
Discovering Motifs in Real-World Social
Networks

Lotte Romijn1, Breanndán Ó Nualláin1,2, and Leen Torenvliet2

1 Amsterdam University College
lotteromijn@student.auc.nl;bon@science.uva.nl

2 ILLC, University of Amsterdam
L.Torenvliet@uva.nl

Abstract. We built a framework for analyzing the contents of large so-
cial networks, based on the approximate counting technique developed by
Gonen and Shavitt. Our toolbox was used on data from a large forum—
boards.ie—the most prominent community website in Ireland. For the
purpose of this experiment, we were granted access to 10 years of forum
data. This is the first time the approximate counting technique is tested
on real-world, social network data.

Keywords: approximate counting, software development, social net-
works, big data

1 Introduction

Many real-world systems are complex networks and consist of a large number of
highly connected interacting components. Examples are the World Wide Web,
Internet, neural and social networks. Complex networks can be represented as
graphs. These graphs contain characteristic patterns and substructures, such
as cycles or triangles. Such patterns are called network motifs, subgraphs or
templates. There are several algorithmic procedures to count or detect network
motifs of size O(log n). Counting and detecting motifs is a method of identifying
functional properties of a network. The frequency of certain motifs indicates
how nodes behave in the network. The term “motif” was coined by Milo et al.,
who subsequently found motifs in biochemical, neurobiological, ecological and
engineering networks [11]. A problem with counting patterns in graphs is that
the general problem is known to be #P-hard[13], and therefore no efficient (i.e.,
polynomial time) algorithms are known. Attempts to count motifs in networks
must either be limited to networks of a modest size, so exponential algorithms
finish in reasonable time, or give an approximate answer. As networks of interest
are emerging that are large by nature, the latter approach seems the way to go.

Approximate counting of motifs has not been attempted on large networks
(more than a few thousand nodes) [16]. In the experiment which this paper
reports, we set up and tested a framework that is capable of analyzing large,
real-world, social-media networks, by transforming them into graphs and ap-
proximately counting motifs in these networks.

This paper is organized as follows. We start with an overview of related work,
then we discuss the approximate counting algorithm and parameter settings that
lead to acceptable results. Then, we discuss the dataset on which the experiments
were run. Section 6 contains the results of our analysis and our findings based
on this, and the final section contains directions of further results and expansion
of the algorithms.

2 Related Work

Networks with similar global topology can have varying local structures. In fact,
local motifs are increasingly considered to be the small building blocks which
are responsible for local functions in a network. Milo et al. [11] found network
motifs in biochemical, neurobiological, ecological and engineering networks. An
example of functional properties of motifs was illustrated by Becchetti et al. [5].
They showed that the local number of triangles in large-scale Web graphs is
an indication of spamming activity. Przulj et al. [12] uses the term graphlet to
denote a connected network with a small number of nodes.

The search for motifs in networks focuses on either induced or non-induced
motifs [8]. Induced motifs have an additional restriction: an induced motif is
a subset of vertices that contains all the edges between those vertices that
are present in the original network. In general, searching non-induced motifs
is more informative because a vertex in a network could have functions not as-
sociated with all of its adjacent edges [8]. Motif detection is equivalent to the
subgraph isomorphism problem, a well-known problem in Graph Theory, which
is NP-complete [7]. The exact solution can be found by enumerating all possible
combinations of vertices that together form the size of the motif, and checking
whether the edges present correspond to the edges in the subgraph. Ullmann
described an exponential algorithm for subgraph isomorphism which takes poly-
nomial time for a fixed choice of a subgraph [14]. Counting the number of motifs
of a particular vertex builds upon the subgraph isomorphism problem. Count-
ing motifs amounts to enumerating how many subgraphs can be found in which
a particular vertex is included. Finding non-induced motifs grows rapidly in
computation time with input size, and has not been attempted on large-scale,
real-world networks [16]. Reducing this computation time represents a major
research challenge.

Brute-force search for a particular motif requires the enumeration of all pos-
sibilities. For instance, finding all triangles in a network requires finding every
pair of edges with the same vertex as one of their end vertices, and checking
whether there is an edge connecting the other end vertices of these two edges.
Without any form of approximation, the most efficient way to solve this prob-
lem uses matrix multiplication, which is of order O(n3) if a textbook method is
used. Without matrix multiplication, a naive algorithm takes computation time
of O(n5). For larger networks testing such naive algorithms is problematic.

Counting the number of a certain motif is #P -hard. #P-problems are of
the form “compute the value of a function f(x),” where f(x) is the number

of possible solutions to the corresponding NP-decision problem [13]. They are
at least as hard as the NP-problem, since solving the decision problem entails
finding out if this number is nonzero. There are a few existing algorithms for
counting and detecting non-induced motifs. These techniques go back to Larry
Stockmeyer’s (1983) theorem for approximate counting. He proved that for every
#P-problem there is a randomized approximate algorithm that determines the
count, using an NP-oracle. [13] This means that for a particular instance a of P
and ε > 0, the algorithm returns the count C with a high probability such that
(1 − ε)P (a) ≤ C ≤ (1 + ε)P (a). The randomized algorithm is in principle an
(ε, δ)-approximation method.

3 Approximate Counting Algorithm

3.1 Color Coding

The approximate counting algorithm makes use of the color coding technique
introduced by Alon et al. [2], used there to detect simple paths, cycles and
bounded treewidth subgraphs. (See, e.g., Bodlaender and Koster [6]). Recently,
the color coding technique has been used to detect signaling pathways in PPI-
networks [1].

The color coding technique is based on random assignments of colors to the
vertices of an input graph. It can detect specific subgraphs efficiently by only con-
sidering specific color assignments, in time proportional to a polynomial function
of the input n = ||V ||. If the assignment of colors is repeated sufficiently many
times the method will find a specific occurrence of the motif of size O(log(n))
with high probability. Multiple algorithms use elements of, or are entirely based
on, the color coding technique [3, 1]. Arvind and Raman [3] used color coding
for counting the number of subgraphs isomorphic to a bounded treewidth graph.
Alon et al. [1] described a polynomial time algorithm for approximating the num-
ber of non-induced occurrences of trees and bounded treewidth subgraphs with
k ∈ O(log n) vertices. In 2007, Hüffner, Wernicke and Zichner [10] presented
various algorithmic improvements for color coding that lead to savings in time
and memory consumption.

Other methods have been explored to approximate the number of motifs,
such as the exploitation of subgraph symmetries by Grochow and Kellis [9]. It
could happen that a subgraph H can be mapped to a given subset G of a graph
multiple times. Eliminating these subgraph symmetries significantly decreases
computation time. However, the running time of the algorithm still increases
exponentially with the size of the motif.

Zhao et al. [16] have recently shown that using color coding in addition to
parallel programming can find motifs in networks with millions of nodes. They
have combined parallelization of color coding with stream based partitioning.
Their “ParSE” algorithm was tested on large-scale, synthetically generated, so-
cial contact networks for urban regions.

In this paper, color coding is also employed to count motifs. Gonen and
Shavitt’s algorithm for counting simple paths will be explained in detail, together

with its implementation in the Python programming language and performance
on the forum data set. By testing the algorithm on the forum data, Gonen and
Shavitt’s simple path algorithm is applied for the first time to a real-world, social
network.

3.2 Simple Path Algorithm

Gonen and Shavitt’s algorithm to find simple paths uses the color coding tech-
nique by Alon, Yuster and Zwick [2]. It approximates the number of paths of
length k − 1, where k is the number of colors in the color set. The input is the
graph G, a vertex v ∈ V , the path length k − 1, fault tolerance ε, and error
probability δ.

1: t = log(1
δ); s = 4kk

ε2k! ;
2: for j = 1 to t do
3: for i = 1 to s do
4: Color each vertex of F independently and uniformly
5: at random with one of the k colors
6: for all u ∈ V do
7: Ci(u, ∅) = 1
8: end for
9: for all l ∈ [k] do

10: Ci(v, l) =

{
1 if col(v) = l
0 otherwise

11: end for
12: for all S ⊆ [k] s.t. ||S|| > 1 do
13: Ci(v, S) =

∑
u∈N(v) Ci(u, S\col(v))

14: end for
15: Pi(v, [k]) =

∑k
l=1

∑
(S1,S2)∈Al,v

∑
u∈N(v) Ci(v, S1)Ci(u, S2),

16: where Al,v = {(Si, Sj) | Si ⊆ [k], Sj ⊆ [k],
17: Si ∩ Sj = ∅, ||Si|| = l, ||Sj || = k − l}
18: Let Xv

i = Pi(v, [k])
19: end for
20: Let Y vj =

∑s
i=1X

v
i

s
21: end for
22: Let Zv be the median of Y v1 . . . , Y

v
t

23: Return Zv.kk/k!

This algorithm is an (ε, δ)-approximation for counting simple paths of length
k−1 containing vertex v, ‘simple’ meaning that there are no repeated vertices in
the path. Pi(v, S) is the number of colorful paths (i.e., paths on which all nodes
have a distinct color) containing v using colors in S at the ith coloring. Ci(v, S)
is the number of colorful paths for which one of the endpoints is v using colors
in S at the ith coloring. The algorithm finds an approximation of the number
of paths within [(1− ε)r, (1 + ε)r], where r is the actual number of paths in the
graph, with a probability of at least 1− 2δ.

The estimator used in this algorithm is also called “median of means” and
it can be shown, using Chebyshev’s inequality and Chernoff bounds, that the
expected value of the number of colorful paths (i.e., the number of paths times
k!/kk) can be approximated arbitrarily closely using a limited number of itera-
tions.

When experimenting with the algorithm on known graphs, two problems with
the original pseudocode of Gonen and Shavitt became apparent. First of all, when
v is a node on the path, the colorful paths containing v are counted “in both
directions”, in other words twice. Second, when v is an endpoint, one of the sets
in the partition is the empty set and therefore Ci(u, {}) = 1 for all neighbors of v.
To get results that are both theoretically correct and experimentally acceptable,
we had to adapt the value of Pi as follows.

Pi(v, [k]) = Ci(v, k) +
1

2

k−1∑
l=2

∑
(S1.S2)∈Al,v

∑
u∈N(v)

Ci(v, S1).Ci(u, S2)

This adaptation in computing Pi influences the complexity of computing Pi
only by a constant, leaving the complexity of the algorithmO((2e)k||E||. log(1

δ)/ε2),
as in the Gonen-Shavitt case.

4 About the Implementation

To implement and test the simple path algorithm in Python, we made use of
the packages NetworkX (http://networkx.github.io/) for generating graphs of
vertices and edges to which weights and labels can be associated, and Numpy
(http://www.numpy.org/) that provides a library of mathematical functions for
performing computations on large arrays.

To achieve a better performance we have made use an efficient bitwise rep-
resentation of color sets. The sets of colors required are all “small” sets with
cardinality certainly less than 32. Such sets can efficiently be represented as 32-
bit integers using a bitwise representation where, for example, the set {6, 4, 3, 1}
is represented by the integer 26 + 24 + 23 + 21 = 90. The counterparts to the
necessary set operations can then be efficiently implemented as combinations of
logical bit operations.

To test the implementation, we generated complete and random graphs with
less than 20 nodes in which the number of paths of a given length can be com-
puted exactly using built-in NexworkX functions and compared the results with
the results of the color coding algorithm. An example of the measured results is
in Figure 1

Fig. 1. Simple path counts of length 2 for random graphs with 2/3 possible edges

For obvious reasons, exact counting cannot be done on large graphs. How-
ever, both calculations and tests suggested that the number of iterations needed
to achieve acceptable accuracy in the color coding case could be reduced signif-
icantly, resulting in a significant reduction in computation time (See Figure 2).

Fig. 2. Accuracy of the algorithm for varying s and t

A series of further tests led to fine tuning of the parameters of the algorithm
for the analysis of the real data set.

5 About The Data Set

The real-world, complex networks for which the numbers of simple paths have
been counted are generated from an Irish forum data set. This data set was
put online in 2008 for the “boards.ie SIOC Data Competition.” (SIOC stands
for Semantically-Interlinked Online Communities Project). The complete data

set contains ten years of Irish online life from Irelands largest community web-
site “boards.ie” over the years 1998-2007. Since the foundation of the website
in 1998, over 36 million posts have been made and the current posting rate is
around 17,000 a day (retrieved from http://www.boards.ie/content/about-us).
The data set is a large collection of RDF-files (Resource Description Frame-
work), in which each file contains a post in a thread on a forum. The RDF-files
have a tree-like structure, corresponding to the way in which the board’s web-
site contains various forums, each forum contains multiple threads and each
thread contains board posts that are chronological replies to each other. In this
project, useful information from the data set is extracted by parsing the RDF-
files. Such information involves the topic of the post (title), the username of
the person who posted, his FOAF-person profile, and the thread which con-
tains the posts. The Python package that is used for this purpose is rdflib

(https://github.com/RDFLib/rdflib/), which can query and extract certain el-
ements from an RDF-file. From there, we generate graphs that represent the
structure of the data set by using the NetworkX Python package. For the main
analysis of this project, graphs are constructed in which nodes represent users
with accounts on the boards website, and edges the connections between users
if they posted in the same threads. For an initial analysis, the data of the years
1998-2000 were used. The distribution of simple paths in these graphs were com-
pared to artificial data, such as randomly generated graphs, preferential attach-
ment graphs, and small-world graphs. While testing the algorithm on the data
sets, the algorithm was revised and further optimized. The results of the motif
counts were analyzed and compared, and further analysis of these substructures
was used to yield conclusions about this forum data set.

6 Results and Conclusions

6.1 Analysis

Having tested, corrected and fine-tuned our software, it was time to run tests on
the SIOC data and compare characteristics of these data with artificially created
networks of different sorts. Due to space limitation, only a small fraction of the
results obtained can be presented here.

First we give a logarithmic representation of the means of all nodes per path
length. We obtain a linear plot, which indicates the mean of the counts grows
exponentially in path length. The plot shows a standard deviation close to the
means, indicating a large tail of the distribution. Similar results were obtained
for 1999 and 2000.

Fig. 3. Analysis of 1998 path counts. Logarithm of means and standard deviations

Figure 4 shows the relationship between the number of paths of length 3 vs
length 2 and 4 vs 7 of the same node for the 1998 data set. The relationship is
linear and was found for each pair of length up till length 9.

Fig. 4. Relationship between path lengths in 1998 data

The distribution of paths in the boards forum data was compared with ran-
dom, preferential attachment and small-world graphs. For the graphs of 1998,
1999 and 2000 the distribution of the number of paths of a specific length is
plotted. In Figures 5 and 6 the x-axis represents the number of paths of spe-
cific length that were counted of which a given node is a member. The y-axis
shows the relative number of occurrences of this number of paths for all nodes
in the graph in Figure 5. In Figure 6, the y-axis shows the relative occur-
rence of this number of paths for 150 graphs generated by graph models in
NetworkX, in which each time the number of paths for a random node was
determined. (These graphs have the same number of nodes and edges as the
1998 data.) Based on the minimum and maximum number of paths, the data
is segmented into 50 bins. The data was fitted to all valid parametric proba-
bility distributions in Matlab, using the function Allfitdist (retrieved from
http://www.mathworks.nl/matlabcentral/fileexchange/). The four best fitting
probability density functions are displayed in the plot. Below the results are
shown for the boards graph of 1998. Since the relationship between different
path lengths is linear (Figure 4), the main analysis below is performed with
path length 3. The graphs in Figure 6 are, respectively, generated randomly,
then scale-free according to the preferential attachment model by Barabási and
Albert [4] and then twice according to the small-world model of Watts and Stro-

gatz [15] with rewiring probabilities 0.5 and 0.03. Other probabilities were also
tested and showed similar results.

Fig. 5. Paths of length 3 and 4 in the 1998 data and fitted probability density functions

Fig. 6. Path counts in 150 randomly generated graphs according to different models

A final plot compares path counts to degree.

Fig. 7. paths of length 3 vs degree

6.2 Conclusions

Concerning the algorithms The most important conclusion to draw from the
experiments is that the algorithms of Gonen & Shavitt and our implementation
of them indeed work. Except from a minor glitch in the pseudocode, mentioned
above, and the fact that in practice much fewer iterations of the randomized al-
gorithm were necessary than were required by the theory everything went more
or less smoothly. This again supports the practice of testing implementations
against data for which the count is known. Nonetheless, there were some perfor-
mance issues which support the consideration to port the implementation to a
lower-level language, such as C, before making the tools more widely available.
Meanwhile however, extensions as discussed in the next section, and tests on
even larger networks seem in order.

Concerning the experiments The histograms of the number of paths (Fig-
ure 5) show that the distribution of the number of paths is broader than for
random graphs with the same number of nodes and edges. The peak for path
length 3 of the 1998 data is at 1.5 × 104 paths, while for random graphs with
the same number of nodes the peak is at 4.5 × 104 (≈ 3 times larger than the
SIOC graph). On the other hand, the tails of path distributions of the SIOC
graphs are much larger for all path lengths. Again, for path length 3 the largest
number of paths of the SIOC data is around 3.5× 105, while for random graphs
it is around 2.3× 104 (≈ 15 times smaller than the SIOC graph). Similar results
were obtained for larger path lengths. This suggests that there are a few mem-
bers extremely active on the boards website and are connected with other nodes
through many paths. For instance, when a node is a member of a large number
of paths of length 3 (4 nodes), it suggests that the node itself posts prolifically
and has many threads in common with other users (prolific poster) and it could
have posted in a thread in which an extremely active user has posted (extremely
active neighbor). However, from Figure 7 it can be concluded that counting the
number of paths a node is a member of and its degree are highly correlated. This
suggests that prolific users are generally in more paths. The two outliers in this
correlation could be explained by considering neighbors; there is one node with
low degree (degree 3) and a high number of paths (173000). This means that it
is probably connected to a very prolific user, or even to two. There is one node
with a higher degree (degree 45) and a low number of paths (8022).

Comparing the distribution of counts against those of artificially generated
graphs revealed that the distribution of the boards data graph is similar to that
of preferential attachment graphs with the same amount of nodes and edges.
The small-world model [15] with varying rewiring probabilities does not show
similar path-count distributions as the SIOC data. In the simple path counts it is
seen that the distribution of the counts looks similar to preferential attachment
networks. Each new individual on the boards website posting in a thread has a
higher probability of posting in a thread in which a prolific poster has posted
earlier. Hence, it has a higher probability of forming an edge with that person.

This mechanism is essentially how a preferential attachment network is dynami-
cally generated. In a preferential attachment graph, every new node connects to
already existing nodes and has a higher probability of connecting to “popular”
nodes in the graph. However, the preferential attachment model differs from the
real-world SIOC graph in several aspects. Firstly, in a preferential attachment
graph, a new node has a fixed number of starting edges. Each new node con-
nects to existing nodes with the same amount of edges, while in the SIOC data
a new individual on a forum could actively engage in many threads, post new
questions and/or be an observer. Also, the preferential attachment model does
not take into account that new nodes can make new threads. In addition, the
degree distribution of a scale-free network (that can be generated by the pref-
erential attachment model) generally follows a power-law distribution. This was
not observed for the SIOC data. In the SIOC data, the number of nodes with
higher degree decreases less rapidly. However, it is likely that the preferential
attachment process causes the similarity in distribution of path counts between
the preferential attachment and the SIOC data graphs.

7 Further Research

In this project we created a toolbox for analyzing real-world, social networks of
considerable size. Our approach was concentrated on simple paths, but the algo-
rithms can easily be extended to researching other motifs and graph properties.
The toolbox we created can be expanded in several directions:

– Algorithmically: the algorithms and code developed so far can still be opti-
mized in several ways. For instance, the approach taken allows for numerous
variations of parallelization. Not only can different parts of the graph be
explored simultaneously, as was done on artifical data in [16] because of the
limited size of the structures searched for, but also the iterations sketched
above can be parallelized, with which a speedup is expected or, equivalently,
the ability to tackle even larger graphs.

– Semantically: Though the motifs considered so far are interesting, they do
not represent the only properties one would extract from social networks. For
instance a question of interest is: which users form cliques interested in the
same subset of subjects? Is the opinion of users about subjects related to their
geographic location (IP-number)? Which (opposing) coalitions are formed?
Simple paths are just a start. Yet, the triangles mentioned in Section 1 are
simple paths of length two, of which the endpoints are neighbors. Circles are
like paths of arbitrary length, and cliques are circles in which all points are
neighbors.

– Dynamically: So far only static graphs have been considered. However, we
have data spanning a long period of time. We would make the toolbox ad-
equate to deal with development of structures over time. For example time
decay could be added to the preferential attachment model to account for
recency of threads.

We will continue to pursue this research.

Acknowledgements

We thank Tom Murphy of boards.ie and John G. Breslin, University College
Galway, for providing access to the data from the SIOC project and are grateful
to the anonymous referees for useful comments.

References

1. Alon, N., Dao, P., Hajirasouliha, I., hormozdiari, F., Sahinalp, S.C.: Biomolecular
network motif counting and discovery by color coding. Bioinformatics 24(13), 241–
249 (2008)

2. Alon, N., Yuster, R., Zwick, U.: Color-coding. Journal of the ACM 42(4), 844–856
(1995)

3. Arvind, V., Raman, V.: Approximation algorithms for some parameterized count-
ing problems. In: Bose, P., Morin, P. (eds.) ISAAC 2002. Lecture Notes in Com-
puter Science, vol. 2518, pp. 453–464. Springer-Verlag, Heidelberg (2002)

4. Barabási, A.L.: Scale-free networks: A decade and beyond. Science 325(5935), 412–
413 (2009)

5. Becchetti, L., Boldi, P., Castillio, C., Gionis, A.: Efficcient semi-streaming algo-
rithms for local triangle counting in massive graphs. In: Proceedings of the 14th
ACM SIGKDD International conference on Knowledge Discovery and Data Min-
ing. pp. 16–24 (2008)

6. Bodlaender, H., Koster, A.: Combinatorial optimization on graphs
of bounded treewidth. The Computer Journal 51(3), 255–269 (2008),
doi:10.1093/comjnl/bxm037

7. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman and Company, New York (1979)

8. Gonen, M., Shavitt, Y.: Approximating the number of network motifs. In:
Avrachenko, K., Donato, D., Litvak, N. (eds.) WAW 2009. LNCS, vol. 4453, pp.
13–24. Springer-Verlag, Heidelberg (2009)

9. Grochow, J., Kellis, M.: Network motif discovery using subgraph enumeration and
symmetry-breaking. In: RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer-
Verlag, Berlin-Heidelberg (2007)

10. Hüffner, F., Wernicke, S., Zickner, T.: Algorithm eningeering for color-coding with
applications to signaling pathway detection. Algorithmica 52, 114–132 (2007)

11. Milo, R., Shen-Orr, S., Itzkovitz, S., Cashtan, N., Chklovskii, D., Alon, U.: Network
motifs: simple building blocks of complex networks. Science 298(5594), 824–827
(2002)

12. N.Przulj, Corneil, D., Jurisica, I.: Modelling interactome: Scale-free or geometric.
Bioinformatics 150, 216–231 (2005)

13. Stockmeyer, L.: The complexity of approximate counting. In: Proceedings of the
15th annual ACM symposium on Theory of Computing. pp. 118–126 (1983)

14. Ullmann, J.: An algorithm for subgraph isomorphism. Journal of the Association
for Computing Machinery 22(1), 31–42 (1976), doi:10.1145/321921.321925

15. Watts, D., Strogatz, S.: Collective dynamics of “small-world” networks. Nature
393, 440–442 (1998), doi:10.1038/30918

16. Zhao, Z., Khan, M., Kumar, V., Marathe, M.: Subgraph enumeration in large social
contact networks using parellel color coding and streaming. In: Proceedings of the
39th conference on parallel processing. pp. 594–603 (2010)

