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Abstract

Frozen percolation on the binary tree was introduced by Aldous [1]
around fifteen years ago, inspired by sol-gel transitions. We investi-
gate a version of the model on the triangular lattice, where connected
components stop growing (“freeze”) as soon as they contain at least N
vertices, for some parameter N ≥ 1.

This process has a substantially different behavior from the diameter-
frozen process, studied in [32, 16]: in particular, we show that many
(more and more as N → ∞) frozen clusters surrounding the origin
appear successively, each new cluster having a diameter much smaller
than the previous one. This separation of scales is instrumental, and
it helps to approximate the process in sufficiently large (as a function
of N) finite domains by a Markov chain. This allows us to establish a
deconcentration property for the sizes of the holes of the frozen clusters
around the origin.

For the full-plane process, we then show that it can be coupled
with the process in large finite domains, so that the deconcentration
property also holds in this case. In particular, this implies that with
high probability (as N → ∞), the origin does not belong to a frozen
cluster in the final configuration.

This work requires some new properties for near-critical percola-
tion, which we develop along the way, and which are interesting in
their own right: in particular, an asymptotic formula involving the
percolation probability θ(p) as p ↘ pc, and regularity properties for
large holes in the infinite cluster. Volume-frozen percolation also gives
insight into forest-fire processes, where lightning hits independently
each tree with a small rate, and burns its entire connected component
immediately.
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1 Introduction

1.1 Frozen percolation

Frozen percolation is a growth process which was first introduced by Aldous
[1] on the binary tree, motivated by sol-gel transitions [27]. Let us first define
it informally, on an infinite simple graph G = (V,E), where the vertices may
be interpreted as particles. We start with all edges closed (i.e. all particles
are isolated), and we try to turn them open independently of each other: at
some random time τe uniform between 0 and 1, the edge e ∈ E becomes open
if and only if it connects two finite open connected components (otherwise
it just stays closed). In other words, a connected components grows until it
becomes infinite (i.e. it gelates), at which time it just stops growing: we say
that it freezes, which explains the name of the process. Apart from sol-gel
transitions, one may think of other interpretations, e.g. population dynamics
(group formation), and pattern formation in general. There are (somewhat
surprisingly at first sight) also interesting connections with (and potential
applications to) forest-fire models.

The existence of the frozen percolation process is not clear at all. In
[1], Aldous studies the case when G is the infinite 3-regular tree, as well as
the case of the planted binary tree (where all vertices have degree 3, except
the root vertex which has degree 1): using the tree structure, which allows
for explicit computations, he shows that the frozen percolation process does
exist in these two cases. However, Benjamini and Schramm noticed soon
after Aldous’ paper that such a process does not exist on the square lattice
Z2 (see also Remark (i) after Theorem 1 in [31]).

In order to circumvent this non-existence issue, a “truncated” process was
introduced in [32] by de Lima and two of the authors, where a connected
component stops growing when it reaches a certain “size” N , where N ≥ 1
is some parameter of the process. Formally, the original frozen percolation
process corresponds to N = ∞, and one would like to understand what
happens as N →∞, in view of the non-existence result.

When N is finite, “size” can have various meanings, and in [32], the size
of a cluster is measured by its diameter. This diameter-frozen process was
then further studied by the second author in [16], who established a precise
description as N → ∞, which, roughly speaking, can be summarized as
follows. Let us fix some K > 1, and look at the process in a square of side
length KN : only finitely many frozen clusters appear (the probability that
there are more than k such clusters decays exponentially in k, uniformly
in N), and they all freeze in a near-critical window around the percolation
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threshold pc. In particular, it is shown that the frozen clusters all look like
near-critical percolation clusters, with density converging to 0 as N → ∞,
and with high probability, the origin does not belong to a frozen cluster: in
the final configuration, a typical point is on a macroscopic non-frozen cluster,
i.e. a cluster with diameter of order N , but smaller than N .

The truncated process on a binary tree is studied in [33], where it is
shown that the final configuration is completely different: a typical point
is either on a frozen cluster (i.e. with diameter ≥ N), or on a microscopic
ones (with diameter O(1)), but one observes neither macroscopic non-frozen
clusters, nor mesoscopic ones. Moreover, the way of measuring the size of
a cluster does not really matter in this case: under suitable hypotheses, the
process converges (in some weak sense) to Aldous’ process as N →∞.

In the present paper, we go back to the case of a two-dimensional lat-
tice, where we measure the size of a cluster by the number of vertices that
it contains. Throughout the paper, we work with a site version of frozen
percolation, on the (planar) triangular lattice T (we do this because site per-
colation on T is the planar percolation process for which the most precise
results are known, as discussed below). This lattice has vertex set

V (T) = {x+ yeπi/3 ∈ C : x, y ∈ Z},
and edge set E(T) obtained by connecting all pairs u, v ∈ V (T) for which
‖u − v‖2 = 1. If u, v ∈ V are connected by an edge, i.e. (u, v) ∈ E(T), we
say that u and v are neighbors, and we write u ∼ v.

The independent site percolation process on T can be described as fol-
lows. We consider a family (τv)v∈V (T) of i.i.d random variables, with uniform
distribution on [0, 1]. For p ∈ [0, 1], we say that a vertex v is p-black (resp.
p-white) if τv ≤ p (resp. τ > p). Then, p-black and p-white vertices are dis-
tributed according to independent site percolation with parameter p, where
vertices are independently black or white, with respective probabilities p and
1− p: we denote by Pp the corresponding probability measure. Vertices can
be grouped into maximal connected components (clusters) of black sites and
white sites, which defines a partition of V (T). It is a celebrated result [13]
that for all p ≤ pc := 1/2, there is a.s. no infinite p-black cluster, while for
p > pc, there exists a.s. a unique infinite p-black cluster. We refer the reader
to [12] for an introduction to percolation theory.

Indirectly, our work relies on the conformal invariance property of critical
percolation [25] and the SLE (Schramm-Loewner Evolution) technology [18,
19] (see also [35]). A key ingredient for the more refined results about the
percolation phase transition is the construction of the scaling limit of near-
critical percolation [11]. Note that our site version of frozen percolation
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(described below) is the exact analogue of the bond version on Z2: if the
above-mentioned ingredients were available in the latter case, all our proofs
would be applicable as well.

We can then define the volume-frozen percolation process itself, based
on the same collection (τv)v∈V (T). For a subset A ⊆ V (T), its volume is the
number of vertices that it contains, denoted by |A|. Let G = (V,E) be a
subgraph of T, and N ≥ 1 be a fixed parameter. At time t = 0, we set all
the vertices in V to be white, and as time t evolves from 0 to 1, each vertex
v ∈ V can become black at time t = τv only: it is allowed to do so if and
only if all the black clusters touching v have a volume strictly smaller than
N (otherwise, v stays white until the end, i.e time t = 1). That is, black
clusters keep growing until their volume gets at least N , when their growth
is stopped: such a cluster is said to be frozen. We use the notation P(G)

N

for the corresponding probability measure, and we omit the graph G used
when it is clear from the context. Note that this process is well-defined: it
can be seen as a finite range interacting particle system, thus general theory
[22] provides existence. Our results show in particular that the frozen sites
(i.e. the sites belonging to a frozen cluster in the final configuration) vanish
asymptotically.

Theorem 1.1. For the volume-frozen percolation process on T with param-
eter N ≥ 1,

P(T)
N (0 is frozen at time 1) −→

N→∞
0. (1.1)

In fact, the proof of Theorem 1.1 provides a stronger result (a deconcen-
tration property), which shows a substantial difference with the diameter-
frozen model, as well as with Aldous’ model on the tree. Let us consider
two independent realizations of the cluster of 0 at time 1 in the frozen per-
colation process: if we let C1 be the larger one, and C2 the smaller one,
then |C1|

|C2| → +∞ in probability as N →∞. Note that this property implies
Theorem 1.1, since the ratio of the volumes of two frozen clusters is between
1
2 and 2. It also shows that we only observe mesoscopic clusters: for every
M > 1,

P(T)
N

(
M < |C1(0)| < N

M

)
−→
N→∞

1.

The proof also shows that as N → ∞, the number of frozen clusters sur-
rounding the origin tends to ∞ in probability.
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1.2 Exceptional scales in volume-frozen percolation

In [34], we showed the existence of a sequence of exceptional scales mk =
mk(N), k ≥ 1, with m1(N) =

√
N and mk+1(N) � mk(N) (as N → ∞)

for all k ≥ 1.
Let us denote by Bn := [−n, n]2 the ball of radius n around the origin in

the L∞ norm. The scales (mk(N))k≥1 are exceptional in the sense that if we
consider the volume-frozen percolation process in Bm, for some m = m(N),
we get two very different behaviors according to whetherm stays close to one
of these scales or not. More precisely, we proved in [34] that the following
dichotomy holds.

• If mk � m� mk+1 as N →∞ for some k ≥ 1 (i.e. we start between
two exceptional scales but far from them), then (w.h.p.) k successive
frozen clusters appear around 0, at (random) times pk < pk−1 < . . . <
p1 (all strictly larger than pc = 1

2) such that mi−1 � L(pi) � mi

(where L(p) is the characteristic length at p: see (2.3) below for a
precise definition). Moreover, the cluster C1(0) of the origin at time
1 satisfies 1 � |C1(0)| � N : in other words, we only see mesoscopic
(non-frozen) clusters.

• On the other hand, if m � mk as N → ∞ (for a given k ≥ 1), then
(w.h.p.) one of the following three situations occurs, each having a
probability bounded away from 0: either there are k − 1 successive
freezings, and |C1(0)| < N but is � N , or there are k successive freez-
ings, and either |C1(0)| ≥ N , or |C1(0)| � 1. That is, we only observe
macroscopic (frozen and non-frozen) and microscopic clusters.

Another significant difference is that in the first case, all the frozen clus-
ters appear close to pc, while in the second case, freezing can occur on the
whole time interval (pc, 1) (as on the binary tree, but note that there are no
macroscopic non-frozen clusters on the tree).

These exceptional scales clearly highlight the non-monotonicity of the
process, which makes it quite challenging to study: we need to develop spe-
cific tools and ideas to study its dynamics. Note that the existence of these
exceptional scales constitutes a big difference with diameter-frozen percola-
tion [16]. For the diameter case, there is essentially one characteristic scale
(N), and most frozen clusters leave holes which are too small for new frozen
clusters to emerge, while for the volume case, most frozen clusters leave holes
where new clusters can freeze.

Heuristically, we expect the resulting configuration in the full-plane pro-
cess to correspond to the first case, i.e. mk � m � mk+1. However, we
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proceed in a different way: we first prove that even if we start close to mk,
the successive freezings create enough randomness as k →∞ (the successive
freezing scales get deconcentrated), so that we end up far away from m1.
This yields in particular the following result.

Theorem 1.2. For all ε > 0, there exists l ≥ 1 such that for all k ≥ l, the
following holds: if m(N) ∈ [mk(N),mk+1(N)] for N large enough, then

lim sup
N→∞

P(Bm(N))

N (0 is frozen at time 1) ≤ ε.

This result is interesting in itself, but it is also an intermediate step to
prove Theorem 1.1: for that, we “connect” the full-plane frozen percolation
process with the process in large enough (as a function of N) domains. We
actually need a more uniform result than Theorem 1.2, where boxes can
be replaced by domains which are “sufficiently regular” (see Theorem 6.2 in
Section 6.2 for a precise statement).

1.3 Organization of the paper

In the first three sections (Sections 2 to 4), we collect and develop all the
tools from independent percolation which are used in our proofs. More specif-
ically, we need results about the near-critical regime, close to the percolation
threshold pc.

In Section 2, we first discuss classical results, and we derive some conse-
quences of these results. We then prove more involved properties, for which
the scaling limit of near-critical percolation (see [11]) is needed. In partic-
ular, we establish an improved formula for the asymptotic behavior of the
density θ(p) of the infinite cluster as p↘ pc.

A central object in our reasonings is the hole of the origin in the infinite
cluster (in the supercritical regime p > pc), and we study it further in Section
3, proving continuity (with respect to p) and regularity properties which are
interesting in themselves. In particular, one of the difficulties is to rule out
the existence of certain bottlenecks, which could perturb the future evolution
of the process.

In Section 4, we discuss and extend several estimates (from [4]) on the
volume of the largest connected component in a finite domain. These es-
timates are used repeatedly in our proofs, to obtain a good control on the
successive freezing times.

We then turn to the frozen percolation process itself. We first study it
in finite domains, before analyzing the full-plane process in Section 7.
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In Section 5, we discuss the exceptional scales, and we introduce several
chains associated with the frozen percolation process in a finite box. One
of these chains is an exact Markov chain, and we prove a deconcentration
property for it, using an abstract lemma obtained in Section 5.4.

This deconcentration property is then used in Section 6 to prove Theorem
1.2. Roughly speaking, we need to know that the number of frozen clusters
surrounding the origin is sufficiently large: for instance, we can start with a
box with side length � mk(N), for k large enough.

We then establish Theorem 1.1 in Section 7, i.e. the asymptotic absence
of dust in the full-plane process. For that, we explain how to couple the
process in T with the process in finite, large enough (as a function of N)
domains, which allows us to use the results from the previous section. Finally,
in Section 7.3, we briefly discuss the potential connection with two other
natural processes.

2 Preliminary: near-critical percolation

Our proofs rely heavily on a precise description of independent percolation
near criticality, i.e. on how this model behaves through its phase transition.
We collect here all the results that are needed later, before turning to frozen
percolation itself in the subsequent sections. After fixing notations in Section
2.1, we present properties which have by now become classical, in Section
2.2, and we derive a few consequences of these properties in Section 2.3.
We then turn to more specific technical tools, in Sections 2.4, 2.5 and 2.6.
The proofs of these results turn out to be more involved, relying on recent
breakthroughs by Garban, Pete, and Schramm [10, 11], and they only hold
for site percolation on the triangular lattice.

2.1 Notations

In what follows, a path is a sequence of vertices, where any two consecutive
vertices are neighbors. Two vertices u and v are said to be connected, which
we denote by u ↔ v, if there exists a path from u to v on T that consists
of black sites only (we also consider white connections, but in this case, we
always mention explicitly the color). Two subsets A,B ⊆ V (T) are said to
be connected if there exist u ∈ A and v ∈ B which are connected, and we
write A ↔ B. For p > pc, the unique infinite p-black cluster is denoted by
C∞(p). We also write v ↔∞ for the event v ∈ C∞, and we use the notation

θ(p) = Pp(0↔∞)
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for the density of C∞.
For A ⊆ T, we consider its inner boundary ∂inA, which contains all

the sites in A that are neighbor with a site in Ac, and its outer boundary
∂outA = ∂in(Ac), which consists of all the sites in Ac neighbor to a site in A.
Note that if A is a black cluster, then ∂inA and ∂outA consist of black and
white sites, respectively.

For a rectangle R = [x1, x2] × [y1, y2] (x1 < x2, y1 < y2), we denote
by CH(R) (resp. CV (R)) the event that there exists a black path in R that
connects the two vertical (resp. horizontal) sides of R. We write C∗H(R) and
C∗V (R) for the analogous events with white paths.

For 0 < m < n, we define the annulus

Am,n := Bn \Bm.

For z ∈ C, we use the short-hand notations Br(z) = z + Br and Am,n(z) =
z+Am,n. For notational convenience, we also allow the value n =∞, writing
Am,∞(z) = C \Bm(z). For A = Am,n(z), the event that there exists a black
(resp. white) circuit in A, i.e. surrounding Bm(z), is denoted by O(A) (resp.
O∗(A)), and we often use the outermost such black circuit in A, which we
denote by CoutA (we take CoutA = ∅ when such a circuit does not exist).

As often when studying near-critical percolation, the so-called arm events
play a central role in our proofs. For k ≥ 1 and σ ∈ Sk := {b, w}k (where we
write b and w for black and white, respectively), we define the event Aσ(A)
that there exist k disjoint paths γi (1 ≤ i ≤ k) in A, in counter-clockwise
order, each connecting Bm(z) to ∂Bn(z), and such that γi has color σi for
each i. We denote

πσ(m,n) = Ppc (Aσ (Am,n)) , (2.1)

and we simply write πσ(n) for πσ(0, n) (for paths starting from a neighbor of
the origin). For notational convenience, we write A1, A∗1, A4, and A6 in the
cases when σ is (b), (w), (bwbw), and (bwwbww), respectively. Note that for
an annulus A, O(A) = (A∗1(A))c. For notational convenience, we also write

O(z;m,n) = O(Am,n(z)) and Aσ(z;m,n) = Aσ(Am,n(z)), (2.2)

where z is assumed to be 0 when it is omitted.
We define the characteristic length by

L(p) = max {n > 0 : Pp (CH ([0, n]× [0, 2n])) ≥ 0.01} (2.3)

for p < 1/2, and by L(1 − p) = L(p) for p > 1/2. From the definition
above, it is clear that L(p) is piecewise linear, and not continuous. Thus we
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use a slightly different function L̃ defined as follows. For pd ∈ (0, 1) \ {pc}
discontinuity points of L, we set L̃(pd) = L(pd). Then we extend L̃ to
p ∈ (0, 1)\{pc} by linear interpolation. The function L̃ has similar properties
as L with the additional benefit of being continuous, which will come handy
later. With a slight abuse of notation, in the following we write L for L̃.

2.2 Classical results

Here we collect some of the results in near-critical percolation which will be
used throughout the paper.

(i) Exponential decay with respect to L(p): there exist universal constants
c1, c2 > 0 such that

Pp (CV ([0, 2n]× [0, n])) ≤ c1e
−c2 n

L(p) (2.4)

for all p < 1/2 (see Lemma 39 in [24]).

(ii) Extendability and quasi-multiplicativity of arm events at criticality:
for all k ≥ 1 and σ ∈ Sk, there are constants c1, c2 > 0 (depending on
σ only) such that

c1πσ(2n1, n2) ≤ πσ(n1, n2) ≤ c2πσ(n1, 2n2) (2.5)

and

c1πσ(n1, n3) ≤ πσ(n1, n2)πσ(n2, n3) ≤ c2πσ(n1, n3) (2.6)

for all 0 ≤ n1 ≤ n2 ≤ n3 (see Propositions 16 and 17 in [24], respec-
tively).

(iii) Arm events in near-critical regime: for every k ≥ 1, σ ∈ Sk, let Ap,p
′

σ

denote the modification of the event Aσ where the black arms are p-
black, and the white ones are p′-white. Then for all Λ ≥ 1, there exist
constants c1, c2 > 0 (depending on k, σ, and Λ) such that

c1πσ(m,n) ≤ Pp(Ap,p
′

σ (m,n)) ≤ c2πσ(m,n) (2.7)

for all p, p′ ∈ (0, 1), and all m,n ≤ ΛL(p) ∧ L(p′) (see Lemma 6.3 in
[7], or Lemma 8.4 in [11]).
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(iv) Lower and upper bounds on the 1-arm exponent: there exist universal
constants c1, c2, η > 0 such that

c1

(m
n

)1/2
≤ Pp(A1(m,n)) ≤ c2

(m
n

)η
(2.8)

for all m,n > 0 with m < n < L(p). This implies that for all k ≥ 1,
σ ∈ Sk, and Λ ≥ 1, there exist universal constants c3, α > 0 such that

P(Ap,p′σ (m,n)) ≤ c3

(m
n

)α
(2.9)

for all p, p′, and m,n ≤ ΛL(p) ∧ L(p′).

(v) Lower bound on the 4-arm exponent: there exist universal constants
c, δ > 0 such that

Pp(A4(m,n)) ≥ c
(m
n

)2−δ
(2.10)

for all m,n > 0 with m < n < L(p) (this is a consequence of Theorem
24 (3) in [24]). In particular, there is a universal constant C ′ such that

n∑

k=1

22kπ4(2k) ≤ C ′22nπ4(2n) (2.11)

for all n ≥ 1.

(vi) Upper bound on the 6-arm exponent: there exist universal constants
c, δ > 0 such that

Pp(A6(m,n)) ≤ c
(m
n

)2+δ
(2.12)

for all m,n > 0 with m < n < L(p) (we refer the reader to Theorem
24 (3) in [24]).

(vii) Asymptotic equivalences: we have

θ(p) � π1(L(p)) (2.13)

as p↘ pc (see Theorem 2 of [14], or (7.25) in [24]), and

|p− pc|L(p)2π4(L(p)) � 1 (2.14)

as p→ pc (see (4.5) in [14], or Proposition 34 of [24]).
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2.3 Additional properties

Let us first give a definition.

Definition 2.1. For 0 < a < b, we consider all the horizontal and vertical
rectangles of the form

Ba(2ax) ∪Ba(2ax′), with x, x′ ∈ Bdb/2ae+1, x ∼ x′

(covering the ball Bb+2a), and we denote by Np(a, b) the event that in each
of these rectangles, there exists a p-black crossing in the long direction.

Note that Np(a, b) implies the existence of a p-black cluster N which
ensures that all the p-black clusters and all the p-white clusters that intersect
Bb, except N itself, have a diameter at most 4a. In the following, such a
cluster N is called a net.

Lemma 2.2. There exist universal constants c1, c2 > 0 such that: for all
0 < a < b and p > pc,

P(Np(a, b)) ≥ 1− c1

(
b

a

)2

e
−c2 a

L(p) . (2.15)

Proof of Lemma 2.2. This follows immediately from the exponential decay
property (2.4).

We also derive the following lower bound, which is used in the proof of
Proposition 7.2.

Lemma 2.3. For all Λ,Λ′ ≥ 1, there exists a constant c = c(Λ,Λ′) > 0 such
that: for all p, p′ > pc with p < p′ and L(p′) ≥ Λ′−1L(p), all n ≥ Λ−1L(p),

P(0
p′↔∞, 0

p= ∂Bn) ≥ c |p
′ − p|
|p− pc|

θ(p). (2.16)

Proof of Lemma 2.3. Since the left-hand side of (2.16) is increasing in n, we

can assume that n = Λ−1L(p). We construct a sub-event of {0 p′↔ ∞, 0
p=

∂Bn} for which the desired lower bound holds, as follows. We start with the
events

E1 := {there is a p-black circuit C1 in AΛ−1L(p)/4,Λ−1L(p)/2 s.t. 0
p↔ C1},

and E2 := {there is a p-black circuit C2 in AΛ−1L(p),2Λ−1L(p) s.t. C2
p↔∞}.

12



These two events are independent, and the Russo-Seymour-Welsh theorem
implies that

P(E1)P(E2) ≥ c1θ(p)

for some constant c1 = c1(Λ) > 0.
If we also introduce

Wp := {v ∈ AΛ−1L(p)/2,Λ−1L(p) : v is p-white, ∂v p↔ ∂BΛ−1L(p)/4, ∂v
p↔ ∂B2Λ−1L(p)}

(where we denote by ∂v the set of neighbors of v), then there exist constants
c2, c3 > 0 (depending only on Λ) such that the event

E3 := {there is a p-white circuit in AΛ−1L(p)/2,Λ−1L(p)}
∩ {|Wp| ≥ c2L(p)2π4(L(p))}

satisfies: for all p > pc, P(E3) ≥ c3. This property follows from standard
arguments, and we sketch a proof on Figure 2.1.

We now restrict ourselves to the event E1 ∩ E2, we let C1 and C2 be the
inner- and outermost circuits appearing in the events E1 and E2, respectively,
and we condition on the circuits C1 and C2, as well as on the configuration
inside C1 and outside C2. The configuration between C1 and C2 is thus fresh,
and we obtain

P(E1 ∩ E2 ∩ E3) =
∑

C1,C2

P(E3 | C1 = C1, C2 = C2)P(C1 = C1, C2 = C2)

≥ c1θ(p) · c3.

Using the pivotal vertices produced by the event E3, we deduce that for some
c4 > 0,

P(0
p′↔∞, 0

p= ∂BΛ−1L(p)) ≥ c4|p′ − p|L(p)2π4(L(p))P(E1 ∩ E2 ∩ E3)

≥ c1c3c4|p′ − p|L(p)2π4(L(p))θ(p)

(here, we use the fact that |p′ − p|L(p)2π4(L(p)) ≤ c5
|p′−p|
|p−pc| ≤ c6 for some

universal c5 > 0, and c6 = c6(Λ′) > 0, from (2.14) and the hypothesis
on p and p′), which completes the proof of Lemma 2.3 (by applying again
(2.14)).

Note that Lemma 2.3 implies in particular the following: there exists
a constant c = c(Λ′) > 0 such that for all p, p′ > pc with p < p′ and
L(p′) ≥ Λ′−1L(p),

θ(p′)− θ(p) ≥ c |p
′ − p|
|p− pc|

θ(p)

13



∂B2Λ−1L(p)
∂BΛ−1L(p)

∂BΛ−1L(p)/2

∂BΛ−1L(p)/4

Figure 2.1: It follows from a second moment argument that with a proba-
bility ≥ c3 > 0, there exist � L(p)2π4(L(p)) vertices in the gray region with
four well-separated arms, as depicted. By using RSW, we can then extend
the two p-white arms into a p-white circuit in AΛ−1L(p)/2,Λ−1L(p).

(by fixing one value of Λ, e.g. Λ = 1, and letting n → ∞ in the right-
hand side of (2.16)). It is also possible to derive a similar upper bound on
θ(p′)− θ(p).
Lemma 2.4. For all Λ > 1, there exists a constant C = C(Λ) > 0 such
that: for all p, p′ > pc with p < p′ and L(p′) ≥ Λ−1L(p), we have

θ(p′)− θ(p) ≤ C |p
′ − p|
|p− pc|

θ(p). (2.17)

Proof of Lemma 2.4. Since this result is not used later in the paper, we
postpone the proof to Appendix A.1.

2.4 Asymptotics of πσ

We now recall some results on the large scale behavior of arm events at
criticality. We first remind that their probabilities are described asymptoti-
cally by critical exponents, whose values are known (except in the so-called
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monochromatic case, for k ≥ 2 arms of the same color). The following result
is due to Smirnov and Werner [26] (except for the case k = 1 [20], and for the
existence in the k ≥ 2 monochromatic case [2]). Its proof relies on the con-
nection between critical percolation and SLE (Schramm-Loewner Evolution)
processes with parameter 6, which uses the conformal invariance property of
critical percolation (in the scaling limit) [25] and properties of SLE processes
[18, 19].

Lemma 2.5. For all k ≥ 1 and σ ∈ Sk,

πσ(k, n) = n−ασ+o(1) as n→∞,

for some constant ασ > 0. Furthermore,

• ασ = 5
48 for k = 1,

• and ασ = k2−1
12 for all k ≥ 2 and σ ∈ Sk containing both colors.

This has the following consequence, known as a ratio-limit theorem.

Lemma 2.6 (Proposition 4.9 of [10]). For all k ≥ 1, σ ∈ Sk and λ > 1,

lim
n→∞

πσ(k, λn)

πσ(k, n)
= λ−ασ ,

where ασ is as in Lemma 2.5.

Actually, we make use of a slightly stronger version of this result: the
above point-wise convergence holds locally uniformly in λ.

Lemma 2.7. For all k ≥ 1, σ ∈ Sk, Λ > 1 and ε > 0, there exists K ≥ 1
such that: for all n′ > n ≥ K with n′

n ≤ Λ, we have

πσ(k, n′)
πσ(k, n)

·
(
n′

n

)ασ
∈ (1− ε, 1 + ε),

where ασ is as in Lemma 2.5.

Proof of Lemma 2.7. This is a rather immediate consequence of Lemma 2.6,
and the fact that πσ is decreasing in its second argument. Indeed, let us write
Λ = (1 +α)m, for some α > 0 very small, depending on ε (a precise choice is
made later). We can apply Lemma 2.6 for each λ ∈ Lm := {(1 + α)i : 1 ≤
i ≤ m}: there exists K ≥ 1 large enough so that for all n ≥ K and λ ∈ Lm,

πσ(k, λn)

πσ(k, n)
· λασ ∈

(
1− ε

10
, 1 +

ε

10

)
. (2.18)
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Now, let us consider any n ≥ K and n′ ∈ (n,Λn]: there exists some i ∈
{1, . . . ,m} for which (1 +α)i ≤ n′

n ≤ (1 +α)i+1, and the monotonicity of πσ
implies

πσ(k, (1 + α)i+1n)

πσ(k, n)
≤ πσ(k, n′)
πσ(k, n)

≤ πσ(k, (1 + α)in)

πσ(k, n)
.

By combining this with (2.18), we obtain
(

1− ε

10

)(
(1 + α)i+1

)−ασ ≤ πσ(k, n′)
πσ(k, n)

≤
(

1 +
ε

10

)(
(1 + α)i

)−ασ ,

and so
(

1− ε

10

)
(1 + α)−ασ

(
n′

n

)−ασ
≤ πσ(k, n′)
πσ(k, n)

≤
(

1 +
ε

10

)
(1 + α)ασ

(
n′

n

)−ασ
.

This yields the desired conclusion, by choosing α small enough: we need
(

1− ε

10

)
(1 + α)−ασ ≥ 1− ε and

(
1 +

ε

10

)
(1 + α)ασ ≤ 1 + ε.

2.5 Asymptotics of θ(p)

In this section and the next one, we derive two more specific properties
of near-critical percolation. To our knowledge, these results are new, and
we believe that they are interesting in themselves. Their proofs are more
involved, since they rely on the scaling limit of near-critical percolation [11]
constructed by Garban, Pete and Schramm.

Our description of volume-frozen percolation relies on locating precisely
the successive freezing times, for which we need to closely keep track of the
value of θ. For that, it turns out that the asymptotic equivalence (2.13) is
not good enough, and we make use of the strengthened version below.

Proposition 2.8. There exists a constant cθ ∈ (0,∞) such that

θ(p)

π1(L(p))
−→
p↘pc

cθ.

Before we dive into the proof, we extend our notations to accommodate
the triangular lattice at different mesh sizes, as in [10, 11]. These new nota-
tions are used only in this section and the next one.
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For η > 0, let Tη be the lattice with vertex set ηV (T) isomorphic to T.
For all the quantities defined so far, we add a superscript η to indicate the
dependence on the mesh size. In particular, Pηp refers to site percolation on
Tη with parameter p. Note that

Lη(p) = ηL(p), and πηj (a, b) = πj(aη
−1, bη−1)

for all j ∈ {1, 4} and 0 < a < b.
We make use of the following near-critical parameter scale: for λ ∈ R,

we set

pλ(η) := pc + λ
η2

πη4(η, 1)
. (2.19)

We use the short-hand Pη,λ := Pηpλ(η), and we extend the notation πηj (a, b)
by

πη,λj (a, b) := Pη,λ(Aj(a, b))
for j ∈ {1, 4} and 0 < a < b. Finally, we set (with a slight abuse of notation)
Lη(λ) := Lη(pλ(η)).

First, let us recall some results from [10] and [11].

Theorem 2.9 (Theorem 9.4 of [11]). For any λ ∈ R, the percolation model
on Tη with parameter pλ(η) converges in distribution to the continuum near-
critical percolation model as η → 0 (in the quad-crossing topology).

The above theorem immediately implies that for any fixed λ ∈ R, the
correlation lengths Lη(pλ(η)) converge to the continuum correlation lengths
L0(λ) as η → 0. Moreover, it follows from Lemma 2.9 of [10] that for all
j ∈ {1, 4} and 0 < a < b,

πη,λj (a, b) −→
η→0

π0,λ
j (a, b). (2.20)

Furthermore, we have the following result, where we denote by sgn(λ) :=
|λ|
λ ∈ {−1, 1} the sign of λ 6= 0.

Theorem 2.10 (Theorem 10.3 and Corollary 10.5 of [11]). For all λ ∈
R \ {0}, j ∈ {1, 4} and 0 < a < b,

L0(λ) = |λ|−4/3L0(1) ∈ (0,∞),

and π0,λ
j (a, b) = π

0,sgn(λ)
j (|λ|4/3a, |λ|4/3b).

In particular,

π0,1
j (aL0(1), bL0(1)) = π0,λ

j (aL0(λ), bL0(λ))

for all λ > 0 and 0 < a < b.
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Let us also remind that conformal invariance of critical percolation in the
scaling limit (see Theorem 7 of [5]) implies that

π0
j (a, b) = π0

j (sa, sb) (2.21)

for all j ∈ {1, 4}, 0 < a < b and s > 0.
The results above rely on the following ratio-limit theorem.

Proposition 2.11. For any fixed a, r > 0 and λ ∈ R, there exists a constant
cλ(r, a) such that

lim
η→0

πη,λj (η, r)

πη,λj (η, a)
= lim

ε→0

π0,λ
j (ε, r)

π0,λ
j (ε, a)

= cλ(r, a)

for all j ∈ {1, 4}. In the case where λ = 0, one has c0(r, a) = ( ra)−αj , with
α1 = 5

48 and α4 = 5
4 .

Proof of Proposition 2.11. The case λ = 0 coincides with Proposition 4.9
of [10]. The case λ 6= 0 follows from a combination of the proof of that
proposition, and (2.20).

The following result is a key lemma in [11].

Lemma 2.12 (Lemma 8.4 of [11]). For all λ ∈ R and j ∈ {1, 4}, there exist
constants 0 < c < C < ∞ and η0 (depending on λ and j) such that: for all
η ≤ η0,

c ≤
πη,λj (η, 1)

πηj (η, 1)
≤ C.

Before we proceed to the proof of Proposition 2.8, we need one more
lemma.

Lemma 2.13. For all λ ∈ R and j ∈ {1, 4}, there exists a constant C =
C(λ, j) > 0 such that for all a ∈ (0, 1), we have:

∣∣∣∣∣
πη,λj (η, a)

πηj (η, a)
− 1

∣∣∣∣∣ ≤ Ca
2πη4(a, 1)

for all η ≤ η0 = η0(λ, j, a).
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Proof of Lemma 2.13. We suppose that λ > 0 and j = 1, since the cases
when λ < 0 or j = 4 can be treated in a similar way. We note that

πη,λj (η, a)− πηj (η, a) = Pη(B),

where B is the event that there exists a pλ(η)-black arm in Aη,a, but no
pc-black arm. If B occurs, there is a pc-white circuit in Aη,a, so there exists
a vertex which lies, at the same time, on a pc-white circuit, and on a pλ(η)-
black arm: among the vertices having this property, let v be the one which is
closest to the origin (if there are multiple choices, we pick one by using some
deterministic procedure). This vertex v is then pc-white and pλ(η)-black,
and we see four disjoint arms around v: two pλ(η)-black and two pc-white
arms, starting from v and reaching a distance d = d(v, {0} ∪ ∂Ba).

In order to obtain an upper bound on Pη(B), we distinguish two cases,
depending on the distance from v to the origin: we introduce the two sub-
events

B1 :=
{
d(0, v) ≤ a

2

}
⊆ B and B2 := B \ B1.

We start by bounding the probability of B1. Let imax :=
⌈

log2

(
a
2η

)⌉
: by

dividing the annulus Aη,a into the dyadic annuli Ai = A2i−1η,2iη (1 ≤ i ≤
imax), we obtain

Pη(B1) ≤
imax∑

i=1

Pη(v ∈ Ai)

≤ |pλ(η)− pc|
imax∑

i=1

|Ai| · Pηpλ(η)

(
A1(η, 2i−2η)

)
· Pη
(
Apλ(η),pc

4 (η, 2i−1η)
)

· Pηpλ(η)

(
A1(2i+1η, a)

)

≤ C1|pλ(η)− pc|πη1(η, a)

imax∑

i=1

22i+2πη4(η, 2i−1η),

for some constant C1 = C1(λ) > 0 (using (2.9), (2.5) and (2.6)). Hence,

Pη(B1) ≤ C2|pλ(η)− pc|πη1(η, a)
(a
η

)2
πη4(η, a)

= C2π
η
1(η, a)a2π

η
4(η, a)

πη4(η, 1)

for some C2 = C2(λ) > 0, where we used (2.11), and then the definition of
pλ(η) (2.19). Using finally (2.6), we obtain that for some C3 = C3(λ) > 0,

Pη(B1) ≤ C3π
η
1(η, a)a2πη4(a, 1). (2.22)
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We can bound the probability of B2 in a similar way, and obtain that

Pη(B2) ≤ C4π
η
1(η, a)a2πη4(a, 1), (2.23)

where C4 = C4(λ) > 0. The computation in this case is slightly more
complicated: when v is close to ∂Ba, we only have 4 short arms, but we
get 3 long arms in a half plane, unless v is close to a corner, in which case
we have 2 long arms in a quarter plane. Since the corresponding exponents
αhp3 = 2 (3 arms in a half plane) and αqp2 = 2 (2 arms in a quarter plane) are
larger than the 4-arm exponent α4, the summations above can be adapted
to this case. A combination of (2.22) and (2.23) then finishes the proof of
Lemma 2.13.

We can now obtain the following result.

Lemma 2.14. For all λ ∈ R, j ∈ {1, 4} and r > 0, there exists a constant
c = c(r, λ, j) > 0 such that

lim
η→0

πη,λj (η, r)

πηj (η, r)
= lim

ε→0

π0,λ
j (ε, r)

π0
j (ε, r)

= c. (2.24)

Proof of Lemma 2.14. By Lemma 2.13, the ratio in the left-hand side of
(2.24) is bounded away from 0 and ∞. We can rewrite it as

πη,λj (η, r)

πη,λj (η, ε)
·
πη,λj (η, ε)

πηj (η, ε)
·
(
πηj (η, r)

πηj (η, ε)

)−1

for some ε ∈ (0, r ∧ 1). By Proposition 2.11, the first and third terms above
converge to cλ(r, ε) and c0(r, ε) as η → 0, respectively. On the other hand, it
follows from Lemma 2.13 that the middle term is 1 +O(εα), uniformly in η.
By combining this with the boundedness property, we obtain that the ratio
in the left-hand side of (2.24) is a Cauchy sequence in η, which finishes the
proof of the lemma.

For all j ∈ {1, 4}, we introduce

Sj(r) := lim
η→0

πη,1j (η, r)

πηj (η, r)
= lim

ε→0

π0,1
j (ε, r)

π0
j (ε, r)

. (2.25)

Remark 2.15. One can check that the functions Sj (j ∈ {1, 4}) are contin-
uous on (0,∞).
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Corollary 2.16. For all λ, r > 0 and j ∈ {1, 4},

lim
η→0

πη,λj (η, 1)

πηj (η, 1)
= lim

ε→0

π0,λ
j (ε, 1)

π0
j (ε, 1)

= Sj

(
L0(1)

L0(λ)
r

)
= Sj

(
λ4/3r

)
.

Proof of Corollary 2.16. This follows by combining Theorem 2.10, (2.21) and
Lemma 2.14.

Lemma 2.17. There exists a universal constant c2 > 0 such that: for all
λ > 0,

lim
η→0

θ(pλ(η))

πη,λ1 (η, Lη(λ))
= c2. (2.26)

Proof of Lemma 2.17. First, it follows from (2.13) that the ratio in the left-
hand side of (2.26) is bounded away from 0 and ∞. We rewrite it as

θ(pλ(η))

πη,λ1 (η, Lη(λ))
=

θ(pλ(η))

πη,λ1 (η,KLη(λ))
·
(
πη,λ1 (η,KLη(λ))

πη,λ1 (η, Lη(λ))

)−1

for someK > 1. It then follows from (2.4) that the first term above is 1+o(1)
as K →∞, uniformly for small η, while for every fixed K, the second term
converges to c(λ,K) as η → 0. This implies the existence of the limit in the
left-hand side of (2.26).

By combining Corollary 2.16 and Remark 2.15, we then obtain

lim
η→0

πη,λ1 (η,KLη(λ))

πη,λ1 (η, Lη(λ))
=
S1(KL0(1))

S1(L0(1))
.

Hence, the limit above is independent of λ, which completes the proof of
Lemma 2.17.

We are now ready to prove Proposition 2.8.

Proof of Proposition 2.8. Let p > pc, and set η = η(p) = L0(1)
L(p) . Note that

η(p) → 0 as p ↘ pc. Further, we set λ = λ(p) such that pλ(p)(η(p)) = p.
Hence Lη(λ(p)) = L0(1). Theorem 2.10 and the continuity of L0 imply that
λ(p) → 1 as p ↘ pc. Let ε > 0 and p0 > pc such that |λ(p) − 1| < ε for all
p ∈ (pc, p0). Then

θ(p1−ε(η))

πη,1+ε
1 (η, Lη(1 + ε))

≤ θ(p)

π
η,λ(p)
1 (η, Lη(λ(p)))

≤ θ(p1+ε(η))

πη,1−ε1 (η, Lη(1− ε))
.
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If we take the limit as η → 0, Lemma 2.17 implies that the lower and the
upper bounds become c2

S1((1−ε)4/3)

S1((1+ε)4/3)
and c2

S1((1+ε)4/3)

S1((1−ε)4/3)
, respectively, where c2

is as in Lemma 2.17. Since ε > 0 was arbitrary, the continuity of S1 (see
Remark 2.15) shows that

lim
p↘pc

θ(p)

π
η,λ(p)
1 (η, Lη(λ(p)))

= c. (2.27)

In a similar way, we have

lim
p↘pc

π
η,λ(p)
1 (η, L0(1))

πη,11 (η, L0(1))
= 1. (2.28)

Now, recall that Lη(λ(p)) = L0(1), L(p) = L1(p) = η−1Lη(p) and π(a, b) =
πη(ηa, ηb). We can thus complete the proof of Proposition 2.8 by combining
(2.27), (2.28) and Lemma 2.14.

2.6 Asymptotic formula for L

In this section, we study the quantity |p − pc|L(p)2π4(L(p)) as p → pc. We
already know from (2.14) that it is � 1, and we now show that it has actually
a limit.

Lemma 2.18. There exists a constant c > 0 such that

|p− pc|L(p)2π4(L(p)) −→
p↘pc

c. (2.29)

Proof of Lemma 2.18. We use the notations of Section 2.5, in particular we
consider λ, η > 0 and pλ(η) as in (2.19). For p = pλ(η), the left-hand side of
(2.29) is equal to

|pλ(η)− pc|L(pλ(η))2π4(L(pλ(η))) =

(
L(pλ(η))

η−1

)2

· π4(L(pλ(η)))

π4(η)
· λ.

Let us now take the limits as η → 0: the first term converges to (L0(λ))2

by Theorem 2.9, and the second term converges to L0(λ)−3/4, by the same
theorem combined with Lemma 2.6 (ratio-limit theorem for π4). Hence,

lim
η↘0
|pλ(η)− pc|L(pλ(η))2π4(L(pλ(η))) = (L0(λ))5/4λ,

which is constant in λ > 0 by Theorem 2.10. This, combined with arguments
similar to the end of the proof of Proposition 2.8, finishes the proof of Lemma
2.18.
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In particular, we can compare precisely L(p) and L(p′) when p and p′ are
close to pc.

Lemma 2.19. For all ε > 0 and Λ > 1, there exists p0 > pc such that: for
all p, p′ ∈ (pc, p0) with L(p)

L(p′) ∈ (Λ−1,Λ), we have

(
L(p)

L(p′)

)−3/4

·
(
p− pc
p′ − pc

)−1

∈ (1− ε, 1 + ε).

Proof of Lemma 2.19. This follows by combining Lemma 2.18 with Lemma
2.7.

3 Holes in supercritical percolation

3.1 Definition and a-priori estimates

In the supercritical regime p > pc, the unique infinite black cluster C∞(p)
either contains the origin, or surrounds it (a.s.). In the latter case, the origin
lies in a “hole”: this geometric object plays an important role to study the
successive freezings. In this section, we prove estimates on this hole, which
is defined formally as follows.

Definition 3.1. We call hole of the origin at time p > pc, denoted by H(p),
the connected component of 0 in T\(C∞(p)∪∂outC∞(p)), i.e. when we remove
the vertices which are neither in the infinite black cluster, nor neighbor of it.
By convention, we take H(p) = ∅ if 0 belongs to C∞(p) ∪ ∂outC∞(p).

Note that clearly, H(p) ⊇ H(p′) for pc < p < p′. The reason why we
remove an extra layer of white sites along the boundary of C∞(p) comes
from the connection with frozen percolation, where white vertices along the
boundary of a frozen cluster are not allowed to become black at a later time
(see Definition 5.1 below).

We start with some easy a-priori estimates on H(p).

Lemma 3.2. The following lower bounds hold for all p > pc, where α, c > 0
are some universal constants.

(i) For all λ ≥ 1,

P
(H(p)

L(p)
⊆ Bλ

)
≥ 1− e−αλ. (3.1)
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(ii) For all λ ≤ 1,

P
(H(p)

L(p)
⊇ Bλ

)
≥ 1− cπ1 (λL(p), L(p)) . (3.2)

Proof of Lemma 3.2. (i) We have

P
(H(p)

L(p)
⊆ Bλ

)
≥ Pp

(
O
(
λ

2
L(p), λL(p)

))
Pp
(
A1

(
λ

2
L(p),∞

))

(using the FKG inequality). The desired lower bound then follows from
(2.4).

(ii) We can write

P
(H(p)

L(p)
⊇ Bλ

)
≥ Pp

(
O∗(λL(p), 2L(p))

)
= 1− Pp

(
A1(λL(p), 2L(p))

)
.

It then suffices to use that Pp
(
A1(λL(p), 2L(p))

)
� π1(λL(p), L(p)) (from

(2.7) and (2.5)).

Based on the scaling limit of near-critical percolation, it is natural to
expect that H(p)

L(p) converges in distribution as p↘ pc (in a suitable topology),

and so its volume |H(p)|
L(p)2

as well. However, the precise knowledge of the scaling
limit is not needed for the proofs of Theorems 1.1 and 1.2: we only need to
know that |H(p)|

L(p)2
does not fluctuate too much as p↘ pc. We use the following

estimates, which are weaker and can be proved in an elementary way.

Lemma 3.3. There exist universal constants α1, α2, c1 > 0 such that the
following bounds hold for all p > pc.

(i) For all λ ≥ 1,

e−α1

√
λ ≤ P

( |H(p)|
L(p)2

≥ λ
)
≤ e−α2

√
λ, (3.3)

and e−α1λ ≤ P
(H(p)

L(p)
⊇ Bλ

)
≤ e−α2λ. (3.4)

(ii) For all λ ≤ 1,

c1π1

(√
λL(p), 2L(p)

)
≤ P

( |H(p)|
L(p)2

≤ λ
)
≤ π1

(√
λL(p), 2L(p)

)
,

(3.5)

and c1π1 (λL(p), 2L(p)) ≤ P
(H(p)

L(p)
⊆ Bλ

)
≤ π1 (λL(p), 2L(p)) .

(3.6)
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Proposition 3.4. There exists β > 1 such that: for all Λ > 1, for all
p, p′ > pc sufficiently close to pc (depending on Λ), and all λ ∈ [Λ−1,Λ], one
has

P
( |H(p′)|
L(p′)2

≥ λ
)
≥ P

( |H(p)|
L(p)2

≥ βλ
)
. (3.7)

We first prove Lemma 3.3.

Proof of Lemma 3.3. We only prove (3.3) and (3.5), since (3.4) and (3.6)
follow in similar ways.

(i) Let us consider λ ≥ 1. For the lower bound, we note that

P
(
|H(p)| ≥ λL(p)2

)
≥ Pp

(
O∗
(√

λ

2
L(p),∞

))
,

which is at least e−α1

√
λ, from (2.4).

Let us now turn to the upper bound. If H(p) has a volume at least
λL(p)2, then ∂outH(p), which is a white circuit surrounding 0, must contain
one site at a distance at least

√
λ

4 L(p) from 0. This implies

P
(
|H(p)| ≥ λL(p)2

)

≤ Pp
(
A∗1
(√

λ

4
L(p),

√
λ

2
L(p)

))
+ Pp

(
O∗
(√

λ

4
L(p),∞

))
,

which is at most e−α1

√
λ, using once again (2.4).

(ii) We now consider λ ≤ 1. The upper bound follows from the ob-
servation that if |H(p)| ≤ λL(p)2, then the infinite black cluster intersects
B√λL(p), so

P
(
|H(p)| ≤ λL(p)2

)
≤ Pp

(
A1

(√
λ

2
L(p), L(p)

))
.

For the lower bound, we note that

P
(
|H(p)| ≤ λL(p)2

)
≥ Pp

(
O
(√

λ

4
L(p),

√
λ

2
L(p)

)
∩ A1

(√
λ

4
L(p),∞

))

≥ c̃1Pp
(
A1

(√
λ

4
L(p),∞

))

for some universal constant c̃1 > 0 (using the FKG inequality, and then
RSW). We can now use the existence of c̃2 > 0 such that

Pp (A1 (L(p),∞)) ≥ c̃2
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(this is a direct consequence of (2.4)): we have

Pp
(
A1

(√
λ

4
L(p),∞

))
≥ c̃3Pp (A1 (L(p),∞))Pp

(
A1

(√
λ

4
L(p), 2L(p)

))

≥ c̃3c̃2P1/2

(
A1

(√
λ

4
L(p), 2L(p)

))

(applying once again RSW, in the annulus AL(p),2L(p)), which allows us to
conclude.

These bounds can now be used to prove Proposition 3.4.

Proof of Proposition 3.4. We first prove the following claim: there exist β̃ >
1, and 0 < Λ1 < Λ2, such that for all λ > 0 with λ /∈ (Λ1,Λ2), for all
p, p′ > pc sufficiently close to pc (depending on λ),

P
( |H(p′)|
L(p′)2

≥ λ
)
≥ P

( |H(p)|
L(p)2

≥ β̃λ
)
. (3.8)

For λ ≥ 1, applying successively the two bounds of (3.3) yields

P
( |H(p′)|
L(p′)2

≥ λ
)
≥ e−α1

√
λ = e

−α2
α1
α2

√
λ ≥ P

( |H(p)|
L(p)2

≥ α2
1

α2
2

λ

)
, (3.9)

which proves the claim for λ ≥ Λ2, with Λ2 = 1 and β̃ =
α2
1

α2
2
. Let us now

turn to small values of λ. Using the lower bound provided by (3.5), we get:
for λ ≤ 1,

P
( |H(p)|
L(p)2

≤ λ
)
≥ c1π1

(√
λL(p), 2L(p)

)

≥ c1c̃1π1

(√
λL(p′), 2L(p′)

)
.

Here, we used the ratio-limit theorem (Lemma 2.6): we need L(p) and L(p′)
to be sufficiently large, i.e. p and p′ to be close enough to pc, depending on
λ. It then follows from (2.7) that

π1

(√
λL(p′), 2L(p′)

)
≥ c̃2Pp′

(
A1

(√
λL(p′), 2L(p′)

))
.

We can then write, for ε > 0 small enough,

c1c̃1c̃2Pp′
(
A1

(√
λL(p′), 2L(p′)

))
≥ Pp′

(
A1

(√
ελL(p′), 2L(p′)

))
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(using (2.6), (2.7) and (2.8)), which is at least P
(
|H(p′)|
L(p′)2 ≤ ελ

)
(from the

upper bound in (3.5)). This completes the proof of the claim for λ ≤ Λ1 = ε,
with β̃ = 1

ε .

We now use the claim to prove the proposition itself. Let us define

λi =

(
Λ2

Λ1

)i−1

Λ1, i ∈ Z

(so that λi = Λi for i = 1, 2). Noting that for every i ∈ Z, λi /∈ (Λ1,Λ2), we
deduce from the claim that for all p, p′ > pc close enough to pc (depending
on i),

P
( |H(p′)|
L(p′)2

≥ λi
)
≥ P

( |H(p)|
L(p)2

≥ β̃λi
)
. (3.10)

Moreover, the same conclusion holds for all p, p′ > pc close enough to pc
(depending on Λ) and all i ∈ Z such that λi ∈

[
Λ−1, Λ2

Λ1
Λ
]
simultaneously.

Indeed, there are only finitely many such values of i, since λi → 0 and +∞
as i → +∞ and −∞, respectively. Now, let us consider λ ∈ [Λ−1,Λ]: there
exists i ∈ Z such that λ ∈ [λi, λi+1], and for all p, p′ > pc close enough to pc
(depending on Λ),

P
( |H(p′)|
L(p′)2

≥ λ
)
≥ P

( |H(p′)|
L(p′)2

≥ λi+1

)
≥ P

( |H(p)|
L(p)2

≥ β̃λi+1

)
,

using λ ≤ λi+1, and then (3.10) (note that λi+1 ∈
[
Λ−1, Λ2

Λ1
Λ
]
). We can now

write

P
( |H(p)|
L(p)2

≥ β̃λi+1

)
= P

( |H(p)|
L(p)2

≥ β̃ λi+1

λ
λ

)

≥ P
( |H(p)|
L(p)2

≥ β̃Λ2

Λ1
λ

)
,

which completes the proof of Proposition 3.4, with β = β̃ Λ2
Λ1

.

3.2 Approximable domains

In this section, we introduce a regularity property for domains, which plays
an important role when studying successive (nested) frozen clusters, allow-
ing one to describe the frozen percolation process in an iterative manner.
Roughly speaking, this property says that the domain can be approximated

27



l

bl

0

Figure 3.1: The inner and outer approximations of a domain Λ: Λint(l) and
Λext(l) \ Λint(l) are in dark and light gray, respectively.

by a union of small squares, and we first prove in Section 3.3 that it is satis-
fied by percolation holes. We then use it to establish a continuity property
for |H(p)| (Section 3.4). We explain later, in Section 4.1, that it can be used
to predict the volume of the largest connected component in a domain.

Let us now give a formal definition. First, we need to introduce some
notation. For every l > 0, we consider a partition of the plane into squares
of side length l, such that 0 is the center of one of these squares:

C =
⊔

k1,k2∈Z

(
(k1l, k2l) + bl

)
,

with bl =
[
− l

2 ,
l
2

)2. These squares are called l-blocks. Each l-block has four
neighbors, and this notion of adjacency gives rise to connected components
of l-blocks.

For a connected domain Λ ⊆ C, we introduce the following inner and
outer approximations by l-blocks (see Figure 3.1).

• We consider the collection of l-blocks which are entirely contained in
Λ. These l-blocks can be grouped into connected components, and we
denote by Λint(l) the union of all l-blocks in the connected component
of bl. By convention, we take Λint(l) = ∅ if bl is not contained in Λ.
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• We denote by Λext(l) the union of all l-blocks that intersect Λ.

Definition 3.5. Let Λ ⊆ C be a bounded and simply connected domain. For
l > 0 and η ∈ (0, 1), we say that Λ is (l, η)-approximable if

(i) bl ⊆ Λ,

(ii) and
∣∣Λext(l) \ Λint(l)

∣∣ < η|Λ|.

Clearly, Λint(l) ⊆ Λ ⊆ Λext(l), so this property implies in particular that

|Λint(l)| > (1− η)|Λ| and |Λext(l)| < (1 + η)|Λ|.

We also define the t-shrinking of a domain Λ (for t > 0) as
{
z : d(z,C \ Λ) ≥ t

}
, (3.11)

where d is the distance induced by the ∞ norm on C. In other words, it is
the complement of the t-neighborhood (for the distance d) of C \ Λ. This
notion is used in the particular case when Λ is a union of l-blocks, as depicted
on Figure 3.2. In such a situation, for ε ∈ (0, 1), we denote by Λl(ε) the (εl)-
shrinking of Λ. The value of l is most often clear from the context, in which
case we drop the superscript for notational convenience. For future use, let
us note that for all ε ∈ (0, 1

4) (and uniformly in l),

(1− 4ε)|Λ| ≤ |Λl(ε)| ≤ |Λ|. (3.12)

3.3 Approximability of H(p)
We now prove that for α small enough, with high probability, H(p) can be
approximated by using squares of side length αL(p).

Lemma 3.6. For all ε, η > 0, there exist δ = δ(ε) > 0 and α = α(ε, η) > 0
such that: for all p ∈ (pc, pc + δ),

P
(
H(p) is (αL(p), η)-approximable

)
> 1− ε. (3.13)

Proof of Lemma 3.6. Let us fix ε > 0. First, we can deduce from Lemma
3.2 the existence of δ̃ > 0 and 0 < c1 < c2 such that: for all p ∈ (pc, pc + δ̃),

P
(
Bc1L(p) ⊆ H(p) ⊆ Bc2L(p)

)
> 1− ε

2
. (3.14)
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l

εl

Λ

Λ(ε)

Figure 3.2: This figure depicts a union of l-blocks Λ, and its (εl)-shrinking
Λl(ε) = Λ(ε).

In what follows, we consider p ∈ (pc, pc + δ̃), and we assume that the event
in (3.14), that we denote by A, holds. We also take some small α > 0,
explaining later how to choose it appropriately. We want to derive upper
bounds on the volume of H(p)ext(αL(p)) \ H(p)int(αL(p)), which is a union of
(αL(p))-blocks. By definition of the inner and outer approximations, it can
be decomposed as

H(p)ext(αL(p)) \ H(p)int(αL(p)) = Λ1 ∪ Λ2,

where Λ1 is the union of blocks that intersect ∂outH(p), and Λ2 is the union
of blocks which are entirely contained in H(p), but not connected to bαL(p)

inside H(p).
On the one hand, each block b = z + bαL(p) in Λ1 is connected to

z + ∂Bc1L(p) by three arms: two white arms and one black arm, obtained
by following ∂outH(p) and ∂inH(p), respectively (since Bc1L(p) ⊆ H(p)). De-
noting σ = (wwb), this has a probability

Pp (Aσ (αL(p), c1L(p))) ≤
(
αL(p)

c1L(p)

)µ
=

(
α

c1

)µ
,
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for some µ > 0 (using (2.9)). We deduce

Ep
[
|Λ1|1A

]
≤ c3

(
2c2L(p)

αL(p)

)2( α
c1

)µ
(αL(p))2 = c4α

µL(p)2. (3.15)

On the other hand, Λ2 consists of connected components of (αL(p))-
blocks which are contained in H(p). It follows from a max-flow min-cut
argument that each such component is disconnected from Bc1L(p) by at most
3αL(p) vertices. If we assume such a cut to be minimal, we can form a
circuit around the component by following the cut and part of the boundary
of H(p). This observation allows us to partition the components in Λ2, so
that each element of the partition is disconnected by a cut. Then, each
cut produces an (αL(p))-block of the form b = z + bαL(p) (in an injective
way), so that b is connected by six arms (with colors σ̃ = (wwbwwb)) to
z+ ∂B√rαL(p), where r is the number of blocks in the group, and there exist
also three arms (for the same reason as before, with colors σ = (wwb)) in
A√rαL(p),c1L(p)(z). The area of such a group is the area “lost through b”,
denoted by Λ2(b). We can write Λ2 =

∑
b Λ2(b), where the sum ranges over

all (αL(p))-blocks contained in Bc2L(p) (recall that the event A is assumed
to hold). It follows from (2.12) (and (2.9) again) that

Ep
[
|Λ2(b)|1A

]

≤ c5(αL(p))2

(2c2/α)2∑

r=1

Pp
(
Aσ̃
(
αL(p),

√
rαL(p)

))
Pp
(
Aσ
(√
rαL(p), c1L(p)

))

≤ c5(αL(p))2

(2c2/α)2∑

r=1

(
αL(p)√
rαL(p)

)2+δ (√rαL(p)

c1L(p)

)µ

= c6(αL(p))2αµ
(2c2/α)2∑

r=1

r−1− δ
2

+µ
2

≤ c7(αL(p))2αµ

(we may choose µ < δ in the beginning, without loss of generality). We thus
obtain

Ep
[
|Λ2|1A

]
≤ c8

(
2c2L(p)

αL(p)

)2

αµ(αL(p))2 = c9α
µL(p)2. (3.16)

Finally, we can write

Pp
(
|H(p)ext(αL(p)) \ H(p)int(αL(p))| ≥ η|H(p)|

)

31



≤ Pp
(
A ∩ {|Λ1|+ |Λ2| ≥ η|H(p)|}

)
+ Pp(Ac)

≤ Pp
(
A ∩ {|Λ1|+ |Λ2| ≥ η(2c1)2L(p)2}

)
+
ε

2
,

and the first term can be bounded with Markov’s inequality, using (3.15)
and (3.16).

3.4 Continuity property for H(p)
We now establish a continuity property for the volume of H(p), based on the
approximability property.

Lemma 3.7. For all ε > 0, there exist α, δ > 0 such that: for all p, p′ ∈
(pc, pc + δ) with p < p′ and L(p)

L(p′) < 1 + δ, one has

(i) H(p) is (αL(p), ε)-approximable

(ii) and (H(p)int(αL(p)))(ε) ⊆ H(p′) ⊆ H(p)

with probability > 1− ε.

This lemma implies directly the following continuity result for |H(p)|.

Corollary 3.8. For all ε > 0, there exists δ > 0 such that: for all p, p′ ∈
(pc, pc + δ) with p < p′ and L(p)

L(p′) < 1 + δ, one has

P
( |H(p)|
|H(p′)| < 1 + ε

)
> 1− ε. (3.17)

Proof of Corollary 3.8 from Lemma 3.7. For any ε > 0, let us assume that
properties (i) and (ii) from Lemma 3.7 are satisfied for some α, p, p′. Using
successively (ii) and (3.12), we obtain

|H(p′)| ≥
∣∣(H(p)int(αL(p)))(ε)

∣∣ ≥ (1− 4ε)
∣∣H(p)int(αL(p))

∣∣.

From the (αL(p), ε)-approximability of H(p) (property (i)), we can then
deduce

|H(p′)| ≥ (1− 4ε)(1− ε)|H(p)|,
which allows us to conclude.

Proof of Lemma 3.7. Step 1. We first show that every vertex on ∂outH(p′)
is close to ∂outH(p). We establish the following claim: for all ε, η > 0, there
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∞v

w

0

∂H(p′)

∂H(p)

p′-black
p-black

p-white

p-white

Figure 3.3: The four arm configuration appearing in the proof of Lemma
3.7.

exists δ > 0 such that: for all p, p′ ∈ (pc, pc+δ) with p < p′ and L(p)
L(p′) < 1+δ,

one has
P
(
∃v ∈ ∂outH(p′) with d(v, ∂inH(p)) ≥ ηL(p)

)
< ε. (3.18)

Let us fix ε > 0. It is enough to prove the claim for all η smaller than
some value (depending on ε), so we may assume (using the a-priori bounds
provided by Lemma 3.2) that η satisfies: for all p close enough to pc,

P
(
BηL(p) ⊆ H(p) ⊆ Bη−1L(p)

)
> 1− ε

2
. (3.19)

Now, suppose there is a vertex v ∈ ∂outH(p′) with d(v, ∂inH(p)) ≥ ηL(p). It
follows from the definition of H(p′) that there exists an infinite p′-black path
starting from v. Since H(p′) ⊆ H(p), this path intersects the circuit ∂inH(p),
and we call w the first such intersection point, which is thus p′-black and
p-white.

If we now assume that the event in (3.19) holds, we can find four arms
starting from neighbors of w (see Figure 3.3) to w + ∂BηL(p): two p′-black
arms (using the infinite path starting from v), and two p-white ones (fol-
lowing ∂outH(p) in two directions). For each vertex w, these two properties
(being p′-black and p-white, and having four arms to distance ηL(p)) have
a probability ≤ c1(p′ − p)π4(ηL(p)) (using (2.7)). Since there are at most
c2(η−1L(p))2 choices for w, we deduce (combined with (3.19)) that

P
(
∃v ∈ ∂outH(p′) with d(v, ∂inH(p)) ≥ ηL(p)

)

<
ε

2
+ c3η

−2L(p)2(p′ − p)π4(ηL(p))
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<
ε

2
+ c4η

−2(π4(ηL(p), L(p)))−1 p
′ − p
p− pc

[
L(p)2(p− pc)π4(L(p))

]

(using (2.6)). We know that η−2(π4(ηL(p), L(p)))−1 ≤ c5η
−4, and L(p)2(p−

pc)π4(L(p)) � 1 (see (2.14)), so the desired probability is < ε for p′−p
p−pc small

enough (depending on η), i.e. L(p)
L(p′) sufficiently close to 1 (using now Lemma

2.19).
Step 2. We now complete the proof. Let us fix ε > 0, it follows from

Step 1 and Lemma 3.6 that we can find α, δ > 0 small enough such that: for
all p, p′ ∈ (pc, pc + δ) with p < p′ and L(p)

L(p′) < 1 + δ, one has

(i) Bα
2
L(p) ⊆ H(p′),

(ii) for all v ∈ ∂outH(p′), d(v, ∂inH(p)) < εαL(p),

(iii) and H(p) is (αL(p), ε)-approximable

with probability > 1− ε. It then suffices to observe that

(H(p)int(αL(p)))(ε) ⊆ H(p′)

follows from properties (i) and (ii). First, H(p)int(αL(p)) is a connected com-
ponent of (αL(p))-blocks, and it is easy to convince oneself that its (εαL(p))-
shrinking is connected as well (as in the example of Figure 3.2), e.g. by
induction (me may assume that ε < 1

2). We know from (i) that the block
bαL(p) is inH(p)int(αL(p)), and that it is contained inH(p′), so it is surrounded
by the circuit ∂outH(p′). Hence, this circuit either completely surrounds the
connected set (H(p)int(αL(p)))(ε), in which case the desired conclusion follows,
or it intersects (H(p)int(αL(p)))(ε). But this second possibility cannot occur,
since a vertex v ∈ ∂outH(p′) ∩ (H(p)int(αL(p)))(ε) would satisfy

d(v, ∂inH(p)) ≥ d(v, (H(p)int(αL(p)))c) ≥ εαL(p)

(by definition of the shrinking), which contradicts (ii).

4 Volume estimates

4.1 Largest clusters in an approximable domain

In order to study volume-frozen percolation, we need estimates on the volume
of the largest black cluster inside a connected subset Λ ⊆ T. Typically, these
estimates are used in the case when Λ is a hole left by earlier freezing events.
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More precisely, we can look at the percolation configuration in such a Λ,
at time p: among all the black connected components, we denote by Cmax

Λ (p)
the one with largest volume. Note that there may be several such compo-
nents, but we can just choose one of them according to some deterministic
rule (using for instance an ordering of the vertices).

Several properties of Cmax
Bn

(p) were established in [4], in particular that it
has a volume ≈ |Bn|θ(p) if n � L(p). We now explain how to extend this
property to more general domains. The approximability property turns out
to play an important role here.

Lemma 4.1. For all ε > 0 and C ≥ 1, there exists µ > 0 such that: for all
p > pc, all n with L(p)

n < µ, and all sets Λ of one of the two types

• Λ = (Λ̃)(β), where β ∈ [0, 1
3 ] and Λ̃ is a connected component of ≤ C

n-blocks containing bn,

• or Λ is an (n, ε2)-approximable set with Bn ⊆ Λ ⊆ BCn,

the following three properties are satisfied, with probability > 1− ε:

(i) the largest p-black cluster in Λ, i.e. Cmax
Λ (p), satisfies

∣∣∣∣
|Cmax

Λ (p)|
θ(p)|Λ| − 1

∣∣∣∣ < ε,

(ii) this cluster contains a circuit in An
8
,n
4
which is connected to ∞ by a

p-black path,

(iii) and all other p-black clusters in Λ have a volume at most εθ(p)|Λ|.

Note that property (ii) ensures that the hole around the origin in Cmax
Λ (p)

coincides with H(p).

Proof of Lemma 4.1. We can follow essentially the proofs of [4]. For the
convenience of the reader, we explain in Appendix A.2 which adaptations
are needed in our particular setting.

For percolation in a hole H(p) created by the infinite cluster, Lemma 4.1
has the following direct consequence, which is used later to analyze frozen
percolation.

Corollary 4.2. For all ε > 0, there exist µ, δ > 0 such that: for all p ∈
(pc, pc + δ), all p′ > p with L(p′)

L(p) < µ, one has
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(i) the largest p′-black cluster in H(p), i.e. Cmax
H(p)(p

′), satisfies

∣∣∣∣
|Cmax
H(p)(p

′)|
θ(p′)|H(p)| − 1

∣∣∣∣ < ε,

(ii) it contains a circuit in A√µL(p),2
√
µL(p) which is connected to ∞ by a

p′-black path,

(iii) and all other p′-black clusters in H(p) have a volume at most εθ(p′)|H(p)|,

with probability > 1− ε.

In order to prove Corollary 4.2, we need to define stopping sets. They play
the role of stopping times in our situation, allowing us to study iteratively
the frozen percolation process.

Definition 4.3. Consider some set S, and a process X = (X(s))s∈S indexed
by S. A random subset S ⊆ S is called a stopping set for X if it satisfies
the following property:

for all S ⊆ S, {S = S} ∈ σ(X(s) : s ∈ S \ S).

Stopping sets can be seen as a generalization of stopping times. For
instance, if X = (Xn)n∈Z is a discrete-time stochastic process and τ is an
(Fn)n∈Z-stopping time, where Fn = σ(Xm, m ≤ n), then

Sτ = [τ + 1,+∞) ∩ Z

is a stopping set for X. When studying percolation, the following stopping
sets are often used.

• In a rectangle R, we can consider the lowest horizontal crossing γ, and
R+(γ) the set of vertices located above γ (if such a crossing does not
exist, we simply take R+(γ) = ∅). Then R+(γ) is a stopping set.

• Similarly, if A is annulus, and C is the outermost black circuit in A,
then the set int(C) of vertices inside it, i.e. in the finite connected
component of T \C, is a stopping set (again, we take int(C) = ∅ if such
a circuit does not exist).

For a simply-connected domain Λ, the following stopping set turns out
to be very useful in our proofs. We consider the percolation process with
parameter p in Λ, and we look at the set CΛ(p) of all black vertices inside
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Λ which are connected to ∂Λ: if we remove this set, together with its outer
boundary (which consists of white sites), we obtain as a “hole of the origin”
the set

H(Λ)(p) := connected component of 0 in T \ (∂inΛ ∪ CΛ(p) ∪ ∂outCΛ(p)),
(4.1)

which we take = ∅ if 0 belongs to CΛ(p) ∪ ∂outCΛ(p). Note that H(Λ)(p) is
a stopping set if Λ is given, or if Λ itself is a stopping set. This property of
“explorability from outside” makes it a useful substitute of H(p).

Remark 4.4. Let us observe that there exists α > 0 with the following
property: for all p > pc and λ ≥ 1, for all simply-connected domain Λ,

BλL(p) ⊆ Λ =⇒ P
(
H(Λ)(p) = H(p)

)
≥ 1− e−αλ. (4.2)

Indeed, we note that H(p) ⊆ BλL(p) implies the existence of a p-black circuit
in BλL(p) which surrounds 0, and which is connected to ∞. In particular, if
BλL(p) ⊆ Λ, this circuit is contained in Λ, and it is connected to its boundary,
so that H(Λ)(p) and H(p) coincide in this case. Finally, Lemma 3.2 (i)
implies that for some α > 0,

P
(
H(p) ⊆ BλL(p)

)
≥ 1− e−αλ.

We are now in a position to prove Corollary 4.2, about the largest black
cluster in a percolation hole.

Proof of Corollary 4.2. Using Lemma 3.2 (i), we can choose c0 so that

P
(
H(p) ⊆ Bc0L(p)

)
≥ 1− ε

3
. (4.3)

We also know from Lemma 3.6 that H(p) is (αL(p), ε2)-approximable with
probability ≥ 1− ε

3 , for α small enough.
As noted in the previous remark, if the event in (4.3) occurs, we have

H(p) = H(Λ)(p) for Λ = Bc0L(p). Since H(Λ)(p) is a stopping set, we can
condition on a realization H of it, and we can suppose that H is (αL(p), ε2)-
approximable, with H ⊆ Bc0L(p). We are thus in a position to apply Lemma
4.1, with n = αL(p) and C = c0α

−1.

4.2 Tail estimates and moment bounds

We first mention a tail estimate on
∣∣Cmax

Λ

∣∣. This estimate is needed only in
the case of boxes, and we can apply directly a result from [4].
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Lemma 4.5. There exist universal constants c1, c2, X > 0 such that for all
p > pc, n ≥ L(p), and x ≥ X,

Pp
(∣∣Cmax

Bn

∣∣ ≥ xn2θ(p)
)
≤ c1e

−c2x n2

L(p)2 . (4.4)

Proof of Lemma 4.5. It follows from Proposition 4.3 (iii) in [4] that for all
p > pc, n ≥ L(p) and x ≥ 0,

Pp
(∣∣Cmax

Bn

∣∣ ≥ xn2θ(p)
)
≤ c′1

n2

L(p)2
e
−c′2x n2

L(p)2
+c′3

n2

L(p)2

(in that result, we have s(L(p)) = (2L(p))2π1(L(p)) � L(p)2θ(p), using
(2.13)). Hence, if we take X > 0 so that −c′2X + c′3 = − c′2

2 X, we obtain: for
all x ≥ X,

Pp
(∣∣Cmax

Bn

∣∣ ≥ xn2θ(p)
)
≤ c′1

n2

L(p)2
e
− c
′
2
2
x n2

L(p)2 ,

which is ≤ c′4e
− c
′
2
4
x n2

L(p)2 for some universal constant c′4 large enough.

We now derive moment bounds for the random variables

Vn(z) :=
∣∣{v ∈ Bn(z) : v ↔ ∂B2n(z)}

∣∣ (4.5)

(when z = 0, we simply write Vn).

Lemma 4.6. There exists a universal constant C > 0 such that for all p > pc
and n ≥ L(p),

for all m ≥ 1, Ep
[
(Vn)m

]
≤ m!

(
Cn2θ(p)

)m
. (4.6)

Proof of Lemma 4.6. It follows from Lemma 4.2 in [4] (with d = 2) that for
all p > pc,

for all m ≥ 1, Ep
[
(VL(p))

m
]
≤ m!

(
C ′L(p)2θ(p)

)m
, (4.7)

where C ′ > 0 is a universal constant (using also that π1(L(p)) � θ(p), from
(2.13)). For n > L(p), we can cover Bn with k =

⌈
n

L(p)

⌉2 ≤ 4 n2

L(p)2
(possibly

overlapping) boxes of the form zi +BL(p) ⊆ Bn (1 ≤ i ≤ k), and write

Vn ≤
k∑

i=1

VL(p)(zi).
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Minkowski’s inequality then implies that for all m ≥ 1,

Ep
[
(Vn)m

]
≤ Ep

[( k∑

i=1

VL(p)(zi)

)m]
≤ kmEp

[
(VL(p))

m
]
,

since each VL(p)(zi)
(d)
= VL(p). Combined with (4.7), this yields the desired

result.

These bounds are used in Section 7, in combination with the following
form of Bernstein’s inequality.

Lemma 4.7. Let (Xi)1≤i≤n (n ≥ 1) be independent real-valued random
variables, satisfying: for all 1 ≤ i ≤ n,

E[Xi] = 0 and E
[
|Xi|m

]
≤ m!Mm−2σ

2
i

2
for all m ≥ 2,

for some M > 0 and (σi)1≤i≤n. Then for all y ≥ 0,

P
(∣∣∣∣

n∑

i=1

Xi

∣∣∣∣ ≥ y
)
≤ 2e

− 1
2

y2

σ2+My , where σ2 =
n∑

i=1

σ2
i . (4.8)

Proof of Lemma 4.7. This follows from an application of Markov’s inequality
to the random variable eλ

∑n
i=1Xi , for a well-chosen value of the parameter

λ > 0 (here, λ = y
σ2+My

). We refer the reader to the proof of (7) in [3] for
more details.

Finally, let us state a consequence of Lemma 4.6, which is needed in
Section 4.3.

Lemma 4.8. There exists a constant c0 > 0 satisfying the following property.
For all ε > 0, there exists X ≥ 1 (depending only on ε) such that for all
p > pc and n ≥ XL(p),

Pp
(
Vn ≥ c0n

2θ(p)
)
≥ 1− ε.

Proof of Lemma 4.8. Let us consider n = xL(p), with x ≥ 1. If we denote
E1 := N

(√xL(p)
8 , 2n

)
(recall Definition 2.1 for nets), it follows from Lemma

2.2 that

Pp(E1) ≥ 1− c1

(
2n · 8√
xL(p)

)2

e
−c2

√
xL(p)
8L(p) = 1− c3xe

−c4
√
x,
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which is ≥ 1− ε
2 for all x ≥ X1 = X1(ε).

Now, let us consider k =
⌊

n
3
√
xL(p)

⌋2 ≥ c1x disjoint boxes of the form
zi +B2

√
xL(p) ⊆ Bn (1 ≤ i ≤ k). In each of them, we have

Ep[V√xL(p)(zi)] � xL(p)2θ(p)

(indeed, (2.4) implies that Pp(0↔ ∂Bn) � θ(p) for n ≥ L(p)), and

Ep[(V√xL(p)(zi))
2] ≤ c2(xL(p)2θ(p))2

(using (4.6) with m = 2), we can thus deduce from a second-moment argu-
ment that

Pp(V√xL(p)(zi) ≥ c3xL(p)2θ(p)) ≥ c3,

for some universal constant c3 > 0 small enough. If we call

E2 :=
{∣∣{1 ≤ i ≤ k : V√xL(p)(zi) ≥ c3xL(p)2θ(p)

}∣∣ ≥ c3

2
k
}
,

then Pp(E2) ≥ 1 − ε
2 for all x ≥ X2 = X2(ε) (using that the k ≥ c1x boxes

are disjoint). We observe

Vn ≥ 1E1

( ∑

1≤i≤k
V√xL(p)(zi)

)
,

so on the event E1 ∩ E2 (which occurs with probability ≥ 1 − ε if x ≥
max(X1, X2)), we have

Vn ≥
(
c3

2
c1x

)
·
(
c3xL(p)2θ(p)

)
= c7n

2θ(p).

4.3 Nice circuits

In Section 7, when we explain how to couple the full-plane process with the
process in finite domains, the following quantity plays an important role. If
C is a circuit, recall that we denote by int(C) the set of vertices inside it. We
introduce

XCp :=
∣∣IC(p)

∣∣, where IC(p) := {v ∈ int(C) : v
p↔ C}.

We can obtain good estimates on this quantity when C is well-behaved,
which occurs with high probability if C is obtained as the outermost black
circuit CoutA in an annulus A. Before stating precise results, we introduce a
notation for quantiles.
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Definition 4.9. For a real-valued random variable X and ε ∈ (0, 1), we
denote by Q

ε
(X) and Qε(X) the (resp.) lower and upper ε-quantiles of X,

defined as
Q
ε
(X) := inf{x ∈ R : P(X ≤ x) ≥ ε} (4.9)

and Qε(X) := sup{x ∈ R : P(X ≥ x) ≥ ε} (4.10)

(so that P(X < Q
ε
(X)) ≤ ε and P(X > Qε(X)) ≤ ε).

Definition 4.10. For p > pc and C > 0, we say that a circuit C is (p, C)-
nice if fp(C) ≤ Cn2θ(p), where n = diam(C) and

fp(C) :=

dlog2 L(p)e−1∑

i=1

∣∣{v ∈ int(C) : 2i−1 ≤ d(v, C) < 2i}
∣∣ · π1(2i−1).

Lemma 4.11. For all ε > 0, there exists a constant C > 0 (depending only
on ε) such that: for all p > pc and n ≥ L(p),

Pp
(
Cout
An/2,n

exists and is not (p, C)-nice
)
≤ ε.

Proof of Lemma 4.11. We denote by E0 the event that there exists a p-black
circuit in A = An/2,n, and by C = CoutA the outermost such circuit when it
exists (otherwise, C = ∅ by convention). We have

E
[
fp(C)

]
=

imax−1∑

i=1

E
[∣∣{v ∈ int(C) : 2i−1 ≤ d(v, C) < 2i}

∣∣
]
· π1(2i−1),

and if v is within a distance 2i < L(p) from C, then there exist two black
arms in the annulus A2i,L(p)(v) (coming from the black circuit C). Hence, if
we denote π2 = πbw,

E
[
fp(C)

]
≤ C ′1n2

imax−1∑

i=1

π2(2i, L(p))π1(2i−1) (4.11)

(using (2.7)). We have π1(L(p)) � π1(2i)π1(2i, L(p)) (from quasi-multiplicativity
(2.6)), and π1(2i) � π1(2i−1) (from (2.5)), so

E
[
fp(C)

]
≤ C ′2n2π1(L(p))

imax−1∑

i=1

π2(2i, L(p))

π1(2i, L(p))
. (4.12)
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Since π1(L(p)) � θ(p) (from (2.13)), and

π2(2i, L(p))

π1(2i, L(p))
≤
(

2i

L(p)

)η

for some η > 0 (this follows from the BK inequality, and the a-priori bound
(2.8)), we finally obtain

E
[
fp(C)

]
≤ C ′3n2θ(p). (4.13)

It then follows from Markov’s inequality that there exists a constant C ′4 =
C ′4(ε) such that for all p > pc and n ≥ L(p),

P
(
fp(C) ≥ C ′4n2θ(p)

)
≤ ε.

We can now state the result which is used in Section 7.

Lemma 4.12. For all ε > 0 and C > 0, there exist constants c, c > 0 and
X ≥ 1 (depending only on ε and C) such that the following property holds.
For all p > pc and n ≥ XL(p), if we have a finite collection (Cz)z∈Z of
(p, C)-nice circuits (Z ⊆ V (T)) with disjoint interiors (int(Cz)∩ int(Cz′) = ∅
for all z 6= z′), and such that Cz ⊆ An/2,n(z), then: for all p′ ≥ p,

c|Z|n2θ(p′) ≤ Q
ε

(∑

z∈Z
XC

z

p′

)
≤ Qε

(∑

z∈Z
XC

z

p′

)
≤ c|Z|n2θ(p′).

Proof of Lemma 4.12. In what follows, we consider an arbitrary p′ ≥ p (so
that in particular, L(p′) ≤ L(p)).

Let us consider c0 > 0 from Lemma 4.8, as well as X ≥ 1 associated with
ε
2 :

Pp′
(
Vn ≥ c0n

2θ(p′)
)
≥ 1− ε

2

if n ≥ XL(p′). Since XCz ≥ Vn/2(z) for every z ∈ Z (from the definition
(4.5) of V), we have: for all n ≥ XL(p),

P
(
XC

z

p′ ≥ c0n
2θ(p′)

)
≥ 1− ε

2
.

Since the random variables (XC
z

p′ )z∈Z are independent by assumption (the
circuits have disjoint interiors), we deduce the existence of c = c(ε) such that

P

(∑

z∈Z
XC

z

p′ ≥ c|Z|n2θ(p′)

)
> 1− ε
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(by distinguishing the two cases |Z| small, and |Z| large enough). This finally
implies

Q
ε

(∑

z∈Z
XC

z

p′

)
≥ c|Z|n2θ(p′).

In order to estimate the upper quantile of
∑

z∈Z X
Cz
p′ , let us fix some

z ∈ Z, and write C = Cz. We subdivide the vertices in int(C) according to
their distance to C: if we denote imax := dlog2 L(p)e and i′max := dlog2 L(p′)e,
we have

E
[
XCp′
]
≤

i′max−1∑

i=1

∣∣{v ∈ int(C) : 2i−1 ≤ d(v, C) < 2i}
∣∣ · Pp′(0↔ ∂B2i−1)

+ C2n
2Pp′(0↔ ∂B

2i
′max−1),

for some universal constant C2 > 0. Using that Pp′(0↔ ∂B2i−1) � π1(2i−1)
and Pp′(0↔ ∂B

2i
′max−1) � Pp′(0↔ ∂BL(p′)) � θ(p′), we obtain

E
[
XCp′
]
≤ C3

i′max−1∑

i=1

∣∣{v ∈ int(C) : 2i−1 ≤ d(v, C) < 2i}
∣∣ · π1(2i−1)

+ C4n
2θ(p′),

≤ C3fp(C) + C4n
2θ(p′). (4.14)

For the last inequality, we replaced i′max by imax in the summation, which
we can do since L(p′) ≤ L(p). Using that fp(C) ≤ C(2n)2θ(p) (since C is
(p, C)-nice), we deduce from (4.14) that

E
[
XCp′
]
≤ C5n

2(θ(p) + θ(p′)) ≤ C6n
2θ(p′)

(since p′ ≥ p). Hence,

E

[∑

z∈Z
XC

z

p′

]
≤ C6|Z|n2θ(p′).

Using Markov’s inequality, we deduce the existence of a constant c = c(ε)
such that

Qε

(∑

z∈Z
XC

z

p′

)
≤ c|Z|n2θ(p′),

which completes the proof of Lemma 4.12.

43



5 Deconcentration argument

5.1 Frozen percolation: notations

We now go back to frozen percolation. Recall that P(G)
N refers to volume-

frozen percolation with parameter N ≥ 1 on a graph G = (V,E). The set
of frozen sites at time p is denoted by F (G)(p), and we simply write F(p)
when G is clear from the context. Let us also stress that (τv)v∈V (T) provides
a natural coupling of the processes on various subgraphs of T.

In a similar way as for the hole H(p) in C∞(p) (Definition 3.1), we define
the hole of the origin in the frozen percolation process, replacing C∞(p) by
the set of frozen sites at time p.

Definition 5.1. For a subgraph G of T, we denote by H̄(G)(p) the connected
component of the origin in G \ (F(p) ∪ ∂outF(p)) (and we take H̄(G)(p) = ∅
if 0 belongs to F(p) ∪ ∂outF(p)).

By analogy, H̄(G)(p) is also called hole of the origin, in the frozen per-
colation process. However, note that it does not need to be a hole in the
geometric sense, i.e. surrounded by one frozen cluster.

Remark 5.2. Here, the (natural) rule that sites adjacent to a frozen cluster
remain white forever, is crucial. The frozen percolation process would behave
very differently if such sites were allowed to become black at a later time (and
form new connected components).

5.2 Exceptional scales

Heuristically, if we consider a box with volume ' K2, then Lemma 4.1
implies that for p > pc, a giant connected component arises, with volume
' θ(p)K2 (and all the other components are tiny). Hence, for volume-frozen
percolation in this box, we expect the first freezing event to occur at a time
p such that θ(p)K2 ' N , i.e. (using Proposition 2.8)

cθπ1(L(p))K2 ' N.

This freezing event then leaves holes with diameter of order L(p), so that
L(p) can be seen as the next scale in the process.

This informal explanation leads us to define ψN (K) := K ′ via the equa-
tion cθπ1(K ′)K2 ' N . More precisely, for all N ≥ 1 and K large enough
(so that cθK2 > N), we introduce

ψN (K) := sup{K ′ : cθπ1(K ′)K2 ≥ N}. (5.1)
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We also use ψ−1
N (K ′) := inf{K : ψN (K) ≥ K ′}.

We can now define inductively the sequence of exceptional scales (mk(N))k≥0

by: m0 = 1, and for all k ≥ 0,

mk+1(N) = ψ−1
N (mk(N)). (5.2)

It follows easily from the definitions and the monotonicity of π1 that

mk+1 =

⌈(
N

cθπ1(mk)

)1/2
⌉
, (5.3)

and that (mk(N))k≥0 is non-decreasing for every fixed N ≥ 1. Note also
that m1(N) ∼ c0

√
N as N →∞, for some constant c0 > 0.

By using Lemma 2.5, we can see that each mk follows a power law:
mk(N) = N δk+o(1) as N → ∞, where the sequence of exponents (δk)k≥0

satisfies
δ0 = 0, and δk+1 =

1

2
+

5

96
δk (k ≥ 0). (5.4)

Note that this sequence is strictly increasing, and that it converges to δ∞ =
48
91 .

It is natural to introduce the (approximate) fixed point of ψN :

m∞(N) := sup{m : cθπ1(m)m2 ≤ N} (5.5)

(note that if we consider critical percolation in a box of volume m2, the
quantity π1(m)m2 gives the order of magnitude for the volume of the largest
connected components). Lemma 2.5 implies that m∞(N) = N δ∞+o(1) as
N → ∞, where δ∞ = 48

91 is the exponent found previously. The following
observation is useful later.

Lemma 5.3. There exist universal constants c, η > 0 such that: for all
N ≥ 1, all K ≤ m∞(N),

ψN (K)

K
≤ c

(
K

m∞

)η
. (5.6)

Proof of Lemma 5.3. We know from the definitions of ψN (K) (5.1) and m∞
(5.5) that cθπ1(ψN (K))K2 ≥ N ≥ cθπ1(m∞)m2

∞, so

π1(K)

π1(ψN (K))
=

cθπ1(K)K2

cθπ1(ψN (K))K2
≤ cθπ1(K)K2

cθπ1(m∞)m2∞
. (5.7)
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It follows from (2.8) that

π1(K)

π1(ψN (K))
≥ c1

(
ψN (K)

K

)1/2

(5.8)

and
cθπ1(K)K2

cθπ1(m∞)m2∞
≤ c2

(
K

m∞

)3/2

(5.9)

for some c1, c2 > 0. The desired result then follows by combining (5.7), (5.8),
and (5.9).

This lemma implies that if m̃(N)� m∞(N) as N →∞, then ψN (m̃)�
m̃. It holds in particular for m̃ = mk (k ≥ 0), since mk(N) = N δk+o(1), with
δk < δ∞.

Remark 5.4. Even if our definition of exceptional scales and the one in [34]
(let us call it (m′k(N))k≥0) differ slightly, they are equivalent in the following
sense: for every k ≥ 1, mk(N) � m′k(N) as N → ∞. In particular, the
results below also apply with this modified definition.

Finally, we define the corresponding times by: for k ∈ N ∪ {∞},

qk(N) := sup{p > pc : L(p) ≥ mk(N)}. (5.10)

Our analysis focuses on the time window [q∞, q1], q1 being roughly the time
when the last frozen clusters may appear.

Let us now recall the main results from [34] about the scales (mk)k≥1,
showing that they indeed play a particular role. The first theorem corre-
sponds to the case when one starts with a box of side length of order mk,
for some fixed k ≥ 1.

Theorem 5.5 ([34], Theorem 1). Let k ≥ 2 be fixed. For every C ≥ 1, every
function m̃(N) that satisfies

C−1mk(N) ≤ m̃(N) ≤ Cmk(N) (5.11)

for N large enough, we have

lim inf
N→∞

P(Bm̃(N))

N (0 is frozen at time 1) > 0. (5.12)

The second theorem deals with the case when one starts far from the
exceptional scales.

46



Theorem 5.6 ([34], Theorem 2). For every integer k ≥ 0 and every ε > 0,
there exists a constant C = C(k, ε) ≥ 1 such that: for every function m̃(N)
that satisfies

Cmk(N) ≤ m̃(N) ≤ C−1mk+1(N) (5.13)

for N large enough, we have

lim sup
N→∞

P(Bm̃(N))

N (0 is frozen at time 1) ≤ ε. (5.14)

These two results were proved by induction, and for that, we established
some slightly stronger versions that we now state. For a circuit γ, we denote
by D(γ) ⊆ T the domain that it encloses. For any 0 < n1 < n2, we introduce

• ΓN (n1, n2) = {for every circuit γ in An1,n2 , for the process in D(γ)
with parameter N , 0 is frozen},

• and Γ̃N (n1, n2) = {there exists a circuit γ in An1,n2 such that for the
process in D(γ) with parameter N , 0 is frozen}.

Here, we use the natural coupling for the frozen percolation processes in
various subgraphs of T.

Proposition 5.7 ([34], Proposition 2). For any k ≥ 2, and 0 < C1 < C2,
we have

lim inf
N→∞

P(ΓN (C1mk(N), C2mk(N))) > 0. (5.15)

This result also holds for k = 1 under the extra condition that C1 > C0,
where C0 > 0 is a universal constant.

Proposition 5.8 ([34], Proposition 3). Let k ≥ 0, ε > 0, and 0 < C1 < C2.
Then there exists a constant C = C(k, ε, C1, C2) such that: for every function
m̃(N) that satisfies

Cmk(N) ≤ C1m̃(N) ≤ C2m̃(N) ≤ C−1mk+1(N) (5.16)

for N large enough, we have

lim sup
N→∞

P(Γ̃N (C1m̃(N), C2m̃(N))) ≤ ε. (5.17)

For future use, let us note that Proposition 5.8 can be formulated in the
following way, which may look stronger at first sight. For all k ≥ 0, ε > 0,
and 0 < C1 < C2, there exist C and N0 such that: for all N ≥ N0, all m̃
with Cmk(N) ≤ C1m̃ ≤ C2m̃ ≤ C−1mk+1(N), we have

P(Γ̃N (C1m̃, C2m̃)) ≤ ε.
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Remark 5.9. Even if we are not using it later, we would like to mention
that with small adjustments to the proofs of Propositions 5.7 and 5.8, we can
also get some information on the size of the final cluster C1(0) of the origin.
For any 0 < n1 < n2 and M ≥ 1, let us introduce

• Γ
(M)
N (n1, n2) = {for every circuit γ in An1,n2, for the process in D(γ)

with parameter N , |C1(0)| /∈
(
M, NM

)
},

• and Γ̃
(M)
N (n1, n2) = {for every circuit γ in An1,n2, for the process in

D(γ) with parameter N , |C1(0)| ∈
(
M, NM

)
}.

We can then distinguish the same two cases as before.

• For all k ≥ 2, ε > 0, and 0 < C1 < C2, there exists M > 1 such that:

lim inf
N→∞

P(Γ
(M)
N (C1mk(N), C2mk(N))) ≥ 1− ε.

Moreover, we can also show that each of the three cases |C1(0)| ≤ M
(C1(0) is microscopic), |C1(0)| ∈

[
N
M , N) (macroscopic and non-frozen),

and |C1(0)| ≥ N (macroscopic and frozen) has a probability bounded
away from 0 as N →∞.

• For all k ≥ 0, ε > 0, 0 < C1 < C2, and M > 1, there exists a
constant C = C(k, ε, C1, C2,M) such that: for every function m̃(N)
that satisfies

Cmk(N) ≤ C1m̃(N) ≤ C2m̃(N) ≤ C−1mk+1(N) (5.18)

for N large enough, we have

lim inf
N→∞

P(Γ̃
(M)
N (C1m̃(N), C2m̃(N))) ≥ 1− ε.

5.3 Associated chains

We now present several chains related to frozen percolation in a simply con-
nected, bounded domain Λ ⊆ T. For all p > pc, we denote by µvolp the
distribution of |H(p)|

L(p)2
. In the following definitions, some value of the param-

eter N ≥ 1 is fixed.

(i) First, we can consider the sequence of successive holes around 0 for the
frozen percolation process in Λ.

– We start with Λ0 = Λ.
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– Given Λi (i = 0, . . . , k − 1), pi+1 is the time of the first freezing
event for the frozen percolation process in Λi,

– and Λi+1 = H̄(Λi)(pi+1).

(ii) If we are also given an initial scale K > 0, we can define the (deter-
ministic) sequence (Ki)0≤i≤k by:

K0 = K, and Ki+1 = ψN (Ki) (i = 0, . . . , k − 1).

We think of them as reference scales, at which the successive freezing
events typically occur, as explained in Section 5.2.

(iii) Following the same heuristic explanation as in the beginning of Section
5.2, we expect the first freezing event in a domain Λ∗ to occur at a time
p∗ such that

cθπ1(L(p∗))|Λ∗| ' N ' cθπ1(ψN (K))K2,

and so (using (2.7))

L(p∗)
ψN (K)

'
(
K2

|Λ∗|

)−48/5

.

Moreover, the frozen percolation hole created in this way should look
like H(Λ∗)(p∗) ' H(p∗). This leads us to introduce the following se-
quences of (random) sets (Λ∗i )0≤i≤k and (random) times (p∗i )1≤i≤k. We
expect them to approximate the real process in Λ, which we prove rig-
orously in Section 6.

– We start with Λ∗0 = Λ.
– Given Λ∗i (i = 0, . . . , k − 1), p∗i+1 is defined by

L(p∗i+1)

Ki+1
=

( |Λ∗i |
K2
i

)48/5

, (5.19)

– and then, we take Λ∗i+1 = H(p∗i+1).

(iv) We also introduce the chain (p∗∗i )1≤i≤k, defined by taking Λ∗∗0 = Λ and

L(p∗∗i+1)

Ki+1
=

( |Λ∗∗i |
K2
i

)48/5

(as for (p∗i )1≤i≤k), but Λ∗∗i+1 = H(Λ∗∗i )(p∗∗i+1).
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(v) Finally, we use a slight modification of the chain (p∗i )1≤i≤k. We can
write

L(p∗i+1)

Ki+1
=

( |Λ∗i |
L(p∗i )

2

)48/5(L(p∗i )
Ki

)96/5

(with L(p∗0) = K0 by convention), which suggests to define a chain
(p̃i)0≤i≤k by

L(p̃i+1)

Ki+1
= α̃

48/5
i

(
L(p̃i)

Ki

)96/5

, (5.20)

where α̃i has distribution µvolp̃i
(with L(p̃0) = K0 as well).

This last chain (p̃i)0≤i≤k is exactly a Markov chain, which makes it more
convenient to work with. In particular, we start by proving deconcentration
for this chain, in Section 5.5, based on an abstract result established in
Section 5.4. Moreover, it is easy to see that it behaves, essentially, in the
same way as (p∗i )0≤i≤k and (p∗∗i )0≤i≤k, as we explain now.

We denote by dTV the total variation distance between two distributions,
and with a slight abuse of notation, we also talk about the total variation
distance between two random variables X and Y (defined as the distance
between their respective distributions).

Lemma 5.10. For all k ≥ 1 and ε > 0, there exist M0, N0 ≥ 1 such that:
for all N ≥ N0, for all p ∈ (pc, qk+1(N)) with L(p) ≤ m∞(N)/M0,

dTV
(
L(p∗k), L(p̃k)

)
≤ ε and dTV

(
L(p∗∗k ), L(p̃k)

)
≤ ε.

Proof of Lemma 5.10. Lemma 5.3 ensures that by choosingM0 large enough,
we are in a position to use Remark 4.4 repeatedly: for each i = 0, . . . , k− 1,
if Λ∗i = Λ∗∗i and p∗i = p∗∗i , then p∗i+1 = p∗∗i+1 (from the definition) and Remark
4.4 implies that for N large enough, Λ∗i+1 = Λ∗∗i+1 with probability at least
1− ε

2k . We deduce

P
(
∀i ∈ {0, . . . , k}, p∗i = p∗∗i and Λ∗i = Λ∗∗i

)
≥ 1− ε

2
. (5.21)

We can then compare (p∗∗i )1≤i≤k and (p̃i)1≤i≤k by using that the (Λ∗∗i ) are
stopping sets, which allows us to successively “refresh” the configuration in-
side them. Given (p∗∗j )1≤j≤i and (Λ∗∗j )1≤j≤i−1, the total variation distance
between Λ∗∗i = H(Λ∗∗i−1)(p∗∗i ) and H̃(p∗∗i ) (obtained on an independent perco-
lation configuration) is thus at most ε

2k (using again Remark 4.4: note that
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(4.2) provides in particular an upper bound on the total variation distance
between H(Λ)(p) and H(p)), and so

dTV (p∗∗i+1, p̃i+1) ≤ dTV (p∗∗i , p̃i) +
ε

2k
.

Combined with (5.21), this yields the desired result.

5.4 Abstract deconcentration result

We now establish a general result that provides deconcentration for functions
of independent random variables: we give a simple sufficient condition on
such functions to ensure that they are spread out, i.e. that they cannot be
concentrated on small intervals. This lemma is instrumental in our proof.

Let us mention that for sums of independent random variables, a result
due to Le Cam can be applied (see [21], and (B) in [9]). This deconcentration
result is used in [30], to show that for two-dimensional critical percolation in
a box, there exist macroscopic gaps between the sizes of the largest clusters.
In some cases, it is even possible to obtain CLT-type results by uncovering
a renewal structure. In particular, McLeish’s CLT for martingale differences
[23] is used in [15] (for “critical” first-passage percolation in two dimensions
– the proofs also apply for the maximal number of disjoint open circuits
surrounding the origin in 2D percolation at criticality), [37] (for the number
of open clusters in a box with side length n, for bond percolation on Zd,
d ≥ 2, for any parameter p ∈ (0, 1)) and [36] (for winding angles of arms in
2D critical percolation). CLT-type results are also obtained in [6], for 2D
invasion percolation, based on mixing properties. However, none of these
techniques seems to be directly applicable in our setting.

We first introduce some notations. We use Ωn = {0, 1}n, and for ω ∈ Ωn

and 1 ≤ i ≤ n, we denote by ω(i) (resp. ω(i)) the configuration that coincide
with ω except at index i, where it is equal to 1 (resp. 0). We also write
|ω| = |{i ∈ {1, . . . , n} : ωi = 1}|.

Let us consider a family of independent Bernoulli-distributed random
variables (Yi)i≥1, with corresponding parameters pi ∈ (0, 1) (i.e. for each
i, P(Yi = 1) = pi and P(Yi = 0) = 1 − pi), and a sequence of functions
fn : Ωn → R.

Lemma 5.11. Assume that there exists ε > 0 such that pi ∈ (ε, 1 − ε) for
all i ≥ 1, and that for all n ≥ 1, fn satisfies

for all 1 ≤ i ≤ n, ∇ifn ≥ 1 (5.22)
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(i.e. for every ω ∈ Ωn, fn(ω(i)) ≥ fn(ω(i))+1). Then there exists a constant
c = c(ε) ∈ (0,∞) such that: for all N ≥ 1, every interval I ⊆ R,

P(fn(Y1, . . . , YN ) ∈ I) ≤ c

N1/2
(|I|+ 1),

where we denote by |I| the length of I.

Remark 5.12. This result provides an upper bound on the Lévy concentra-
tion function of the random variable X = fn(Y1, . . . , Yn), defined by

QX(λ) := sup
x∈R

P(X ∈ [x, x+ λ]).

The proof of Lemma 5.11 is based on the following construction.

Lemma 5.13. Let N ≥ 1, and denote ω = (Y1, . . . , YN ). One can construct
a sequence w̃0 = (0, . . . , 0), w̃1, . . . , w̃N = (1, . . . , 1) such that

• for every i ∈ {0, . . . , N−1}, w̃i+1 can be obtained from w̃i by switching
one coordinate from 0 to 1 (so that each w̃i has exactly i coordinates
equal to 1),

• for every i ∈ {0, . . . , N}, w̃i has the same distribution as ω conditioned
on |ω| = i.

Proof of Lemma 5.13. As we explained, Lemma 5.11 is used in Section 5.5
to show deconcentration for the chain (L(p̃i))0≤i≤k, and for this application,
we only need the case where pi = 1

2 for all i ∈ {1, . . . , N}.
When all the parameters (pi)1≤i≤N are equal, the construction of (w̃i)0≤i≤N

is straightforward: indeed, given w̃i, we can produce w̃i+1 by considering the
n − i coordinates which are equal to 0, choose one of them uniformly at
random, and switch it to 1. We do not need the general case, which seems
to be trickier. Nevertheless, since we find Lemma 5.11 interesting in itself,
we provide a proof of Lemma 5.13 in Appendix A.3.

Proof of Lemma 5.11. We use the coupling provided by Lemma 5.13: for
every interval I ⊆ R,

P(f(ω) ∈ I) =
N∑

i=0

P(f(ω) ∈ I | |ω| = i)P(|ω| = i)

=

N∑

i=0

P(f(ω̃i) ∈ I)P(|ω| = i).
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We can now use that P(|ω| = i) ≤ c
N1/2 , where c = c(ε) < ∞ depends only

on ε: we obtain

P(f(ω) ∈ I) ≤ c

N1/2

N∑

i=0

Ẽ
[
1f(ω̃i)∈I

]
=

c

N1/2
Ẽ

[
N∑

i=0

1f(ω̃i)∈I

]
.

It then suffices to observe that
N∑

i=0

1f(ω̃i)∈I ≤ |I|+ 1,

from our assumption on f .

5.5 Deconcentration for (L(p̃i))0≤i≤k

We now obtain deconcentration for the Markov chain (L(p̃i))0≤i≤k by apply-
ing the abstract result from the previous section, Lemma 5.11.

Proposition 5.14. For all ε > 0 and λ > 1, there exist k0, N0 ≥ 1 such
that: for all k ≥ k0, for all N ≥ N0, for all p ∈ (pc, qk+1(N)),

sup
y>0

P
(
L(p̃k) ∈ (y, λy)

)
< ε. (5.23)

Proof of Proposition 5.14. Let us consider ε > 0 and λ > 1, and take k ≥ 1
(we explain later how to choose it). In order to use Lemma 5.11, we describe
the process (L(p̃i))0≤i≤k in terms of i.i.d. random variables (Ui)0≤i≤k−1

uniformly distributed on the interval (0, 1), as we explain now. For p > pc
and u ∈ (0, 1), we introduce the lower u-quantile

q(p, u) := Q
u

( |H(p)|
L(p)2

)

(recall Definition 4.9). It follows from (4.9) that if U is a random variable
uniform on (0, 1), then q(p, U) has distribution µvolp , so that in the definition
(5.20) of (p̃i)0≤i≤k, we can use the representation

α̃i = q(p̃i, Ui) (0 ≤ i ≤ k − 1). (5.24)

Note that α̃i is thus a function of U0, . . . , Ui.
From the upper bounds in (3.3) and (3.5), we can find Λ large enough

(depending on k) such that if U is uniformly distributed on (0, 1), we have:
for all p > pc,

P
(
q(p, U) /∈ [Λ−1,Λ]

)
≤ ε

10k
. (5.25)
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In particular, for all p > pc and u ∈
(
ε

10k , 1 − ε
10k

)
, q(p, u) ∈ [Λ−1,Λ]. We

thus introduce the event

G1 :=
{
∀i ∈ {0, . . . , k − 1}, Ui ∈

( ε

10k
, 1− ε

10k

)}
, (5.26)

which satisfies P(G1) ≥ 1 − ε
5 . We can also take N large enough so that if

the event G1 holds (which we assume from now on), then the (p̃i)0≤i≤k are
sufficiently close to pc (with respect to our particular choice of Λ) to allow
us to apply Proposition 3.4 to each of them. In particular, this implies that
in (5.24), the combined effect of U0, . . . , Ui−1 on α̃i (through p̃i) is not very
large: a multiplicative factor between β−1 and β, where β is as in Proposition
3.4.

By iterating the definition (5.20) of (p̃i)0≤i≤k, we obtain

L(p̃k)

Kk
=

k−1∏

i=0

α̃δii , where δi =
1

2

(96

5

)k−i
. (5.27)

We can now make the following key observation. For some given U0, . . . , Uk−1,
let us assume that we change exactly one of them, say Ui (in such a way that
G1 still holds), so that

(i) α̃i is multiplied by a factor at least 2β,

(ii) then α̃0, . . . , α̃i−1 are not affected (indeed, they depend only on U0, . . . , Ui−1),

(iii) and α̃i+1, . . . , α̃k−1 are each changed by a factor between β−1 and β
(using the previous observation).

Since the exponent δi of α̃i in (5.27) satisfies

δi∑k−1
j=i+1 δj

≥ 1∑∞
j=1( 5

96)j
=

91

5
,

these three properties together imply that L(p̃k) gets multiplied by a factor
at least 248/5.

We use this observation to apply Lemma 5.11, as follows. First, we can
choose δ > 0 small enough so that for all p > pc,

q(p, 1− δ) ≥ 2β · q
(
p,

1

2

)

(using the lower bound in (3.3)). We also introduce a modification of (Ui)0≤i≤k−1:
for i ∈ {0, . . . , k − 1},

Ũi :=

{
Ui − 1

2 if Ui ≥ 1− δ,
Ui otherwise.
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Note that in order to prove our result, we can condition on (Ũi)0≤i≤k−1, and
prove that deconcentration holds in this case.

We can take k large enough so that with probability at least ε
5 , the

number l of indices i ∈ {0, . . . , k − 1} such that Ũi ∈
(

1
2 − δ, 1

2

)
(i.e. Ui ∈(

1
2 − δ, 1

2

)
∪ (1 − δ, 1)) is at least δk: let us call G2 this event, and assume

that it occurs. We can list the corresponding indices as i1, . . . , il. We then
define, for all j ∈ {1, . . . , l},

Yj :=

{
1 if Uij ≥ 1− δ (so that Uij = Ũij + 1

2),
0 otherwise (in this case, Uij = Ũij ).

Since we assumed (Ũi)0≤i≤k−1 to be given, (5.27) allows us to see L(p̃k)
as a function g(Y1, . . . , Yl), and the (Yj)1≤j≤l are independent Bernoulli(1

2)
distributed. We are thus in a position to apply Lemma 5.11, to the function

f(Y1, . . . , Yl) := ln g(Y1, . . . , Yl)

(note that the previous observation ensures: for all j ∈ {1, . . . l}, ∇jf ≥
ln(248/5) > 1), and we obtain

P
(
g(Y1, . . . , Yl) ∈ (y, λy)

)
= P

(
f(Y1, . . . , Yl) ∈ (ln y, ln y + lnλ)

)

≤ c

l1/2
(lnλ+ 1),

where c is a universal constant. We deduce, using l ≥ δk: for all y ∈ R,

P
(
L(p̃k) ∈ (y, λy)

)
≤ c

(δk)1/2
(lnλ+ 1) + P(Gc1) + P(Gc2)

≤ c

(δk)1/2
(lnλ+ 1) +

ε

5
+
ε

5
,

which is smaller than ε for k large enough. This completes the proof of
Proposition 5.14.

By combining Proposition 5.14 with Lemma 5.10, we can deduce imme-
diately a deconcentration result for L(p∗k) and L(p∗∗k ), which is used in the
next section (and we can now forget about the chain (p̃i)0≤i≤k).

Corollary 5.15. For all ε > 0 and λ > 1, there exists k0 such that the
following property holds. For all k ≥ k0, there exist M0, N0 ≥ 1 such that:
for all N ≥ N0, for all p ∈ (pc, qk+1(N)) with L(p) ≤ m∞(N)/M0,

sup
y>0

P
(
L(p∗k) ∈ (y, λy)

)
< ε and sup

y>0
P
(
L(p∗∗k ) ∈ (y, λy)

)
< ε. (5.28)
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6 Frozen percolation in finite boxes

6.1 Iteration lemma

We establish now an iteration lemma for frozen percolation, that allows us
to compare the real frozen percolation process to the chain (p∗i ), for which
we proved deconcentration in Section 5.5.

Before stating the lemma, we need to indroduce some terminology. Let
us consider n ≥ 1, and a partition {1, . . . , n} = I t J t K. A function
f : x = (x1, . . . , xn) ∈ Rn 7→ f(x) ∈ R is said to be small when (xj)j∈J are
small and (xk)k∈K are large if: for all ε > 0, all (xi)i∈I , there exists C > 1
such that whenever all j ∈ J satisfy xj < C−1 and all k ∈ K satisfy xk > C,
one has f(x) < ε.

Lemma 6.1. Let l ≥ 3, N ≥ 1, K ∈ [m2(N),ml(N)], c2 > c1 > α >
0, η > 0, and β ∈ (0, 1

10). Further, let Λ be a simply-connected (αK, η)-
approximable set, with Bc1K ⊆ Λ ⊆ Bc2K . Let 0 < c1,new < c2,new, and
Knew := ψN (K), i.e. such that

cθK
2π1(Knew) ' N, (6.1)

where cθ is the constant appearing in Proposition 2.8. Then there exist
αnew > 0, ηnew > 0 (small if η is small, and N is large), βnew > 0 (small
if β and η are small, and N is large), and a simply connected stopping set
Λnew such that with probability > 1 − ε (where ε is small if η, c1,new, β are
small, and N, c2,new are large), the following three properties hold.

(i) Λnew is (αnewKnew, ηnew)-approximable, and

Bc1,newKnew ⊆ Λnew ⊆ Bc2,newKnew .

(ii) For every simply connected Λ̃ with (Λint(αK))(β) ⊆ Λ̃ ⊆ Λ, the first
freezing event for the frozen percolation process in Λ̃ leaves a hole Λ̃F

around 0 that satisfies

(Λint(αnewKnew)
new )(βnew) ⊆ Λ̃F ⊆ Λnew.

Moreover, if we consider the modified frozen percolation process in Λ̃,
where clusters not touching ∂Λ̃ do not freeze (i.e. they keep growing
even if their volume is ≥ N), the first freezing event leaves the same
hole Λ̃F mentioned above.
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(iii) For each Λ̃ with (Λint(αK))(β) ⊆ Λ̃ ⊆ Λ, if we define p∗∗ by

L(p∗∗)
Knew

=

(
|Λ̃|
K2

)48/5

, (6.2)

then Λ̃∗∗ := H(Λ̃)(p∗∗) satisfies

(Λint(αnewKnew)
new )(βnew) ⊆ Λ̃∗∗ ⊆ Λnew

for N large enough.

This result makes rigorous the heuristic explanation from Section 5.2.
Indeed, the quantity K represents a rough estimate for the diameter of Λ,
and we prove that Knew = ψN (K) corresponds to the next scale in the
process, after the first freezing event occurs.

Proof of Lemma 6.1. (i) Let us consider N,K, c1, c2, α, η, β and Λ as in the
statement, and also the associated constant Knew. Let ε > 0. Let us take
some δ ∈ (0, 1

4), and define p− and p+ by

|Λ| · θ(p−) = N(1− δ), (6.3)

and ∣∣(Λint(αK))(β)

∣∣ · θ(p+) = N(1 + δ). (6.4)

We start by making a few observations on the various scales involved.

• Since |Λ| � K2 and θ(p−) � π1(L(p−)), it follows from the definitions
of Knew (6.1) and p− (6.3) that π1(Knew) � π1(L(p−)), and so

L(p−) � Knew. (6.5)

• The assumption that K ≤ ml(N) implies (using Lemma 5.3) that

Knew = ψN (K)� K as N →∞. (6.6)

• From the definitions of p− (6.3) and p+ (6.4), we can write

1 ≥ θ(p−)

θ(p+)
=

1− δ
1 + δ

·
∣∣(Λint(αK))(β)

∣∣
|Λ| ≥ 1− δ

1 + δ
· (1− 4β)(1− η), (6.7)
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using (3.12) and the (αK, η)-approximability of Λ. Proposition 2.8 and
Lemma 2.7 imply

θ(p−)

θ(p+)
≤ (1 + δ)

π1(L(p−))

π1(L(p+))
≤ (1 + δ)2

(
L(p−)

L(p+)

)−5/48

(6.8)

if N is large enough so that p− and p+ are sufficiently close to pc. We
deduce

1 ≤ L(p−)

L(p+)
≤
[

1− δ
(1 + δ)3

(1− 4β)(1− η)

]−48/5

. (6.9)

For any given β′, η′ > 0, Lemmas 3.6 and 3.7 imply that if δ, β, η are
sufficiently small, and N is sufficiently large, then there exists α′ > 0 such
that: with probability > 1− ε,

• H(p−) is (α′L(p−), η′)-approximable (in particular, it contains the block
bα′L(p−)),

• and (H(p−)
int(α′L(p−))

)(β′) ⊆ H(p+) (using (6.9)).

Now, we can consider, for the percolation process with parameter p− in
Λ, the set

Λnew = H(Λ)(p−)

(recall the definition in (4.1)), which is a stopping set. Moreover, it coincides
with H(p−) with probability > 1− ε, since L(p−) � Knew � K (from (6.5)
and (6.6)). The a-priori bounds from Lemma 3.2 imply the existence of
0 < c3 < c4 such that: for N large enough,

Bc3Knew ⊆ H(p−) ⊆ Bc4Knew (6.10)

with probability > 1 − ε (using (6.5)). We also note that if H(p−) is
(α′L(p−), η′)-approximable, then it is also (αnewKnew, η

′)-approximable, with
αnew = α′L(p−)

Knew
, and αnew � α′ (using again (6.5)). Hence, our choice of Λnew

satisfies the desired properties with probability > 1− 3ε, if we choose αnew
as indicated, βnew = β′, c1,new = c3, c2,new = c4, and ηnew = η′, which
completes the proof of (i).

(ii) Let us now turn to the second property, and consider a simply
connected domain Λ̃ with (Λint(αK))(β) ⊆ Λ̃ ⊆ Λ. Since Λ is (αK, η)-
approximable, with probability > 1 − ε, the largest p−-black cluster in Λ
has volume at most

(1 + ε)θ(p−)|Λ| = (1 + ε)(1− δ)N
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(using the definition of p− (6.3)), which is < N if ε is small enough so that
(1+ε)(1−δ) < 1. Indeed, we can apply Lemma 4.1 (i), for η sufficiently small
and N sufficiently large (so that L(p−)

αK is sufficiently small). Moreover, we
know from the same lemma (part (ii)) that this cluster contains a p−-black
circuit in A 1

8
αK, 1

4
αK which is connected to∞ by a p−-black path (hence, the

hole around 0 in this cluster is H(p−)).
Similarly, Lemma 4.1 (i) implies that, with probability > 1−ε, the largest

p+-black cluster in (Λint(αK))(β) has volume at least

(1− ε)θ(p+)
∣∣(Λint(αK))(β)

∣∣ = (1− ε)(1 + δ)N

(using the definition of p+ (6.4)), which is > N for ε sufficiently small. Also,
the same lemma (part (ii)) ensures that this cluster has a p+-black circuit
in A 1

8
αK, 1

4
αK which is connected to ∞ by a p+-black path. Note that this

cluster also contains the previously mentioned p−-black circuit.
Now, let us introduce the time p̃ of the first freezing event in Λ̃. The

previous observations directly imply that

p− < p̃ < p+.

We consider Cmax
(Λint(αK))(β)

: since p− < p̃, Cmax
(Λint(αK))(β)

(p̃) either contains

Cmax
(Λint(αK))(β)

(p−), or it is disjoint from it. But this latter case cannot oc-
cur, since it would imply the existence of two p̃-black clusters with volume
close to (or larger than) N , using again Lemma 4.1 (i), and hence

• either two p+-black clusters with volume close to (or larger than) N ,

• or one p+-black cluster with volume close to (or larger than) 2N ,

which contradicts part (iii) of the same lemma. Hence, Cmax
(Λint(αK))(β)

(p̃) ⊇
Cmax

(Λint(αK))(β)
(p−), and this latter cluster also contains the previously-mentioned

circuit (again by Lemma 4.1 (ii)). Finally, let us note that
∣∣Cmax

Λ̃
(p̃)
∣∣ ≥

∣∣Cmax
(Λint(αK))(β)

(p̃)
∣∣,

and these two clusters cannot be disjoint, for the same reasons as before. We
deduce Cmax

Λ̃
(p̃) ⊇ Cmax

(Λint(αK))(β)
(p̃). In particular, Cmax

Λ̃
(p̃) contains the earlier

p−-black circuit, which is connected by a p−-black path to∞, so the freezing
event in Λ̃ (at time p̃) leaves a hole Λ̃F around 0 which is contained in H(p−),
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and contains H(p+). This completes the proof of (ii), since H(p−) = Λnew,
and we know that

H(p+) ⊇ (H(p−)
int(α′L(p−))

)(β′) = (Λnew
int(αnewKnew))(βnew) (6.11)

(recall that β′ = βnew).
(iii) Even if this step is similar to the previous one in flavor, it follows

from completely different reasons (it is essentially a deterministic statement).
Let us consider Λ̃ as in the statement. Since we have chosen Λnew = H(p−),
and (Λ

int(αnewKnew)
new )(βnew) ⊆ H(p+) (from (6.11)), it suffices to prove that

p− < p∗∗ < p+.
It follows from Proposition 2.8 that

π1(L(p−)) <

(
1 +

δ

2

)
(cθ)

−1θ(p−)

for N large enough. We then obtain from the definitions of Knew (6.1) and
p− (6.3) that

π1(L(p−))

π1(Knew)
<

(
1− δ

2

)
K2

|Λ| .

This implies, with Lemma 2.7, that

L(p−)

Knew
>

((
1− δ

4

)
K2

|Λ|

)−48/5

(6.12)

for N large enough, which yields

L(p−)

Knew
>

( |Λ|
K2

)48/5

≥
(
|Λ̃|
K2

)48/5

=
L(p∗∗)
Knew

(6.13)

(using (6.2)). Hence, p− < p∗∗.
In a completely similar way, we can get from the definitions of Knew (6.1)

and p+ (6.4), combined with Proposition 2.8 and Lemma 2.7, that

L(p+)

Knew
<

(
|(Λint(αK))(β)|

K2

)48/5

≤
(
|Λ̃|
K2

)48/5

=
L(p∗∗)
Knew

, (6.14)

and so p+ > p∗∗, which completes the proof of (iii).
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6.2 Proof of Theorem 1.2

In this section, we establish Theorem 1.2, for frozen percolation in boxes of
side length between mk(N) and mk+1(N), with k large. We actually prove
the stronger result below, which is useful then to study the full-plane process,
i.e. to derive Theorem 1.1, which we explain in the next section.

Theorem 6.2. For all ε > 0, there exists η = η(ε) > 0 such that: for all
c2 > c1 > α > 0, there exists k0 ≥ 1 such that for all k ≥ k0, the following
property holds. For all sufficiently large N , all K ∈ (mk+2(N),mk+5(N)),
and all simply connected (αK, η)-approximable sets Λ with Bc1K ⊆ Λ ⊆
Bc2K , we have

P(Λ)
N (0 is frozen at time 1) < ε.

Note that this result clearly implies Theorem 1.2.

Proof of Theorem 6.2. Let us consider the various chains associated with the
domain Λ and the initial scale K, as explained in Section 5.3.

• (Λi)0≤i≤k is the sequence of successive holes around 0 for the frozen
percolation process in Λ, with (pi)0≤i≤k the corresponding freezing
times.

• (Ki)0≤i≤k is a deterministic sequence of scales.

• (Λ∗∗i )0≤i≤k and (p∗∗i )0≤i≤k are two sequences, of random sets and ran-
dom times, respectively, that are used to approximate the real process.

Lemma 3.2 implies the existence of a constant c > 0 such that

P
(
Bc−1L(p∗∗k ) ⊆ Λ∗∗k ⊆ BcL(p∗∗k )

)
> 1− ε. (6.15)

The deconcentration result for L(p∗∗k ) (Corollary 5.15) implies the following.
For every κ > 1, we can find k0 large enough so that: for all k ≥ k0, for all
N sufficiently large (depending on k), with probability > 1− ε,

L(p∗∗k ) ∈ Iκ :=
(
m1(N),m6(N)

)
\
( 6⋃

i=1

(
κ−1mi(N), κmi(N)

))
(6.16)

(i.e. L(p∗∗k ) is between m1(N) and m6(N), but at least a factor κ different
from each of the exceptional scales m1(N),m2(N), . . . ,m6(N)). Together
with (6.15), this implies (for the same k, and for all N large enough):

P
(
∃L ∈ Iκ such that BL ⊆ Λ∗∗k ⊆ Bc̃L

)
> 1− ε, (6.17)
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with c̃ = c2.
By applying iteratively Lemma 6.1, we can then compare the chain

(Λi)1≤i≤k with (Λ∗∗i )1≤i≤k. Indeed, we can condition successively on the
Λ∗∗i (1 ≤ i ≤ k) and treat them as deterministic sets, since they are stopping
sets (note that the claims of Lemma 6.1 all concern the configuration inside,
not outside, a given domain Λ). Hence, we obtain that for η sufficiently
small: for all N large enough, with probability > 1− ε, Λi is “close” to Λ∗∗i
for all i = 1, . . . , k. In particular, with probability > 1 − 2ε, Λk satisfies
the same property as Λ∗∗k in (6.17), but with κ and c̃ replaced by κ

2 and 2c̃,
respectively.

We are now in a position to use the results from [34] about the behavior of
frozen percolation in finite boxes, recalled in Section 5.2. More precisely, we
can apply Proposition 5.8 (see also the reformulated version, just below it),
corresponding to the case when we start between two consecutive exceptional
scales, but away from them (with m1, . . . ,m6). Indeed, c̃ is a universal
constant, and we can take κ as large as we want, which completes the proof.

7 Full-plane process

7.1 Coupling with approximable domains

In this section, we explain how Theorem 6.2 can be used to prove the cor-
responding result for the full-plane process, namely Theorem 1.1. For that,
we show Proposition 7.2, that allows us to couple the full-plane process to
the chains introduced in Section 5.3, for finite domains.

The following notation is used repeatedly in this section. For N ≥ 1 and
p ∈ (pc, 1] with L(p) ≥

√
N , we set p̂ = p̂(p,N) ∈ (pc, 1] to be the solution

of
L(p)2θ(p̂) = N, (7.1)

and we extend this notation recursively by setting p̂1 = p̂, and p̂k = (̂p̂k−1).
As we explained in the beginning of Section 5.2, we expect p̂ to be roughly

the time when the first frozen cluster appears for the frozen percolation
process in BL(p). Note that Lemma 5.3 can be rephrased in the following
way.

Lemma 7.1. There exist constants c, α > 0 such that: for all N ≥ 1 and
p ∈ (q∞, q1],

L(p)

L(p̂)
≥ c

(
m∞
L(p)

)α
.
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For later use, we also note that there exist constants c̃, α̃ > 0 such that:
for all p > q∞ for which ̂̂p is well-defined, we have

L(p̂)

L(̂̂p)
≤ c̃

(
L(p)

L(p̂)

)α̃
. (7.2)

Indeed, we can write

(
L(p)

L(p̂)

)2

=
θ(̂̂p)
θ(p̂)

≥ c1
π1(L(̂̂p))
π1(L(p̂))

≥ c2

(
π1(L(̂̂p), L(p̂))

)−1 ≥ c3

(
L(p̂)

L(̂̂p)

)α′
,

using successively (7.1), (2.13), (2.6) and (2.8).

Proposition 7.2. For all ε, η > 0, there exist c2 > c1 > α > 0, M0 > 0
and N0 ≥ 1 such that: for all N ≥ N0 and p ∈ (pc, q3(N)) with L(p) ≤
m∞(N)/M0, we can find a simply connected stopping set Λ# that satisfies
the following two properties with probability at least 1− ε.

(i) Λ# = H̄(T)(p#) for some p# ∈ (p,
̂̂̂
p).

(ii) Λ# is (αL(p#), η)-approximable, with Bc1L(p#) ⊆ Λ ⊆ Bc2L(p#).

Before proving this result in the next section, we explain how to combine
it with Theorem 6.2 and obtain Theorem 1.1.

Proof of Theorem 1.1. Let us consider some ε > 0 arbitrary, and η = η(ε) >
0 associated with it by Theorem 6.2. For this choice of ε and η, Propo-
sition 7.2 then produces c2 > c1 > α > 0, M0 > 0 and N0 ≥ 1. We
know from Theorem 6.2 that for these specific values α, c1 and c2, we can
find k ≥ 1 and N1 ≥ N0 large enough such that: for all N ≥ N1, all
K ∈ (mk+2(N),mk+5(N)), and all simply connected (αK, η)-approximable
stopping sets Λ with Bc1K ⊆ Λ ⊆ Bc2K , we have

P(Λ)
N (0 is frozen at time 1) < ε. (7.3)

In particular, for p = qk+5(N), we have L(p) ≤ m∞(N)/M0 for all N ≥ N2

(for some N2 ≥ N1 large enough), so Proposition 7.2 provides us with Λ#

and p# which satisfy, with probability > 1− ε:

(i) Λ# = H̄(T)(p#),

(ii) K = L(p#) ∈ (mk+2(N),mk+5(N)) (since p# ∈ (p,
̂̂̂
p)),
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(iii) and Λ# is a simply connected (αK, η)-approximable stopping set, with
Bc1K ⊆ Λ ⊆ Bc2K .

For all N ≥ N2, we can thus obtain from (7.3) (with such a pair (Λ#,K),
using (ii) and (iii)) that

P(Λ#)
N (0 is frozen at time 1) < ε,

which finally completes the proof, since Λ# = H̄(T)(p#):

P(T)
N (0 is frozen at time 1) < 2ε.

7.2 Proof of Proposition 7.2

Proof of Proposition 7.2. Let us consider some ε > 0, and assume, without
loss of generality, that ε < 1. We also consider some large constant M > 0,
that we specify later, and p > pc such that L(p) ≤ m∞/M . We use this
control over L(p)

m∞
only via Lemma 7.1, which implies that the ratio L(p)/L(p̂)

can be made arbitrarily large by choosing M large enough.
By (2.8), we can set µ = µ(ε) ∈ (0, 1) small enough so that: for all

p > pc,

P
(
O∗(µL(p), L(p)) ∩ O(µ2L(p), µL(p)) holds at time p

)
≥ 1− ε

100
. (7.4)

We denote the event in (7.4) by E(p).

Step 1. Let us fix some large K ≥ 1 (we explain later how to choose it).
We first prove that soon after p (we have to wait for at most one freezing),
we can find a time p∗ when the hole of the origin is large compared to the
correlation length L(p∗) at that time. Intuitively, imagine a flea jumping on
(q∞, 1]: when it is at position q, it jumps to q̂. If we take q1 and q2 so that
q2 − q1 is smaller than the length of a jump of the flea in [q1, q2], then no
matter where the flea starts, it will not get close to both q1 and q2. That
is, a frozen circuit surrounding the origin cannot emerge close to both times
q1 and q2, which implies that at time q1 or q2, the hole of the origin is large
compared to the correlation length. Let us turn to a precise proof.

We first introduce the outermost p-black circuit C in Aµ2L(p),µL(p), tak-
ing C = ∂Bµ2L(p) if such a circuit does not exist. Let p′ be the first time
that a vertex on C freezes for the modified frozen percolation process in T
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0

L(p) L(p̂)

L(p1) L(p2)

L(p4)L(p3)

L(̂̂p)

mesh of net

Figure 7.1: This figure presents, in a schematic way, the various scales
involved in the proof of Proposition 7.2 (Steps 1 and 2).

where clusters still freeze as soon as they reach volume ≥ N , unless they
are included in int(C), in which case they keep growing as long as they do
not contain a vertex of C (i.e. the clusters which are strictly inside C are
allowed to grow after they reach volume N , until they intersect C). Let us
stress that this modified process is used only in this step and the next one
(and not later in the proof), to ensure that p′ has the right measurability
property.

We define the (deterministic) times p1 and p2 by

L(p1) = L(p)1/3L(p̂)2/3 and L(p2) = L(p)1/6L(p̂)5/6. (7.5)

Note that they satisfy p < p1 < p2 < p̂ (since L(p̂) < L(p)). In a similar
way, we also introduce, for β = 1

2α̃ > 0 (where α̃ is the universal constant
from (7.2)), the times p3 and p4 such that

L(p3) = L(p̂)1−βL(̂̂p)β and L(p4) = L(p̂)1−2βL(̂̂p)2β, (7.6)

which satisfy p̂ < p3 < p4 < ̂̂p. For the convenience of the reader, we
summarize on Figure 7.1 the different scales that we use.

We now consider Λ∗ = H(int C)(p′), and we distinguish two cases, depend-
ing on whether p′ ≤ p1 or p′ > p1.

• Case a: if p′ ≤ p1, we take p∗ = p2.

• Case b: if p′ > p1, we take p∗ = p4.

In this way, we have produced a pair (p∗,Λ∗) such that Λ∗ is a stopping set:
we can thus condition on it, and treat it as a deterministic set. Moreover,
we can also condition on p∗, which leaves unaffected the configuration in Λ∗.
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Step 2. We now prove that there existM and N large enough such that
with probability ≥ 1− ε

10 , the following three properties hold (recall that M
was introduced in the beginning of the proof, so that L(p) ≤ m∞/M).

(i) BKL(p∗) ⊆ Λ∗,

(ii) Λ∗ = H̄(T)(p∗),

(iii) and Λ∗∩F(p∗) = ∅ (i.e. Λ∗ does not contain any frozen cluster at time
p∗).

Let us stress that in property (ii) above, the notation H̄(T) refers to the
original frozen percolation process (not the modified one).

First, let us note that

Pp2
(∣∣Cmax

BL(p)

∣∣ ≥ N
)

= Pp2
(∣∣Cmax

BL(p)

∣∣ ≥ xL(p)2θ(p2)
)
,

with

x =
N

L(p)2θ(p2)
=

θ(p̂)

θ(p2)
≥ c1

π1(L(p̂))

π1(L(p2))
≥ c2

(
L(p)

L(p̂)

)α/6

(using successively the definition of p̂ (7.1), (2.13), (2.8), and the definition
of p2 (7.5)). By Lemma 7.1, this last lower bound can be made arbitrarily
large by choosing M large enough, so there exist constants M1 = M1(ε) and
N1 = N1(ε) such that: for all M ≥ M1 and N ≥ N1, x is large enough so
that we can apply (4.4), and

Pp2
(∣∣Cmax

BL(p)

∣∣ ≥ N
)
≤ c3e

−c4
(
L(p)
L(p̂)

)α/6
≤ ε

100
. (7.7)

We now assume that the event E1 := {|Cmax
BL(p)

(p2)| < N} occurs.
Let us assume that E2 := E(p) also holds, which has a probability at least

1 − ε
100 (using (7.4)). In particular, it implies that C exists: we claim that

at time p, neither C nor anything inside it is frozen, with high probability.
For that, let us set

E3 :=
{
F(p) ∩ int(C) = ∅

}
,

where int(C) = C ∪ int(C). Note that C is protected by the p-white circuit in
AµL(p),L(p) from frozen clusters outside it: we thus have

PN (E2 ∩ Ec3) ≤ Pp
(∣∣Cmax

BL(p)

∣∣ ≥ N
)
≤ ε

100

(using (7.7), since p < p2).

66



It follows that PN (E2 ∩E3) ≥ 1− 2 · ε
100 : we now assume that this event

holds, so that in particular p′ > p, and we examine the two cases introduced
earlier.

• Case a: p < p′ ≤ p1 and p∗ = p2. First, we have

µ2L(p) > L(p1) > µL(p1) > KL(p2) (7.8)

for all M ≥ M2 = M2(ε,K) and N ≥ N2 = N2(ε,K) (using again
Lemma 7.1, and (7.5)). We know from (7.7) that no cluster with
volume ≥ N can emerge before time p2 in int(C). Hence, C freezes
at time p′ in the frozen percolation process (which coincides with the
modified process). Moreover, let us assume that the event E4 := E(p1)
occurs: P(E4) ≥ 1 − ε

100 (from (7.4)), and since p′ ≤ p1, the white
circuit in AµL(p1),L(p1) is also present at time p′. Hence, no vertex in
BµL(p1) can freeze at time p′, and the freezing at time p′ leaves a hole
H̄(T)(p′) ⊆ BL(p) in which no cluster with volume ≥ N can emerge
before time p2. This implies that

H̄(T)(p2) = H̄(T)(p′) = Λ∗ ⊇ BµL(p1)

on the intersection of the events above. Using (7.8), we obtain that

PN (BKL(p∗) * H̄(T)(p∗), p′ ≤ p1) ≤ 4 · ε

100

for all M ≥ max(M1,M2) and N ≥ max(N1, N2). We have thus
checked properties (i), (ii) and (iii) in this case.

• Case b: p′ > p1 and p∗ = p4. In this case, we use the intermediate
scale

λ = L(p)1/2L(p̂)1/2

(which, intuitively, corresponds to a time strictly between p and p1),
and the event

E5 := Np1(λ/4, L(p))

(recall Definition 2.1 for nets). We know from Lemma 2.2 that

P(E5) ≥ 1− C1

(
L(p)

λ/4

)2

e
−C2

λ/4
L(p1) ≥ 1− C3

L(p)

L(p̂)
e
−C4

(
L(p)
L(p̂)

)1/6
,

for some universal constants Ci > 0 (1 ≤ i ≤ 4). Hence, there exist
M3 = M3(ε) and N3 = N3(ε) such that: for all M ≥M3 and N ≥ N3,

P(E5) ≥ 1− ε

100
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(using Lemma 7.1 once again). In particular, it implies that with a
probability ≥ 1 − ε

100 , there exists a p1-black net inside int(C) which
is connected to C, and which leaves holes with diameter ≤ λ. Let us
denote by E6 the event that such a net exists, and a cluster with volume
≥ N that is not connected to C emerges in the time interval (p1, p4].
Because of the existence of a net at time p1, any such cluster has to
appear in one of the k ≤ C5

(L(p)
λ

)2 holes, each having a diameter ≤ λ.
We deduce

P(E6) ≤ C5

(L(p)

λ

)2
Pp4

(∣∣Cmax
Bλ

∣∣ ≥ N
)
,

which is ≤ ε
100 for all M ≥ M4 and N ≥ N4: indeed, we can proceed

as for (7.7), as we explain now. For that, we write

Pp4
(∣∣Cmax

Bλ

∣∣ ≥ N
)

= Pp4
(∣∣Cmax

Bλ

∣∣ ≥ xλ2θ(p4)
)
,

with
x =

N

λ2θ(p4)
=
L(p)

L(p̂)
· θ(p̂)
θ(p4)

,

and there exist universal constants ci > 0 (1 ≤ i ≤ 4) such that

θ(p̂)

θ(p4)
≥ c1

π1(L(p̂))

π1(L(p4))
≥ c2π1(L(p4), L(p̂)) ≥ c3

(
L(p4)

L(p̂)

)1/2

= c3

(
L(̂̂p)
L(p̂)

)β

(using (2.13), (2.6), (2.8) and the definition of p4 (7.6)), which yields

x ≥ c4
L(p)

L(p̂)
·
(
L(p)

L(p̂)

)−βα̃
= c4

(
L(p)

L(p̂)

)1/2

(this follows from (7.2) and our particular choice of β): we are thus in
a position to combine Lemma 7.1 and (4.4).

On the other hand, with high probability, something has to freeze
before time p3 in int(C). Indeed, we know from Lemma 4.1 that

Pp3
(∣∣Cmax

Bµ2L(p)

∣∣ ≥
(

1− ε

100

)
θ(p3)

∣∣Bµ2L(p)

∣∣
)
≥ 1− ε

100

as soon as L(p3)
µ2L(p)

is small enough, and we have

(
1− ε

100

)
θ(p3)

∣∣Bµ2L(p)

∣∣
N

≥ C6
θ(p3)

(
µ2L(p)

)2

N
= C6µ

4 θ(p3)

θ(p̂)

for some universal constant C6 > 0 (using the definition of p̂ (7.1)),
which is ≥ 1 for all M ≥ M5 and N ≥ N5 (thanks to Lemma 7.1
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again). Hence, the only possible scenario is as follows: the connected
component that contains C and the net at time p1 freezes at time
p′ ≤ p3, and when it freezes, it leaves holes in which no other clusters
with volume ≥ N can emerge before time p4. In particular, Λ∗ =
H̄(T)(p′) = H̄(T)(p∗). We can then conclude the claims announced
in the beginning of Step 2 by using the event E7 = E(p3), which
has a probability ≥ 1 − ε

100 , and ensures that BµL(p3) ⊆ Λ∗: indeed,
µL(p3) > KL(p4) for all M ≥M6 and N ≥ N6.

Step 3. We now use the big hole created at time p∗. We consider

• p̃+ := inf{t ≥ p∗ : there exists a t-black cluster in Λ∗ which has ≥ N
vertices, intersects ∂BKL(p∗)/2, and contains a circuit surrounding 0
that is included in BKL(p∗)/2},

• and Λ+ := H(BKL(p∗)/2)(p̃+) (so that Λ+ is the hole of the origin in the
cluster from the definition of p̃+).

By construction, Λ+ is a stopping set, and we have to prove that it has
the desired properties. Throughout the proof, we use the intermediate scale
γ =
√
KL(p∗). If we set

E1 := Np(γ/4,KL(p∗)),

Lemma 2.2 implies that

P(E1) ≥ 1− C1Ke
−C2

√
K

for some suitable universal constants C1, C2 > 0. In particular, there exists
a constant K1 = K1(ε) such that for all K ≥ K1, this lower bound is at least
1− ε

100 . We now restrict ourselves to this event E1.
There exists a p∗-black circuit in Aγ/2,γ(2γx) for each x ∈ NK , where

NK := Z[i] ∩BKL(p∗)/4γ = Z[i] ∩B√K/4.

Let Cx denote the outermost such circuit. Note that all these circuits are
connected by p∗-black paths (inside the net).

For x ∈ NK , we consider

Xx
t = XC

x

t =
∣∣{v ∈ int(Cx) : v

t↔ Cx}
∣∣

(recall the notation from Section 4.3). In the following, we define several
random times in terms of (Xx

t )x∈NK , we thus restrict ourselves to the x for
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Cx

x ∈ Nnice
K

0

2γ = 2
√
KL(p∗)

KL(p∗)

Figure 7.2: This figure depicts the construction used in the proof of Propo-
sition 7.2. We consider the independent random variables Xx

t = XC
x

t , for
x ∈ N nice

K (i.e. such that the corresponding circuit Cx is nice), and we condi-
tion on the configuration outside: Yt counts the number of vertices connected
to at least one (Cx)x∈Nnice

K
(including the vertices of the circuits themselves).

which we have a good control on the quantiles. More precisely, we know from
Lemma 4.11 that there exists a constant C3 > 0 such that for each x ∈ NK ,

P
(
Cx is not (p∗, C3)-nice, E1

)
≤ ε

100
. (7.9)

Note that the events
{
Cx exists, and it is (p∗, C3)-nice

}

are independent, for x ∈ NK . We define the set

N nice
K := {x ∈ NK : Cx is (p∗, C3)-nice}.

Further, we write

E2 :=

{
0 ∈ N nice

K , |N nice
K | ≥ K

8

}
and E := E1 ∩ E2.
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Since ε/100 < 1/2, we deduce from Hoeffding’s inequality and (7.9) the
existence of K2 = K2(ε) such that: for all K ≥ K2,

P(E1 ∩ Ec2) ≤ ε

100
.

Finally, let Yt denote the number of vertices, in the frozen percolation pro-
cess at time t ≥ p∗ in Λ∗, which are either on one of the circuits (Cx)x∈Nnice

K
,

or outside these circuits and connected to at least one of them. We set

p+ := inf

{
t ≥ p∗ :

∑

x∈Nnice
K

Xx
t + Yt ≥ N

}
.

We also define the random times

p+ := inf

{
t ≥ p∗ : Qε/100(X0

t ) +
∑

x∈Nnice
K \{0}

Xx
t + Yt ≥ N

}
(7.10)

and p+ := inf

{
t ≥ p∗ : Q

ε/100
(X0

t ) +
∑

x∈Nnice
K \{0}

Xx
t + Yt ≥ N

}
, (7.11)

where we isolate X0
t by considering its quantiles (recall the notation for

quantiles from Section 4.3). Further, let

S0 := V (T) \ int(C0) and S1 := V (T) \
⋃

x∈Nnice
K

int(Cx).

For later use, we note that by definition,

• (Xx
t )x∈Nnice

K \{0} are measurable functions of (τv)v∈S0\S1 ,

• Yt is a measurable function of (τv)v∈S1 ,

• and p+, p+ are measurable functions of (τv)v∈S0 .

We condition on S1 and (τv)v∈S1 from now on. Under this conditioning, the
function Yt becomes deterministic, while the processes (Xx

t )t≥p are indepen-
dent for x ∈ N nice

K .

Step 4. We prove p∗ ≤ p+ ≤ p+ ≤ p+ ≤ p̂∗. For that, let us first
introduce two rough bounds on p+: we set

p := inf

{
t ≥ p∗ : Qε/100(X0

t ) +Qε/100

( ∑

x∈Nnice
K \{0}

Xx
t

)
+ Yt ≥ N

}
,
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and p := inf

{
t ≥ p∗ : Q

ε/100
(X0

t ) +Q
ε/100

( ∑

x∈Nnice
K \{0}

Xx
t

)
+ Yt ≥ N

}
.

Note that it follows from the definitions that p, p are measurable functions
of (τv)v∈S1 .

Since we clearly have p∗ ≤ p, we prove that p ≤ p+ ≤ p+ ≤ p+ ≤ p with
probability at least 1− ε/5, and we then show p ≤ p̂∗ separately. Out of the
first four inequalities, we only prove that p+ ≤ p+ with probability at least
1−ε/20, since the other inequalities can be established in a similar way. For
that, we argue by contradiction, assuming that p+ > p+: then,

Q
ε/100

(X0
p+) +

∑

x∈Nnice
K \{0}

Xx
p+ + Yp+ ≥ N > X0

p+ +
∑

x∈Nnice
K \{0}

Xx
p+ + Yp+ ,

so in particular,
Q
ε/100

(X0
p+) > X0

p+ .

Since the process (X0
t )t≥p∗ is conditionally independent of (

∑
x∈Nnice

K \{0}X
x
t +

Yt)t≥p∗ , and thus of p+, the above has a probability at most ε/100.
We now prove p ≤ p̂∗. For that, we set p̂(K) via

K3/2L(p)2θ(p̂(K)) = N. (7.12)

For K ≥ 1, the monotonicity of θ implies that p̂(K) ≤ p̂, it is thus enough to
prove that

for all K large enough, p ≤ p̂(K) with probability ≥ 1− ε

20
, (7.13)

which we do now (this slightly stronger result is used in the next step). Let
us also note that for some constants M7 and N7 depending only on K, we
have: for all p > pc with L(p) ≤ m∞(N)/M7, and all N ≥ N7,

p̂(K) ≥ p∗. (7.14)

Indeed, for every fixed K, it follows from (7.1) and (7.12) that θ(p̂∗) �
θ(p̂(K)), so L(p̂∗) � L(p̂(K)) (by (2.13) and (2.8)), and we can use Lemma
7.1.

Recall that C3 was chosen according to Lemma 4.11, and C0 is (p∗, C3)-
nice on E. Since C0 ⊆ Aγ/2,γ , with γ =

√
KL(p∗), we obtain from Lemma

4.12 that for some c3 > 0,

Q
ε/100

(X0
p̂(K)) ≥ c3(

√
KL(p∗))2θ(p̂(K)),
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and similarly,

Q
ε/100

( ∑

x∈Nnice
K \{0}

Xx
p̂(K)

)
≥ c3|N nice

K \ {0}|(
√
KL(p∗))2θ(p̂(K)).

Since |N nice
K | ≥ K

8 on the event E, we deduce

Q
ε/100

(X0
p̂(K)) +Q

ε/100

( ∑

x∈Nnice
K \{0}

Xx
p̂(K)

)
+ Yp̂(K) ≥ c3

8
K2L(p∗)2θ(p̂(K)),

≥ c3

8
K1/2N

(using (7.12)), which is ≥ N for all K ≥ K3 = K3(ε). Hence, we get that
for all K ≥ K3, p ≤ p̂(K), which completes the proof of (7.13), and thus of
Step 4.

Step 5. We show that with high probability,

(i) p̃+ = p+ (i.e. p̃+ is the time when the structure consisting of the
circuits (Cx)x∈Nnice

K
freezes),

(ii) Λ+ = H̄(T)(p+),

(iii) and H(Bγ/8)(p+) ⊆ Λ+ ⊆ H(Bγ/8)(p+).

Recall that p+ ≤ p̂(K) for all K large enough: in a similar way as in Step
2 (Case b), we see that if, apart from the net from Step 3, no other cluster
intersecting BKL(p∗)/2 reaches volume N before time p̂(K), then p̃+ = p+.
Hence,

PN
(
p̃+ 6= p+, p+ ≤ p̂(K), E

)
≤ K · Pp̂(K)

(∣∣Cmax
Bγ

∣∣ ≥ N
)
. (7.15)

It then follows from (4.4) (with x = K1/2) and (7.12) that

Pp̂(K)

(∣∣Cmax
Bγ

∣∣ ≥ N
)
≤ c1e

−c2K1/2 γ2

L(p̂(K))2 = c1e
−c2K3/2 L(p∗)2

L(p̂(K))2 ≤ c1e
−c2K3/2

,

since L(p̂(K)) ≤ L(p∗) (from (7.14)). The upper bound in (7.15) is thus ≤ ε
100

for all K ≥ K4(ε), which shows properties (i) and (ii). Since p+ ≤ p+ ≤ p+,
we also have

H(B2γ)(p+) ⊆ Λ+ ⊆ H(B2γ)(p+).
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Further, let

E3 :=
{
there is a p∗-black circuit C in A 4√KL(p∗),

√
KL(p∗) s.t. C p∗↔∞

}
.

We have that for all K ≥ K5 = K5(ε), P(E3) ≥ 1− ε
100 (from (2.4)), and E3

implies in particular that

for all t ≥ p∗, H(B2γ)(t) = H(Bγ/8)(t).

By using this observation at times p+ and p+, we finally get property (iii).
We are now almost in a position to conclude: indeed, note that since p+

and p+ are measurable functions of (τv)v∈T\Bγ/2 , we can apply Lemma 3.7 to
H(Bγ/8)(p+) and H(Bγ/8)(p+) to deduce that Λ+ has the desired properties,
if we know that L(p+)/L(p+) can be made arbitrarily close to 1. Hence,
there only remains to prove this property, which we do in a last step.

Step 6. We now fix an arbitrary δ > 0, and we bound the probability of{L(p+)

L(p+)
> 1 + δ

}
. First, we show that for the rough lower and upper bounds

p and p, L(p) and L(p) are comparable. It follows from the definitions of p
and p that

lim
t↗p

(
Q
ε/100

(X0
t ) +Q

ε/100

( ∑

x∈Nnice
K \{0}

Xx
t

)
+ Yt

)
≤ N

≤ lim
t↘p

(
Qε/100(X0

t ) +Qε/100

( ∑

x∈Nnice
K \{0}

Xx
t

)
+ Yt

)
. (7.16)

From the same reasoning as in the end of Step 3, we obtain that in the
left-hand side of (7.16),

lim
t↗p

(
Q
ε/100

(X0
t ) +Q

ε/100

( ∑

x∈Nnice
K \{0}

Xx
t

))
≥ c3|N nice

K |KL(p)2θ(p)

(using the continuity of θ at p), and a similar upper bound holds for the
right-hand side of (7.16), with c3 replaced by c3. These bounds, combined
with (7.16), show that

c3|N nice
K |KL(p)2θ(p) ≤ c3|N nice

K |KL(p)2θ(p). (7.17)

Combined with (2.13), this shows the existence of a constant C4 = C4(ε)
such that

L(p) ≤ C4L(p). (7.18)
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Now, let ti be defined by

for all i ∈ {0, . . . , 2 log1+δ C4}, L(ti) = (1 + δ)−i/2L(p).

We argue by contradiction: if we assume that L(p+)

L(p+)
> 1+δ, then there exists

an i ∈ Iδ := {0, . . . , 2 log1+δ C4 − 1} for which p+ < ti and p+ > ti+1 (using
the rough bound p ≤ p+ ≤ p+ ≤ p). For this i, the definitions of p+ (7.10)
and p+ (7.11) imply

Qε/100(X0
ti)+

∑

x∈Nnice
K \{0}

Xx
ti + Yti ≥ N

> Q
ε/100

(X0
ti+1

) +
∑

x∈Nnice
K \{0}

Xx
ti+1

+ Yti+1 ,

from which we deduce
∑

x∈Nnice
K \{0}

(
Xx
ti+1
−Xx

ti

)
≤
(
Yti − Yti+1

)
+
(
Qε/100(X0

ti)−Qε/100
(X0

ti+1
)
)

≤ Qε/100(X0
p )

≤ C5KL(p)2θ(p), (7.19)

for some C5 = C5(ε) > 0.
As it turns out, it is easier to work with a slightly different collection of

random variables: we set

Zxi :=
∣∣{v ∈ Bγ/10(2γx) : v

ti+1↔ Cx, v ti= ∂Bγ/10(v)}
∣∣

≤ Xx
ti+1
−Xx

ti ,

and it follows from (7.19) that it is enough to bound, for each i ∈ Iδ, the
probability of ∑

x∈Nnice
K \{0}

Zxi ≤ C5KL(p)2θ(p).

Note that

E
[
Zxi | Cx

]
≥

∑

v∈Bγ/10(2γx)

P
(
v
ti+1↔ Cx, v ti= ∂Bγ/10(v) | Cx

)

≥ 1

100
KL(p)2P

(
0
ti+1↔ ∞, 0

ti= ∂Bγ/10

)

≥ C6KL(p)2 |ti+1 − ti|
|ti − pc|

θ(ti) (7.20)
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≥ C7KL(p)2θ(p), (7.21)

for some suitable universal constants C6 and C7 = C7(δ) (using Lemma 2.3
in (7.20), and Lemma 2.19 in (7.21), combined with the definition of ti).

Let us fix i ∈ Iδ, and consider (Zxi )x∈Nnice
K \{0}. Since Zxi ≤ Vγ/10(2γx)

(recall the definition of Vn in (4.5)), Lemma 4.6 provides the moment bound

E
[
(Zxi )m

]
≤ E

[
(Vγ/10(2γx))m

]
≤ Cm8 m!(γ2θ(ti+1))m

≤ Cm8 m!(KL(p)2θ(p))m

for some universal constant C8 > 0. This shows that (on the event E) we can
apply Bernstein’s inequality (Lemma 4.7) to the centered random variables
(Zxi − E[Zxi ])x∈Nnice

K \{0}, with

n =
∣∣N nice

K \ {0}
∣∣ � K, M = C9KL(p)2θ(p), σ2

x = M2

(for some constant C9 = C9(δ) large enough), and

y = C5KL(p)2θ(p)− E

[ ∑

x∈Nnice
K \{0}

Zxi

]
.

Noting that |y| � KM (since E[Zxi ] � M for every x ∈ N nice
K , from (7.21)),

we obtain: for each i ∈ Iδ,

P
( ∑

x∈Nnice
K \{0}

Zxi ≤ C5KL(p)2θ(p)

)
≤ 2e−C10K

for some C10 = C10(δ). Hence,

P
(
L(p+)

L(p+)
> 1 + δ

)
≤ P

(
∃i ∈ Iδ :

∑

x∈Nnice
K \{0}

(
Xx
ti+1
−Xx

ti

)
≤ C5KL(p)2θ(p)

)

≤ P
(
∃i ∈ Iδ :

∑

x∈Nnice
K \{0}

Zxi ≤ C5KL(p)2θ(p)

)

≤ 4(log1+δ C4)e−C10K

(using |Iδ| ≤ 2 log1+δ C4), which is ≤ 1 − ε/100 for all K ≥ K6(ε). Hence,
if we set K = max1≤i≤6Ki, and then M = max1≤i≤7Mi(K, ε) and N =
max1≤i≤7Ni(K, ε), all the desired bounds hold, which completes the proof
of Proposition 7.2.
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7.3 Concluding remark: related processes

In this last section, we briefly and informally indicate the robustness of our
methods, by considering some other interesting models for which a similar
behavior as for volume-frozen percolation, and analogs of Theorems 1.1 and
1.2, can be expected. We discuss in particular two closely related processes
(the proof of existence requires substantial work: see [8]). For these two
processes, all vertices are initially white, and they can turn black according
to some Poisson process of “births”, with intensity 1. We also use a second,
independent, Poisson process of “lightnings”, with a small rate εN > 0: each
vertex is hit by lightning at a rate εN , independently of the other vertices.
To fix ideas, let us take εN = N−α, for some α > 0.

We can first introduce a modified volume-frozen percolation process,
where a black connected component freezes when one of its vertices is hit by
lightning (so that the rate at which a cluster freezes is proportional to its
volume). As a starting point, we can look for a similar separation of scales
as in our previous volume-frozen percolation process. Here and further in
this section, we make the usual translation p(t) = 1− e−t, and we define tc
as the solution of p(tc) = pc. We also write L(t) for L(p(t)), and similarly
for θ(t).

Heuristically, the recursion formula (7.1) should be replaced by

εN |t̂− tc|L(t)2θ(t̂) � 1,

where L(t)2θ(t̂) corresponds to the volume of the “giant” connected compo-
nent in a box with side length L(t), and εN |t̂− t| is the probability for any
given vertex to be hit between times t and t̂, which we replace by εN |t̂− tc|
(since we look for the property |t̂− tc| � |t− tc|).

A quick computation then yields a sequence of exceptional scales

m
(α)
k (N) = N δ

(α)
k +o(1) as N →∞

(and corresponding times q(α)
k (N) = tc +N−

3
4
δ
(α)
k +o(1)), where the sequence

of exponents (δ
(α)
k )k≥0 satisfies

δ
(α)
0 = 0, and δ

(α)
k+1 =

α

2
+

41

96
δ

(α)
k (k ≥ 0).

This sequence is strictly increasing, and it converges to δ
(α)
∞ = 48

55α. We
then have a separation of scales, i.e. L(t̂) � L(t), for all t > tc such that
L(t)� m

(α)
∞ (N), as in Lemma 7.1 (wherem(α)

∞ (N) = N δ
(α)
∞ +o(1) as N →∞).
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In particular, we can consider a net with mesh � L(t̂) and � L(t) at an
intermediate time between t and t̂ (as we did, for instance, in Step 2 of
the proof of Proposition 7.2), and the next freezing time coincides with the
freezing time of this net (w.h.p.). In particular, the next hole looks like
H(t#), for some random t# such that |t# − tc| is comparable to |t̂− tc|.

We can also consider the forest fire process obtained from the same Pois-
son processes (of births and of lightnings), where a black connected compo-
nent “burns”, i.e. all its vertices become white, when one of its vertices is
hit (and may later become black again according to the Poisson process of
births). During a first non-trivial stage of the process (immediately after tc),
the sequence of holes should be approximately the same (as N → ∞) as in
the previous modified frozen percolation process. Indeed, the recent work
[17] for self-destructive percolation [28] indicates that it takes a positive time
δ > 0 for macroscopic connections outside the hole to reappear, and the next
burning event occurs much before that time. In particular, this suggests the
existence (hinted in [29]) of a δ > 0 for which: w.h.p. (as N → ∞), the
origin does not burn on the time interval [0, tc + δ].

A Appendix: additional proofs

A.1 Proof of Lemma 2.4

Proof of Lemma 2.4. We consider Λ, p and p′ as in the statement, and write

θ(p′)− θ(p) = P(B),

where B := {0 p′↔∞, 0
p=∞}. Let us assume that this event occurs, which

implies that there exists a p-white circuit surrounding 0, as well as a p′-black
infinite path starting from 0. We can thus introduce the closest vertex v
from the origin which lies on both a p-white circuit surrounding 0, and a
p′-black path from 0 to∞ (when there are multiple choices, we just pick one
in some deterministic way). Note that locally around v, we see four disjoint
arms: two p-white arms (coming from the p-white circuit), and two p′-black
arms (from the p′-black path to ∞).

We now distinguish two cases, depending on the distance from v to the
origin: we introduce the events

B1 := {d(0, v) ≤ L(p)} and B2 := {d(0, v) > L(p)}.

We start by bounding the probability of B1. Let imax := dlog2 L(p)e: by
dividing the annulus A1,L(p) into the dyadic annuli Ai = A2i−1,2i (1 ≤ i ≤
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imax), we obtain

P(B1) =

imax∑

i=1

P(v ∈ Ai)

≤ |p′ − p|
imax∑

i=1

|Ai|P(0
p′↔ ∂B2i−2)P(Ap′,p4 (1, 2i−1))P(∂B2i+1

p′↔∞)

≤ C1|p′ − p|
imax∑

i=1

22i+2π1(2i−2)π4(2i−1)π1(2i+1, 4L(p)) (A.1)

≤ C2|p′ − p|π1(L(p))

imax−1∑

i=0

22iπ4(2i) (A.2)

≤ C3|p′ − p|L(p)2π4(L(p))θ(p) (A.3)

for some constants Cj = Cj(Λ) > 0 (j = 1, 2, 3) (in (A.1) we used (2.9), in
(A.2) we used a combination of (2.5), (2.6) and (2.13), while we used (2.11)
in (A.3)).

Let us turn to P(B2). If we now divide T \ BL(p) into the annuli A′i =
A2iL(p),2i+1L(p) (i ≥ 0), we obtain

P(B2) =
∑

i≥0

P(v ∈ A′i)

≤ |p′ − p|
∑

i≥0

|A′i|P(0
p↔ ∂BL(p)/2)P(Ap,p′4 (1, L(p)/2))

P(∂BL(p)/2(v)
p−white↔ ∂B2iL(p)(v))

≤ C4|p′ − p|L(p)2π4(L(p)/2)θ(p)
∑

i≥0

22i exp(−c22i) (A.4)

≤ C5|p′ − p|L(p)2π4(L(p))θ(p)
∑

i geq0

22i exp(−c22i) (A.5)

≤ C6|p′ − p|L(p)2π4(L(p))θ(p) (A.6)

for some constants Cj = Cj(Λ) (j = 4, 5, 6), and c2 as in (2.4) (in (A.4),
we used (2.5) combined with (2.13) and (2.4), while we used (2.5) in (A.5)).
Lemma 2.4 then follows, by combining (A.3) and (A.6).
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A.2 Proof of Lemma 4.1

We use the fact that χfin(p) := Ep
[
|C(0)| ; |C(0)| < ∞

]
and χcov(p) :=∑

v∈TCovp
(
10↔∞,1v↔∞

)
satisfy

χfin(p), χcov(p) ≤ c1L(p)2θ(p)2 (A.7)

for all p > pc (where c1 > 0 is a universal constant), which is a consequence
of (2.4) (see Section 6.4 in [4]).

Let us introduce some more notation, used only in this section. For a
connected subset Λ of T, the connected components inside Λ (at time p) can
be listed by decreasing volume as (C(i)

Λ,∞)i≥1 and (C(i)
Λ,<∞)i≥1, according to

whether they are included in the infinite cluster C∞(p) or not, respectively.
Clearly, Cmax

Λ coincides with either C(1)
Λ,∞ or C(1)

Λ,<∞, so in particular
∣∣Cmax

Λ

∣∣ ≤
∣∣C(1)

Λ,∞
∣∣+
∣∣C(1)

Λ,<∞
∣∣. Note also that

∣∣C∞ ∩ Λ
∣∣ =

∑

i≥1

∣∣C(i)
Λ,∞
∣∣. (A.8)

Lemma A.1. For some universal constant c1 > 0, we have

(i) Ep
[∣∣C(1)

Λ,∞
∣∣
]
≤ |Λ|θ(p),

(ii) and Ep
[∣∣C(1)

Λ,<∞
∣∣
]
≤ c1|Λ|1/2L(p)θ(p).

Proof of Lemma A.1. (i) It follows immediately from (A.8) that
∣∣C(1)

Λ,∞
∣∣ ≤

∣∣C∞ ∩ Λ
∣∣ =

∑

v∈Λ

1v↔∞,

and we can conclude by taking the expectation of both sides.
(ii) If we introduce tΛ := |Λ|1/2L(p)θ(p), we can write

Ep
[∣∣C(1)

Λ,<∞
∣∣
]
≤ tΛ + Ep

[∣∣C(1)
Λ,<∞

∣∣ ;
∣∣C(1)

Λ,<∞
∣∣ ≥ tΛ

]

≤ tΛ +
∑

v∈Λ

Pp
(∣∣C(v)

∣∣ =
∣∣C(1)

Λ,<∞
∣∣,
∣∣C(v)

∣∣ ≥ tΛ, v =∞
)

≤ tΛ + |Λ|Pp
(∣∣C(0)

∣∣ ≥ tΛ, 0 =∞
)
.

We can then conclude by noting that

Pp
(∣∣C(0)

∣∣ ≥ tΛ, 0 =∞
)
≤ χfin(p)

tΛ
≤ c1L(p)2θ(p)2

|Λ|1/2L(p)θ(p)
,

using successively the definition of χfin, and (A.7).
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We are now in a position to prove the main lemma.

Proof of Lemma 4.1. First, we observe that Lemma A.1 implies that

Ep
[∣∣C(1)

Λ,<∞
∣∣
]
≤ c1(|Λ|θ(p)) L(p)

|Λ|1/2 ,

and in both cases, |Λ| ≥ n2 (since Λ contains bn), so

L(p)

|Λ|1/2 ≤
L(p)

n
≤ µ.

Using Markov’s inequality, we obtain that

Pp
(∣∣C(1)

Λ,<∞
∣∣ ≥ ε|Λ|θ(p)

)
≤ c1µ

ε−1
≤ ε

10

for µ small enough. We can thus restrict our attention to C(1)
Λ,∞ and C(2)

Λ,∞.

Let us consider
∣∣C∞∩Λ

∣∣: we already noted that Ep
[∣∣C∞∩Λ

∣∣
]

= |Λ|θ(p),
and we have

Varp
(∣∣C∞ ∩ Λ

∣∣
)

=
∑

v,w∈Λ

Covp
(
1v↔∞,1w↔∞

)

≤
∑

v∈Λ

∑

w∈T
Covp

(
1v↔∞,1w↔∞

)
= |Λ|χcov(p).

Using (A.7), we obtain

Varp
(∣∣C∞ ∩ Λ

∣∣
)
≤ c1(|Λ|θ(p))2

(
L(p)

|Λ|1/2
)2

, (A.9)

and Chebyshev’s inequality implies that for µ small enough,

Pp
((

1− ε

10

)
|Λ|θ(p) ≤

∣∣C∞ ∩ Λ
∣∣ ≤

(
1 +

ε

10

)
|Λ|θ(p)

)
≥ 1− ε

10
, (A.10)

which gives the desired upper bound for
∣∣C(1)

Λ,∞
∣∣ (using (A.8)).

Now, we need to distinguish the two cases for Λ. We first consider Λ =
(Λ̃)(β), where β ∈ (0, 1

3) and Λ̃ is a connected component of≤ C n-blocks that
contains bn. We consider all the horizontal rectangles of the form [iµ1/2n, (i+
2)µ1/2n]× [jµ1/2n, (j + 1)µ1/2n], and all the vertical rectangles of the form
[iµ1/2n, (i+1)µ1/2n]× [jµ1/2n, (j+2)µ1/2n] (i, j integers), which are entirely
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contained in Λ. The probability that all of them have a p-black crossing in
the long direction is at least

1− c1(µ−1/2)2Ce−c2µ
1/2n/L(p) ≥ 1− c1Cµ

−1e−c2µ
−1/2

for some constants c1, c2 > 0 (using (2.4)), which is at least 1− ε
10 for µ small

enough. Let us assume that it is indeed the case, so that the crossings form a
net that covers the sub-domain Λ′ = (Λ̃)(β+3µ1/2). We note that all vertices

in C∞ ∩ Λ′ are connected by the net inside Λ, so that
∣∣C(1)

Λ,∞
∣∣ ≥

∣∣C∞ ∩ Λ′
∣∣.

Moreover, for the same reason as for (A.10), with probability at least 1− ε
10 ,

∣∣C∞∩Λ′
∣∣ ≥

(
1− ε

10

)
|Λ′|θ(p) ≥

(
1− ε

10

)
(1−12·3µ1/2)|Λ|θ(p) ≥

(
1− ε

5

)
|Λ|θ(p)

(A.11)
(for µ small enough). This gives the desired lower bound for

∣∣C(1)
Λ,∞
∣∣, and we

can then get an upper bound on
∣∣C(2)

Λ,∞
∣∣ from (A.8):

∣∣C(2)
Λ,∞
∣∣ ≤

∣∣C∞ ∩ Λ
∣∣−
∣∣C(1)

Λ,∞
∣∣ ≤

(
1 +

ε

10

)
|Λ|θ(p)−

(
1− ε

5

)
|Λ|θ(p)

with probability at least 1 − ε
5 (using (A.10) and (A.11)). Finally, the net

provides a circuit as desired, which is connected to ∞ with high probability
(using once again (2.4)).

In the case when Λ is an (n, ε2)-approximable set with Bn ⊆ Λ ⊆ BCn,
we proceed in the same way, by introducing Λ′ = (Λint(n))(3µ1/2) (note that
Λint(n) consists of at most C2 n-blocks).

A.3 Proof of Lemma 5.13

Proof of Lemma 5.13. Let us denote xi = pi
1−pi . For notational convenience,

we identify ω with the subset {i ∈ {1, . . . , N} : ωi = 1}. For every S ⊆
{1, . . . , N},

P(ω = S) =
∏

i∈S
pi ·

∏

i∈Sc
(1− pi) =

N∏

i=1

(1− pi) · σS ,

with σS :=
∏
i∈S xi. Hence, we want to ensure that for every S with |S| = n,

P(w̃n = S) =
σS
Σn

, with Σn =
∑

S⊆{1,...,N}
|S|=n

σS
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(where Σ0 = 1 by convention). We claim that the desired coupling can
be obtained with the following transition probabilities: for every S with
|S| = n < N , every j ∈ Sc,

pS,S∪{j} =
xj

Σn+1

∑

T :j /∈T
|T |=n

σT
n+ 1− |S ∩ T | =

1

Σn+1

∑

T :j∈T
|T |=n+1

σT
n+ 1− |S ∩ T | .

Since the summand in the last expression is ≤ σT , it is clear that pS,S∪{j} ∈
[0, 1]. One also has

∑

j∈Sc
pS,S∪{j} =

1

Σn+1

∑

j∈Sc

∑

T :j∈T
|T |=n+1

σT
n+ 1− |S ∩ T |

=
1

Σn+1

∑

T :|T |=n+1

∑

j∈Sc∩T

σT
n+ 1− |S ∩ T |

=
Σn+1

Σn+1
= 1,

as desired. Finally, there only remains to check that for every 0 ≤ i ≤ N ,
we obtain the right distribution for w̃i. We proceed by induction over i: this
clearly holds for i = 0, and let us assume that it holds for some 0 ≤ i < N .
Then for every T ⊆ {1, . . . , N} with |T | = i+ 1,

P(w̃i+1 = T ) =
∑

j∈T
P(w̃i = T \ {j})pT\{j},T

=
∑

j∈T

σT\{j}
Σi

xj
Σi+1

∑

U :j /∈U
|U |=i

σU
i+ 1− |(T \ {j}) ∩ U | ,

using the induction hypothesis. Since σT\{j}xj = σT , we obtain

P(w̃i+1 = T ) =
σT

Σi+1Σi

∑

U :|U |=i

∑

j∈T∩Uc

σU
i+ 1− |T ∩ U |

=
σT

Σi+1Σi
Σi =

σT
Σi+1

,

which completes the proof of Lemma 5.13.
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