
The expected number of critical percolation clusters

intersecting a line segment.

J. van den Berg∗ and R.P. Conijn†

Abstract

We study critical percolation on a regular planar lattice. Let EG(n) be the
expected number of open clusters intersecting or hitting the line segment [0, n].
(For the subscript G we either take H, when we restrict to the upper halfplane,
or C, when we consider the full lattice).

Cardy [Car01] (see also Yu, Saleur and Haas [YSH08]) derived heuristically

that EH(n) = An+
√
3

4π log(n) + o(log(n)), where A is some constant. Recently
Kovács, Iglói and Cardy derived in [KIC12] heuristically (as a special case of a
more general formula) that a similar result holds for EC(n) with the constant√

3
4π replaced by 5

√
3

32π .
In this paper we give, for site percolation on the triangular lattice, a rigorous

proof for the formula of EH(n) above, and a rigorous upper bound for the
prefactor of the logarithm in the formula of EC(n).
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1 Introduction

Consider critical bond percolation on Z2. Kovács, Iglói and Cardy [KIC12] studied
the expected number of clusters which intersect the boundary of a polygon. The
leading order is the size n of the boundary. The prefactor of this term is lattice
dependent. Their main interest is in the first correction term (of order log n). Their
motivation came from relations with entanglement entropy in a diluted quantum
Ising model. Using indirect and non-rigorous methods from conformal field theory
and the q-state Potts model (letting q → 1), they derived a (universal) formula for
the prefactor of the logarithmic term.

A special case of their result is that of a line segment (treated in Section F of their
paper). In their setup the line segment was placed in the full plane and they claim

that the prefactor is equal to 5
√
3

32π . Furthermore they refer to an earlier obtained
result by Cardy in [Car01] (see also Yu, Saleur and Haas [YSH08]) where the line
segment was placed on the boundary of the half-plane. In the latter case the claim

is that the prefactor equals
√
3

4π . Also this latter result was obtained by non-rigorous
arguments using q-state Potts models.
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This motivated us to try to find rigorous and more direct proofs of these results
(starting with the case of line segments). Since the prefactors are believed to be
universal it is natural to consider the most well studied percolation model, site
percolation on the triangular lattice.

Because conformal invariance plays a role, it is convenient to identify the plane
with the set C of complex numbers. We embed the triangular lattice T in the
half-plane H = {z : =z ≥ 0} or the full plane C with vertex set {m + nj : m ∈
Z, n ∈ N ∪ {0}} (resp. {m + nj : m,n ∈ Z}), where j = e

π
3
i. We denote the

probability measure by PH (resp. PC) and the expectation by EH (resp. EC). For
subsets A,B ⊂ C we denote by A ↔ B the event that there are vertices x, y on
the triangular lattice, with x ∈ A, y ∈ B, which are connected by a path of open
vertices. with some abuse of notation we denote, for any x ∈ C, the set {x} by x.
A cluster is a collection connected vertices. Consider the line segment [1, n] on R,
containing n vertices. We are interested in

EG(n) := EG[ |{C ∈ CG : C ∩ [1, n] 6= ∅}| ],

where CG is the collection of all clusters in the triangular lattice on the lattice
G = H,C.

It is easy to derive the leading (of order n) term: see the Remark a few paragraphs
below Theorem 1. In the case of the half-plane we could obtain a rigorous proof for
the earlier mentioned logarithmic correction term. In the case of the full plane we
only obtained a logarithmic upper bound for the correction term. (We do not see

a method how to prove the precise prefactor 5
√
3

32π given in [KIC12]; even finding a
non-trivial lower bound is, in our opinion, a challenging problem).

More precisely, our main contribution is a rigorous proof of the following:

Theorem 1

(a) EH(n) = n · (PH(1 6↔ (−∞, 0])− 1

2
) +

√
3

4π
log(n) + o(log(n))

and

(b) lim sup
n→∞

EC(n)− n · (PC(1 6↔ (−∞, 0])− 1
2)

log(n)
≤ 8

5
·
√

3

4π
.

We now describe the first steps of the strategy to derive the result above. This
will also give some insight, where the log comes from. First rewrite the number of
clusters as follows

|{C ∈ CG : C ∩ [1, n] 6= ∅}| = 1{1 open}+

n∑
k=2

1{k 6↔ [1, k − 1], k open}

= 1 +

n∑
k=2

1{k 6↔ [1, k − 1]} −
n∑
k=1

1{k closed}

2



So

EG(n)

= 1− 1

2
n+

n∑
k=2

(
PG(k 6↔ (−∞, k − 1]) + PG( {k 6↔ [1, k − 1]} ∩ {k ↔ (−∞, 0])})

)
= 1− 1

2
n+ (n− 1) · (PG(1 6↔ (−∞, 0]))

+

n∑
k=2

PG( {k 6↔ [1, k − 1]} ∩ {k ↔ (−∞, 0]}).

Remark: Since PG((−∞, 0]↔ [k,∞))→ 0 as k →∞, this implies that the leading
term of EG(n) is n(PG(1 6↔ (−∞, 0])− 1

2).

Let us introduce the following notation:

LG(n) :=
1

log(n)

n∑
k=2

PG( {k 6↔ [1, k − 1]} ∩ {k ↔ (−∞, 0]} ).

That is,

LG(n) =
EG(n)− 1 + 1

2n− (n− 1) · (PG(1 6↔ (−∞, 0]))

log(n)
.

Hence Theorem 1 is equivalent to

(a) limn→∞ LH(n) =
√
3

4π and

(b) lim supn→∞ LC(n) ≤ 8
5 ·
√
3

4π .

Take ε > 0. We will introduce M = M(n, ε) ∈ N and a sequence a(i) = a(i, n, ε)
for 1 ≤ i ≤M + 1, such that

a(M + 1) = n.

With these values we split up the sum in LG(n) in the following terms. For all
1 ≤ i ≤M ,

fi :=

a(i+1)∑
k=a(i)+1

PG( {k 6↔ [1, k − 1]} ∩ {k ↔ (−∞, 0]} ). (1)

and

f0 :=

a(1)∑
k=2

PG( {k 6↔ [1, k − 1]} ∩ {k ↔ (−∞, 0]} ). (2)

Then

LG(n) =
f0

log(n)
+

1

log(n)

M∑
i=1

fi.

The idea is now, roughly speaking, to choose a(i, n, ε) so that the ratio of two
consecutive ones equals 1 + ε and choose M such that a(1, n, ε) goes to infinity as
n→∞, but is of a smaller order than log(n). Than obviously the term f0/ log(n) is
negligible. We will see that M is more or less of the order log(n)/ε. The existence
of the limit limn→∞ LG(n) would follow if we can show that, for ε close to zero, fi
is approximately a constant times ε as n→∞.
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In the case that G = H, we will see in Section 3.1 that this strategy indeed leads
to the existence, and even the value, of the limit of LH(n) as n→∞. Unfortunately
in the full-plane it only leads to the upper bound stated in Theorem 1 (b), as we
will see in Section 3.2.

Now we make the above choices precise. We define

M :=

⌊
log(n)− 1

2 log(log(n))

log(1 + ε)

⌋
(3)

and for i ∈ {−1, · · · ,M − 1}

a(M − i, n, ε) :=

⌊
n

(1 + ε)i+1

⌋
(4)

or alternatively, for j ∈ {1, · · · ,M + 1}

a(j, n, ε) :=

⌊
n

(1 + ε)M−j+1

⌋
.

Note that than a(1, n, ε) is of order
√

log(n). To examine fi it is useful to rewrite
it in terms of an expectation as follows. Let

T (i) :=

a(i+1)∑
k=a(i)+1

1{k 6↔ [1, k − 1] and k ↔ (−∞, 0]}. (5)

Then f(i) = EG[T (i)]. Hence

LG(n) =
f0

log(n)
+

1

log(n)

M∑
i=1

EG[T (i)]. (6)

2 Preliminaries

In this section we state some results, which we will use in the proof of our main
result, Theorem 1. First some additional notation. We use the following notation
for the probabilities of so-called arm-events. Let, for m < n ∈ N

π1(m,n) := PH([−m,m]2 ↔ H \ [−n, n]2) (7)

and let π3(m,n) be the probability of having two disjoint closed paths, and an open
path, from [−m,m]2 to H \ [−n, n]2. The following lemma is well known (see for
example Theorems 21 and 22 in [Nol08]).

Lemma 2 There exist constants C1, C2 > 0 and α ≤ 1/2 such that, for all m < n

π1(m,n) ≤ C1

(m
n

)α
, π3(m,n) ≤ C2

(m
n

)2
.
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In fact, much more precise results for these probabilities are known, but will not be
used in this paper.

In the rest of this section, for a domain D ( C and n ∈ N the notation nD
denotes the set {n · u : u ∈ D}. For points a1, a2 on the boundary of D we denote
by [a1, a2] the part of the boundary of D between a1 and a2 in the counter clockwise
direction. Furthermore we generalize the notation slightly, namely by PD (and ED)
we will denote the probability measure for percolation restricted to the triangular
lattice on D. In this setting two intervals [a1, a2] and [a3, a4] on the boundary are
said to be connected if the there are vertices x, y on the lattice inside D, which are
connected, and are such that x has an edge which crosses [a1, a2] and y has an edge
which crosses [a3, a4].

The first theorem is the famous Cardy’s formula, which was proved by Smirnov
in [Smi01].

Theorem 3 (Cardy’s formula, [Smi01]) Let D ( C be a simply connected do-
main and φ : D → H a conformal map. Let a1, a2, a3, a4 be ordered points on the
boundary of D. We have

lim
n→∞

PnD([na1, na2]↔ [na3, na4]) =
2π
√

3

Γ
(
1
3

)3λ1/3 · 2F1

(
1

3
,
2

3
;
4

3
;λ

)
,

where λ is the cross-ratio

λ =
(φ(a1)− φ(a2))(φ(a4)− φ(a3))

(φ(a1)− φ(a3))(φ(a4)− φ(a2))
. (8)

This theorem concerns crossing probabilities of generalized rectangles in one ’di-
rection’. The following theorem gives a formula for probabilities of crossings in
two directions. It is called after Watts, who proposed the formula in 1996. The
first rigorous proof was by Dubédat [Dub06]. An alternative proof was obtained by
Schramm (see [SW11]).

Theorem 4 (Watts’ formula, [Dub06, SW11]) Let D ( C be a simply con-
nected domain and φ : D → H a conformal map. Let a1, a2, a3, a4 be ordered points
on the boundary of D. We have

lim
n→∞

PnD([na1, na2]↔ [na3, na4] and [na4, na1]↔ [na2, na3])

=
2π
√

3

Γ
(
1
3

)3λ1/3 · 2F1

(
1

3
,
2

3
;
4

3
;λ

)
−
√

3

2π
λ · 3F2

(
1, 1,

4

3
;
5

3
, 2;λ

)
.

where λ is the cross-ratio (8).

The last theorem we state here concerns the expected number of crossing clus-
ters of a rectangle. It was predicted by Cardy [Car01] and by Simmons, Kleban
and Ziff [SKZ07]. A proof was given by Smirnov and Hongler in [HS11]. Here
N(nD, a1, a2, a3, a4) denote the number of clusters in nD which connect [na1, na2]
with [na3, na4].

5



Theorem 5 ([HS11]) Let D ( C be a simply connected domain and φ : D → H a
conformal map. Let a1, a2, a3, a4 be ordered points on the boundary of D. We have

lim
n→∞

EnD[N(nD, a1, a2, a3, a4)]

=
2π
√

3

Γ
(
1
3

)3λ1/3 · 2F1

(
1

3
,
2

3
;
4

3
;λ

)
−
√

3

4π
λ · 3F2

(
1, 1,

4

3
;
5

3
, 2;λ

)
+

√
3

4π
log

(
1

1− λ

)
.

where λ is the cross-ratio (8).

3 Proof of Theorem 1

Recall from the introduction that Theorem 1 is equivalent to

(a) limn→∞ LH(n) =
√
3

4π and

(b) lim supn→∞ LC(n) ≤ 8
5 ·
√
3

4π .
Recall the definition (5) of T (i). We begin this section with a lemma which says

that, to prove the convergence of LG(n) as n → ∞, it is sufficient to prove the
convergence of ε−1EG[T (i)].

Lemma 6 The following inequalities hold.

lim sup
n→∞

LG(n) ≤ lim sup
ε→0

lim sup
n→∞

max
1≤i≤M

EG[T (i)]

ε
(9)

and

lim inf
n→∞

LG(n) ≥ lim inf
ε→0

lim inf
n→∞

min
1≤i≤M

EG[T (i)]

ε
. (10)

Proof: Recall (6) and the definitions of M,a(i), fi in (1) - (4). To prove (9), first
note that 0 ≤ f0 ≤ a(1, n, ε) and M was chosen such that a(1, n, ε) ≈

√
log(n),

hence

lim
n→∞

f0
log(n)

= 0.

Thus it is enough to prove that

lim sup
ε→0

lim sup
n→∞

(
M∑
i=1

EG[T (i)]

log(n)

)
≤ lim sup

ε→0
lim sup
n→∞

max
1≤i≤M

EG[T (i)]

ε
. (11)

Hereto, note that it is also easy to see from the definition of M that, for fixed ε > 0

lim
n→∞

M

log(n)
=

1

log(1 + ε)
.

For all ε > 0 we have

lim sup
n→∞

M∑
i=1

EG[T (i)]

log(n)
≤ lim sup

n→∞

(
M

log(n)
max
i≤M

EG[T (i)]

)
(12)

≤ 1

log(1 + ε)
· ε · lim sup

n→∞

(
max
i≤M

EG[T (i)]

ε

)
.
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Next note that

lim sup
ε→0

(
ε

log(1 + ε)
· lim sup

n→∞

(
max
i≤M

EG[T (i)]

ε

))
= lim sup

ε→0
lim sup
n→∞

(
max
i≤M

EG[T (i)]

ε

)
.

This together with (12) implies (11) and completes the proof of (9).
The inequality in (10) follows in a similar way and we omit it. �

3.1 Proof of Theorem 1 (a)

First note that it is easy to see that {T (i) ≥ 1} if and only if there is an open and a
closed path from (−∞, 0] to [a(i)+1, a(i+1)] and the closed path is below the open
path. Furthermore the event {T (i) ≥ m} is equal to the event that there are 2m
alternating paths between the aforementioned intervals, starting, from below, with
a closed path. Thus the BK inequality implies that

PH(T (i) ≥ m) ≤ (PH(T (i) ≥ 1))m. (13)

Hence

EH[T (i)] =
∞∑
m=1

PH(T (i) ≥ m) (14)

≤ PH(T (i) ≥ 1) +

∞∑
m=2

(PH(T (i) ≥ 1))m

= PH(T (i) ≥ 1) +
(PH(T (i) ≥ 1))2

1− PH(T (i) ≥ 1)
.

It is well-known from standard RSW arguments that PH(T (i) ≥ 1) goes, uni-
formly in i and n, to 0 as ε→ 0. Hence the ‘error term’ (i.e. the second term in the
r.h.s. of the equation array above) is negligible w.r.t. the main term (i.e. the first
term in the r.h.s.). By this, Lemma 6, the fact that a(1) → ∞ as n → ∞, and the
ratio between consecutive a(i)’s, it is sufficient to prove that

lim
k→∞

PH(Wk) =

√
3

4π
ε+ o(ε), (15)

where Wk denotes the event that there is an open and a closed path from (−∞, 0]
to [k, k(1 + ε)] and the closed path is below the open path.

Let W ′k be the event that there is an open and a closed path from (−∞, 0] to
[k, k(1 + ε)]. (So, informally speaking, W ′k is the same as Wk without the condition
on which path is above or below). Using that (by duality), there is either an open
path from [0, k] to [k(1 + ε),∞) or a closed path from (−∞, 0] to [k, k(1 + ε)], we
have

PH((−∞, 0]↔ [k, k(1 + ε)] and [0, k]↔ [k(1 + ε),∞)) (16)

= PH((−∞, 0]↔ [k, k(1 + ε)])− PH(W ′k).

The limits as k →∞ of the first probability in the r.h.s. and the probability in the
l.h.s. are obtained by Theorem 3 and Theorem 4 respectively, and we get

7



lim
k→∞

PH(W ′k) =

√
3

2π
· ε

1 + ε
· 3F2

(
1, 1,

4

3
;
5

3
, 2;

ε

1 + ε

)
(17)

= 2

√
3

4π
· ε+ o(ε).

Finally, let W̃k denote the event obtained from Wk by replacing ‘open’ by ‘closed’
and vice versa. Since Wk and W̃k have the same probability and W ′k = W̃k ∪Wk,
we have

PH(W ′k) = 2PH(Wk)− PH(Wk ∩ W̃k).

Since Wk∩W̃k is contained in the disjoint occurrence of W ′k and the event that there
is an open or closed path from (−∞, 0] to [k, k(1 + ε)], its probability is negligible
w.r.t. that of W ′k, and we get

lim
k→∞

PH(Wk) =
1

2
lim
k→∞

PH(W ′k),

which by (17) is equal to
√
3

4π · ε + o(ε). As we saw (see the argument above (15))
this proves Theorem 1 (a). �

3.2 Proof of Theorem 1 (b)

We will bound the relevant probabilities (concerning the full plane) by the proba-
bilities of certain connection events in the half-plane. We do this by cutting along
the real line from −∞ up to a(i+ 1). Let us make the cutting precise. Let

L(i) := (−∞, a(i+ 1)],

we define the new lattice to be the triangular lattice on C \ L(i). This is the full
triangular lattice, without the vertices (and their edges) on L(i). Let us denote the
corresponding probability measure, concerning percolation on this sublattice, by P̃i
(and expectation by Ẽi). Let the boundary ∂T[a, b] of an interval [a, b] ⊂ L(i) be the
vertices v of T which are not in the interval [a, b] but have a neighbouring vertex
which is on the interval [a, b]. Let T̃ (i) be the number of clusters which connect
∂T[a(i) + 1, a(i+ 1)] with ∂T(−∞, 0] but are not connected with ∂T[1, a(i)].

With this definition of T̃ (i) ‘almost all’ the open connections counted in T (i) are
counted in T̃ (i) as well; however, there are exceptions. In these exceptional cases
there is an open connection from (−∞, 0] to [a(i)+1, a(i+1)] which is not connected
to [1, a(i)] on T, but ı́s connected to ∂T[1, a(i)] on C \ L(i) ∩ T. See Figure 3. More
precisely, we define

B(i) :=
⋃

k∈[1,a(i)]∩T

(Bu(i, k) ∪Bl(i, k)) ,

where Bu(i, k) is the event that, on H∩T, there are closed paths from k to (−∞, 1]
and from k to [a(i),∞) and open paths from one of the vertices k + j and k − 1 + j
to (−∞, 0] and to [a(i) + 1,∞). (The open paths are not necessarily disjoint). The
event Bl(i, k) is defined similarly on the lower half-plane.

8



dc10

Figure 1: The event B(i) occurs. Filled circles are open and empty circles are closed.
c = a(i), d = a(i+ 1).

We have
EC[T (i)] ≤ Ẽi[T̃ (i)] + 2PC(B(i)). (18)

To bound PC(B(i)) we use the first inequality of Lemma 2 for those k in the definition
of B(i) that are ‘close to’ 1 or a(i), and the other inequality in that lemma for the
other k’s. More precisely, we fix a constant β ∈ (0, 1), and let r(a(i)) := da(i)βe.
Then,

PC(B(i)) ≤ 4π1(r(a(i)), a(i)) + 4

d 1
2
a(i)e∑

k=r(a(i))+1

π3(1, k)

≤ 4C1

(
r(a(i))

a(i)

)α
+ 4

∞∑
k=r(a(i))+1

C2

(
1

k

)2

, (19)

where the factor 4 comes from symmetry considerations. Hence, there exist constants
C3, C4 > 0 such that

PC(B(i)) ≤ C3

(
a(i)β−1

)α
+

C4

a(i)β
(20)

Note that, since a(1) (the smallest of the a(i)’s) tends to ∞ as n → ∞, and
C3(x

β−1)α + C4

xβ
tends to 0 as x → ∞, the contribution of PC(B(i)) to the r.h.s.

of (9) is 0.
Next we consider the term Ẽi[T̃ (i)]. Let S(i) denote the number of closed clusters

connecting ∂T[a(i) + 1, a(i+ 1)] with ∂T(−∞, 0]. Observe that

T̃ (i) = S(i)− 1{S(i) ≥ 1}.

Thus it follows immediately, that

Ẽi[T̃ (i)] = Ẽi[S(i)]− P̃i(S(i) ≥ 1). (21)

To complete the proof we will use Theorem 5. Therefore we consider the domain
C\L(i) and scale it by a(i). (As noted before, a(1) goes to∞ as n→∞). This gives
the conformal rectangle C\ (−∞, 1+ε) with ‘corners’ 0+, 0−, 1+ and 1− (where, for

9



x < 1 + ε, x+ and x− denote the ‘copy’ of x in the upper and the lower half-plane
respectively). To apply Theorem 5 we need the cross-ratio, which can be computed
as follows: Consider the conformal map

ϕ(z) := i
√
z − 1− ε

which maps C \ (−∞, 1 + ε) onto the upper half-plane. The cross-ratio is

λ(ε) =
(ϕ(1+)− ϕ(1−))(ϕ(0−)− ϕ(0+))

(ϕ(0+)− ϕ(1−))(ϕ(0−)− ϕ(1+))
.

It is easy to see that

ϕ(0−) = −
√

1 + ε, ϕ(1−) = −
√
ε, ϕ(1+) =

√
ε, ϕ(0+) =

√
1 + ε.

Hence

λ(ε)2 =
16ε(1 + ε)

(
√

1 + ε+
√
ε)4

= 16ε+ o(ε). (22)

Applying Theorem 5 we conclude that, as n→∞, Ẽi[S(i)] converges (uniformly
in the i′s with 1 ≤ i ≤M(n)), to

2π
√

3

Γ(13)3
λ(ε)1/3 · 2F1

(
1

3
,
2

3
;
4

3
;λ(ε)

)
−
√

3

4π
λ(ε) · 3F2

(
1, 1,

4

3
;
5

3
, 2;λ(ε)

)
+

√
3

4π
log

(
1

1− λ(ε)

)
.

The first term is exactly the limit P̃i(S(i) ≥ 1) as n→∞ (Cardy’s formula). Hence
by noting that

−
√

3

4π
λ · 3F2

(
1, 1,

4

3
;
5

3
, 2;λ

)
+

√
3

4π
log

(
1

1− λ

)
=

√
3

4π
· 1

10
λ2 + o(λ2),

and (21) and (22) we get that

lim
n→∞

Ẽi[T̃ (i)] =

√
3

4π
· 16

10
ε+ o(ε) =

8

5
·
√

3

4π
· ε+ o(ε), (23)

uniformly in the i’s with 1 ≤ i ≤M(n).
This, combined with (18) and the negligibility of PC(B(i)) (see the line below

(20)), gives

lim sup
n→∞

max
1≤i≤M

EC[T (i)] ≤ 8

5
·
√

3

4π
· ε+ o(ε).

By Lemma 6 this implies Theorem 1 (b). �
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