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Abstract 
One of the fundamental questions in the calculus of communicating processes is determin­
ing if a given system of fixed point equations has a solution in the projective model. The 
present paper provides an approximation principle for the projective model, which makes it 
posssible to prove assertions in this model by proving them in an infinite sequence of cer­
tain finite process algebras. Motivated from this principle a new model for process algebras 
is defined and its relationship to the projective model is studied. 
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!. Introduction 

In the formal analog of Milner's work on Calculus of Communicating Systems (see [M]), 
as described by Bergstra and Klop in [BK], one builts large systems of processes by assem­
bling together atomic processes (or actions) chosen from a finite set A of such atomic 
processes (see [HJ). These systems of processes satisfy a set of equational laws, called the 
axioms of the theory of the algebras of communicating processes (or theory of process 
algebras). The models of this theory are called process algebras. Its axioms are described in 
a signature that includes: + (alternative composition or sum), · (sequential composition or 
product), II (parallel composition or merge), IL (left merge), J (communication merge), aH 
(encapsulation, where His a subset of the set A of atoms), the atomic process 8 (deadlock 
or failure) and the atom a, for each a EA. 

In the table below the equational Jaws for process algebras are given. The communication 
function J : A0 XA 8 ~ A0 (where As consists of the atoms in A including 8) is initially 
defined only on atomic processes. Then it is extended to all finite terms using the merge 
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and communication axioms. In the absence of communication, the axiom x II y = y ll 
x + x ILY + x I y should be replaced with the new axiom x II y = Y lL x + x lly. The 

theory consisting of the first five basic axioms together with the first four communication 
axioms is known as (basic) process algebra and is abbreviated by PA. ACP, the algebra of 
communicating processes consists of the basic, merge, communication and encapsulation 
axioms. As usual, the universal quantifiers, which quantify the variables x, y, z in the 
axioms below are omitted. In addition, the letters a, b range over A. The axioms of process 
algebras are the following: 

Basic Axioms 
x+y=y+x 
x + (y + z) = (x + y) + z 

x + x = x 

(x + y)·z = x·z + yz 
(x · y) · z = x · (y · z) 
x + 8 = x 

lh = 8 
Encapsulation Axioms 
3H(a) =a if a EH 
3H(a) =oifa EA-H 
3H(x + J) = 3H(x) + 3s(JI) 
3H(XJ') = 3H(x)·3H(y) 

Communication-Merge Axioms 
x lly = y ll x + x lly + x I y 
all x = a·x 
(a·x) lly = a·(x II y) 
(x + y) ll z = x ll z + y + ll z 
(a·x) I b = a I (b-x) = (a I b)·x 
(a·x) I (b:Y) = (a I b)·(x II y) 
(x + y) I z = x I z + y I z 
z 1 ex + y) = z I x + z I y 
Communication Axioms 
alb=bla 
(a I b) I c =a I (b I c) 
s I a = o 

In this axiomatic framerwork one can define the so-called term (or initial) model Aw, i.e. 
the least set S of finite strings such that S contains all the constants of the given signature, 
and S is closed under the operations of the given signature. (The reader should be aware of 
all the possible signatures arising in the present study; practically every subset of 
+' ·, II, IL 1, aH, 8, a (a E A) is a possible signature and hence it can give rise to a 
different term model Aw. It would be very cumbersome however to keep a different nota­
tion for A"' for each possible signature. Instead, it will be left to the reader to derive from 
the context what the proper signature in each case is.) 

Given any term t in Aw and any positive integer n let (t)n be the subtree oft of height at 
most n obtained from t by deleting all those nodes which are located at height bigger than 
n. More formally define: 

(a)n = a, 

(at)1 = a, 

(at)n = a(t)n-1, for n > 1, 
(t + t')n = (t)n + (t')n, for n > 0. 

Now An is defined to be the set { (t)n : t E Aw}. In a sense, On can be considered as the 
projection of the term model Aw onto the model An. For each binary operation 0 on Aw 
define an operation D. on An by tDns = (tOs)n (the case of the operation 3s is treated 
similarly). This makes each An into a process algebra. The projective (or standard) 
model, denoted by A 00 consists of all infinite sequences (p 1 ,p2 ,. . .,pn ,. .. ) such that Pn E An 
and <Pn + 1 ). = p., for all n > 0. The operations are defined on A 00 in a natural way; 
thus, following (BK], if 0 is any binary operation on A"' one defines a new binary opera-

274 



tion D ', which for convenience will also be denoted by D , as follows: 

Remark on Notation: Throughout the present paper T(x1 , ... ,x.), S(x 1 , ... ,x.), etc. with or 
without subscripts and superscripts, will always denote (polynomial) operators, i.e. terms 
built up from the atomic processes, the variables x 1, ... ,x., the atoms in A and the opera­
tions of the given signature. 

The class P of positive formulas is the smallest class of well founded formulas in the signa­
ture+,·, II, IL 1, aH, o, a (a EA), which satisfies the following properties: 

(a) For all polynomial operators T,S, T(vi, ... ,vn) = S(v1> ... ,v.) is in P. 

(b) If<l>,o/ E P then fl>Vo/ E P. 

(c) For any countable !::i. <;;;; P, the formula /\ti is in P. 

(d) If <l>(v 1, ... ,v., ... ) E P and the variables ui, ... ,ufr .. are from the set {v 1, ... ,v., ... } then 
both formulas (3u 1 · • · 3uk · · · )<I>, ('ifu 1 · · · 'ifuk · · · )<I> are in P. 

The class Po of finite positive formulas is the smallest class of well founded formulas in the 
signature+,·, II, lL j, aH, o,a (a E A),whichsatisfiesthefollowingproperties: 

(a) For all polynomial operators T,S, T(v 1 , ... ,v.) = S(v 1 , ... ,v.) is in P. 

(b) If <I>, o/ E P then fl>Vo/,4>;\ o/ E P. 

(c) If <l>(v1, ... ,v.) E P and u1, ... ,uk E {v 1 , ... ,vn} then both formulas (3u 1 · · · 3uk)<I>, 
('rtu 1 · • · 'rtuk )<I> are in P. 

Most of section 3 will be dedicated to a proof of the following theorem. 

Theorem Ll. [Approximation Theorem] Anyformula <l>(v 1, ... ,u., ... ) E Psatis.Jies the.following 
approximation principle: far any convergent sequences {x 1,.}, ... ,{xk,n}, ... 
k,n, if the set {n > 0: A.j==4>(x 1,n, ... ,xk,n,·")} zs in.finite 
A00 j=<I>( lim x 1,., ... , lim xk,., ... ). 

n ~co r1 -+00 

such that xk,n E A. for all 
then it is true that 

Such formulas 4> occur when one wants to prove that a system of fixed point equations has 
a solution. As an example, consider the infinite system 

where each Tk is a polynomial operator in the indicated variables. The assertion 2: has a 
solution in A 00 can be expressed by the formula: (3x 1 • • • 3xk · · · )'I', where o/ is the count­
able conjunction of all the formulas xk = Tk(x 1 ,. .. ,xn(k)), fork> 0. Theorem 1.1 states 
that in order to prove that 2: has a solution in A 00 , it is enough to show that 2: has a solu­
tion in infinitely many A.'s. For more specific examples of systems the reader is referred to 
[BK], [HJ and [KJ. 

It is also possible to prove a partial converse of the approximation principle. 
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Theorem 1.2. [Converse of the Approximation Principle] For any formula 'l>(vi. ... ,vfr .. ) E P 
and ll1!JI p 1 , ... ,h, .. . E A 00 the following statements are equivalent: 

(i) A 00 f=<l>(p 1, ... ,h, ... ). 
(ii) {n > 0: A.f='l>((pi).,. . .,(pk)., ... )} is infinite. 
(iii) Vn > O[A.f=<I>((pi).,. .. ,(pk).,. .. )J. 

Motivated from the approximation theorem one can define a new process algebra, which is 
an extension of the projective algebra A 00 • To state the next theorem the notion of 
ultrafilter on the set N of positive integers will be required. Call D a (nonprincipal) 
ultrafilter on N if D is a nonempty set of subsets of N satisfying the following properties for 
all X, Y s; N: (i) 0 is not a member of D, (ii) if X s; Y and X E D then Y E D, (iii) 
X ED or N-X ED, (iv) if X,Y ED then X n Y ED and (v) if X ED then X is 
infinite. Notice that the existence of such ultrafilters requires the axiom of choice (see [E] or 
[CK]). 

The main theorem of section 4 is the following. 

Theorem 1.3. For any ultrt:ifilter Don the set N of positive integers there exists a process algebra AD, 
which i.s a proper extension ef the projective algebra A 00 • Moreover, for any finite, positive formula 
'1>(u1, .. .,vk) E Po andanyPl>···,h E A 00 thefollowingstatemmtsareequiualent: 

(i) ADf=<l>(p1,. .. ,h)· 
(ii) A 00 f=«P(p1 , ... ,h). 
(iii) {n > 0: A.f=<l>((Pt).,. . .,(pk).)} ED. 
(iv) {n > 0: A.f=<l>((p1)., ... ,(pk).)}i.s infinite. 
(v) Vn > O(A.f=<l>((p1).,. . .,(pk).)). 

2. Topology of the Projective Model 

As explained above the projective model A 00 consists of all sequences (p 1 , ••• ,p., ... ) such that 
each Pn E A. and (p. + 1 )n = Pn, for all n > 0. The term model Aw can be embedded in 
a natural way in the projective model A 00 ; for any finite term t associate the infinite 
sequence p(t) = ((t)1, ••• ,(t)., ... ). Because of this it is identified with a subset of the projec­
tive model (this also explains why the same symbol is used for the corresponding 
operations in A.,, A 00 ). Extend the projection functions to A 00 by defining (p ). = Pn, for 
all p = (p 1, .•. ,p., ... ) E A 00 and all 12 > 0. For any two distinct elements p, q of A 00 let 
k (p, q) = the least 12 > 0 such that (p ). is not equal to ( q ) •. This definition makes it possi­
ble to endow A 00 with a metric space structure. Indeed, define the distance d (p,q) between 
p, q by 

{
r*(p,q) if p =1= q 

d(p,q)= 0 ifp=q. 
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This metric was used by Arnold and Nivat (see [AN]) in the context of Denotational 
Semantics of Concurrency. An essentially equivalent metric was also defined by de Bakker 
and Zucker (see [ dBZ)). For additional information and further properties of this metric the 
reader is advised to consult [L] and [Ro]. 

The following results summarize all the basic properties of the metric space (A 00 ,d) and 
will be used frequently in the sequel. Their proof is omitted, but the interested reader can 
easily derive the essential details from [Du], [L], (AN] and (K]. 

Theorem 2.1. [In the signature+,·, II, lL 1, aH, 8, a (a EA)] 

(i) (A 00 ,d) is an ultrametn'c space, i.e. it sati.iftes the fallowing three properties far all elements 
p,q,r E A 00 , 

(a)d(p,q) = Oifandonlyijp = q, 

(b)d(p,q) = d(q,p), 

(c)d(p,q) ..-;;; max{d(p,r),d(r,q)}. 

(ii)p(r) ~ p if and only if'Vn3mVk~m [(p(k))n = (p)n]· 

(iii)( A 00 ,d) is the metric completion ef the metric space (A"' ,d'), where rJ is the restriction ef don Aw. 

(iv)For all P E A 00 and each n > 0, d(p, (p )n) .;;;: 2-n. Hence, lim (p )n = p. 
n -.>CO 

(v) The operations On : A co __.,, An are continuous. 

(vi)Any operator T(xi, ... ,xn) is continuous in the variables x 1, ••• ,xn. In fact, for all 
P1, ... ,pn,qi, ... ,qn E A 00 , 

(vii)A is finite if and only if (A 00 ,d) is compact. • 

In view of this last theorem from now on and for the rest of the paper it will be always 
assumed that A is finite. This will guarantee that A co is compact. 

3. The Approximation Principle 

Intuitively, the approximation principle enables one to verify assertions in the projective 
model by proving that the same assertion is valid in infinitely many An 's. To be more 
specific, a formula <I> is said to satisfy the approximation principle, and this will be abbrevi­
ated by A (<I>), :J the following property holds: for any convergent sequences 
{x1,n},: .. ,{xk,n}, ... such that Xk,n E An for all k,n, if the set 

{n > 0 : AnF<l>(x1,,,, ... ,xk,n>· .. )) 

is infinite then it is true that 

A "'F=«P( lim X1,n,···, Jim xk,n, ..• ). 
n ~ao n -o.oo 

Now it is possible to prove theorem 1.1. 
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Proof of theorem 1.1: It is enough to show that each formula <I> E P satisfies A (<I>). The 
proof is by induction on the construction of et>. 

Case l: <I>= T(v 1, ••• ,vm)=S(v 1, •• .,vm), where T,S are polynomial operators. 

For any operator T(v1>···,vm) let T"(v 1 , ••• ,vm) denote the interpretation of Tin the model 
An. Using induction on the construction of T and the definitions of the operations in the 
process algebras An (see section 1) it is easy to show that 

Now it is required to show that the formula T(v 1, ••• ,vm) = S(v 1, •.• ,vm) satisfies the above 
approximation principle. Indeed, let {x 1,n}, ... ,{xk,n}, ... be any convergent sequence such 
that xk,n E An for all k,n and the set 

is infinite. It is enough to show that 

A"'f=T( Jim X1,n,···, Jim Xm,n) = S( lim X1,n,···, Jim Xm,n). n ~oo n -+00 n -+00 n -+IXl 

Put (x1, .. .,xm) = (Jim x1,n,···, lirn Xm,n)· It is clear that for all n E }, n -?00 n -+00 

Using this last equation and lemma 3.1 it is clear that for all n E }, 

The following result is an easy consequence of the definition of convergence in A 00 : 

Lemma 3.2. For any sequence { un} ef terms in A "" if u0 ~ u then (Un )n ~ u. • 

Using the continuity of the operators T,S (see theorem 2.1) it follows that 

Hence, using lemma 3.2 as well as ( 1) and (2) it follows that 

A 00 f=T(x1, ... ,xm) = S(x1, ... ,xm), 

which completes the proof in case 1. 

Case 2: <I>= ElVw. 

( 1) 

(2) 

Let {x1,n},. .. ,{xk,n}, ... be a convergent sequence such that xkn E An for all k,n, and the set } = {n > 0: Anf=<I>(x1,n,···,xk,n,···)} is infinite. To show tha; 

A 00 f=<I>( Jim X1,n,···, lim Xk,n, ... ). 
n -+OO n -+CC 

Put K = {n > 0 · A bEJ(x x )} L - { > O · A 1-.r.( )} · nr-- l,n,···, k,n,··· , - n · nJT X1 111 , ••• ,Xk,n,··· . Since 
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j = KU L it is clear that at least one of the sets K,L (say K) is infinite. It follows from the 

induction hypothesis that 

A 00 f=8( Jim x 1,., ... , lim xk.n, ... ) 
n ~oo n --loOO 

and hence also 

which completes the proof of case 2. 

Case 3: <I>= /\{<I>, : i > O}. 

Let {xi,n}, ... ,{xk,n}, ... be a convergent sequence such that xk,n E An for all k,n, and the set 

j = {n > 0: Anf=<I>(x1,n,···,xk,n,···)} is infinite. To show that 

For each i > 0 put]; = {n > 0: Anf=cI>;(x1,n, ... ,xk,n,···)}. Clearly, each}, is infinite and 

hence the induction hypothesis implies that for all i > 0, 

A 00 f=<I>;( lim XJ,n, ... , Jim xk,n, ... ) 
n ~oo n -4>00 

which completes the proof of case 3. 

Actually this is the only part of the proof which requires the compactness of A 00 • Let 

{x1,n}, ... ,{xk,n}, ... be a convergent sequence such that xk,n E An for all k,n, and the set 

} = {n > 0: Anf=<P(x1,n,.··,xk,n,···)} is infinite. To show that 

By assumption, for each n E J there exist elements }k,n E An such that 

An f='lt(y l,n , ... Jk,n,···,x l,n ) ... ,xk,n , ... ). 

The sequences ( {yk,n} : k > 0) need not be convergent. However, using the compactness of 

the metric space A 00 (in fact one needs the compactness of the cartesian product space of 

countable many copies of A 00 ) there exists an infinite subset L of J such that each of the 

sequences {yk,n }n E L is convergent. For each k let }k be the limit of this last sequence. Now 

apply the induction hypothesis to the formula 'I' and the convergent sequences { xk,n }n E L 

{yk,n}n EL, fork > 0, to obtain that 

This completes the proof of case 4. 

This is similar to the cases above and its proof is left to the reader. Now the proof of 

theorem 1.1 is complete. • 
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The examples given below indicate that theorem 1.1 is best possible, in the sense that the 
approximation principle is not invariant neither under infinitary disjunctions nor under 
negations. 

Example 3.3. [Noninvariance under infinitary disjunctions] Consider the formula 
<I>_ V {x =a" : n > 0}. For each n > 0 An\=cl>(an); however, A 00 \=cf>(a"') (a"' is the 
limit of the sequence a" in A 00 ). An even better example involving a sentence (due to H. 
Mulder) is <I>= V {3x(xa = a") : n > O}. 

Example 3.4. [Noninvariance under negations] Consider the formula o/(x,y) - x =I= y. 
Clearly, for all n > 0 An\='Y(a" ,an-I); however, A 00 j=-,o/(a"' ,a"'). 

Proof of theorem 1.2: In view of theorem 1.1 it is enough to prove that (i) implies (iii). In 
fact, it is enough to show by induction on positive formulas cl> that for all 
p I , .. .,p.,. .. E A 00' 

The initial step of the proof is for formulas of the form T(v 1 ,. • .,vk)=S(v 1 ,. • .,vk)· Suppose 
that p 1,. • .,Pk E A 00 such that A 00 f=T(jJ 1,. . .,p.) =S(p 1 ,. • .,p.). Then for all n > 0, 

as desired. The rest of the proof is much like the proof of theorem 1.1 and is left to the 
reader.• 

4. The Ultraproduct Model 

The most natural way to interpret the approximation principle is via the ultraproduct 
model. Details of its definition and fundamental properties can be found in [CK] and [E]. 
Given an ultrafilter D on N, define the equivalence relation =n on the product set 
IT{An : n > O}, as follows: f =:.n g if and only if {n > 0: f(n)=g(n)} E D. Call [f ]n 
the equivalence class of j modulo =n and let AD be the set of these equivalence classes. 
AD can be turned into a process algebra by defining an operation 0 D, for any binary 
operation 0, as follows: 

[f]nDn[g]n = [f(n)Dng(n): n > O]n. 

(The unary operation aH is treated similarly.) It turns out that the mapping 
p -> [ (jJ )n : n > O]n is a homomorphic embedding of A 00 into AD. This makes it possible 
to identify the elements of A 00 with their corresponding images in AD via the above embed­
ding, and hence consider A 00 as a subset of AD. 

Proof of theorem i.3: Let 4>(v 1,. • .,vk) be a finite positive formula in the given signature. 
The equivalence of (i), (iii) is a consequence of the fundamental theorem for ultraproducts 
(see [E)). Since the ultrafilter D is nonprincipal (i.e. all its elements are infinite sets) the 
implications (v) =:> (iii) =:> (iv) are also immediate. The implication (iv) =:> (ii) is a conse­
quence of the approximation theorem and the fact that Jim (p )n = p. Finally the implica-

n -..oo 
tion (ii) =:> (v) is a special case of theorem 1.2. • 
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Example 4.1. Theorem 1.3 cannot be extended to a set of formulas which is closed under 

negation. To see this consider the formula cf> _ (3x,y)[x =ax !\y2 =£!)'2 Ax=Fy ]. The fun­

damental theorem for ultra products implies that AD l=c/> (this is because in A. the equation 

x = ax has exactly one solution, namely a", while the equation y 2 = ay 2 is satisfied by any of 

a*,ak+ 1, ... ,a", where k = l(n.,-l)/2J). However, since the only solution of the system 

x =ax, y 2 =ay2 (in A 00 ) is (aw ,aw) the sentence c/> cannot be valid in A 00 • 

It is also possible to define nonstandard processes in the ultraproduct model. Inded, for any 

function <1 : N ~ N such that for all n > 0 o-(n) ~ n define the element 

a0 = [a"(n) : n > O]D. 

For such functions o- it is possible to show that 

Proposition 4.2. a" E A 00 if and only if (3X E D) (o- is either constant on X or the iden­

tity on X]. • 

Example 4.3. [In the signature +, ·, II, lL 1, aH, a (a EA)]: For different A's the 

models A 00 are not necessarily elementarily equivalent. To see this consider two distinct 

atoms a,b and define the formula et>= (3x,y)[x=x 2 !\y=y2 !\x=f:y]. Then it is easy to 

show that {a} 00 j=-,cf>, while {a, b} 00 f=cf>. 

5. DISCUSSION AND OPEN PROBLEMS 

The proof of the approximation principle requires the compactness of the topological space 

A 00 • This not only forces the set A of atoms to be finite, but it also excludes the possibility 

of using 7 (silent or internal action). It is not known, however, if the approximation princi­

ple could be proved for the same class of positive formulas without these restrictions. The 

ultraproduct construction is quite general and it seems it would be interesting to study the 

ultraproduct obtained when one takes countably many copies of the finite term model Aw 

(which, by the way, is no longer an extension of the projective model), as well as its relation 

to the so called graph models (see [BK]). It might also be possible to use the ultraproduct 

construction in order to prove that certain concepts in process algebra are undefinable in a 

given signature (see [E], corollary 3.4). 
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