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Abstract

The optimal solutions obtained by flux balance analysis (FBA) are typically not
unique. Flux modules have recently been shown to be a very useful tool to simplify and
decompose the space of FBA-optimal solutions. Since yield-maximization is sometimes
not the primary objective encountered in vivo, we are also interested in understanding
the space of sub-optimal solutions. Unfortunately, the flux modules are too restrictive
and not suited for this task.

We present a generalization, called k-module, that compensates the limited applica-
bility of flux modules to the space of sub-optimal solutions. Intuitively, a k-module is
a subnetwork with low connectivity to the rest of the network. Recursive application
of k-modules yields a hierarchical decomposition of the metabolic network, which is also
known as a branch-decomposition in matroid-theory. In particular, decompositions com-
puted by existing methods like the nullspace-based approach introduced by Poolman and
coworkers can be interpreted as branch-decompositions.

With k-modules we can now compare alternative decompositions of metabolic networks
to the classical subsystems of glycolysis, TCA-cycle, etc. They can be used to speed up
algorithmic problems (theoretically shown for EFM enumeration) and have the potential
to present computational solutions in a more intuitive way independently from the classical
subsystems.

Keywords: metabolic network, flux module, k-module, branch-decomposition, con-
nectivity, matroid

1 Introduction

Constraint based methods have proven to be very successful in the analysis of metabolic net-
works [15, 17], which are used to model metabolic capabilities and predict behaviors of organ-
isms. In contrast to kinetic models, constraint based metabolic network models do not aim to
predict a single phenotype, but a space of biologically possible phenotypes. This is achieved
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by excluding unrealistic phenotypes using constraints. This reduces the data requirements
enormously such that also large models with thousands of reactions can be built.

Because of the size of the networks, however, even the interplay of very simple constraints can
yield very complex and high-dimensional solution spaces that are very hard to comprehensively
analyze. This is already the case for networks solely based on the steady-state assumption
and irreversibility constraints, which are the basic assumptions for methods like Flux Balance
Analysis (FBA) [12, 23] and related methods. The steady-state assumption states that every
metabolite must be produced at the same rate as it is consumed. Formally, a vector of reaction
rates (flux vector) v € R® is in steady-state if it satisfies

Sv =0,

where S is the stoichiometric matrix. We use R to denote the set of all reactions and M to
denote the set of all metabolites. With a set Irrev C R of reactions that are only allowed to
operate in forward direction, the full steady-state flux space

{U € RR :Sv = Oavlrrev Z 0}

is obtained. While extreme pathways [20] or elementary flux modes (EFM) [21, 22] can compre-
hensively characterize the solution space based on easily understandable pathways, the number
of pathways explodes with the size of the network. This makes these approaches only applicable
to small networks.

Therefore, many methods try to determine only special properties of the network. For example,
FBA asks for the maximal biomass yield for a given uptake of nutrients [12, 23]. Although the
space of optimal yield fluxes (optimal yield flux space) also contains many solutions [9, 6], Kelk
et al. [5] discovered a method that allows a comprehensive pathway-based description for the
optimal yield flux space of many genome-scale networks. They observed that the optimal yield
flux space can be decomposed into fluz modules. For a flux space P C R*, a P-module is a set
of reactions A C R for which there exists a vector d € RM with

Sava =d for all v € P,

where S, denotes the submatrix of S with only columns corresponding to the reactions in A.
Similarly, v4 is the subvector of v with only entries corresponding to reactions in A. With this
definition, originally introduced in [10], the flux modules can be efficiently computed [18]. By
computing the pathways through each module, a comprehensive pathway-based description can
be obtained efficiently [8]. However, this unfortunately only works for the optimal yield space,
because for the full steady-state flux space (without yield-optimality condition) no interesting
flux modules can typically be found.

In [19] we introduced the concept of k-modules to overcome the limitations of flux modules.
There, we followed a mathematical approach and considered the general problem of vertex
enumeration of polyhedra. Here, we will now focus on the application to metabolic networks
and the biological interpretation of k-modules, while keeping the mathematical overhead to a
minimum.

With k-modules we can define a hierarchical decomposition of metabolic networks that is similar
to tree-decompositions and tree-width in graph theory [19]. In parameterized complexity theory
there exist many results that show that, if a graph has low tree-width, many otherwise NP-hard



problems can be solved efficiently in polynomial time [1, 2]. This gives us the chance to also
obtain similar results for metabolic networks.

In Sec. 2, we will introduce and define k-modules. They will then form the basis for the
hierarchical decompositions discussed in Sec. 3. Finally, an application is given in Sec. 3.2 by
considering the problem of EFM enumeration.

2 k-modules

Let us consider the network shown in Fig. 1 and the set A = {ry,...,r10} of reactions. The
metabolites B = {my, ms, m3} are each involved in a reaction of A and also in one of the other
reactions. These metabolites form the boundary of A and therefore connect A to the rest of
the network. Therefore, we call them the boundary metabolites B(A) of A:

B(A):={meM:S5,, #0#S,sIr€c A,s & A}

We observe that for any set of reactions A, we can compute how well A is connected to the
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Figure 1: Example toy network. The reactionsin A = {ry, ..., 710} have 3 boundary metabolites
and form a 2-module.

rest of the network using the formula

We argue that a set of reactions A with low connectivity p(A) should be easy to analyze by
itself, because the interaction with the rest of the network that could influence the interpretation
of A is low.

However, we also observe for the set A from Fig. 1 that m; is always produced at the rate by
which ms is consumed (in real networks this can happen for example with currency metabolites
like ATP and ADP). Hence, the interaction of A through ms is already given by the interaction
through m; with the rest of the network. To deal with such redundancies, we use the concept
of k-modules.



Definition 1 A set of reactions A C R is a P-k-module, if there exists a d € R¥ and a matrix
D € RM>*k (interface) such that for every v € P there exists an a € R* with

SAUA = d+Da.

We simply write k-module if P is the full steady-state flux space and the network contains no
blocked reactions.

The set A from the example of Fig. 1 is a 2-module, because we can choose

mi 1
D = meo —1
ms 0 1

The notion of k-module allows us now to define an alternative connectivity function that does
not only consider network topology but also stoichiometries:

A(A) ;= min{k : A is a k-module }

To improve the reader’s understanding of k-modules and their relation to the previously defined
P-modules, we here list a few properties that hold in general:
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A is a P-module if and only if A is a P-O-module (i.e., A is a 0-module if P is the full
steady-state flux space without blocked reactions).

Furthermore, we want to remark that the simplifications (see [18]) that make an efficient com-
putation of flux modules possible, also apply to k-modules. This means that as soon as all
reactions with fixed reaction rate have been identified, the connectivity function A can be
computed based on linear algebra alone [19], i.e. we have

AA) = AANV),

where V' is the set of reactions with variable flux. Furthermore, if all reactions can carry
variable flux, then A depends on the stoichiometric matrix alone. For V' = R, this leads to the
surprising result that (see [19])

A(A) = rank(S4) + rank(Sg\a) — rank(Sz).

Since the rank of a matrix can be efficiently computed, we can also compute \ efficiently.
For example, in the case of the F. coli iAF1260 network and its subsystem annotations, we
computed that Glycolysis/Gluconeogenesis has a connectivity of 15 and the Citric Acid Cycle
has a connectivity of 12. A complete list can be found in the supplementary material.
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3 Branch-decomposition

While we can compute A(A) efficiently for a given A, we are still left with the problem of finding
“Interesting” sets of reactions A with low A(A). In particular, it is not really clear what an
“interesting” set of reactions is. We observe by the properties mentioned above that there are
many sets of reactions, where A(A) is low (for example if A contains only one reaction, or if A
contains all but one reaction), but which are clearly not interesting.

We conclude that we want to find sets of reactions A where A is large, the complement R \ A
is large, and A(A) is low. However, if A contains many reactions, we will be interested to
understand A more deeply. Hence, we want to be able to split A recursively into smaller
k-modules. This leads us to the concept of branch-decompositions and branch-width [3, 4].
Branch-width is related to the more popular concept of tree-width, which is used to measure
how tree-like a graph is. In contrast to tree-width, branch-width has a natural extension to
matroids and thus, also to metabolic networks.

A branch-decomposition is a subcubic tree, i.e. all nodes have either degree 3 or they are
leaves. Every leaf is uniquely associated to a reaction of the network. An example is shown in
Fig. 2. We observe that if we remove an edge e of the tree, we get two connected components.
Let A be the set of reactions associated to the leaves of one of the connected components.
We observe that R \ A is the set of reactions associated to the leaves of the other connected
component. Hence, we can annotate the edge e with the value of the connectivity function
A(A) = AR\ A). Note, that alternatively, we can do the same with the connectivity function
1. Furthermore, we observe that by deleting the edge e, we get two rooted binary trees, each
rooted at a vertex that was incident to e. These rooted binary trees give a straightforward
rule on how to recursively split the k-module A (resp. the k-module R \ A) into two smaller
k-modules. In the example of Fig. 2 the reaction set A = {ry,...,710} would be split up into
the reaction set {ry,rqe,rs,...,710} with connectivity 2 and the fully coupled reactions {rs, 74}
with connectivity 1.
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Figure 2: A branch-decomposition of the example network in Fig. 1. The edges are annotated
with the corresponding value of the connectivity function, except edges incident to leaves.
Edges incident to leaves correspond to k-modules containing only one reaction. Hence, they
have connectivity 1.



The largest value with which an edge of a branch-decomposition is annotated is called the
branch-width of the branch-decomposition. For the example in Fig. 1, we see in Fig. 2 a branch-
decomposition with branch-width 4, because A" := {ry1,r12,713,714} is only a 4-module, i.e.,
A(A’) = 4. We can now turn the question of finding an interesting k-module into the question
of finding a branch-decomposition with low branch-width. In particular, we can consider a
metabolic network modular if we can find a branch-decomposition with low branch-width.

3.1 Computing branch-decompositions for metabolic networks

Unfortunately, it is NP-hard to find a branch-decomposition with minimal branch-width. There
exist theoretical results on how to solve this problem in polynomial time for low branch-width
instances [13, 14]. However, these algorithms are not likely to be practical, which is why we
need to use heuristics. Heuristics have been developed by Ma et al.[7]. Core idea is to compute
a similarity matrix by computing the similarity for each pair of reactions. Interestingly, Ma et
al. [7] use a similarity measure, which is closely related to the one introduced by Poolman et al.
[16]. Indeed, the decomposition computed by Poolman et al. [16] is a branch-decomposition.
In Fig. 3 an excerpt of the branch-decomposition computed for an E. coli core network [11] is
shown. The full version can be found in the supplementary material.
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Figure 3: Excerpt of branch-decomposition computed using a variant of Poolman’s method [16]
for the E. coli core network. All non-dashed leaves belong to the pentose phosphate pathway.

In Tab. 1 we have listed upper bounds on the branch-widths for a set of genome-scale net-
works computed using variants of Poolman’s method. The methods for computing the branch-
decompositions are described in the supplementary material and they are implemented in the
cbmpy toolbox (cbmpy.sourceforge.net).


cbmpy.sourceforge.net

Table 1: Upper bounds on branch-width for some genome-scale metabolic networks.

Network reactions branch-width
E. coli core 95 13
E. coli iJR904 1075 40
E. coli 1AF1260 2382 59
H. pylor: i1'T341 554 26
H. sapiens recon 1 3742 99
H. sapiens recon 2 7440 146
M. barkeri iIAF692 690 29
M. tuberculosis iNJ661 1025 35
S. aureus iISB619 743 39
S. cerevisiae iIND750 1266 53

3.2 Application: EFM enumeration

In [19] we have shown that the set of EFMs can theoretically be efficiently enumerated if
the branch-width of the network is low. To be more precise, we show that given a branch-
decomposition of branch-width k, we can enumerate all EFMs in time

O(IR|[EFM[*+21),

where t is the time needed to solve a linear program (LP) and |[EFM]| is the number of EFMs
[19]. While this is the first result that shows that elementary flux modes can be enumerated in
total polynomial time, it unfortunately is not very practical due to the |[EFM|?**2 term.

Without going into details (we refer to [19] for that), the idea is to enumerate recursively
pathways that correspond to EFMs through the k-modules in the branch-decomposition. I.e.,
the pathways of a k-module C', which is split into two k-modules A and B, can be computed
from the pathways through A and B. The bad runtime bound arises from the fact that it is
hard to bound the number of pathways through each k-module well enough.

4 Conclusion

In this article we have shown how we can use k-modules to measure how well connected
metabolic subsystems are to the rest of the network. While this measure is similar to counting
the number of metabolites on the boundary, it is stoichiometry-based and hence it smoothly
deals with redundancies due to coupled metabolites.

By recursively decomposing a network using branch-decompositions, k-modules give us a mea-
sure of modularity. Unfortunately, it is very hard to compute the best branch-decomposition.
Therefore, we use heuristics, such as the method by Poolman et al. [16]. While this method
gives us a branch-decomposition from which we can recognize familiar subnetworks, its branch-
width is not very small. In addition, the connectivity of many subsystems as annotated in the
E. coli iAF1260 model is also very large compared to their size. Therefore, we conclude that
the high branch-width computed by our algorithm is probably not due to its lack of a quality
guarantee, but because metabolic networks are not very modular (in the k-modules sense).
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