

This section reflects some of our experiences while writing MGZEB in autovec­
torisable standard Fortran. See chapter 9 of [1] or see[9] for a full treatise on 
vectorisation on the Cyber 205. 

• Loop collapsing: in the following simplified loop nest only the inner loop is 
autovectorisable 

DIMENSION u(l00,100), v(l00,100), w(l00,100) 

NX = 100 
NY = 100 

DO 10 J = 1, NY 

DO 10 I = 1, NX 

10 U(I,J) = V(I,J) + W(I,J) 

here loop collapsing can be accomplished by explicit overindexing: 

DO 10 I = 1, NX*NY 

10 U(I,l) = v(I,l) + w(I,1) 

A non-trivial example is the collapsing of the loops (over the grid-lines) 
occurring in the right-hand side computation of the tri-diagonal systems dur­
ing the zebra relaxation in the adapted datastructure of MGZEB. 

e In order to allow for the above mentioned loop collapsing, dummy array ele­
ments are added to the arrays containing the information of the odd grid­
lines, in order to make their dimensions compatible with the arrays contain­
ing the information of the even grid-lines. (This instead of using sparse vec­
tors on the Cyber 205, a highly non-standard, hardware supported, data­
represen tation.) 

e Periodic GATHER (and SCATTER analogously, think of the restriction and pro­
longation operators), can be written as 
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DO 10 I= l,N 
10 WORK( I) = U(2*I - l) 

and will be recognised as such, by most vectorising compilers. 

• On the Cyber 205, the infamous 'possible recurrencies' can be taken care of 
by aliasing or implicit equivalencing: passing the same actual argument to 
two dummy arguments. This possible recurrency occurs when the first index 
exceeds the maximum rowindex in the actual declaration, which is allowed 
within Fortran and therefore suspected by the Cyber 205 Fortran 200 com­
piler. 
The Cray CFT compiler assumes implicitly that the programmer avoids such 
a situation. 

The Cray CFT compiler is also provided with compiler-directives to direct the 
vectoriser. In our opinion this is the most elegant solution to most problems 
mentioned in this section. 

8. MEASURING ACCELERATION FACTORS AND MFLOPS 
This section is devoted to what we consider fair performance measurements. 

Writing autovectorisable programmes and scalar optimisation [13] do not 
always tally. On a vectorcomputer for example, one wants vectorisable inner 
loops and on a scalarcomputer one wants outer loops with the smallest itera­
tion count. This example is demonstrated in the following obviously not vec­
torisable recursive loop: 

DIMENSION U(l00,10) 

DO 20 J = 1, 10 
DO 10 I = 2, 100 
U(I~ = u~» + U(I-1~ 

10 CONTINUE 
20 CONTINUE 

where a simple exchange of loop indices is all that is needed to introduce the 
desired vector structure albeit with stride 100. 

However, both versions are not optimal in scalar mode. It is possible to save 
LOAD/STORE-overhead by keeping the iterand in a register (a local scalar vari­
able): 

DO 20 J = 1,10 
UIMl = U(l,J) 
DO l 0 I = 2, 100 

UIMl = U(I,J) + UIMl 
U(I,J) = UIMl 

10 CONTINUE 
20 CONTINUE 

From the examples mentioned above, it is clear that for fair measurement of 
acceleration factors we need to compare our timings with those of the most 
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efficient scalar version so: 

fair acceleration factor = scalar optimised timing I vectorised timing, 

and consequently: 

fair MFLOP-rate = scalar operation count I vectorised timing. 

9. SOME EXPERIMENTAL RESULTS 
Since we are only interested in the vectorisation here and not in the numerical 
behaviour, we restrict ourselves to one single test problem. We solve the Pois­
son equation on the unit square with Dirichlet boundary conditions and the 
right hand side constructed in agreement with the exact solution 
x(l-x)+y(l-y). In our example the boundary conditions are eliminated. A 
fixed 'saw-tooth' multigrid cycle strategy (p = 0, a = q = 1) is used. 

In the following tables we give CPU-times spent in various subroutines in 
runs with 10 multigrid cycles. Additionally, the average convergence factors in 
the iterative cycling are given. 

machine Cray IS Cyber 205 (2-pipes) 

levels 6 7 6 7 
finest grid 65X65 129X 129 65X65 129Xl29 

convergence 0.232 0.218 0.232 0.218 

RAP 0.033 (2.7) 0.085 (3.7) 0.022 (3.9) 0.054 (5.9) 
DECOMP 0.006 (1.0) 0.023 (1.0) 0.010 ( 1.1) 0.040 ( 1.1) 

ZEBRA 0.034 (4.0) 0.103 (5.0) 0.084 ( 1.8) 0.210 (2.8) 
RESIDU 0.010 (4.9) 0.034 (5.6) 0.007 (6.4) 0.020 (9.0) 
PRO LON 0.008 (4.4) 0.022 (6.0) 0.013 (2.1) 0.032 (3.1) 
RESTRI 0.004 (3.2) 0.009 (5.4) 0.009 ( 1.1) 0.022 (1.7) 
VL2NOR 0.003 (4.3) 0.009 (5.3) 0.002 (4.0) 0.004 (8.3) 

TOTAL 0.102 (3.4) 0.293 (4.4) 0.162 (2.2) 0.400 (3.3) 
CYCLE 0.006 (3.8) 0.017 (5.2) 0.011 (2.1) 0.028 (3.2) 

TABLE 9.1 CPU-times in seconds of the experimental programme MGEOZV (a 
version with the 'conventional' datastructure) run in vector-mode. 
Between parentheses the 'fair' acceleration by vectorisation. 

We see that the Cray IS does not suffer as much from strides as the Cyber 
205: compare the acceleratio~ factors 3.2, 5.4 and 1.1, 1.7 of the restriction for 
the Cray and the 205, respectively. The acceleration factors for the zebra 
relaxation are better than for the restriction, due to the fact that half the work 
can be done with stride 1. 

Note, that on the Cyber 205, the relaxation consumes half the time (0.210 
sec) of the total run time (0.400 sec) on a 129 X 129 grid. 
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In the next table we show the results after adapting the datastructure: 

grid 65X65 129Xl29 257X257 

CHANGE 0.004 0.012 0.041 
RAP 0.021 (2.8) 0.050 (4.2) 0.147 (5.5) 
DECOMP 0.002 (4.5) 0.004 (8.8) 0.013 (10.5) 

ZEBRA 0.025 (5.7) 0.065 (8.4) 0.220 (10.2) 
RESIDU 0.004 ( 10.8) 0.015 ( 11.2) 0.070 (9.6) 
PROLON 0.016 (1.6) 0.036 (2.8) 0.094 (4.1) 
RESTRI 0.015 (0.7) 0.033 ( 1.1) 0.083 ( 1.7) 
VL2NOR 0.001 (9.0) 0.002 (16.5) 0.009 (14.3) 

TOTAL 0.109 (3.0) 0.243 (4.9) 0.710 (6.6) 
CYCLE 0.008 (3.2) 0.017 (5.3) 0.049 (7.2) 

TABLE 9.2 CPU-times in seconds of the programme MGZEB 
(the version with the adapted datastructure) run 
in vector mode on a Cyber 205 (2-pipes) 
Between parentheses the 'fair' acceleration by 
vectorisation. 
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Here appears a subroutine called CHANGE. This portable Fortran routine 
adapts the datastructure of the problem on entry and as we can see it only 
takes 0.041 sec on a 257 X 257 grid; this time is comparable to one multigrid 
iteration cycle. 

We notice a few differences with the results given in table 9.1. The restric­
tion suffers from vectorisation on small grids, see the acceleration factor 0.7 on 
the 65 X 65 grid. This loss is due to halving the vector length in the adapted 
datastructure. 

Due to the absence of strides the zebra relaxation has excellent acceleration 
factors 5.7, 8.4 and 10.2! On a 129 X 129 grid the relaxation now only takes 
one fourth of the time of the total run, which in turn takes only 0.243 sec 
instead of 0.400 sec in the case of the 'conventional' datastructure. 

The overall conclusion is, that using an adapted datastructure proves to be 
very profitable. 

10. A GLANCE AT LARGE PROBLEMS ON THE CYBER 205 
Although the results in this section strongly depend on the site's accounting 
system and are presented on a Cyber 205-611, the general idea should hold 
even for non-virtual memory machines, where the user has to take care of his 
own (explicit, more visible) I/O. 

For readers unfamiliar with the Cyber 205, it is a so-called virtual memory 
machine, which means that virtual space (disk space, slow) is mapped to physi­
cal space (central memory, fast) during task execution. The process of copying 
code and data in and out of central memory is called paging or implicit I/O. 
The units transferred in and out are called pages. VSOS (the Cyber 205's 
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Virtual Storage Operating System) uses two page sizes, small and large pages. 
The large page size is always 128 blocks of 512 words (65536 words) and the 
small page size can be one, four, or sixteen blocks of 512 words. At SARA 
(the Academic Computing Centre Amsterdam) this installation parameter is 4 
blocks of 512 words (2048 words). 

A so-called SBU, a System Billing Unit, is a VSOS accounting unit (at 
SARA one CPU second corresponds with one SBU). 

In the sequel we consider a 257 X 257 grid, in our case this is a 'large' prob­
lem (all data involved in this problem needs more than 1 Mword, which, in 
turn, is the current physical memory on the Cyber 205-611 at SARA; the max­
imal working set at the time of these measurements was 1600 blocks of 512 
words). 

In the following table, the problem is mapped on Large Pages and we iterate 
till llresidull < 10- 10 

strategy iterations CPU page faults jobcosts 
p a q needed (sec) SP LP SBU's 

0 1 1 20 1.44 636 408 49.3 
0 2 1 11 1.85 566 235 31.5 
0 3 1 11 7.18 547 244 47.4 

As we can see W-cycle's (a = 2) cost slightly more CPU-time than V-cycle's, 
but the total job-cost decreases significantly due to the reduced amount of 
relaxation sweeps on the finest grid (larger than central memory, so paging is 
involved). 

Now perform 10 iterations with a fixed 'saw-tooth' cycle strategy 
(p = 0, a = q = l ), but use scalar and vector compilations of MGZEB and 
different mappings of the problem 

compilation problem CPU page faults jobcosts 
mode mapping (sec) SP LP SBU's 

scalar 7.79 4046 - 49.0 
vector (SP) 0.92 4053 - 42.l 
vector (LP) 0.84 507 219 28.2 

In scalar mode it is also possible to map the problem on Large Pages! 

scalar I (LP) I 7.71 I 32 203 I 28.7 

Thus despite the increasing CPU-time the scalar version can be executed at the 
same job-costs due to the decreased number of page faults! 
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At the present I Large Page fault costs 

O.l SBU = O.l CPU sec 
0.5 sec real time 

76 x 2 16 clock-cycles, and 
381 x 216 clock-cycles! 

197 

We see that, one can perform 381 X [the number of vectorpipes] vectorin­
structions of maximal vectorlength in the same real time, so recomputing 
instead of storing intermediate (vector) results could be worthwhile. 

11. CONCLUSIONS 
We conclude that it is very well possible to write highly vectorisable code in 
standard Fortran (albeit a little bit tricky sometimes). 

On the Cyber 205 the lack of compiler-directives to direct the vectoriser of 
Fortran 200 can be really painful (e.g. the possible recurrencies). 

In order to obtain an optimal performance it can be necessary to adapt the 
datastructure of a programme to the specific machine's architecture. 

If a certain loop-construct is only vectorisable at the cost of introducing page­
faults then one should really consider whether the gain in performance is not 
outweighed by the extra costs of the page-faults. 

Although some people do not care about the total job-costs and only want to 
obtain an optimal vector-performance ('Macho FLOP' people) it is more realis­
tic to be interested in the real time (the turn-around time of the job). 

Het zijn de prograrnma's die het hem doen. 
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NOTE 
The code discussed in this paper can be obtained by sending a tape to the 
NUMVEC-Library manager, Centre for Mathematics and Computer Science, 
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands. 
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