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In this paper, which is based on joint work with PH. CLEMENT, M. GYUENDEltG, HJA.M. HEllMANs and 
H.R. THIEME, we discuss continuity and differentiability properties of orbits as wel as perturbation 
theorems in the context of dual semigroups. The motivation from structured population dynamics is 
explained and some still open problems in this area are briefly indicated. 

I. RJlMARKs ON ONE-PARAMETER SEMIGROUPS OF BOUNDED UNllAR OPERATORS 

First remark. Consider an autonomous(= time translation invariant) system. Let x 0 be the state 

at time t0 and x the state at time t. By writing x =T(t -t0 )x0 we introduce a collection of opera­

tors which, because of the interpretation, should have the following algebraic properties: 

i) T(O) = I 

ii) T(t)T(s) = T(t +s) , t,s;;;o,O. 

The first property expresses that the operators act on the state we start from (the initial state) and 

the second expresses that the state, by definition, uniquely fixes the future of the system, such that, 

when time goes from 0 to t + s, it makes no difference whether or not we make an imaginary stop 

at times. 
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A collection of operators {T(t)i:.0, acting on a Banach space X, with these algebraic properties is 

called a semigroup of operators. 
When we draw a picture of an orbit t>+T(t)x we tend to draw a continuous curve. But continuity 

invoM& topology and the interpretation gives no clue concerning a natural topology. Likewise if 

we mscus., the diff erentiabiliiy of orbits and introduce the infinitesimal generator 

Ax = liml (T(t)x-x) 
t~ t 

D(.A.) = {x: this limit exists} 

we have to specify the topology in which we require convergence. And there may be more than one 

natural topology. 

The so-ailed strongly continuous or C 0 semigroups are defined by the requirement that the 

orbits are norm continuous. And when defining the generator one considers norm convergence. 

A well known result (see, for instance, PAZY, 1983, section 2.1) states that ''weak equals strong": 

if we take weak continuity and convergence instead we obtain exactly the same category of semi­

groups and exactly the same generator. Seemingly the algebraic properties dominate and the 

topology is not too important after all. 

However, the category of C0-semigroups is not invariant under duality. H X is non-reflexive the 

semigroup of adjoint operators {T"(t)}1:.o acting on the dual space X* is, in general, not strongly 

continuous. As shown by PmwPs (1955; also see BUTZER &: BBRBNs, 1967, section 1.4) it is for 

these semigroups more appropriate to consider weak * continuity and differentiability of orbits. 

The following easy example shows that working with the weak * topology requires some extra 

caution. Let X* be the space of regular Borel measures on R and denote by T'(t) the usual trans­

lation semigroup. We know that 

r =.A.CEils 

where the direct sum corresponds to the Lebesgue decomposition of a measure into an absolutely 

continuous part and the part which is singular (with respect to the Lebesgue measure). Both sub­

spaces AC and S are invariant under translation, and AC is precisely the subspace of initial states 

which yield norm continuous orbits (cf. BUTZBR. &: BERENS, 1967, subsection 1.4.2). The main point 

of this example is that, because of the invariance, we can translate the AC part and the S part 

with different speeds and still obtain a semigroup with weak* continuous orbits: 

r:-(t)x': = T"(t)x.Ac+T'(a1)x; 

(we use the symbol X to indicate that the operator acts on X* but does not necessarily have a 

prc-adjoint acting on X). To calculate the weak * generator we can restrict ourselves to the AC 

subspace and hc:re the action does not depend on a. We conclude that in this general setting the 

one-to-one correspondence between semigroup and generator is lost! Note that only in the 

"natural" case a= I we can reconstruct the action of the semigroup on r from its restriction to 

ACbyilieintertwiningformula 
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T*(t) = (AI -A *)TA.c(f)QJ-AT 1 

See CLEMENT et al. (to appear) for further discussions on weakly * continuous semigroups. 

Second remark. 

There are at least three ways to define semigroups: 

i) explicit expressions 

ii) verifying the Hille-Y osida conditions 

iii) perturbations 

In structured population theory (see section 4 below) one uses i and iii. The most easy example of 

iii is: 

THEOREM: Let Ao be the generator of a C0 -semigroup T0(t) and let B be a bounded linear operator. 

Then A =Ao+ B with D(A) = D(A o) generates a Co-semigroup T(t) and the variation-of constants 

relation 

holds. 

t 

T(t)x = To(t)x + f T0(t -r)BT(-r)xd-r 
0 

One can prove this theorem in various ways, but one proof starts from the variation-of-constants 

equation and shows that it can be solved by successive approximations: 

with 

T(t)x = ~ 1j(t)x 
j=O 

I 

1j(t)x: = jTo(t--r)BTj-1(r)xdr , f;;>l. 
0 

Subsequently one uses that 

to deduce that T(t) is generated by A =A 0 +B. 

Now let's look at an example in the context of population dynamics. The so-called Kolmogorov 

backward equation of age-dependent population growth is 

307 (t,a) = ~; (t,a)-µ.(a)m(t,a)+P(a)m(t,O) 
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m(O, a) = #,a) 

Here <j>eX=Co(R+) is the initial state, µis the per capita death rate and fJ is the per capita birth 

rate. The fact that every newborn individual has age zero (by the very definition of age) is reflected 

in the second argument of m in the birth term. 

If we neglect birth and death (i.e. take µ= {J=O) the semigroup is simply translation and the 

generator is differentiation. If we take death into account then the solution is 

. ., 
- J p(a)da 

<l>(a+t) e • 

with generator <j>' - µ<j>. If µ is continuous we can, if we wish, apply the theorem above and the suc­

cessive approximations correspond precisely to the Taylor expansion of the exponential function. 

Note, however, that this Taylor expansion makes perfectly sense ifµ is not continuous but belongs 

to L"' ! (Of course there is then an interaction between the <1>' term and the µ<j> term in the precise 

definition of the domain of the generator.) 

In order to solve the problem with the birth term taken into account it is convenient to baptize 

m(t,O)=b(t) and pretend, for the time being, that bis a known function. Then 

-J p(a)da t - J µl.a)da 
m(t,a)=<l>(a+t)e • + ffJ(a+t-T)e • b(T)<fr. 

0 

By taking a =Owe get a renewal (i.e., Volterra convolution integral) equation for b: 

I 1-T 

- [ /l(•)da t - [ /l(•)da 
b(t) = <j>(t) e + f P<.t-T)e b(T)<iT, 

0 

which one can solve by successive approximations to obtain a continuous solution b even when the 

birth rate fJ is defined as an L., -element only. On the other hand 

clearly maps C0(R+) into itself if and only if ,8eC0(R+ ). 

We conclude that in the context of structured population models there is a need for a general­

ized version of the perturbation theorem stated above. It has turned out that the generalized ver­

sion is useful in the theory of delay differential equations as well (DIEKMANN, 1987). Note that in 

the example above we were led to consider Co(R+) as a subspace of L.,(IR+ ). 

Third remark. When an operator A satisfies the Hille-Y osida conditions, but is not necessarily 

densely defined, it generates a Co·semigroup on the closure of its domain. Can we extend the 

semigroup to the whole space by the intertwining formula 

(Al-A) T(t)(Al-A)-1 

The answer is yes if D(A) is invariant under T(t). 
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Fourth remark. By taking restrictions and duals we can embed a space in a larger space which is, 

by definition, a dual space (for example, rigged Hilbert spaces like H6 CL2 cH- 1). If we perform 

such a procedure in a way which is canonically related to some easy prototype semigroup we may 

subsequently exploit the enlarged "vocabulary'' to deal with perturbation problems. 

2. DuAL SEMIG.ROUPS 

Let T(t) be a Co-semigroup on a Banach space X and let A denote its generator. Let T*(t) be the 

semigroup of adjoint operators acting on the dual space r and let A• be the adjoint of A. Then: 

i) t ... <x,.T*(t"pc•> is continuous for all .xeX(i.e. orbits of T* are weak* continuous) 

ii) +<x,T*(t)x• -x•> converges for all x eX as tio i1f x* eD(A •) and in that case the limit 

equals <x,A•x*>. Moreover D(A*) is invariant under T*(t) and an orbit of T* is weak* 

differentiable ift' it starts at an element of D (A • ). 

When X is non-refiexive, T* need not be strongly continuous and related to that is the fact that 

A• need not be densely defined. On the one hand we can now restrict T* to the maximal subspace 

of strong continuity 

on the other hand we can take the part of A• in the closure of its domain. The next result states 

that these two procedures are canonically related. 

THBo.Rl!M 2.1. x0 =D(A ') muJ the C0 -semigroup T0 (1) obtained by restricting T*(t) to the invari­

ant subspace x0 is generated by A 0 , the part of A• in x0 . Moreover one can recover T*(t)from its 

restriction to x0 by the intertwining formula 

The concept of the Favard class of a semigroup was introduced in the context of approximation 

theory, but by now it has become clear (cf. DEscH a: ScllAPPACHE.R, 19134) that in the theory of 

dynamical systems it is very useful too. Elements of the Favard class yield Llpschitz continuous (in 

norm) orbits. The following equivalence result tells us that Llpschitz in norm corresponds precisely 

to weak * differentiability (in view of Alaoglu's theorem on the compactness of the unit ball with 

respect tot the weak * topology this is not too surprising). 

DmNmoN2.2. Fav(T*): = {.x':limsup-h1 llT*(h)x'-.x'll<oo} 
hJ.O 

Tm!olUlM2.3. Fav(T*) = D(A•) 
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Starting from the C0-semigroup T0(t) on x 0 we can now repeat our procedure: introduce x0• 

and the weak* continuous semigroup r 0 *(t) and subsequently x 00 =D(A 0 *) and the restriction 

r 00(t) generated by the part A 0° of A 0 • in x 00 . 

The pairing <x,x0> defines an embedding j of x into x0• (since x0 is weak * dense it 

separates the points of X; moreover llxll':=sup{l<x,x 0 >l:llx0 H.-l} defines an equivalent norm 

on X (which is identical to the old one whenever T(t) is a contraction semigroup) and conse­

quently j(X) is a closed subspace of X®*). Oearly j(X)cx00 and r 00(t)j=jT(t). 

DEFINITION 2.4. X is called 0-retlexive (pronounce as sun-retlexive) with respect to Tiff 

j(X) = x00 

ExAMPLE 2.5. Let S denote the circle and let X=C(S) be the space of continuous functions on S 

(or equivalently the space of periodic functions of a given period on the real line). Let T(t) be the 

translation semigroup. Then 

X* = M(S), x0 = AC(S)!::!L1(S), x 0 • = Loo(S) and x00 = C(S) = x 

(the embedding j assigns to a continuous function its L 00 -equivalence class, but we usually shall 

suppress j in our notation). 

ExAMPLE 2.6. We now take X = C0(R), the space of continuous functions on R which tend to zero 

at ±oo and consider once more the translation semigroup. Now X* =M(R), x0 =AC(R)~L 1 (R), 

x0 • =L00(R) but x00 =BUC(R~Co(R)=X. Here BUC is the space of bounded uniformly 

continuous functions. We conclude that this is a non-0-reflexive example. 

The two closely related examples above seem to indicate that 0-reflexivity is somehow related 

to compactness. DE PAGTER (to appear) has recently improved an old characterization of Phillips: 

THEollllM 2.7. (Pmu.n>s-DE PAGTER) X is 0-reflexive with respect to Tiff the resolvent (Al-A)-1 

is weakly compact. 

3. l'BRTURBATION THEORY FOR DUAL SEMIGllOUPS 

In this section we summarize a number of recent results due to CLEMENT, DIEKMANN, GYLLEN­

BEB.G, IiEDMANs and 1'mEMB (1987, 1988 and to appear). Our starting point is a C0-semigroup 

To(t) on a Banach space X with generator A0• We call To the unperturbed semigroup. Let us 

first concentrate on the case that X is 0-retlexive with respect to T 0 • On the level of the generator 

we now introduce the perturbation as a bounded linear operator B :x~x0• 
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BCX x·)s· 
xo· xo 

So note in particular that the range of B is in the larger space x0 • which we have introduced 

on the basis of the behaviour of T 0. Formally at least we can now write a differential equation 

du = A~*u + Bu 
dt 

u(O) = x (3.1) 

for an X-valued function u (so we look for orbits in X but the differential equation is an identity 

in x 0 •). By integration we obtain the variation-of-constants equation 

t 

u(t) = To(t)x + j~*(t -T)Bu(T)d'T. 
0 

(3.2) 

The following key lemma tells us that we can solve this equation by successive approximations and 

gives some further information. 

LEMMA 3.1. Let f:R+ _,,x0 • be a given norm continuous function. Define 

t 

V(t) = f ~*(t -T)j(T)d'T 
0 

as a weak* Riemann integra~ i.e. 

l 

<v(t), x 0 > = J <j(T), ~ (t -T)x 8 >dT, 'efx 0 eX0 

0 

Then v is norm continuous, takes values in X and 

e'"-1 llv(t)llo;;;;M-- sup 11/(T)ll 
W O<-rii;;;r 

where Mand UJ are such that llTo(t)llo;;;;Me"''. 

1 Moreover -;v(t)->f(O) weak* as t!O. 

If f is lipschitz continuous then v takes values in D(Af • 1 is weak * continuously differentiable and 

CoROLLARY 3.2. EquaJion 3.2 defines a C0-semigroup T(t) on X and llT(t)-To(t)ll = O(t) for t!O. 
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REMARK 3.3. In DIEKMANN, GYllENBERG and liEI.JMANs (to appear) the reverse is shown: if T 

and To are two Co·semigroups on X such that llT(t)-T0(t)ll = O(t) for t.J,O, then both define the 

same space x0 and a bounded B:x-.x0 • exists such that 

t 

T(t) = To(t) + j~· (t -'T)BT('T)d1 
0 

COROLLARY 3.4. 

i) D(A')=D(Ao) andA.=Ao+B· 

ii) D(A 0 ·)=D(A/f•) and A 0 • =Alf* +B 

(3.3) 

The generator of T is, of course, obtained by taking the part of A 0 • in X. Since this is basically 

a condition on the range of Adl* + B the operator B may (and does in examples) influence the 

domain. 

Alternatively we can start from the dual variation-of-constants equation 

t 

T0 (t) = ~(t) + jTO(t -'T)B*T0 ('T)d'T 
0 

(3.4) 

but this amounts to the same thing since in the 0-refiexive case we stay in the realm of dual semi­

groups when applying bounded perturbations. 

In the general case, however, we have to deal with the asymmetric diagram: 

Using the dual version of Lemma 3.1 we can still solve equation (3.4). After T0 has thus been 

defined we can proceed in two ways: 

1) We can introduce r 0 • and r00 (note that x00 does not depend on B) but in general X 

will not be invariant (example: take the age dependent backward population equation and 

assume that the birth rate f3 does not tend to zero for a->oo). 

2) the O(t) estimate shows that D(AO) is the Favard class of r 0 as well; consequently D(A0) is 

invariant under r 0 and the definition 

where Ax =Ao +B* andD(A x)=D(Aij), makes sense. 
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The natural question now is: how can we describe the relation between r 00 and Tx? Note 

that in Example 2.6 it is possible to define a pairing between x00 and x·: simply integrate the 

BUC function with respect to the measure. As a subspace of x 0 ·, however, x0° is in fact the 

space of L 00 -equivalence classes which contain a B UC function and so the pairing involvc:S picking 

out the continuous representative. It is not immediately clear how one can define such a procedure 

abstractly. Yet it is possible, and in fact easy, to give a general definition of a canonical pairing 

between x00 and X'. 

THEOREM 3.5. 

defines a bilinear continuous mapping x00 XX'-4C and 

This theorem motivates us to introduce yet another topology on X': the o(X' ,x00 ) topology 

or, in abbreviated form, the 0 topology. The theorem tells us that the orbits t>->Tx(t)x' are con­

tinuous in the 0 topology. Likewise we have 

THEOREM 3.6. l[x0°, Tx (t)x' -x'] converges as t!,O for all x00 ex00 ijf x· eD(Ao) and in 
t 

that case the limit equals [x00 , Ax x'i 

So we now use the 0 topology to characterize the continuity and differentiability properties of 

orbits. But we still use the weak * topology to define integrals since X' equipped with the 0 

topology is not necessarily sequentially complete. Nevertheless one can prove: 

THEOREM 3.7. Let f :R + -'>X" be nomz continuous. Define 

t 

v(t) = J Tx (t -T)f(T)c/T 
0 

as a weak * integral Then v is norm continuous and takes values in X0 . If f is Lipschitz continuous 

then v takes values in D (Ao~ v is continuously 0 differentiable and 

Analogously one can study semilinear problems which are defined by a Lipschitz continuous 

nonlinear mapping 
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Again we look at orbits in x0 but interpret the differential equation 

du - == Ax u + F(u) 
dt 

u(O) = x 0 

as an identity in X*. Solutions are defined by a contraction mapping argument applied to the 

integral equation 

I 

u(t) = T 8 (t)x0 + jTx(t-T)F(u(T))ifr 
0 

and for x 0 in the dense subset D (Ao) these satisfy the differential equation in the sunny sense. 

The integral equation is the key ingredient for a standard proof of the linearized stability principle, 

the construction of stable, unstable and center manifolds and hence for a standard treatment of 

Hopf bifurcation. 

4. STRUCTURED POPULATION DYNAMICS 

The approach of section 3 yields results for nonlinear population dynamics in L 1 (R +) and for 

functional differential equations. In METZ & DIEKMANN, eds., 1986, a general class of physiologi­

cally structured population models is described in detail, mainly in terms of forward equations for 

densities. Moreover it is explained how one can use the idea of feedback through the environment 

to analyse nonlinear models in terms of linear ones and a fixed point argument. 

In order to cover this general class the theory of section 3 needs to be extended. First of all we 

need to deal with backward and forward evolutionary systems rather than dual semigroups. 

Secondly, in order to treat models with higher dimensional individual state space we have to take 

into account a certain anisotropy (the individual state space is foliated by characteristics and we 

translate along these; consequently only discontinuities of birth and death rates which in some 

sense are transversal to the characteristics are allowed). 

We conclude that the theory developed so far constitutes only a first, albeit important, step 

towards a general mathematical theory for physiologically structured population models and that 

many questions await a penetrating analysis. 
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