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An alternative proof is given for the connection between a system of continuous Hahn 
polynomials and identities for symmetric elements in the Heisenberg algebra, which was first 
observed by Bender, Mead, and Pinsky [Phys. Rev. Lett. 56, 2445 ( 1986); J. Math. Phys. 28, 
509 ( 1987)]. The continuous Hahn polynomials turn out to be Meixner-Pollaczek 
polynomials. Use is made of the connection between Laguerre polynomials and Meixner­
Pollaczek polynomials, the Rodrigues formula for Laguerre polynomials, an operational 
formula involving Meixner-Pollaczek polynomials, and the Schrodinger model for the 
irreducible unitary representations of the three-dimensional Heisenberg group. 

I. INTRODUCTION 

In two recent papers 1•2 Bender, Mead, and Pinsky dis­
cussed the connection between certain continuous Hahn 
polynomials and symmetrizations of elements in the Heisen­
berg algebra. They showed that, if 

[q,p] = i 
and T m,n is the sum of all possible terms containing m factors 
of p and n factors of q, then 

Tn,n = const Sn ( T1•1 ), ( 1.1) 

for some polynomial Sn of degree n, which turns out to be the 
orthogonal polynomial of degree n on lR with respect to the 
weight function Xf---* 1/ eh ( 1TX/2). However, the actual proof 
of this result is not very clear from these two papers. 

In the present paper we give an alternative proof of 
( 1.1). First, in Sec. II, we observe a transformation connect­
ing certain continuous Hahn polynomials, in particular, the 
above polynomials Sn to certain Meixner-Pollaczek polyno­
mials. Next, in Sec. III we use a Mellin transform relating 
Laguerre polynomials and Meixner-Pollaczek polynomials 
and the Rodrigues formula for Laguerre polynomials in or­
der to derive an operational formula involving Meixner-Pol­
laczek polynomials. Finally, in Sec. IV we use this operation­
al formula in order to derive formula ( 1.1). Here we make 
use of the Schrodinger modelfor the irreducible unitary rep­
resentations of the Heisenberg group. 

II. ON CONTINUOUS HAHN POLYNOMIALS 
EXPRESSIBLE AS MEIXNER-POLLACZEK 
POLYNOMIALS 

Continuous Hahn polynomials are defined by 

Pn (x;a,b,c,d): 

·n (a+c)n(a+d)n 
= l 

n 

X 3F2(- n,ri +a+ b + c +dd- 1,a +ix; I). (2_1) 
a+c,a+ 

If c = a, d = b and Re a, Re b > 0, then they are orthogonal 
on ( - oo, oo ) with respect to the weight function 

w(x): = r(a + ix)r(b + ix)r(c - ix)r(d - ix). (2.2) 

See Refs. 3 and 4, but read a + ix instead of a - ix in formula 
(3) of Ref. 4. 

Meixner-Pollaczek polynomials are defined by 

P~0l(x;</J): = eimf> 2F 1 ( - n,a + ix;2a;l - e- 1i4>). (2.3) 

If a > 0 and 0 < </> < 1T, they are orthogonal on ( - oo , oo ) 

with respect to the weight function 

w(x) =e<14>-,,.lxjr(a+ix)[2. (2.4) 

See Refs. 5 and 6 and, for standardized notation, the Appen­
dix of Ref. 7. 

For a = c = b - ! = d - ! > 0 the weight function 
( 2.2) becomes 

w(x) = 2 - 40 + 21TI rc2a + 2ix) 1
2 • (2.5) 

On comparing with (2.4) we conclude that 

Pn (x;a,a + !,a,a + !) = const P ~1al (2x;! 1T). 

The constant can be computed by comparing coefficients of 
xn. We obtain 

Pn (x;a,a + !,a,a + !) = [ (2a)n (2a + Pnln!] 

(2.6) 

In terms ofhypergeometric functions this formula reads 

( - n,n + 4a,a + ix I ) . 
3F2 1 1 = 2F 1 ( - n,2a + 21x;4a;2). 

2a,2a + 2 
(2.7) 

This identity can also be obtained from Ref. 8, 

F ( a,b,n + 2c, - n ·l) = F ( 2a,2b, - n ·l) 
4 3 +b+I +1' 3 2 b+l2' ' a 2,c,c 2 a + 2, c 

(2.8) 

by letting b-. oo. 

For a:=;\ the weight function (2.5) becomes 

w(x) = 2~/ch(21Tx). 
In particular, we find for the polynomials Sn introduced in 
Sec. I, which were identified with special continuous Hahn 
polynomials in Ref. 2, that they can be written as Meixner­
Pollaczek polynomials: 

S (x) = const p< 112Jc1xl1T) n n 2 '2 • (2.9) 
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Ill. AN OPERATIONAL FORMULA INVOLVING 
ME,:IXNER-POLLACZEK POLYNOMIALS 

Recall that we can obtain the Mellin transform pair, 

G(..1) = i"" F(r)r- 1-v..dr, 

F( r) = (21T)- 1 f: 
00 

G(..1).fA d..1, 

from the Fourier transform pair, 

g(A.) = s: .,/(t)e-21Tv..1 dt, 

f (t) =I:"' g(..1)e2mtt d..1, 

by making the substitutions 

r=e2" 1, F(r)=f(t), G(..1)=21Tg(..1) 

(3.1) 

(3.2) 

in (3.2). In particular, Mellin inversion in (3.1) is valid if 
the function ti-+F( e2'1T1) belongs to the class Y of rapidly 
decreasing C"" function on JR.. If F1, F2 are two such func­
tions and G1, G2 their Mellin transforms then we have the 
Parseval formula 

{"" F 1(r) F2(r) dr =J00 G 1(..1) G2 (i!.) di!.. (3.3) 
Jo r - .. 21T 
Proposition 3.1: For a> 0 and 0 < <P < 1T Laguerre poly-

nomials Xt-+L !a - 1 (x) and Meixner-Pollaczek polynomials 
i!.i-+P ~al (.i!.;rp) are mapped onto each other by the Mellin 
transform in the following way: 

I -in,P 
n.e e- c112ixc1 + icot.PlxaL !a- l(x)x- 1-v.. dx 
(2a)n 

= eUa-.<l[.p- <11211ric2 sin rp)a-i.<r(a- i.i!.)P~a 1 (i!.;cp). 

(3.4) 

Proof The left-hand side can be rewritten as 

e-in,P i (-n)k l""e-(l/2)x(l+icot.P)xk+a-V..-ldx 

k=O (2a)kk! Jo 
-in.P n (-n)k rca-ii!.+k) 

=e k~o(2a)kk!C!+!icotrp)a-V..+k 
= e-in<Prca - ii!.)(1 - e2i.P)a-v. 

X 2F 1 ( - n,a - i..1;2a; 1 - e2 ;.p) 

= ein.Pr(a _ i.i!.) ( 1 _ ei;.p)a - •A. 

X 2F 1 ( - n,a + i..1;2a;l - e- i;.p), 

which can be rewritten as the right-hand side of ( 3.4). 0 
It is possible9•10 to give an interpretation of the above 

proposition in the context of matrix elements of discrete se­
ries representations ofSL(2,lR.). 

Corollary 3.2: For a> 0 and 0 < rp < 1T Laguerre polyno­
mials can be expressed by the differentiation formula 

I -in,P n.e cv2)x(l+icot<1»xaL!a-1(x) 

(2a)n 

=P~ai(-ix :x ;</J)(e-<112Jx(l+icot.Plxa). (3.5) 

768 J. Math. Phys., Vol. 30, No. 4, April 1989 

Proof In the left-hand side of ( 3.4) Mellin transform is 
taken of a function that belongs to the class Y as a function 
oft, where x = e'. Hence we can apply Mellin inversion [ cf. 
(3.1)] and we can write the left-hand side of (3.5) as 

(217')-1 f_"""" eUa-.1.Jl.P- (112)1T](2 sin </J)a-V. 

X r(a - i.i!.)P ~01 (A.;rp)xv. d..1 

= P ~a>( - ix ! ;</J) 

x [e<ia -.1.l[,P- (ll2)1r] (2 sin rp ) 0 - i). 

xrca-i.i!.)xi)..]' 

which equals the right-hand side of (3.5). 
By substitution of the Rodrigues formula 

n!e-"xaL~(x) = (!rce-"xn+a) 

into (3.5) weobtain 

(! )n (e-xxn+2a-1) 

= (2a) nein.Pe- (l/2)x(J - icotg,P)x°- I 

0 

XP~a'(-ix ! ,rp)[e-0/2)x(l+icot,Plxa]. (3.6) 

In particular, for</> = ~17' and a = ! we obtain 

(i !rce-xxn> 

= n!e - 0/2lxp o121(ix ~ + J_ i _!._ 17') [e - ( J/2Jx]. 
n dx 2 '2 

Hence for arbitrary veC, 

· ( d )n 2· e"'" i dx (xne - "'") 

= n!P< 112'(ix~ + J_i ~)[e-i""]. (3.7) 
n dx 2'2 

IV. PROOF OF THE B~NDER-MEAD-PINSKY RESULT 

Consider the Heisenberg group H 1, which is R.3 equipped 
with the multiplication rule 

c5,-,,,r> <5 ',,,,',r') 
= (5 + 5',7J + 7J',r+ r' + !C5'7J -57J')). (4.1) 

Let AElR'\ {O} and let 17';,. denote the unique (up to equiv­
alence) irreducible unitary representation of H 1 such that 

'IT;,. (0,0,r) = ev..TJ, reR. 

Then, withµ:= IA. j 112 and E: = sgn(..1), 1T;. can be realized 
on L 2 (R) by 

(17'.i. <t,TJ,r)f)(x> 
=eiµsxe;µ'[ET+(!ls7llj(x+µTJ), fEL2(R.). (4.2) 

Let X and Y be the infinitesimal generators of the one-pa­
rameter subgroups of elements (5,0,0) and (0,,,,,0), respec­
tively. Let a denote the symmetrization mapping11 from the 
symmetric algebra to the universal enveloping algebra of the 
Lie algebra of H1, i.e., 
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( 4.3) 

where s runs over all permutations of {l,. .. ,k}. Let f be a 
C"" function locally defined on R. Then 

and 

(1T,dX)f)(x) = iµxf(x), 

(1T,,_(Y)/)(x) =µf'(x), 

( 1T,i (cr(X "Y") )/) (x) 

= (_!__)"(_!__)"(eiµ5xeiµ 2[Er + (l/2J511lj(x + µ7])) I 
at a7J 5,71,r=O 

=(iµ ~)"((x+ ~µ71)"fcx+µ17))i 11 = 0 • 
Hence 

( 1T,i (cr(X "Y") )f )(x) 

= 1-l l"[i ~r 

x((x+ ~y)/cx+y>)ly=o. (4.4) 

For n = 1 this simplifies to 

(1T,,_(cr(XY))j)(x) =IA. l(ix_!__+_!_i)f(x). (4.5) ax 2 

Let 

f u (x): = e-ivx. 

Then we obtain from (4.4), (3.7), and (4.5) that 
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(1T;.(a(X"Y"))fu) (x) 

= 1-l l"(i ~)"((x+ ~ y)"e-iv(x+y))ly=O 

= 2 - "IA. I "eivx(i ! r Cx"e - 2ivx) 

=2-"n!IA.l"P~112 >(ix ! + ~ i,~ 1T)[e-ivx] 

= 2 - "n!IA. l"P~112 > (IA. 1- 11T,,_(cr(XY)),! 1T) [ fv (x)]. 

Hence by integrating both sides against suitable functions of 
v, we obtain 

1T,.(a(X"Y")) = 2 - "n!IA. l"P ~ini (IA. 1- 11T,,_ (cr(XY) j,!1T). 
(4.6) 

In view of ( 2. 9) and ( 4. 3) this becomes for A. = 1 the result 
( 1.1 ) of Ref. 1. 
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