ON LIE ALGEBRA WEIGHT SYSTEMS FOR 3-GRAPHS

Alexander Schrijver ¹

Abstract. A 3-graph is a connected cubic graph such that each vertex is is equipped with a cyclic order of the edges incident with it. A weight system is a function f on the collection of 3-graphs which is antisymmetric: f(H) = -f(G) if H arises from G by reversing the orientation at one of its vertices, and satisfies the IHX-equation. Key instances of weight systems are the functions $\varphi_{\mathfrak{g}}$ obtained from a metric Lie algebra \mathfrak{g} by taking the structure tensor c of \mathfrak{g} with respect to some orthonormal basis, decorating each vertex of the 3-graph by c, and contracting along the edges.

We give equations on values of any complex-valued weight system that characterize it as complex Lie algebra weight system. It also follows that if $f = \varphi_{\mathfrak{g}}$ for some complex metric Lie algebra \mathfrak{g} , then $f = \varphi_{\mathfrak{g}'}$ for some unique complex reductive metric Lie algebra \mathfrak{g}' . Basic tool throughout is geometric invariant theory.

Keywords: 3-graph, weight system, Lie algebra, Vassiliev knot invariant

Mathematics Subject Classification (2010): 17Bxx, 57M25, 05Cxx

1. Introduction

A 3-graph is a connected, nonempty, cubic graph such that each vertex v is equipped with a cyclic order of the edges incident with v. Loops and multiple edges are allowed. Also the 'vertexless loop' \bigcirc counts as 3-graph.

3-graphs come up in various branches of mathematics, under several names. They play an important role in studying the Vassiliev knot invariants (see [6]), and in this context the term 3-graph was introduced by Duzhin, Kaishev, and Chmutov [8]. We adopt this name as it is short and settled in [6]. 3-graphs also emerge in the related Chern-Simons topological field theory (Bar-Natan [2], Axelrod and Singer [1]). They are in one-to-one correspondence with cubic graphs that are cellularly embedded on a compact oriented surface, and hence, through graph duality, with triangulations of a compact oriented surface. Moreover, 3-graphs produce a generating set for the algebra of $O(n, \mathbb{C})$ -invariant regular functions on the space $\Lambda^3\mathbb{C}^n$ of alternating 3-tensors, by Weyl's 'first fundamental theorem' of invariant theory [17].

For the Vassiliev knot invariants, 'weight systems' are pivotal. For 3-graphs they are defined as follows. Let \mathcal{G} denote the collection of all 3-graphs, and call a function $f: \mathcal{G} \to \mathbb{C}$ a weight system if f satisfies the AS-equation (for antisymmetry): f(H) = -f(G) whenever H arises from G by turning the cyclic order of the edges at one of the vertices of G, and the IHX-equation:

 $^{^1}$ University of Amsterdam and CWI, Amsterdam. Mailing address: CWI, Science Park 123, 1098 XG Amsterdam, The Netherlands. Email: lex@cwi.nl. The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013) / ERC grant agreement n° 339109.

$$(1) f() = f() - f().$$

Here the cyclic order of edges at any vertex is given by the clockwise order of edges at the vertex. The grey areas in (1) represent the remainder of the 3-graphs, the same in each of these areas.

Any C_3 -invariant tensor $c = (c_{i,j,k})_{i,j,k=1}^n \in ((\mathbb{C}^n)^{\otimes 3})^{C_3}$ gives the partition function $p_c : \mathcal{G} \to \mathbb{C}$, defined by

(2)
$$p_c(G) := \sum_{\psi: E(G) \to [n]} \prod_{v \in V(G)} c_{\psi(e_1), \psi(e_2), \psi(e_3)}$$

for any 3-graph G, where, for any $v \in V(G)$, e_1, e_2, e_3 denote the edges incident with v, in cyclic order. (As usual, $[k] := \{1, \ldots, k\}$ for any $k \in \mathbb{Z}_+ = \{0, 1, 2 \ldots\}$. Moreover, if a group Γ acts on a set X, then X^{Γ} denotes the set of Γ -invariant elements of X.)

Note that (2) is invariant under orthonormal transformations of c, and that $p_c(\bigcirc) = n$. ($p_c(G)$ is the 'partition function' of the 'vertex model' c, in the sense of de la Harpe and Jones [11]. It may also be viewed as 'edge coloring model' as in Szegedy [15].)

An important class of weight systems is obtained as follows from the structure constants of metric Lie algebras, which roots in papers of Penrose [14] and Murphy [13], and the relevance for knot theory was pioneered by Bar-Natan [2,3] and Kontsevich [12]. (In this paper, all Lie algebras are finite-dimensional and complex.) A metric Lie algebra is a Lie algebra \mathfrak{g} enriched with a nondegenerate symmetric bilinear form $\langle ., . \rangle$ which is ad-invariant, that is, $\langle [x, y], z \rangle = \langle x, [y, z] \rangle$ for all $x, y, z \in \mathfrak{g}$. If b_1, \ldots, b_n is an orthonormal basis of \mathfrak{g} , the structure constants $(c_{\mathfrak{g}})_{i,j,k}$ of \mathfrak{g} are characterized by $(c_{\mathfrak{g}})_{i,j,k} := \langle [b_i, b_j], b_k \rangle$ for $i, j, k = 1, \ldots, n$. Then $c_{\mathfrak{g}} \in (\mathfrak{g}^{\otimes 3})^{C_3}$, and $\varphi_{\mathfrak{g}} := p_{c_{\mathfrak{g}}}$ is a weight system. Indeed, the set of such structure constants $c_{\mathfrak{g}}$ of metric Lie algebras \mathfrak{g} in n dimensions is equal to the affine variety \mathcal{V}_n in $\Lambda^3\mathbb{C}^n$ determined by the quadratic equations

(3)
$$\sum_{a=1}^{n} (x_{i,j,a} x_{a,k,l} + x_{k,i,a} x_{a,j,l} + x_{j,k,a} x_{a,i,l}) = 0 \qquad \text{for } i, j, k, l = 1, \dots, n.$$

This directly implies that p_x satisfies the AS- and IHX-equations; that is, p_x is a weight system.

As was shown by Bar-Natan [4], the functions $\varphi_{\mathfrak{sl}(n)}$ connect to basic graph theory properties like edge-colorability and planarity, and the four-color theorem can be expressed as a relation between the zeros and the degree of $\varphi_{\mathfrak{sl}(n)}(G)$ (as polynomial in n).

It is easy to construct a weight system that is not equal to $\varphi_{\mathfrak{g}}$ for any metric Lie algebra: just take a different Lie algebra for each number of vertices of the 3-graph G. More interestingly, Vogel [16] showed that there is a weight system that is no Lie

algebra weight system even when restricted to 3-graphs with 34 vertices.

The AS and IHX conditions are '2-term' and '3-term' relations. We give a characterization of those weight systems that come from an n-dimensional Lie algebra by adding an '(n+1)!-term' relation. To illustrate it, for n=2 it is the following 6-term relation:

$$(4) f() + f() + f()) + f())$$

$$= f() + f()) + f())$$

To describe it in general, we need the following notion (cf. [6]). A k-legged fixed diagram is a graph with trivalent vertices, each equipped with a cyclic order of the edges incident with it, and moreover precisely k univalent vertices (called legs), labeled $1, \ldots, k$. (Connectivity is not required.) Let \mathcal{F}_k denote the collection of all k-legged fixed diagrams.

So \mathcal{F}_0 is the collection of disjoint unions of 3-graphs. Any function f on 3-graphs can be extended to \mathcal{F}_0 by the 'multiplicativity rule' $f(G \sqcup H) = f(G)f(H)$, where \sqcup denotes disjoint union, and setting $f(\emptyset) := 1$.

For $G, H \in \mathcal{F}_k$, let $G \cdot H$ be the graph in \mathcal{F}_0 obtained from the disjoint union of G and H by identifying the i-labeled legs in G and H and joining the two incident edges to one edge (thus forgetting these end vertices as vertex), for each $i = 1, \ldots, k$.

For $\pi \in S_k$, let P_{π} be the 2k-legged fixed diagram consisting of k disjoint edges e_1, \ldots, e_k , where the ends of edge e_i are labeled i and $k + \pi(i)$ (for $i = 1, \ldots, k$). Then we call the following k!-term relation the Δ_k -equation:

(5)
$$\sum_{\pi \in S_k} \operatorname{sgn}(\pi) f(P_{\pi} \cdot H) = 0 \qquad \text{for each } 2k\text{-legged fixed diagram } H.$$

Theorem. Let $f: \mathcal{G} \to \mathbb{C}$ be a weight system. Then there exists a complex reductive metric Lie algebra \mathfrak{g} with $f = \varphi_{\mathfrak{g}}$ if and only if $f(\bigcirc) \in \mathbb{Z}_+$ and f satisfies the $\Delta_{f(\bigcirc)+1}$ -equation. If \mathfrak{g} exists, it is unique.

Although (5) may look like a linear constraint separately for each fixed number of vertices of 3-graphs (as the AS- and IHX-equations are), it in fact interconnects 3-graphs with different numbers of vertices, since $P_{\pi} \cdot H$ can be a disjoint union of 3-graphs, taking multiplicativity of f as above. So (5) is a polynomial relation between f-values of 3-graphs. It describes f as common zero of a set of polynomials in the ring $\mathbb{C}[\mathcal{G}]$ formally generated by the collection \mathcal{G} of 3-graphs (which are connected by definition), in which the disjoint union \square is taken as multiplication. We note that, for any $k \in \mathbb{Z}_+$, the Δ_k -equation implies that $f(\bigcirc)$ is a nonnegative integer strictly less than k (by taking $H := P_{\mathrm{id}}$, where id is the identity permutation in S_k).

The theorem implies that if $f = \varphi_{\mathfrak{g}}$ for some metric Lie algebra \mathfrak{g} , then $f = \varphi_{\mathfrak{g}}$ for a unique reductive metric Lie algebra \mathfrak{g} . Indeed, let $f = \varphi_{\mathfrak{g}}$ for some *n*-dimensional Lie algebra \mathfrak{g} . So $f = p_{c_{\mathfrak{g}}}$ and $f(\bigcirc) = n$. We show that f satisfies the Δ_{n+1} -equation.

Take a 2(n+1)-legged fixed diagram H and consider formulas (2) and (5) for $f := p_{c_g}$. The summations over π and ψ can be interchanged. For each fixed $\psi : E(H) \to [n]$, we need to add up $\operatorname{sgn}(\pi)$ over all those $\pi \in S_{n+1}$ for which, for each $i \in [n+1]$, legs i and $k + \pi(i)$ of H have the same ψ -value. As n < n+1, there exist two legs $i, j \in [n+1]$ of H with the same ψ -value. Let $\sigma \in S_{n+1}$ be the transposition of i and j. Then we can pair up each π with $\pi\sigma$, and in the summation they cancel. So for each ψ , the sum is 0, and therefore the Δ_{n+1} -equation holds.

These arguments also yield the necessity of the condition in the theorem. We prove sufficiency in Section 2 and uniqueness in Section 3.

By the theorem, if the $\Delta_{f(\bigcirc)+1}$ -equation holds, then there exist unique (up to permuting indices) simple Lie algebras $\mathfrak{g}_1, \ldots \mathfrak{g}_t$ and nonzero complex numbers $\lambda_1, \ldots, \lambda_t$ such that

(6)
$$f(G) = \sum_{i=1}^{t} \lambda_i^{\frac{1}{2}|V(G)|} \varphi_{\mathfrak{g}_i}(G)$$

for each 3-graph $G \neq \bigcirc$, taking the Killing forms as metrics. So any linear combination of 3-graphs 'detected' (to be nonzero) by a Lie algebra weight system, is detected by a simple Lie algebra weight system.

It can be proved that if $n:=f(\bigcirc)\in\mathbb{Z}_+$, then the Δ_{n+1} -equation can be replaced by the equivalent condition that for each $k\in\mathbb{Z}_+$, the rank of the $\mathcal{F}_k\times\mathcal{F}_k$ matrix $C_{f,k}:=(f(G\cdot H)_{G,H\in\mathcal{F}_k})$ is at most n^k . A weaker, but also equivalent condition is that there exists an $m\in\mathbb{Z}_+$ such that the rank of $C_{f,2(n+1)m}$ is less than the dimension of the space of all $\mathrm{GL}(d)$ -invariant tensors in $\mathfrak{gl}(d)^{\otimes m}$, where $d:=n^{n+1}+1$.

Our proof is based on some basic theorems from invariant theory (Weyl's first and second fundamental theorem for the orthogonal group, and the unique closed orbit theorem; cf. [5],[10]), and roots in methods used in [7], [9], and [15]. For any $n \in \mathbb{Z}_+$ and any 3-graph G, let p(G) be the regular function on $((\mathbb{C}^n)^{\otimes 3})^{C_3}$ defined by

(7)
$$p(G)(x) := p_x(G) \quad \text{for } x \in ((\mathbb{C}^n)^{\otimes 3})^{C_3}$$

(cf. (2)). Then each p(G) is $O(n, \mathbb{C})$ -invariant, and the first fundamental theorem of invariant theory implies that the algebra of $O(n, \mathbb{C})$ -invariant regular functions on $((\mathbb{C}^n)^{\otimes 3})^{C_3}$ is generated by $\{p(G) \mid G \text{ 3-graph}\}.$

Note that $O(n, \mathbb{C})$ acts naturally on the affine variety \mathcal{V}_n defined by (3), and that for any two metrized Lie algebras \mathfrak{g} and \mathfrak{g}' one trivially has: $\mathfrak{g} = \mathfrak{g}'$ if and only if $c_{\mathfrak{g}}$ and $c_{\mathfrak{g}'}$ belong to the same $O(n, \mathbb{C})$ -orbit on \mathcal{V}_n . Moreover, the closed orbit theorem implies that $\varphi_{\mathfrak{g}} = \varphi_{\mathfrak{g}'}$ if and only if the closures of the orbits $O(n, \mathbb{C}) \cdot c_{\mathfrak{g}}$ and $O(n, \mathbb{C}) \cdot c_{\mathfrak{g}'}$ intersect; that is, if and only if they project to the same point in $\mathcal{V}_n/O(n, \mathbb{C})$.

The proof implies that a metric Lie algebra \mathfrak{g} is reductive if and only if the orbit $O(\mathfrak{g}) \cdot c_{\mathfrak{g}}$ is closed. Hence, for each n, there is a one-to-one correspondence between the points in the orbit space $\mathcal{V}_n//O(n,\mathbb{C})$ and the n-dimensional complex reductive metric Lie algebras.

2. Proof of the theorem: existence of \mathfrak{g}

Let $f: \mathcal{G} \to \mathbb{C}$ satisfy the Δ_{n+1} -equation (5), where $n := f(\bigcirc) \in \mathbb{Z}_+$. As above, we extend f to the collection \mathcal{F}_0 of disjoint unions of 3-graphs by the rule that $f(\emptyset) = 1$ and $f(G \sqcup H) = f(G)f(H)$ for all $G, H \in \mathcal{F}_0$ (where \sqcup denotes disjoint union). For any k, let $\mathbb{C}\mathcal{F}_k$ be the linear space of formal \mathbb{C} -linear combinations of elements of \mathcal{F}_k . Any (bi-)linear function on \mathcal{F}_k can be extended (bi-)linearly to $\mathbb{C}\mathcal{F}_k$. Taking \sqcup as product, $\mathbb{C}\mathcal{F}_0$ becomes an algebra (which is equal to $\mathbb{C}[\mathcal{G}]$ described above), and f becomes an algebra homomorphism $\mathbb{C}\mathcal{F}_0 \to \mathbb{C}$. Similarly, p (as defined in (7)) extends to an algebra homomorphism $\mathbb{C}\mathcal{F}_0 \to \mathcal{O}(((\mathbb{C}^n)^{\otimes 3})^{C_3})$. (As usual, $\mathcal{O}(\cdot)$ denotes the algebra of \mathbb{C} -valued regular functions on \cdot .)

Proposition 1. $Ker(p) \subseteq Ker(f)$.

Proof. Let $\gamma \in \mathbb{C}\mathcal{F}_0$ with $p(\gamma) = 0$. We prove that $f(\gamma) = 0$. As each homogeneous component of $p(\gamma)$ is 0, we can assume that γ is a linear combination of graphs in \mathcal{F}_0 that all have the same number of vertices, say k (which is necessarily even).

Let \mathcal{M} be the collection of perfect matchings on [3k]. We can naturally identify \mathcal{M} with the set of 3k-legged fixed diagrams with no trivalent vertices and no copies of \bigcirc .

Let H be the 3k-legged fixed diagram with precisely k trivalent vertices v_1, \ldots, v_k and 3k legs, where v_i is adjacent to legs 3i-2, 3i-1, 3i, in order. (So H is the disjoint union of k copies of the tri-star $K_{1,3}$.) Then each graph in \mathcal{F}_0 with k vertices is equal to $M \cdot H$ for at least one $M \in \mathcal{M}$. Hence we can write

(8)
$$\gamma = \sum_{M \in \mathcal{M}} \lambda(M)M \cdot H$$

for some $\lambda: \mathcal{M} \to \mathbb{C}$.

The symmetric group S_{3k} acts naturally on \mathcal{F}_{3k} (by permuting leg-labels). Let Q be the group of permutations $\sigma \in S_{3k}$ with $H^{\sigma} = H$. (So Q is the wreath product of the cyclic group C_3 with S_k . It stabilizes the partition $\{\{3i-2,3i-1,3i\} \mid i=1,\ldots,k\}$ of [3k] and permutes each class in this partition cyclically.) Since $M^{\sigma} \cdot H = M \cdot H^{\sigma^{-1}} = M \cdot H$ for each $M \in \mathcal{M}$ and $\sigma \in Q$, we can assume that λ is invariant under the action of Q on \mathcal{M} .

Define linear functions F_M (for $M \in \mathcal{M}$) and F on $(\mathbb{C}^n)^{\otimes 3k}$ by

(9)
$$F_M(a_1 \otimes \cdots \otimes a_{3k}) := \prod_{ij \in M} a_i^\mathsf{T} a_j \quad \text{and} \quad F := \sum_{M \in \mathcal{M}} \lambda(M) F_M,$$

for $a_1, \ldots, a_{3k} \in \mathbb{C}^n$. (ij stands for the unordered pair $\{i, j\}$; so ij = ji.) Note that $F_M(x^{\otimes k}) = p(M \cdot H)(x)$ for any $x \in ((\mathbb{C}^n)^{\otimes 3})^{C_3}$. Hence $F(x^{\otimes k}) = p(\gamma)(x) = 0$. We show that this implies that F = 0.

Indeed, suppose $F(u_1 \otimes \cdots \otimes u_k) \neq 0$ for some $u_1, \ldots, u_k \in (\mathbb{C}^n)^{\otimes 3}$. Since F is Q-invariant (as λ is Q-invariant), we can assume that each u_i is C_3 -invariant.

For $y \in \mathbb{C}^k$, define the C_3 -invariant tensor $b_y := y_1u_1 + \cdots + y_ku_k$. As F is Q-invariant, the coefficient of the monomial $y_1 \cdots y_k$ in the polynomial $F(b_y^{\otimes k})$ is equal to $k! \cdot F(u_1 \otimes \cdots \otimes u_k) \neq 0$. So the polynomial is nonzero, hence $F(b_y^{\otimes k}) \neq 0$ for some $y \in \mathbb{C}^k$, a contradiction. Therefore, F = 0.

Define for each multiset N of singletons and unordered pairs from [3k] the monomial q_N on $S^2\mathbb{C}^{3k}$ (= the set of symmetric matrices in $\mathbb{C}^{3k\times 3k}$), and define moreover the polynomial q on $S^2\mathbb{C}^{3k}$ by:

(10)
$$q_N(X) := \prod_{ij \in N} X_{i,j} \quad \text{and} \quad q := \sum_{M \in \mathcal{M}} \lambda(M) q_M,$$

for $X = (X_{i,j}) \in S^2 \mathbb{C}^{3k}$. Note that for each monomial μ on $S^2 \mathbb{C}^{3k}$ there is a unique multiset N of singletons and unordered pairs from [3k] with $\mu = q_N$. Now F = 0 implies

(11)
$$q(X) = 0 \text{ if } \operatorname{rank}(X) \le n.$$

Indeed, if rank $(X) \leq n$, then there exist $a_1, \ldots, a_{3k} \in \mathbb{C}^n$ such that $X_{i,j} = a_i^\mathsf{T} a_j$ for all $i, j = 1, \ldots, 3k$. By (9) and (10), $q(X) = F(a_1 \otimes \cdots \otimes a_{3k}) = 0$, proving (11).

By the second fundamental theorem of invariant theory (cf. [10] Theorem 12.2.12), (11) implies that q belongs to the ideal in $\mathcal{O}(S^2\mathbb{C}^{3k})$ generated by the $(n+1) \times (n+1)$ minors of $X \in S^2\mathbb{C}^{3k}$. That is, q is a linear combination of polynomials $\det(X_{I,J})q_N(X)$, where $I, J \subseteq [3k]$ with |I| = |J| = n+1 and where N is a multiset of singletons and unordered pairs from [3k]. Here $X_{I,J}$ denotes the $I \times J$ submatrix of X.

Now such triples I, J, N occur in two kinds: (1) those with $I \cap J = \emptyset$ and N a perfect matching on $[3k] \setminus (I \cup J)$, in which case all monomials occurring in $\det(X_{I,J})q_N(X)$ are equal to q_M for some $M \in \mathcal{M}$; and (2) all other triples I, J, N, in which case none of the monomials occurring in $\det(X_{I,J})q_N(X)$ is equal to q_M for some $M \in \mathcal{M}$. Since q(X) consists completely of monomials q_M with $M \in \mathcal{M}$, we can ignore all triples of kind (2), and conclude that q(X) is a linear combination of $\det(X_{I,J})q_N(X)$ with I, J, N of kind (1).

For any $M \in \mathcal{M}$, define $\Gamma(q_M) := M \cdot H$, and extend Γ linearly to linear combinations of the q_M for $M \in \mathcal{M}$. Then $\Gamma(q) = \gamma$. Moreover, for each I, J, N of kind (1), by the Δ_{n+1} -equation for f, $f(\Gamma(\det(X_{I,J})q_N(X))) = 0$. As γ is a linear combination of elements $\Gamma(\det(X_{I,J})q_N(X))$, we have $f(\gamma) = 0$, as required.

By this proposition, there exists a linear function $\Phi: p(\mathbb{C}\mathcal{F}_0) \to \mathbb{C}$ such that $\Phi \circ p = f$. Then Φ is an algebra homomorphism, since for $G, H \in \mathcal{F}_0$ one has $\Phi(p(G)p(H)) = \Phi(p(G \sqcup H)) = f(G \sqcup H) = f(G)f(H) = \Phi(p(G))\Phi(p(H))$.

By the first fundamental theorem of invariant theory,

(12)
$$\mathcal{O}(((\mathbb{C}^n)^{\otimes 3})^{C_3})^{O(n)} = p(\mathbb{C}\mathcal{F}_0)$$

(setting $O(n) := O(n, \mathbb{C})$). So Φ is an algebra homomorphism $\mathcal{O}(((\mathbb{C}^n)^{\otimes 3})^{C_3})^{O(n)} \to$

 \mathbb{C} . Hence the affine O(n)-variety

(13)
$$\mathcal{V} := \{ x \in ((\mathbb{C}^n)^{\otimes 3})^{C_3} \mid q(x) = \Phi(q) \text{ for each } q \in \mathcal{O}(((\mathbb{C}^n)^{\otimes 3})^{C_3})^{O(n)} \}$$

is nonempty (as O(n) is reductive). By (12) and by substituting q = p(G) in (13),

(14)
$$\mathcal{V} := \{ x \in ((\mathbb{C}^n)^{\otimes 3})^{C_3} \mid p_x = f \}.$$

Hence as $\mathcal{V} \neq \emptyset$ there exists $c \in ((\mathbb{C}^n)^{\otimes 3})^{C_3}$ with $p_c = f$. We choose c such that the orbit $O(n) \cdot c$ is a closed. This is possible by the unique closed orbit theorem (cf. Brion [5]), which also implies that c is contained in each nonempty O(n)-invariant closed subset of \mathcal{V} .

Then c gives the required Lie algebra:

Proposition 2. $c = c_{\mathfrak{a}}$ for some complex reductive metric Lie algebra \mathfrak{g} .

Proof. We extend p(G) to a function \widehat{p} on fixed diagrams as follows. For each k and $G \in \mathcal{F}_k$, let $\widehat{p}(G) : ((\mathbb{C}^n)^{\otimes 3})^{C_3} \to (\mathbb{C}^n)^{\otimes k}$ be defined by

(15)
$$\widehat{p}(G)(x) := \sum_{\psi: E(G) \to [n]} \left(\prod_{v \in V_3(G)} x_{\psi(e_1), \psi(e_2), \psi(e_3)} \right) \bigotimes_{j=1}^k b_{\psi(\varepsilon_j)}$$

for $x \in ((\mathbb{C}^n)^{\otimes 3})^{C_3}$, where $V_3(G)$ is the set of trivalent vertices of G, e_1, e_2, e_3 are the edges incident with v, in order, and ε_j is the edge incident with leg labeled j (for $j = 1, \ldots, k$). Moreover, b_1, \ldots, b_n is the standard basis of \mathbb{C}^n .

Then for all $G, H \in \mathcal{F}_k$ and $x \in ((\mathbb{C}^n)^{\otimes 3})^{C_3}$,

(16)
$$\widehat{p}(G)(x) \cdot \widehat{p}(H)(x) = p(G \cdot H)(x),$$

where \cdot denotes the standard inner product on $(\mathbb{C}^n)^{\otimes k}$.

Claim. For each k and $\tau \in \mathbb{C}\mathcal{F}_k$, if $f(\tau \cdot H) = 0$ for each $H \in \mathcal{F}_k$, then $\widehat{p}(\tau)(c) = 0$.

Proof. As $\widehat{p}(\tau)$ is O(n)-equivariant, it suffices to show that $\widehat{p}(\tau)$ has a zero x in \mathcal{V} , since then the O(n)-stable closed set $\{x \in \mathcal{V} \mid \widehat{p}(\tau)(x) = 0\}$ is nonempty, and hence must contain c.

Suppose that no such zero exists. Then the functions $\widehat{p}(\tau)$ and p(G) - f(G) (for $G \in \mathcal{G}$) have no common zero. Hence, by the Nullstellensatz, there exist regular functions $s: ((\mathbb{C}^n)^{\otimes 3})^{C_3} \to (\mathbb{C}^n)^{\otimes k}$ and $g_1, \ldots, g_t: ((\mathbb{C}^n)^{\otimes 3})^{C_3} \to \mathbb{C}$, and $G_1, \ldots, G_t \in \mathcal{G}$ such that

(17)
$$\widehat{p}(\tau)(x) \cdot s(x) + \sum_{i=1}^{t} (p(G_i)(x) - f(G_i))g_i(x) = 1$$

for all $x \in ((\mathbb{C}^n)^{\otimes 3})^{C_3}$. Now $\widehat{p}(\tau)$ and $p(G_1), \ldots, p(G_t)$ are O(n)-equivariant. Hence, by applying the Reynolds operator, we can assume that also s and g_1, \ldots, g_k are O(n)-

equivariant. Then by the first fundamental theorem of invariant theory, $s = \widehat{p}(\beta)$ for some $\beta \in \mathbb{C}\mathcal{F}_k$, and $g_i = p(\gamma_i)$ for some $\gamma_i \in \mathbb{C}\mathcal{F}_0$, for i = 1, ..., t. This gives, with (16),

(18)
$$1 = \widehat{p}(\tau)(c) \cdot \widehat{p}(\beta)(c) + \sum_{i=1}^{t} (p(G_i)(c) - f(G_i))p(\gamma_i)(c) = p(\tau \cdot \beta)(c) + \sum_{i=1}^{t} (p(G_i)(c) - f(G_i))p(\gamma_i)(c) = f(\tau \cdot \beta) + \sum_{i=1}^{t} (f(G_i) - f(G_i))f(\gamma_i) = 0,$$

a contradiction, proving the Claim.

Let $AS \in \mathbb{C}\mathcal{F}_3$ and $IHX \in \mathbb{C}\mathcal{F}_4$ be extracted from the AS- and IHX-equations; that is,

(19) AS :=
$$\bigwedge_{1 = 2 \atop 3} + \bigwedge_{1 = 2 \atop 3} , \quad IHX := \bigvee_{4 = 3 \atop 4} - \bigvee_{4 = 3 \atop 3} + \bigvee_{4 = 3 \atop 3}$$

As f is a weight system, $f(AS \cdot H) = 0$ for each $H \in \mathcal{F}_3$ and $f(IHX \cdot H) = 0$ for each $H \in \mathcal{F}_4$. Hence the Claim implies that $\widehat{p}(AS)(c) = 0$ and $\widehat{p}(IHX)(c) = 0$. Therefore, $c = c_{\mathfrak{g}}$ for some metric Lie algebra \mathfrak{g} (cf. (3)).

We show that \mathfrak{g} is reductive. For this it suffices to show that the orthogonal complement $Z(\mathfrak{g})^{\perp}$ of the center $Z(\mathfrak{g})$ of \mathfrak{g} is semisimple (as then $Z(\mathfrak{g}) \cap Z(\mathfrak{g})^{\perp} = 0$, so $Z(\mathfrak{g})$ is nondegenerate).

Suppose to the contrary that $Z(\mathfrak{g})^{\perp}$ contains a nonzero abelian ideal I. We can assume that I is a minimal nonzero ideal. Then $I \subseteq I^{\perp}$, since, by the minimality of I, either $[\mathfrak{g},I]=0$, hence $I\subseteq Z(\mathfrak{g})\subseteq I^{\perp}$, or $[\mathfrak{g},I]=I$, hence $\langle I,I\rangle=\langle [\mathfrak{g},I],I\rangle=\langle \mathfrak{g},[I,I]\rangle=0$.

So $I + Z(\mathfrak{g}) \subseteq I^{\perp}$. This implies that we can choose a subspace A of I^{\perp} with $I \cap A = 0$ and $I + A = I^{\perp}$ such that

(20)
$$Z(\mathfrak{g}) = (I \cap Z(\mathfrak{g})) + (A \cap Z(\mathfrak{g})).$$

Then A is nondegenerate, since $A \cap A^{\perp} = A \cap I^{\perp} \cap A^{\perp} = A \cap (I+A)^{\perp} = A \cap I = 0$. So also A^{\perp} is nondegenerate. As $I \subseteq A^{\perp}$ and $\dim(A^{\perp}) = 2\dim(I)$, there exists a self-orthogonal subspace C of A^{\perp} with $I \cap C = 0$ and $I + C = A^{\perp}$. Then $\dim(C) = \dim(I)$ (as $\dim(A) = n - 2\dim(I)$).

Now define, for any nonzero $\alpha \in \mathbb{C}$, $\varphi_{\alpha} : \mathfrak{g} \to \mathfrak{g}$ by

(21)
$$\varphi_{\alpha}(x) = \begin{cases} \alpha^{-1}x & \text{if } x \in I, \\ \alpha x & \text{if } x \in C, \\ x & \text{if } x \in A. \end{cases}$$

So $\varphi_{\alpha} \in O(n)$.

Let π_A denote the orthogonal projection $\mathfrak{g} \to A$. Then

(22)
$$\lim_{\alpha \to 0} c_{\mathfrak{g}} \cdot \varphi_{\alpha}^{\otimes 3} = c_{\mathfrak{g}} \cdot \pi_A^{\otimes 3},$$

where \cdot denotes the standard inner product on $(\mathbb{C}^n)^{\otimes 3}$. To prove (22), choose $x, y, z \in I \cup C \cup A$. If $x, y, z \in A$, then for each nonzero $\alpha \in \mathbb{C}$:

$$(23) c_{\mathfrak{g}} \cdot \varphi_{\alpha}^{\otimes 3}(x \otimes y \otimes z) = c_{\mathfrak{g}} \cdot (x \otimes y \otimes z) = c_{\mathfrak{g}} \cdot \pi_A^{\otimes 3}(x \otimes y \otimes z).$$

If not all of x, y, z belong to A, let k be the number of x, y, z belonging to I minus the number of x, y, z belonging to C. Then

(24)
$$\lim_{\alpha \to 0} c_{\mathfrak{g}} \cdot \varphi_{\alpha}^{\otimes 3}(x \otimes y \otimes z) = \lim_{\alpha \to 0} \alpha^{-k} c_{\mathfrak{g}} \cdot (x \otimes y \otimes z) = 0.$$

The last equality follows from the fact that if $k \geq 0$, then we may assume (by symmetry) that $x \in I$ and $z \notin C$, so $z \in I + A = I^{\perp}$. Hence $c_{\mathfrak{g}} \cdot (x \otimes y \otimes z) = \langle [x,y],z \rangle = 0$, as $[x,y] \in I$.

This proves (22). Hence, as $O(n) \cdot c_{\mathfrak{g}}$ is closed, there exists $\varphi \in O(n)$ such that

$$(25) c_{\mathfrak{a}} \cdot \pi_{A}^{\otimes 3} = c_{\mathfrak{a}} \cdot \varphi^{\otimes 3}.$$

This implies

(26)
$$\varphi(I+C+Z(\mathfrak{g}))\subseteq Z(\mathfrak{g}).$$

To see this, by (20), $I + C + Z(\mathfrak{g}) = I + C + (A \cap Z(\mathfrak{g}))$. Now choose $x \in I \cup C \cup (A \cap Z(\mathfrak{g}))$. Then for all $y, z \in \mathfrak{g}$, using (25):

(27)
$$\langle [\varphi(x), \varphi(y)], \varphi(z) \rangle = \langle [\pi_A(x), \pi_A(y)], \pi_A(z) \rangle = 0.$$

Indeed, if $x \in I + C = A^{\perp}$ then $\pi_A(x) = 0$. If $x \in A \cap Z(\mathfrak{g})$, then $\pi_A(x) = x$, and (27) follows as $x \in Z(\mathfrak{g})$. As (27) holds for all $y, z \in \mathfrak{g}$, $\varphi(x)$ belongs to $Z(\mathfrak{g})$.

So we have (26), which implies $\dim(I+C+Z(\mathfrak{g})) \leq \dim(Z(\mathfrak{g}))$, so $C \subseteq Z(\mathfrak{g})$, hence C=0, as $C \cap Z(\mathfrak{g}) \subseteq C \cap (I+A)=0$. Therefore, $\dim(I)=\dim(C)=0$, contradicting $I \neq 0$. Concluding, \mathfrak{g} is reductive.

3. Proof of the theorem: uniqueness of g

We first show uniqueness if the metrics are the Killing forms.

Proposition 3. Let \mathfrak{g} and \mathfrak{g}' be complex semisimple Lie algebras with their Killing forms as metrics. If $\varphi_{\mathfrak{g}} = \varphi_{\mathfrak{g}'}$ then $\mathfrak{g} = \mathfrak{g}'$.

Proof. As $\varphi_{\mathfrak{g}} = \varphi_{\mathfrak{g}'}$, we know $\dim(\mathfrak{g}) = \varphi_{\mathfrak{g}}(\bigcirc) = \varphi_{\mathfrak{g}'}(\bigcirc) = \dim(\mathfrak{g}')$. Let \mathfrak{h} and \mathfrak{h}' be real compact forms in \mathfrak{g} and \mathfrak{g}' respectively. Since the Killing forms are negative definite on \mathfrak{h} and \mathfrak{h}' , we can assume that the inner product spaces underlying \mathfrak{h} and \mathfrak{h}' both are \mathbb{R}^n with standard negative definite inner product, and that $c_{\mathfrak{g}}$ and $c_{\mathfrak{g}'}$ belong to $((\mathbb{R}^n)^{\otimes 3})^{C_3}$.

Suppose $\mathfrak{g} \neq \mathfrak{g}'$. Hence the orbits $O(n,\mathbb{R}) \cdot c_{\mathfrak{g}}$ and $O(n,\mathbb{R}) \cdot c_{\mathfrak{g}'}$ are disjoint compact subsets of $((\mathbb{R}^n)^{\otimes 3})^{C_3}$. By the Stone-Weierstrass theorem, there exists a real-valued polynomial q on $((\mathbb{R}^n)^{\otimes 3})^{C_3}$ such that $q(x) \leq 0$ for each $x \in O(n,\mathbb{R}) \cdot c_{\mathfrak{g}}$ and $q(x) \geq 1$ for each $x \in O(n,\mathbb{R}) \cdot c_{\mathfrak{g}'}$. Applying the Reynolds operator, we may assume that q is $O(n,\mathbb{R})$ -invariant. By the first fundamental theorem of invariant theory, q belongs to the algebra generated by $\{p(G) \mid G$ 3-graph $\}$. However, $p(G)(c_{\mathfrak{g}}) = \varphi_{\mathfrak{g}}(G) = \varphi_{\mathfrak{g}'}(G) = p(G)(c_{\mathfrak{g}'})$ for each 3-graph G. So $q(c_{\mathfrak{g}}) = q(c_{\mathfrak{g}'})$, contradicting $q(c_{\mathfrak{g}}) \leq 0$ and $q(c_{\mathfrak{g}'}) \geq 1$.

For each complex metric Lie algebra \mathfrak{g} of positive dimension, define

(28)
$$\varphi_{\mathfrak{g}}' := \frac{1}{\dim(\mathfrak{g})} \varphi_{\mathfrak{g}}.$$

From Proposition 3 we derive the next proposition.

Proposition 4. Let \mathfrak{g} and \mathfrak{g}' be complex simple metric Lie algebras. If $\varphi'_{\mathfrak{g}} = \varphi'_{\mathfrak{g}'}$ then $\mathfrak{g} = \mathfrak{g}'$.

Proof. Let B and B' denote the bilinear forms associated with \mathfrak{g} and \mathfrak{g}' , respectively, and let K and K' be the Killing forms of \mathfrak{g} and \mathfrak{g}' , respectively. Since \mathfrak{g} and \mathfrak{g}' are simple, there are nonzero $\alpha, \alpha' \in \mathbb{C}$ such that $B = \alpha K$ and $B' = \alpha' K'$. Then

(29)
$$\varphi_{\mathfrak{g},B}(\bigcirc) = \alpha^{-1}\varphi_{\mathfrak{g},K}(\bigcirc) = -\alpha^{-1}K^{\otimes 3}(c_{\mathfrak{g},K},c_{\mathfrak{g},K}) = \alpha^{-1}\dim(\mathfrak{g}),$$

and similarly $\varphi_{\mathfrak{g}',B'}(\bigcirc) = \alpha'^{-1}\dim(\mathfrak{g}')$. Since $\varphi'_{\mathfrak{g},B}(\bigcirc) = \varphi'_{\mathfrak{g}',B'}(\bigcirc)$, this implies $\alpha = \alpha'$. So $\varphi'_{\mathfrak{g},K} = \varphi'_{\mathfrak{g}',K'}$, hence we can assume that $\alpha = 1$, so B = K and B' = K'.

Now let $\widetilde{\mathfrak{g}}$ be the direct sum of $\dim(\mathfrak{g}')$ copies of \mathfrak{g} . Similarly, let $\widetilde{\mathfrak{g}'}$ be the direct sum of $\dim(\mathfrak{g})$ copies of \mathfrak{g}' . So $\dim \widetilde{\mathfrak{g}} = \dim \widetilde{\mathfrak{g}'}$, and for each 3-graph G, as $\varphi'_{\mathfrak{g}} = \varphi'_{\mathfrak{g}'}$ and as G is connected:

(30)
$$\varphi_{\widetilde{\mathfrak{q}}}(G) = \dim(\mathfrak{g}')\varphi_{\mathfrak{q}}(G) = \dim(\mathfrak{g})\varphi_{\mathfrak{q}'}(G) = \varphi_{\widetilde{\mathfrak{q}}'}(G).$$

Hence by Proposition 3, $\widetilde{\mathfrak{g}} = \widetilde{\mathfrak{g}}'$, and so $\mathfrak{g} = \mathfrak{g}'$.

We note that also if \mathfrak{g} is a complex 1-dimensional metric Lie algebra and \mathfrak{g}' is a complex simple metric Lie algebra, then $\varphi'_{\mathfrak{g}} \neq \varphi'_{\mathfrak{g}'}$, since $\varphi'_{\mathfrak{g}}(\bigcirc) = 0$ while $\varphi'_{\mathfrak{g}'}(\bigcirc) \neq 0$. This and Proposition 4 is used to prove the last proposition, which settles the theorem.

Proposition 5. Let \mathfrak{g} and \mathfrak{g}' be complex reductive metric Lie algebras. If $\varphi_{\mathfrak{g}} = \varphi_{\mathfrak{g}'}$ then $\mathfrak{g} = \mathfrak{g}'$.

Proof. As \mathfrak{g} and \mathfrak{g}' are reductive, we can write

(31)
$$\mathfrak{g} = \bigoplus_{i=1}^{m} \mathfrak{g}_i \text{ and } \mathfrak{g}' = \bigoplus_{j=1}^{m'} \mathfrak{g}'_j,$$

where each \mathfrak{g}_i and \mathfrak{g}'_j is either simple or 1-dimensional. Then, since 3-graphs are connected,

(32)
$$\sum_{i=1}^{m} \varphi_{\mathfrak{g}_i} = \varphi_{\mathfrak{g}} = \varphi_{\mathfrak{g}'} = \sum_{j=1}^{m'} \varphi_{\mathfrak{g}'_j}.$$

So we can assume that $\mathfrak{g}_i \neq \mathfrak{g}'_j$ for all $i \in [m]$ and $j \in [m']$. Hence, by Proposition 4 and the remark thereafter, there exist finitely many 3-graphs G_1, \ldots, G_k such that for all $i \in [m]$ and $j \in [m']$ there exists $t \in [k]$ with $\varphi'_{\mathfrak{g}_i}(G_t) \neq \varphi'_{\mathfrak{g}'_j}(G_t)$. That is, for each $i \in [m]$ and $j \in [m']$, the following vectors \mathbf{y}_i , $\mathbf{z}_j \in \mathbb{C}^k$:

(33)
$$\mathbf{y}_i := (\varphi'_{\mathfrak{g}_i}(G_1), \dots, \varphi'_{\mathfrak{g}_i}(G_k)) \quad \text{and} \quad \mathbf{z}_j := (\varphi'_{\mathfrak{g}'_j}(G_1), \dots, \varphi'_{\mathfrak{g}'_j}(G_k))$$

are distinct. So there exists a polynomial $q \in \mathbb{C}[x_1, \ldots, x_k]$ such that $q(\mathbf{y}_i) = 0$ for each $i = 1, \ldots, m$ and $q(\mathbf{z}_j) = 1$ for each $j = 1, \ldots, m'$. Now set $\gamma := q(G_1, \ldots, G_k)$, taking formal linear sums of 3-graphs and applying the following composition of 3-graphs G and H as product ([8]): take the disjoint union of G and H, choose an edge uv of G and an edge u'v' of H, and replace them by uu' and vv'. Let F be the 3-graph thus arising. Then for any complex simple or 1-dimensional metric Lie algebra $\mathfrak{g}: \varphi'_{\mathfrak{g}}(F) = \varphi'_{\mathfrak{g}}(G)\varphi'_{\mathfrak{g}}(H)$, independently of the choice of uv and u'v' (see Proposition 7.18 in [6]).

We extend each $\varphi'_{\mathfrak{g}_i}$ and $\varphi'_{\mathfrak{g}'_j}$ linearly to γ . Then $\varphi'_{\mathfrak{g}_i}(\gamma) = q(\mathbf{y}_i) = 0$ for each $i = 1, \ldots, m$ while $\varphi'_{\mathfrak{g}'_j}(\gamma) = q(\mathbf{z}_j) = 1$ for each $j = 1, \ldots, m'$. Hence $\varphi_{\mathfrak{g}_i}(\gamma) = 0$ for each $i = 1, \ldots, m$ and $\varphi_{\mathfrak{g}'_j}(\gamma) = \dim(\mathfrak{g}'_j)$ for each $j = 1, \ldots, m'$. Therefore, by (32), m' = 0.

References

- [1] S. Axelrod, I.M. Singer, Chern-Simons perturbation theory II, *Journal of Differential Geometry* 39 (1994), 173–213.
- [2] D. Bar-Natan, Perturbative Aspects of the Chern-Simons Topological Quantum Field Theory, Ph.D. Thesis, Harvard University, Cambridge, Mass., 1991.
- [3] D. Bar-Natan, On the Vassiliev knot invariants, Topology 34 (1995) 423–472.
- [4] D. Bar-Natan, Lie algebras and the four color theorem, *Combinatorica* 17 (1997) 43–52.
- [5] M. Brion, Introduction to actions of algebraic groups, Les cours du C.I.R.M. 1 (2010) 1–22.
- [6] S. Chmutov, S. Duzhin, J. Mostovoy, *Introduction to Vassiliev Knot Invariants*, Cambridge University Press, Cambridge, 2012.

- [7] J. Draisma, D. Gijswijt, L. Lovász, G. Regts, A. Schrijver, Characterizing partition functions of the vertex model, *Journal of Algebra* 350 (2012) 197–206.
- [8] S.V. Duzhin, A.I. Kaishev, S.V. Chmutov, The algebra of 3-graphs, *Proceedings of the Steklov Institute of Mathematics* 221 (1998) 157–186.
- [9] M.H. Freedman, L. Lovász, A. Schrijver, Reflection positivity, rank connectivity, and homomorphisms of graphs, *Journal of the American Mathematical Society* 20 (2007) 37–51.
- [10] R. Goodman, N.R. Wallach, Symmetry, Representations, and Invariants, Springer, Dordrecht, 2009.
- [11] P. de la Harpe, V.F.R. Jones, Graph invariants related to statistical mechanical models: examples and problems, *Journal of Combinatorial Theory, Series B* 57 (1993) 207–227.
- [12] M. Kontsevich, Feynman diagrams and low-dimensional topology, in: First European Congress of Mathematics Volume II, Birkhaüser, Basel, 1994, pp. 97–121.
- [13] T. Murphy, On the tensor system of a semisimple Lie algebra, *Proceedings of the Cambridge Philosophical Society (Mathematical and Physical Sciences)* 71 (1972) 211–226.
- [14] R. Penrose, Applications of negative dimensional tensors, in: Combinatorial Mathematics and Its Applications (D.J.A. Welsh, ed.), Academic Press, London, 1971, pp. 221–244.
- [15] B. Szegedy, Edge coloring models and reflection positivity, Journal of the American Mathematical Society 20 (2007) 969–988.
- [16] P. Vogel, Algebraic structures on modules of diagrams, Journal of Pure and Applied Algebra 215 (2011) 1292–1339.
- [17] H. Weyl, The Classical Groups Their Invariants and Representations, Princeton University Press, Princeton, New Jersey, 1946.