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COMPACT AND MAJORIZABLE FUNCTIONALS OF FINITE TYPE 

MARC BEZEM 

The main result of this paper will be that various notions of majorizability and 
compactness coincide in the full typestructure over the natural numbers. Moreover 
we shall show that the extensional typestructure of strongly majorizable functionals 
can be obtained by applying Zucker's construction ( )E to any of these coinciding 
intensional typestructurcs. A different result is proved in the typestructure of 
effective operations, where not every majorizable functional is compact. Finally we 
shall introduce the concept of relative compactness in the full typestructure and 
prove that there are just two degrees of compactness. 

§ 1. Preliminaries. 
l.O. Types are 0 and with a and -r also (CJ)T (often written as a --> -r in the literature). 

We shall use the symbols a, -r, p to denote types. Pure types (denoted by natural 
numbers) are 0 and with n also n + 1 = (n)O. 

A typestructure :r = LJ:r" is given by specifying sets '.!,,. for each type a and 
application mappings ('.!<rrlt x '.!")--> '.!, for all a, -r. We shall only consider type­
structures over the natural numbers, i.e. with '.!0 = N. 6 = LJ6" is called a sub­
typestructure of '.3: if :S" c;; '.!" for all CJ and S is closed under application in '.!. 
Elements of'.!" are called functionals of type CJ. Functionals (as well as variables for 
functionals) will mostly be denoted by capitals, but whenever we wish to emphasize 
that a functional (or variable) is of type zero, i.e. a natural number, we shall denote it 
by a lower case letter.FE CJ expresses that Fis a functional of type CJ. Application of 
a functional FE (CJ)r to a functional GE a yields a functional of type -r, which we 
shall denote by FG. In expressions like FGH association will always be assumed to 
be to the left and the functionals will be assumed to have appropriate types. We shall 
occasionally use lambda-notation to specify functionals, i.e. AX.- specifies a 
functional F such that FX = - for all X. 

Two notions of equality for functionals can be distinguished, namely in tensional 
and extensional equality. Let '.3: = LJ:r" be a typestructure. Intensional equality of 
type a is equality on'.!" as given to us. Extensional equality of type ( a)-r is hereditarily 
defined by 
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Extensional equality of type 0 is equality on '.!: 0 as given to us.'.! is called extensional 
if all application mappings respect extensional equality. Otherwise '.! is called 
intensional. 

The full typestructure over the natural numbers ':t = U'.!a is inductively defined by 
'!0 = N and '.!:111>, = {FI F: '.l:a--+ '!,} (with set-theoretical application; note that 
intensional and extensional equality coincide in '.!, and so '.l: is extensional). In the 
first five sections as well as in the last, variables for functionals are taken to range 
over '.!. In all other sections this range will be specified, e.g. by VF E 9Jl or 3y E 

HE02 • Constant functionals of type u will be denoted by n", n EN. 
1.1. The typestructures MAJ, s-MAJ, w-MAJ and COMPACT (intensional sub­

typestructures of the full typestructure over N) are inductively defined as follows. 
MAJ: 

n maj 0 m iff 11 ~ m; 
F*maj(o-)J iff VG*, G (G*maj11 G--+ F*G*maj,FG). 
FE MAJ (F is majorizable) iff 3F* F* maj F. 

s-MAJ: 
n s-maj0 m iff n ~ m; 
F*s-maj1a1,F iff VG*, G(G*s-maj11 G--+ F*G*s-maj, F* G,FG). 
F* s-maj(aJJ iff VG*, G(G* s-maj11 G--+ F* G* s-maj,F* G, FG). 

w-MAJ: 
w-maj11 is an w-ary relation on '.!:a. 
(n0 ,n 1 , ... ) E w-maj 0 iff n0 5 n1 5 ···; 
(F0 ,F1 , •.. ) E w-maj1alt iff V(G0 , G1, .•. ) E w-maja(F0 G0 , F1 G" ... ) E w-maj,. 
FE w-MAJ (Fis w-majorizable) iff 3(F0 , F1 , ... ) E w-maj F0 =F. 

COMPACT: 
'll c '.l: 0 is compact iff fil is finite; 
~ c '.l:(a)t is compact iff vrr c: '.!a((£ is compact--+~(£ = {BC I BE ~ /\ c E (£} 

is compact); 
FE COMPACT (Fis compact) iff the set { F} is compact. 

Application and (intensional) equality in MAJ, s-MAJ, w-MAJ and COMPACT 
are induced by the full typestructure. Type subscripts will often be omitted. 

Both the compact functionals and the majorizable functionals were introduced by 
Howard in [T, 2.8.6 and Appendix]. The strongly majorizable functionals were 
introduced as the extensional typestructure fill in [B2]. The relation w-maj is a 
modification of the relation maj, entailing the property that all majorants are in w­
MAJ. This property, also enjoyed by s-maj but not by maj, is of interest in proving 
that a typestructure is a model of bar recursion (see [B2] ). Although we failed to find 
an elegant proof that w-MAJ satisfies bar recursion, the relation w-maj seems to be 
interesting in itself. 

1.2. In this paper proofs frequently use the following form of the comprehension 
axiom: 

(VF E a3!G E -r P(F,G))--+ 3H E (u)!VF Ea P(F,HF), 

where 3 ! means "there exists a unique". Whenever this is the case, it will be indicated 
by (CA). 

Strictly speaking the relations s-maj in this paper and in [B2] are different, since 
they are defined on different domains ('.! instead of 9Jl). However, all lemmas of 
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[B2, §1] can easily be proved to hold for the relations s-maj in this paper. Only two 
of these lemmas will be used here. For ease of reference we restate them in 1.3 and 1.4 
below. Proofs may be gleaned from [B2]. 

1.3. LEMMA. F* s-maj F-> F* s-maj F*-> F* Es-MAJ. 
1.4. LEMMA. For all a= (a1)···(ak)'r we have:F* s-maj F if! VGT,G1 , ••. ,Gt, 

Gd(G! s-maj G1 /\ · · · /\ Gt s-maj Gd --+ F* GT··· Gt s-maj F* GT··· Gt _ 1 Gk,. .. , 
F*G 1 ···Gk>FG1 ···Gk). 

1.5. For the remaining part of this paper we use G, X, etc. as abbreviations of 
finite sequences G1 , ... , Gk, X1 , .•. , Xk> etc., of functionals of appropriate types. 
Furthermore G* (s-)maj G abbreviates GT (s-)maj G1 A · · · A Gt (s-)maj Gk. 

1.6. As observed by Kohlenbach in [K], Lemma 1.4 can be simplified by 
combining it with Lemma 1.3 into the following 

LEMMA. For all a= (a1) · · · (ak)r we have: F* s-maj F iff 

VG*,G(G*s-maj G--+ F*G*s-maj F*G,FG). 

§2. Basic facts about MAJ. 
2.1. CHARACTERIZATION LEMMA. Let FE a= (ai)···(ak)O; then FE MAJ if! 

{FX [ X* maj X} is finite for all X*. 
PROOF."--+". Let FE MAJ; then F* maj F for some F*. Since X* maj X implies 

F* X* ~ F X, it follows that the set { F X [ X* maj X} is bounded by F* X* for every 
X*. 

"+-".(CA) Suppose {FX[X*majX} is finite for every X*. Define F by FX* = 

max { F X [ X* maj X }. Note that X* maj 6 for all X*. It follows by the definition of 
the relation maj that F maj F, so FE MAJ. D 

2.2. LEMMA. (i) Every F E MAJ has a minimal majorant; in symbols: 

VF E MAJ 3Fmaj FVF* maj FF* maj F. 

(ii) The relation maj is transitive. 
PROOF. (CA) By simultaneous induction on the type. 
a = 0: Obvious. 
(a)r: Suppose the lemma has been proved for all subtypes of a and r. 
Ad (i), let FE MAJ be of type (a)r = (a1 ) · · · (adO. Define F as above in 2.1. Let 

F* maj F and X* maj X. In order to obtain F* maj F, we only have to show that 
F* X* ~ F X = max {FYI X maj Y }. This follows from the induction hypothesis (ii), 
since X* maj X maj Y implies X* maj Y by transitivity, and hence F* X* ~ F Y for 
all Y with X maj Y. 

Ad (ii), let D, E and F be functionals of type (o")r such that D maj E maj F. Let G and 
H be functionals of type a with G maj H, hence H E MAJ. It follows by the induction 
hypothesis (i) that H has a minimal majorant fI. From G maj H maj H follows 
DGmajEHmajFH, and hence DGmajFH by the induction hypothesis (ii) and 
transitivity. It follows that D maj F. D 

§3. Basic facts about s-MAJ. 
3.1. LEMMA. The relation s-maj is transitive. 
PROOF. By induction on the type. 
a = 0: Obvious. 
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(a}r: Suppose the lemma has been proved for the types u and t. Let D, E and F be 
functionals of type (a')-r such that Ds-maj Es-maj F. Let G and H be functionals of 
type a with G s-maj H. It follows by the definition of s-maj that DG s-maj DH. 
Moreover we have G s-maj G by Lemma 1.3. It follows that DG s-maj EG s-maj FH 
and hence, by the induction hypothesis fort, DG s-maj FH. So we have D s-maj F by 
the definition of s-maj. O 

3.2. CHARACTERIZATION LEMMA. Let FE a= (ai)·· ·(uk)O; then FE s-MAJ if! 
{FX IX* s-majX} is finite for all X*. 

PROOF. "-+" is identical to •• .... "in the proof of Lemma 2.1. 
"+--".(CA) Define Fby FX* = max{FX jX* s-maj X}, takingmax 0 = 0. For all 

X* s-maj X we have ft X* ~ F X by the definition of F, whereas ft X* ~ ft X uses the 
transitivity of s-maj as well. It follows by Lemma 1.6 that ft s-maj F. D 

3.3. LEMMA. Every Fe s-MAJ has a minimal s-majorant. 
PROOF. Let FE s-MAJ and define ft as in 3.2. Using transitivity one proves, 

similar to the proof of 2.2(i). that Fis a minimal s-majorant of F. D 

§4. Basic facts about w-M AJ. 
4.1. LEMMA. If (F0 , Fi, ... ) e w-maja, then (Fk,Fu 1 , ••• ) E w-maj.,. and (0", ... ,0", 

Fo .F1' ... ) E w-maj., (k times oa) for every k. 
PROOF. By simultaneous induction on the type. 
a = 0: Obvious. 
(u)t: Suppose the lemma has been proved for the types u and t. Let (F0 , Fi, ... ) 

e w-maj1.,.)T and (X0 ,X1, ••• ) e w-maja. Then we have by the induction hypothesis 
(0"", ... ,0", X 0 ,X1, ••• ) E w-maj,. and (Xk,Xk+ 1, ••• ) E w-maj.,. for every k. Hence 

(Fo 0", ... , Fk -1 oa. FkXo. Fk+ 1X1, ... ) E w-maj, 

and (FoXk, Fi xk +I• ••• ) E w-maj .. Again by the induction hypothesis it follows that 
(FkXo.Fk+ 1 X 1 , ••• ) E w-maj, and 

(01"1' Xo, ... , o(a)txk-1.F0Xk.F1Xk+ 1• ... ) E w-maj,. 

Hence (Fk,Fk+ 1, ... )Ew-maj(alT and (o<al<, ... ,o<al<,F0 ,F1, ... )Ew-maj1.,.1, by the 
definition of w-maj. D 

4.2. LEMMA. If (F0 , ••• , Fk, Fie+ 1, ... ) E w-maja and (Fk, G1, G2 , ••• ) E w-maj.,, then 

(F0 , ••• , Fk, Gt> G2 , ••• ) E w-maj.,. 

PROOF. By induction on the type. 
<r = 0: Obvious. 
(a)t: Suppose the lemma has been proved for types u and t. Let 

(Fo, ... ,Fk,Fk+1•···)ew-maj1.,.1, and (f;.,G1,G2 , ••• )ew-maj<.,.1 .. We have to show 
that 

(FoXo, ... , FkXk, G1 xk+ I• G2Xk+ 2• .•• ) E w-maj, 

for all (Xo,X1, ... )ew-maj.,. Suppose (X0,X1 , ... )Ew-maj.,; then we have 
(F0 X0 , F1 X 1 , •• • ) E w-maj, by the definition of w-maj. Moreover we have 
(Xk> xk +I• ••• ) E w-maja by Lemma 4.1, and so 

(FkXk, G1Xk+1• G2Xk+ 2 , •• • ) E w-maj .. 
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Hence (FoXo, · ·., ficXk, GiXk+ 1, G2 Xk+z, .. . ) E w-maj, by induction. 0 
4.3 .. The relations on w-MAJ,, is defined as follows: G s H (His an w-majorant 

of G) !ff 

:l(Fo,F,, ... ) Ew-maj,,:Ji,j(i <j AG= Fi AH= Fj). 

LEMMA. The relation s is transitive. 
PROOF. By Lemmas 4.1 and 4.2. O 
4.4. LEMMA. (i) if (F0 ,F1, ... ) E w-maj.,., then (F0 ,Fk,Fk+1' ... ) E w-maj,, for 

every k > 0. 

(ii) Every FE w-MAJ has a s-minimal w-majorant. More precisely: 

VF E w-MABF E w-MAJ ((F,F,ft, .. . ) E w-maj.,. 

/\ V(F0 .F1,. .. ) E w-maj,,.(F0 = F ~ (F, F1 ,F2 , ... ) E w-maj,,)). 

PROOF. (CA) By simultaneous induction on the type. 
u = 0: Obvious. 
(o}r: Suppose the lemma has been proved for all subtypes of u and r. 
Ad (i), let (F0 ,F1 , ... ) E w-maj(a)r and (X0 ,X1 ,. .. } E w-maj.,. By the induction 

hypothesis there exists X0 such that (X0 , X0 , X0 ,. .. ) E w-maj.,. and (X0 , X 1 , X2 , ... ) 

E w-maj.,.. By Lemma 4.2 it follows that (X0 , X0 , •• ., X0 , X1, X 2 ,. .. ) E w-maj,, (k - 1 
times X0 ). By the definition of w-maj it follows that 

so by the induction hypothesis (i) we have (F0 X0 ,FkX1 , Fk + 1 X2 ,. .• ) E w-maj" 
Hence we have (F0 , Fk, Fk+ 1,. •. ) E w-maj(a)t" 

Ad (ii). Let FE w-MAJ; then F = F0 for some (F0 ,F1 , ... ) E w-maj(u)t" Define 

F by FX = max{FYJ Y s X}, taking max 0 = 0, where Y s X abbreviates 
Y1 $ X 1 A · · · A Yk s Xk. By the definition of s, the induction hypothesis (i) and 
Lemma 4.1 we have Y; s Xi iff :J(Z0 ,Z1 , ... ) E w-maj (Y; = Z 0 A Xi = Zi) for all 

I s i $ k. Hence we have Y s X ~ FY s F1X (where the last inequality is of type 

0), so the set {FYI Y s X} is bounded for all X. It follows that f is well-defined. 

Using the transitivity we can easily prove that (F, ft, ft,. .. ) E w-maj<">" Moreover, 
{F, G 1, G2 , ... ) E w-maj(a)r for all (G0 , G1 , ... ) E w-maj(a)r with G0 =F. D 

COROLLARY. rf F SF* and X $ X*, then FX S F*X*. 
PROOF. By Lemmas 4.1 and 4.4(i). D 
4.5. As a corollary of the proof of Lemma 4.4 we also obtain the 
CHARACTERIZATION LEMMA. Let FE (J = (cr1)·· '(O"k)O; then FE w-MAJ if[ 

{FYI Y s X} is finite for all X. 
4.6. REMARKS. (i) The lemmas above could create the impression that all evident 

properties of (weakly) increasing sequences of natural numbers generalize to higher 

types. This, however, is not the case. For example, for nonmonotonic F0 it is not true 

that if (F0 ,F1 , ... ) E w-maj 1 then (F0 , ... ,F0 ,F1' .. . ) E w-maj 1• 

(ii) One might expect that the relations maj, s-maj and w-maj can be defined in 
terms of each other. However, we have failed to find any positive result on this point. 
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The following equivalences do not hold in general, and will subsequently be 
disproved for the lowest possible type. 

(1) F* s-maj F iff F -5. F*. 
(2) F* s-maj F iff F* maj F. 
(3) F* maj F iff F -5. F* (cf. Corollary 4.4). 
(4) (F0 , F1 , ••• ) e w-maj iff Vk Fi.+ 1 maj Fj.. 
(5) F* s-maj F iff (F, F*, F*, .. . ) e w-maj. 
(6) F* s-maj F iff F* maj F* /\ F* maj F. 
Ad (1) and (2). Take F = 0 1 and F* any nonmonotonic function. 
Ad (3), take F = 02 and define F* e 2 by F* X = 0 if X = 01 and m else, where m is 

the smallest natural number such that Xm ::f:. 0. Then we have F* maj F, but not 
F ~ F*, since F* is not m-majorizable. For, if we define functionals Dk e 1 by 
Dkx = 1 if x = k and 0 else, then F* Dk = k for all k e N. Since Dk ~ 11, it follows 
by Corollary 4.4 for any G with F* ~ G that k = F*Dk ~ Gl 1 for all k, which 
is impossible. 

Ad (4). Let F* be the functional as defined above in the disproof of (3). Define 
Ye 3 by YZ = 0 if Z = F*, and 1 otherwise. Then we have (Y, Y, .. . ) e w-maj, but 
not Ymaj Y. 

Ad (5) and (6), take F = 02 and define F* e 2 by F* X = 0 if X = D0 , and 1 
otherwise. Then we have F* s-maj F, since X* s-maj X implies X* :;:. D0 (s-majorants 
are monotonic). However, we do not have F* maj F* (resp. (F, F*, F*, .. . ) e w-maj), 
since D0 maj 01 (resp. (01, 01, D0 , 11, 11, ••• ) e m-maj). 

(iii) The negative results above, and especially the nonconstructive nature of the 
counterexamples to (3)-(6), lead us to posing the following 

Open Questions. Do there exist interrelations between maj, s-maj and w-maj? 
Does there exist an interesting class of functionals (e.g. the primitive recursive 
functionals; see [T, p. 457]) for which one or more of the equivalences (3)-(6) hold? 

§5. Main result. In this section we shall prove the main result of this paper: 

COMPACT = MAJ = s-MAJ = w-MAJ. 

This result is an immediate consequence of the following 
THEOREM. m is compact if! .3F 'v' A e 2C F maj A (resp. F s-maj A, A '5. F). 
PROOF. (CA) By induction on the type. 
r:r = 0: Obvious. 
(r:r)-r: Suppose the theorem has been proved for all subtypes of r:r and -r. Let 

(r:r)t = (r:r1) · .. (<rk)O. 
"+-". We take the case ~. The other cases are similar. Let m be such that 

VA e m A -5. F for some F. Let $i. ... , $k be compact sets of appropriate types. By 
the induction hypothesis there are X1, ... ,Xk such that VBe )Si B ~ X; for all 1 ~ i 
-5. k. It follows by Corollary 4.4 that mm is bounded by Fi. Hence 2C is compact. 

":+ ". Le} 2l'. be compact. As to maj, define_ F by Fi = max {A Y I A e 2l'. 
/\. Xmaj Y}. F is well-defined since for all X the sets $i = {Y;IXimaj Y;}, 
1 ~ i ~ k, are compact by the induction hypothesis, and so 2!~ is finite. It follows 
by the definition of F that Fmaj A for all A Em. As to s-maj, define F by FX 
= max{A YI A e 2l'. A X s-maj Y }, taking max 0 = 0. Fis well-defined for similar 
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reasons as above. We have F s-maj F by the transitivity of s-maj, and so F s-maj A 

for all A E fil by the definition of F. As to :::;;, define F by F X = max {A Y I A 
E fil " Y :::;; X}, taking max 0 = O; then F is again well-defined. By the transitiv­
ity of :::;; and the definition of F we have (A, F, F, .. . ) E w-maj, so A :::;; F for all 
A E fil. D 

§6. Comparison of s-MAJ and 9Jt 
6.1. In [B2] the extensional typestructure fill of strongly majorizable functionals 

was introduced. In this section we shall show that 9R is isomorphic to s-MAJE. The 
extensional typestructure s-MAJE is constructed from the intensional typestructure 
s-MAJ by applying Zucker's construction ( )E from [Z]. Here we shall only state the 
definition and a lemma, which can be proved in a similar way as Lemma 1.4 of [BI]. 
With the help of this lemma one can easily prove by induction that ~ .. as defined 
below coincides with extensional equality on s-MAJ; as defined in 1.0. Then it 
immediately follows from the definition that s-MAJE is an extensional sub­
typestructure of the full typestructure over N. 

By induction we define relations ~ .. c s-MAJ" x s-MAJ.,. as follows: 

n :::::0 n' iff n = n'; 

F ::::::<.,.>•£' iff F, F' E s-MAJ<u>•" VG, G'(G ;:;;.,. G'--+ FG ;:;;,F'G'). 

The typestructure s-MAJE is defined by 

s-MAJ; ={FE s-MAJ.,. ! F ;:;;.,.F} for all types r:r. 

LEMMA. For all types r:r: 
(i) the relation ::::::.,. is symmetric and transitive; and 
(ii) for every FE s-maj: if :JF' F ;:;;.,. F', then F ::::;" F and so FE s-MAJE. 
As stressed before, the relations s-maj are different ins-MAJ and 9R, since they are 

defined on different sets. It will always be clear from the context which one is meant, 
and the properties we use (Lemmas 1.3 and 1.6) are shared by both. 

6.2. The result s-MAJE ~ 9Jl follows from the following 
THEOREM. For all types r:r there exist 4>.,.: s-MAJ"--+ 9R .. and P,,: 9R .. --+ s-MAJ" such 

that (omitting type subscripts): 
(i) cf>(F)<P(G) = <l>(FG) for all F, GE s-MAJE; 
(ii) P(A)P(B) = P(AB) for all A,B E 9R; 
(iii) IJ'(cf>(F));:;; F for all FE s-MAJE; 
(iv) <P(P(A)) = A for all A E fill; 
(v) F :::::: F' --+ <l>(F) = <P(F') for all F, F' Es-MAJ; 
(vi) F* s-maj F--+ <P(F*) s-maj <P(F) for all F*, FE s-MAJ; 
(vii) A* s-maj A--+ P(A *)s-maj P(A) for all A*, A E 9R. 
PROOF. By simultaneous induction on the type. 
r:r = 0: Obvious. 
(o}r: Suppose the theorem has been proved for types r:r and -r. This induction 

hypothesis is referred to by IH. 
Define 4'1.,.><(F) = A.X.<P,(FP.,.(X)). We have to show that 4><.,.>•: s-MAJ,.,.>,--+ 9R<a>« 

Let FE s-MAJca>•; then we have by IH, for all B, 

BE fill.,.--+ P"(B) Es-MAJ;--+ FP,,(B) Es-MAJ,--+ <P,(FP.,.(B)) E 9R,. 
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Hence 4>c11J,(F): 9Jl11 -+ fill,. 
From Fe s-MAJcaJ< it follows that there exists F* such that F* s-maj F, which 

implies F* E s-MAJcaJ< by Lemma 1.3, so also 4>c11>,(F*): fill 11 -+ 9J1,. By IH we have for 
all B, B* E filla: 

B* s-maj B-+ 'l'a(B*) s-maj 'l'11(B) 

-+ F*P11(B*) s-maj F* 'l'a(B), F'l'11(B) 

-+ 4>.(F*'l'a(B*)) s-maj 4>,(F*IJ'a{B)), 4>,(F'l'11(B)) 

-+ 4>caJAF*)B* s-maj 4>caJt(F*)B, 4>cai.CF)B. 

Hence 4>caJAF*)s-maj 4>caJt(F). It follows that 4>c 11>,(F) E fillcuJt· Note that we also 
proved (vi). 

Define lf'c.-J<(A) by lf'caJt(A)Y = 'P,,(A4>11(Y)) if YE s-MAJ and 0' otherwise. We 
have to show that '!1a)t: Wl(a)t-+ s-MAJf.-Jt· Let A E fillcaJ<; then '!1uiiA) clearly is a 
functional of the full typestructure. From A e Wl<aJ< it follows that there exists A* 
such that A* s-maj A, which implies A* e WlcuJ<. For all functionals G*, G of the full 
typestructure we have G* s-maj G-+ G*, GE s-MAJ by Lemma 1.3. Hence we have 
bylH 

G* s-maj G-+ 4>11(G*) s-maj 4> .. (G) 

-+A *<1>..(G*)s-maj A *4>11(G), A4> .. (G) 

-+ 'P,,(A*4>11(G*))s-maj P,(A*cf>u(G)), P,(A4>a{G)) 

-+ 'J1.,>.(A *)G* s-maj 'J1 .. >,(A *)G, 'f( .. >.(A)G for all G*, G. 

Hence '!1u)t(A *) s-maj 'f(.,.>,(A). It follows that 'f(uJt(A) Es-MAJ. Note that we also 
proved (vii). 

Now we shall prove 'J1.,.i,(A) E s-MAJE, which comes down to showing Pcui<(A) 
~ 'f(11>,(A). Let G, G' e s-MAJ.,.; then by IH we have 

G ~ G'-+ <l>u(G) = 4>11(G') E fill.,. 

-+ P,(A4>..(G)) = P,(A<l'a(G')) e s-MAJ; 

-+ P,(A4>..(G)) ~ P,(A4> .. (G')) 

-+ tp(a),(A)G ~ tp(a)t(A)G', 

where the next to last implication follows by the definition of s-MAJe. 
It remains to verify (i)-(v). 
Ad (i), let FE s-MAJ[;,l, and GE s-MAJ;. Then we have tPcaJ<(F)<1>11(G) = 

4>,(Flf'a(4> .. (G))) = <P,(FG'), with G' = lf'.-(4i11(G)) ~ G by IH. Since Fe s-MAJE we 
have F ~ F, so FG :::::1 FG' and so 4>,(FG) = 4>,(FG') by IH. It follows that 
4>c11>,(F)4>.,.(G) = 4>,(FG). 

Ad (ii), let A E WlcaJ< and B E fill 11 ; then we have 

'J1 .. >.(A)lf'11(B) = P,(A<P11('1'..(B))) = P,(AB) 

by the definition of 'f( .. l< (since 'l',,(B) e s-MAJE £ s-MAJ) and by IH. 
Ad (iii), let FE s-MAJ[;,>,; then we have F ~ F by the definition of s-MAJE. By (i) 

we have 
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for all G e s-MAJE. Since G ~ G' implies G, G' e s-MAJE by Lemma 6.1, we can 
derive by IH 

G ~ G'-+ FG ~ FG'-+ cf>t(FG) = cf>t(FG') 

-+ ~alt(%,it(F))G = P.(cJJ,(FG)) = P.(<P.,(FG')) ~ FG'. 

It follows that ~al<(<P<alt(F)) ~F. 
Ad (iv), let A e fill<aJ<; then by (ii) we have 

cp(a)t(~a)t(A))B = cf>.(~cr)t(A) 'I'a(B)) = cJJ.(P.(AB)) = AB 

for all BE filla. Since fill is extensional it follows that <P<al.<~al<(A)) = A. 
Ad (v), let F, F' e s-MAJ<alt such that F ~ F'. Let Be filla; then Pa(B) e s-MAJ~, so 

'l'a(B) ~ Pa(B), and so F'l'a(B) ~ F''l'a(B). Hence, by IH, 

<P<ai.(F)B = <P,(F'l'a(B)) = <P.,(F'Pa(B)) = cf>(a).(F')B 

for all Be filla. Since in fill intensional and extensional equality coincide, it follows 
that <P(a),(F) = cp(a),(F'). 0 

REMARK. It is essential that <P is defined ons-MAJ instead of s-MAJE. The point is 
that for every Fe s-MAJE there exists an F* e s-MAJ such that F* s-maj F, but we 
do not necessarily have F* e s-MAJE. 

§7. Majorizability and compactness in HEO. HEO is the typestructure of 
hereditarily effective operations, based on partial recursive application denoted by 
Kleene brackets, i.e. {x} y = z iff 3k(T(x,y, k)" U(k) = z)with Kleene's T-predicate 
and result-extracting function U. Moreover we use {x}yL {x}y! :S•, and {x}yi to 
denote, respectively, 3k T(x, y, k), 3k ::;; n T(x, y, k), and V k -, T(x, y, k); in words, 
{x} y converges (is defined), {x} y converges in at most n steps, and {x} y diverges (is 
undefined). For the present section it suffices to define HEO for the types 0, 1and2: 

HE00 = N; 

HE01 = {x I Vn {x}n!}, x =1 x' iff x,x' E HE0 1 /\ Vn {x}n = {x'}n; 

HE02 = {ylVx e HE0 1 {y}x! "'v'x,x'(x =1 x'-+ {y}x = {y}x')}. 

When variables for functionals are taken to range over effective operations, the 
definitions of §1 of this paper yield notions of majorizability and compactness in 
HEO. 

The main result of this paper, stated in §5, depends on: 

fil is compact iff 3F 'v' A e ~ F maj A (resp. F s-maj A, A ::;; F). 

Even if fil consists of recursive objects it is not very likely that Fis a recursive object. 
This idea leads to the following negative result in HEO. 

THEOREM. There exists an effective operation ye HE02 such that y maj y (resp. y 
s-maj y, y ::;; y in the sense of w-maj), but y is not compact. 

PROOF. Let <P be any partial recursive function that cannot be extended to a total 
recursive one (e.g. <P = ,'.li.{i}i). Define an index y by 

{y}x:::::: µn[3i::;; n(<Pi! "" /\ -icf>i! :S(xli)], 

where <Pit :Sk means that <Pi converges in at most k steps. By our assumption on <P 
it follows that {y}x! for every x e HE0 1 (i.e. x is the index of a total recursive 
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function). For, {y}xj implies \fi(4'>ij v 4'>il s{x}i) and so 'P defined by 'Pi = <l>i if 
4'>il stxli, and o else, would be a total recursive extension of <l>. Moreover x = 1 x' 
implies {y}x = {y}x'. ~tfollows t~aty e HE02 • For a~l :,x*. e H_E0.1 ~e have_ that 
x* maj x (resp. x* s-maJ x, x :s;; x* m the sense of w-maJ) imphes Vz { x } z ;;::: { x} z and 
hence {y}x* ~ {y}x. lt follows that ymajy (resp. ys-majy, Y :$yin the sense of 
w-maj). However, y is not compact, since y is not bounded on the compact set 

lt = {x e HE01 llfi(4'>il-+ {x}i :s;; µn[i :s;; n A 4'>il S•J and <l>ij-+ {x}i = O)}. D 

§8. Relative compactness. In this section we study the nature of COMPACT (see 
§1) as (intensional) sub-typestructure of the full typestructure. To this end we 
introduce the following notion of reducibility: Fis compact in Giff Fis definable in G 
by compact functionals. 

THEOREM. Every functional is compact in any noncompact functional. 
PROOF. Let A e (111)· • ·(uk)O be an arbitrary functional of the full typestructure and 

let N be a noncompact functional, say of type (p)(r)O (other cases are similar). Then 
there exist compact sets ~ c p and lt c r such that N~G: is not finite; hence for 
every n e N there exist B. e ~and c. e lt such that N B.c. ~ n. We may assume that 
all pairs (B., C.) are different. Now consider the functional M of type ((p){r)O)(p)(r)O 
defined by MFXY = min(FXY,n) if X =B. A Y =c., MFXY= 0 otherwise. 
Then MisclearlycompactsinceMFXY :s;; FXYforall F,X, Y. Moreover MNB.C. 
= nforall n e N. Now consider the functionals BA e (o-1) • · ·(uk)P and CA e {ui) · · · (uk)"I: 
defined by B,.i = B,.i and C,.Z = C,..i for all Z. B,. and CA are compact since 23 and 
lt are compact. Since A= AZ.MN(B,.Z)(C,.Z) it follows that A is compact in N. D 

COROLLARY. COMPACT (and by §5 also MAJ, s-MAJ and w-MAJ) is maximal 
in the sense that adding one arbitrary noncompact functional and closing under 
application yields the full typestructure. 
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