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Abstract. The kernels of operators associated with special chiral gauge trans
formations ('kinks') in the 2N-dimensional Dirac theory are explicitly deter
mined. The result is used to obtain index formulas for Fredholm operators 
corresponding to continuous chiral gauge transformations. Moreover. the Fock 
space quadratic forms corresponding to the kinks are proved to converge to 
the Dirac field as the kink size goes to zero. It is also shown that for 
N = 1, 2(mod 4) the Majorana field can be reached in a similar fashion. 
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1. Introduction 

The inspiration for this paper came from previous work of Matsui [1] and from 
joint work with Carey [2]. Some of its results have been announced in [3]. In [1] 
Matsui proves an Atiyah-Singer type index formula for scattering operators arising 
for certain time-dependent external fields in the context of the four-dimensional 
single particle Dirac equation. He also obtains index formulas for time-independent 
unitary gauge transformations. His main tools are results from the theory of 
pseudo-differential operators and an index theorem due to Hormander. Recently, 
he has lifted some technical restrictions and obtained extensions to 2N dimensions 
[4]. 

Inasmuch as the results of this paper overlap with those of Matsui, they are 
arrived at in a quite different fashion. This will be clear from the sketch of the 
paper which now follows. After setting up notation in Subsect. 2.1, we present our 
key result, Theorem 2.1 in Subsect. 2.2. In this theorem the kernels of certain 
operators are determined explicitly. These operators are associated with special 
chiral gauge transformations (dubbed standard kinks) in the framework of the 
2N-dimensiona1 single particle Dirac theory. The kernel determination has 
algebraic aspects that are dealt with in Appendix A, cf. Lemmas Al, A2, and 
analytic aspects that are handled in Appendix B, cf. Lemma B 1. The proofs of the 
former lemmas are self-contained, whereas the proof of the latter lemma makes 
use of results from the theory of Schrodinger operators, all of which can be found 
in [5-8]. 

In Subsect. 2.3 properties of bounded matrix-valued multiplication operators 
are derived (Theorems 2.3-2.7) by using results on compactness and non
compactness of operators having Schwartz kernels with certain properties. The 
latter results are largely self-contained and can be found in Appendix C. 
Subsequently, unitary multipliers are studied in Subsect. 2.4. Using the explicit 
information on the standard kinks and Bott periodicity, index formulas for 
continuous chiral gauge transformations with constant asymptotics and with 
"hedge-hog" asymptotics for Ix!~ oo are proved in Theorems 2.8 and 2.9, 
respectively. 

For N = 1 and vanishing particle mass the multipliers studied in Sect. 2 give 
rise to (matrix-valued) Wiener-Hopf operators. The kernel problem for the 
standard kinks is trivial in this case, since one is in essence dealing with one-sided 
shifts. However, the fact that the relevant kernels can be found explicitly for N = 1 
and m > 0 is already quite non-obvious and surprising. This state of affairs was 
first pointed out and exploited in [2] to study the gauge groups arising in the 
massive second-quantized Dirac theory in 2D via a rigorous version of boson
fermion correspondence. Specifically, in [2] the N = 1 standard kinks are proved 
to generate Bogoliubov transformations whose renormalized unitary implementers 
converge to the free Dirac field as a scale parameter describing the kink size goes 
to 0. The connection of this result to boson-fermion correspondence is discussed 
in [2], and a corresponding "abstract" picture is sketched in [3]. 

In Sect. 3 we present the generalization of this convergence result and its 
"neutral analog" to the arbitrary N case, cf. Theorem 3.1 in Subsect. 3.2 and 
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Theorems 3.2 and 3.3 in Subsect. 3.3. This entails a change in perspective detailed 
in Subsect. 3.1, and some information on charge conjugation assembled in Appendix 
A. Moreover, a crucial technical result is relegated to Appendix D. We should 
mention that the mathematical context of the results in Sect. 3 is possibly not 
sufficiently explained in this paper; for more background the reader might consult 
[2, 3, 9] and references given there. 

The paper is concluded with Appendix E, where the main text is linked up 
with the external field problem in the Dirac theory. The results obtained there 
should be compared with the external field index formulas obtained by Matsui 
[1]. Further work concerning index theorems on open manifolds includes the 
recent paper [10], which also lists other references in this area. 

Throughout the paper 2N denotes the space-time dimension, whereas the 
symbol n is reserved for the integer 2N- 1. 

2. Matrix Multipliers in the One-Particle Dirac Theory 

2.1. Preliminaries. In this subsection we introduce operators arising in the Dirac 
description of a particle in a 2N-dimensional Minkowski space-time. (Several more 
such operators, which are not needed till Sect. 3, will be introduced in Subsect. 
3.1.) First of all, the Dirac Hamiltonian i1 is the operator on L2 (1R2N-1, dx)2n with 
domain the Sobolev space H 1 (IR2N- i ) 2n, whose action is given by 

( -frrV mln). m 2 0. 
mln iu·V -

(2.1) 

Here and below, differentiations act weakly. Also, u1,. • .,u2N-l denote self-adjoint 
n x n matrices representing the Euclidean Clifford algebra in 1R2N-1, and the 
decomposition of C2n ~ .:7 0 (CN) used in (2.1) is explained in Appendix A. Clearly, 
H is a self-adjoint operator. 

We shall employ Fourier transformation 

§i":if = Lz(RZN-1, dx)2n ---+Ji'= L2(~2N-1,dp)2", 

($"'/)(p) = (2n)-<2N-ll/2 f dxexp(-ip·x)f(x) (2.2) 

to transform operators A on if to operators A on Ji' and vice versa, i.e., 

A = $"'A$"" - 1• (2.3) 

With this convention we obtain 

H= (
u·p 

mln 
mln ) R =a·p+ pm. 
-u·p 

(2.4) 

Hence, 
H2 = E2l E = (p2 + m2)112 

p 2n,. p - ' (2.5) 

so the projections P ± on the positive and negative spectral subspaces of H are 
given by the multipliers 

(2.6) 



556 

We shall use the notation 

Jtt'a=PaJtt', .5=+,-, 

A33• = PoAP0., .5,[>' = +, -, 

where A is an operator on Jtt'. Note that 

AM.*= A*a·a· 

Next, we introduce the parity operator 

(Fg)(x) = /3!( -x), 

and the scaling group 

{D(e)f)(x) = FPN-lll2j(ex), eE(O, oo). 

Clearly, P and D(e) are unitary, and one has 

[P,P0] =0, 

whereas the relation 

[D(e), P0] = 0, m = 0 

does not hold for m > 0. Similarly, the chiral projections 

4+ =(~ ~} q_ =(~ ~.) 
satisfy 

but do not commute with P 0 for m > 0. 

S. N. M. Ruijsenaars 

(2.7) 

(2.8) 

(2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

From now on, we shall assume that an internal symmetry space Ck(k ~ 1) is 
tensored on to ;i't and Jtt', and we shall denote the resulting Hilbert spaces again 
by :i't and !If. Tensoring the above operators with lk yields operators that will be 
denoted by the same symbols, whenever no confusion is likely to arise. When this 
is done, all of the above formulas and relations are valid as they stand. 

2.2. The Standard Kinks. In this subsection we study unitary matrix multiplication 
operators on ;i't that reduce to the standard kinks of [2] for N = 1. First, we take 
(} = C" and set 

where eE(O, oo). Note that one has 

K •.• = D(e)* K., 1D(e) 

(2.16) 

{2.17) 

(2.18) 

(2.19) 
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in view of (2.10) and (2.11 ). The importance of these multipliers (henceforth referred 
to as standard kinks) hinges on the following result 

Theorem 2.1. The kernel of Kt,. __ is trivial, whereas the kernel of K.,,- _ is spanned 
by 

- {(~). S= + 
<.,,,-(p) ~ -exp (-aE,)P _(p) (~). s ~ _, (2.20) 

where uEC"®C" is the unit vector of Appendix A. Moreover, the function 

K 5 ,,,+ =: K.,,Ks,z,- (2.21) 
is given by 

{(~). K,,,,+(p) ~ exp(-aE,)P +(P) (~} 
s= + 

(2.22) 
S= -

Proof. Due to (2.18) and (2.12) we need only prove this for s = +.We shall from 
now on suppress the subscripts +, e to ease the notation. We begin by noting that 
the kernel of K __ consists of those vectors JL EJI' _ for which Kie belongs to 
:it'+. Also, since K is unitary, one has 

Ker K! __ = K Ker K + + . (2.23) 

Therefore, we shall study the equation 

KKO = K_o KaEJfa (2.24)0 

and show that (2.24)+ has no non-trivial solutions, and that any solution to (2.24)_ 
is a multiple of K+ .•• -(p). To this end we set 

(2.25) 

so that 

(2.26) 

and rewrite (2.24)o as 

( ln0a·V 0 )g=(-)N-l&(l•®ln 0o)f. 
0 1.01. 0 

(2.27) 

Hence one concludes that (2.24)0 implies 

g = ( ~). f = ~P ((u·p:Gl.)G). (2.28) 

where G satisfies 
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Conversely, if GJ...p)eL2 (1R2N- 1)@Cn®cn satisfies (2.29)6, then g.f defined by 
(2.28) satisfy (2.26), (2.27). Also, setting Kli = !<,f +Jg) one infers that (2.24)a holds 
true. Thus we need only study (2.29)a. For N = 1 this is elementary: The solutions 
cexp(-eEP) to the first order ODE (2.29)_ are in L2(1R), whereas the solutions 
cexp(eEp) to (2.29)+ are not. For N > 1 we invoke Lemma Bl to conclude that 
(2.29)+ has no non-zero L2-solutions, whereas any L2-solution to (2.29)_ is 
proportional to 

(2.30) 

This gives rise to the functions 1'+,e,iP) in the way just explained. O 

Next, we consider a second generalization of the N = 1 kinks of [2] which is 
more obvious, inasmuch as no internal symmetry space is needed. It consists in 
taking 

[
<rx-iel J 

K'+,s= u·x+iel: O , K'-,.=PK'+ .• P. 
0 1,. 

(2.31) 

However, this generalization is "wrong," as will be clear from what follows. 

Theorem 2.2. For N > 1 one has 

dim Ker K'* s,e- - = 0, 

dim.Ker K'.,.- _ = oo. 

(2.32) 

(2.33) 

Proof. Proceeding as in the previous case, we arrive at obvious analogs of 
(2.23)-(2.29)/i. In particular, the kernel problem can be reduced to finding the 
L2-solutions of 

be 
q· VG(p) = E(} .. pG(p). 

p 

(2.34)/i 

Picking~=+ and setting G =exp(eEP)H yields a·VH = 0. But if G is L2, then 
His also L2 , so that a·xH(x) = 0, with H the Fourier transform of H. Thus, we 
must have H = 0, so (2.32) follows. 

Now consider (2.34)_. Setting G=exp(-sEp)H, we get again a·VH=O. But 
if we now take H equal to one of the columns of the matrix u·VP with P(p) an 
arbitrary harmonic polynomial, then G not only solves (2.34)_, but is also L2• 

Therefore, we may conclude that (2.33) holds true. D 

2.3. Bounded Multipliers. In this subsection we consider bounded operators on 

~::: L2(1R2N-i, dx)®C 2n® Ck, k ~ 1 (2.35) 

of the form 

(M f)(x) = µ(x)f(x) f e;lt, (2.36) 

whereµ is a (2nk x 2nk)-matrix~valued function on 1R2N- 1• Such operators form a 
W*-algebra henceforth denoted j. Our aim is to obtain conditions on µ 
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guaranteeing that the off-diagonal parts Mf>,-f> are compact or not, and Hilbert
Schmidt (HS) or not. Clearly, this is equivalent to [P +, M] having this property 
or not. We shall study this problem by applying the results of Appendix C to the 
Schwartz kernel of [P +,M]. This kernel is proportional to 

CiJp,q) = 1-(<J·p mln )fl(p- q)- jl(p-q)_!_(<:1·q ml~ )· 
EP mln -<J·p Eq mln -a q 

Here, fl denotes the distributional Fourier transform ofµ. 
To state our first result, we introduce the following subalgebras of fl: 

?ro = {Mef!l[P +•MJ is compact}, 

( ln®µ+(x) 0 ) } 
?x = {ME?lµ(x) = 0 l.@µ_(x) ,µs(x)eMk((;) . 

(Here, x stands for "chiral.") Note that ?x is a W*-algebra satisfying 

whereas ?a:> is a unital C*-algebra. 

Theorem 2.3. One has 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

~eh ~n 

Proof. Assume M Ef!w Picking ees2N- 2, one obtains from (2.37) the distributional 
limit 

lim CM(p+2e,q+.Ae)=((1o·e O ){4p-q)-fl(_p-q)((1o·e O )· (2.42) 
.i.-a:i -<re -<J·e 

Invoking Lemma C2 and the compactness assumption, it follows that µ(x) 
commutes with rx·e. In view of (2.40) this entails MEflx· D 

For N = 1 multipliers in ?x yield off-diagonal parts that are HS, provided a 
Sobolev-type condition is met, cf. [2], pp. 29-30. This is in sharp contrast to the 
case N > 1, as will now be shown. (For N = 2 the following result dates back to [11].) 

Theorem 2.4. One has M ± + = 0 !f and only if 

{(
ln®A.+ 0 ) 

µ(x) = 0 ln®L ' A..eMk(C), m = 0 

l2n®2, AEMlC), m>O 
(2.43) 

For N > 1, [P +, M] is HS if and only (2.43) holds. 

Proof. If (2.43) holds, then P + commutes with M, cf. (2.37), so [P +, M] is trivially 
HS. Conversely, assume [P +.M] is HS. Then ME?a:i• so Me?x by virtue of 
Theorem 2.3. Hence we obtain 

C M(p, q) = P q , (2.44) [
l:(p,q)®fl+(p-q) ; 1L(p-q)-; f1.+(p-q1 

;P ft+(p-q)- ;/L(p-q) -E(p, q)®fl-(p-q) 
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where 

I(p, q) = u{ :P -;J. 
The HS assumption implies that the distributions 

T5 (p,q):=I(p,q)®ft,.(p-q), S= +, -

S. N. M. Ruijsenaars 

(2.45) 

(2.46) 

have matrix elements in L2 (R4N-2, dpdq). Now I is smooth and invertible on the set 

S=: { (p,q)e1R4N- 2ip #0,q =l=O, ;P =I= ;J. (2.47) 

since 

( p q )2 
I2(p,q)= EP - Eq 1,.. 

Hence it follows that 

fJ.,,(p - q)eLf:oc(S, dpdq}k2• 

A moment's thought shows that this entails 

fts(p)eLi2.,c(IR2N-1\{0}, dp)k', 

But then we must have, using (2.48), 

( p q )2 k J dpdq E- -E L 1.Us(P - q)ul2 < co. 
p~q p q i,j=1 

(2.48) 

(2.49) 

(2.50) 

(2.51) 

Invoking Lemma C3, we infer that for N > 1 this implies fJ.s(k) == 0, k =I= 0. Thus, 
{i.,,(k) must have support at the origin. But then the matrix elements of µ.(x) are 
polynomials. Since µ.(x) is bounded, it must be constant. The rest of the proof is 
obvious. O 

It remains to determine compactness conditions in terms of the functions p5 (x). 
The following result gives a sufficient condition. 

Theorem 2.S. Suppose Me fx and suppose there exist A.± e M k (IC} such that the 
functions 

(2.52) 

are continuous and vanish at co. Then Mis in foo form= 0, whereas Mis in fa:i for 
m > 0 if and only if ,1. + = .L . 

Proof. It suffices to show Aep",, where 

(2.53) 

Moreover, we may take cxs(x)eCQ'(IR2N-l r, since foo is norm closed. Then 
&,(p)eL1 (~2N-i )1'2, so that compactness follows from Lemma Cl by noting that 
the matrix elements of CA(p,q) are kernels of the form (Cl) with B satisfying (C2) 
and (C3). 0 
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We now consider necessary conditions. It is presumably false thatµ± must be 
continuous on R2 N-i to obtain MEfJco· (For N= 1 this follows from known 
results concerning Toeplitz operators, cf. [12, 13].) However, a particular kind of 
discontinuity to be described now does wreck compactness: We shall say that 
f eL00 (R1) has a hedge-hog discontinuity at x0 eR1 if there exists a non-constant 
function h on s1- 1 such that 

limf(e(x- x0 )) = h(1X-Xo 1) pointwise a.e .. 
•-O X-Xo 

(254) 

Note this amounts to a jump discontinuity when l = 1. 

Theorem 2.6. Let Mep00 c ?x· Then (the matrix elements of)µ± have no hedge-hog 
discontinuities. 

Proof We assume that a hedge-hog does occur for µ+ (e.g.) and derive a 
contradiction. Since P + commutes with translations, we may assume the hedge-hog 
sits at the origin. 

First, consider the case m = 0. Then P + commutes with the scaling group D(e) 

and with the chiral projection(~ ~} cf. (2.13), (2.15). Since 

w· lim D(e) = 0 (2.55) 
e-+0 

due to the Riemann-Lebesgue lemma, and since diag (ln@ µ+ (·), O)e,?00 by 
assumption, it follows that 

s~~~[P+.(1n®{i-(·) ~)]=o, µ"+(x)=µ+(ex). (2.56) 

Moreover, by assumption we have pointwise a.e. 

~!µ~(x)=hC:1} (2.57) 

where h is a non-constant matrix-valued function on s2N- 2• By dominated 
convergence, (2.57) also holds in the sense of strong convergence of bounded 
multipliers on L2 (1R2N- 1, dx)k. But then (2.56) entails 

[i>+.(1n~h(·) ~)J=o. (2.58) 

Invoking now Theorem 2.4, we conclude his constant a.e., which is a contradiction. 
Next, we take m > 0. From Theorem 2.5 we have 

( 1,.®r/>0 0) ~ .J. C"° ,i.(O) 1 0 0 Egoo, o/E o' o/ = k> (2.59) 

so we may assume supp µ+is compact andµ_= 0. Then we haveµ+ ell, 'v're[l, oo]. 
Now it is easy to check 

P(mJ+(p)-PcoJ+(p)eIJ, 'v'r>2N-1, (2.60) 
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where the dependence on the mass is explicitly indicated. Hence, we may use 
Theorem XI.20 in [7] to infer [P(ml+ -P(oJ+•MJ is compact. Since [P(m)+,MJ is 
compact by assumption, it follows that [P(ol +, M] is compact. Thus we obtain the 
desired contradiction. D 

Next, we study the behavior at oo. We say that feL""(R.1) has a hedge-hog 
discontinuity at oo if there exists a non-constant function h on s1- 1 such that 

!~1! f(ex) = hc:I) pointwise a.e.. (2.61) 

Now a distinction arises between the cases m = 0 and m > 0. 

Theorem 2.7. Let m = 0 and assume M e900 c ?x· Then µ± (x) have no hedge-hog 
discontinuity at CJ:>. Now let m > 0 and assume µ,(x) are continuous on JR2N- i; 
moreover, suppose a continuous function h on s2N- 2 exists such that 

µs(x)-hC:i)=o(l), lxl-+oo, s= +, -. (2.62) 

Then Me900 • 

Proof. The m = 0 assertion follows by arguing as in the proof of Theorem 2.6, 
taking e-+ oo instead of e-+ 0. To prove them> 0 claim, it suffices to show M E9 00 

for µ.(x) of the form 

µ.(x)=ef>(lxJ)hc:I} heC(S2N-Z)k', ef>eC([O,oo)), </>(r)={~ ::~- (2.63) 

The product of two such functions is again of this form, and this is also true for 
the sum, provided <P 1 = c/J 2 • Thus, if we can show M e9"' when h is equal to the 
product of an arbitrary A.eMk(C) and one of the functions xiflxJ, ... ,x2N-iflxl, 
then it follows that M e9 00 when his a matrix whose elements are polynomials in 
these functions. By the Stone-Weierstrass theorem such polynomials are uniformly 
dense in the continuous functions on s2N- 2• Therefore, we may infer M E?ro when 
(2.63) holds. 

The upshot is, that we need only consider the multipliers Mi for which 

µ,)x)=(1+l~l2 )172.I., J.eMk(C), s=+,-, i=l, ... ,2N-1. (2.64) 

Here, we have replaced <f>(r) by the function r/(1 + r2 ) 1i2 , the difference being a 
continuous function vanishing at oo and at 0. The point of this replacement is, 
that the Fourier transform of the functions 

ai(x) = x;/(1 + Jx]2)1i 2 

can be found explicitly. Indeed, we have 

exp(ipx) {O(ln IPJ), p-+0 
!dx(l+xz)1r2"'Ko(Jpl)= O(exp(-JpJ)), Jpl-+CJ:>' 

and for N > 1 we can use 

(2.65) 

(2.66) 
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S dx exp (ipx - el x I) ,.,.. _!.._ a2N- 3 r dr cos Ip I r exp ( - er) (2.67) 
R2N-1 (1 + lxl 2 ) 112 IPI !PI ii (1 + r 2 ) 1' 2 

to infer 

F(l/(l+lxl2)1f2),.,,.2._a2N-3K (Jpl)={O(IPl-2N+2), p-o (2.68) 
IPI IPI 0 O(exp(-lpl)), IPl-oo 

(cf. e.g. [14]). The Fourier transform of a;(x) is then obtained by taking the jlh 

partial derivative of (2.68) in the weak sense. This yields a distribution lt;(p) that 
equals a smooth function on ~2N- 1 \{0}. This function has a non-integrable 
singularity at 0, but multiplication by p1,je{l, ... ,2N -1}, suffices to render it 
integrable at 0. The result is then an L1-function ati(p) which is easily seen to equal 
the distribution pA(p). 

The crux is now that (2.64) entails 

2N-1 
c M, (p, q) = L tiij(p - q)B J(p, q) ® )., (2.69) 

j= 1 

where the matrix elements of B 1 , ••• , B2N- i satisfy (C2) and (C3). Indeed, let us set 

(2.70) 

Using the Taylor expansion 
1 2N-l 

B(p,q)=B(p,p)+ J ds L (%-p1)(o41 B)(p,p+s(q-p)) 
0 j=l 

and B(p, p) = 0, we then obtain 

i [- a1 + q~ (u·q) mE;i ] Eq Eq q 
BJ(p, q) = J ds 

0 ;j CTJ _ q~ (u.q) 
Eq Eq Eq q=p+s<q-p) 

(2.71) 

from which the assertion readily follows. Because ,j'ikeL1, we can invoke Lemma 
Cl to complete the proof. D 

2.4. Unitary Multipliers. In this subsection we study the groups G, G x and G"' 
obtained from ?•?x and?«> by restricting to operators of the form 

(U f)(x) = u(x)f(x), u(x)e U(2nk), f e:ie. (2.72) 

(For most of what follows one can just as well consider multipliers with bounded 
inverses.) We start With some simple observations concerning Fredholm properties 
of the diagonal parts of U. First, using unitarity we conclude 

U eG «> <::> U ±± are essentially unitary. (2.73) 

(Of course, this is meant in the sense of operators on .Jlf ±,respectively.) In particular, 
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U u are Fredholm when U eG 00 • However, it is clear from Theorem 2.2 that there 
exist smooth u(x) with limit 1 for Ix!-+ oo such that U u are not Fredholm. 

On the other hand, U6~ can be Fredholm without U belonging to G,,,. Indeed, 
one need only pick Uf#G,_ (and hence Uf#Gro, cf. Theorem 2.3) whose eigenvalues 
stay in a sector 

S.; = {zeCI IArgzl < </>} 

with</>< n/2. For any unit vector fin .Tt'6 one then gets 

II Uadll ~ l(f, U ufll ~Re (f, Uf) '?;,cos</>, 

and hence 

(2.74) 

(2.75) 

(2.76) 

We continue by introducing a subgroup Ge of Gx whose elements have an 
obvious topological interpretation. By definition, UeGe if and only U'the functions 
u±(x)eU(k) are continuous on 1R2N-l and satisfy 

u,(x)-lk=o(l), lxl-+oo, s= +,-. (2.77) 

Thus, u±(x) may be viewed as continuous maps from s2N-i to U(k1 reducing to 
lk at the north pole. (Here and from now on, we view 1R2N- i as arising from s2N- l 

by stereographic projection.) In view of Theorem 2.5 we have G., c: G00 , so U88 are 
Fredholm when UeG6 • 

Now it is clear that the standard kink 

(2.78) 

of Subsect. 2.2 belongs to Ge (taking k = n). Also, it follows from Theorem 2.1 that 

index K __ = dim Ker K __ - dim Ker K! _ = 1. 

Since the Fredholm index is norm continuous, the kink map 

uK:S2N-1-+ U(n), xe1R2N-l c: s2N-1H u·x + (-)Ni 
u·x-(-)Ri 

cannot be null homotopic. 
Next, recall that by virtue of Bott's periodicity theorem one has 

1t2N-1(U(k)) = z, 1t2N-2(U(k)) = 0, k '?;,. N 

(2.79) 

(2.80) 

(2.81) 

(cf. e.g. [15] and references given there). By convention we shall choose the "winding 
number" weZ of uK positive. We claim this implies 

w(uKl = 1. (2.82) 

Indeed, assuming w > 1, there would exist a continuous map u1 with ui homotopic 
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to uK. This would imply index K __ ewZ, which contradicts (2.79). Thus, the kink 
map is a homotopy generator. (This can also be seen directly; in fact, uK is in 
essence the map aN defined in [15], p. 228.) We are now in a position to state the 
following theorem, which is one of the main results of this paper. 

Theorem 2.8. One has Ge c G d) and for k ~ N, 

indexU __ =w(u+)-w(u_) VUeGe· (2.83) 

Proof. We have already proved the inclusion, cf. Theorem 2.5. Picking UeG., we 
have 

iJ =(1n®;+O 

and hence 
index U __ = index U +, __ + index U _. __ . 

Furthermore, a continuous map 

u:S2N-l-+ U(k), x1-+u(x), k ~ N 

has the same winding number as the maps 

u1:S2N-i-+ U(k + l), XHu(x)® 11, Vl > 0. 

(2.85) 

(2.86) 

It is also obvious that the Fredholm indices of the corresponding operators are 
equal. Using all this, the index formula (2.83) readily follows from its validity for 
the standard kink K (cf. (2.79), (2.82)) and its parity transform K_,1 (cf. (2.18)). O 

In the remainder of this subsection we take m > 0. We shall consider continuous 
multipliers in Gx for which there exists u00 eC(S2N- 2, U(k)) with 

U8(x)-u..,(i:i)=o(l), lxl-+oo, s= +, -. (2.87) 

On account of Theorem 2.7 such multipliers form a subgroup of Ga:i, denoted Gh. 
aearly, the map u+u: 1 is continuous at oo, and hence has a well-defined winding 
number we.l when k ~ N, cf. (2.81). This prepares us for our next result 

Theorem 2.9. Let U eGh and k?;. N. Then one ha.s 

(2.88) 

Proof. Fork;;;:; N the map u00 is null homotopic in view of (2.81). Thus, a continuous 
map 

u(t,!2):(0, 1] x S2N- 2 -4 U(k), u(l,.Q) =u..,(!l), u(O,!J) = lk (2.89) 

exists. Fixing Te[O, 1] we define a map 

(2.90) 
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Ur= lin©urO (2.91) 

Then it follows that U U1 1 eGe and hence, using Theorem 2.8, 

index U __ - index U i - _ = w(u+u1 1)-w(u_u1 1) 

= w(u+ui 1(u_u1 1)- 1) = w(u+u= 1 ). (2.92) 

Thus it remains to show index U 1 __ = 0. But this follows from the easily verified 
fact that Ur is norm continuous in Ton [O, l]. O 

For k=n there exists a family H 2 eGh,ee(O, oo), for which index H, __ can be 
determined without invoking Bott periodicity. This "standard hedge-hog family" 
is defined by 

jj = 1 (ln@(c;·x+(-)Nic) 0 ) (2_93) 
• (!x!2+e2)112 0 ln&(cr·x-(-tis) . 

The point is the simple relation 

H; = K+,,K-,, 

with the standard kinks: It entails 

indexH2 __ = 1, Vee(O, oo), 

(2.94) 

(2.95) 

since Ks,• has index l. We also observe that one only needs the last part of the 
proof of Theorem 2.7 to prove that H<± + are compact. Indeed, the proof of this 
theorem hinges on reducing the general case to a special case which arises precisely 
for the standard hedge-hogs, cf. (2.64). 

3. Approximate Quantum Fields 

3.1. Preliminaries. So far, we have not had occasion to use the positive and negative 
energy Dirac spinors in terms of which the Dirac and Majorana fields occur in 
the physics literature. However, in Subsects. 3.2 and 3.3 we aim to elucidate the 
intimate relation of these fields to fermion Fock space quadratic forms associated 
with the standard kinks. Therefore, we shall in this subsection elaborate on the 
classical (single particle) context as presented in Subsect. 2.1, in preparation for 
the Dirac and Majorana quantizations to be described below. We again take k = 1 
at first, so as to ease the notation. 

We shall work with Dirac spinors 

wi(op)EC2n, b= +,-, j=l, ... ,n, pe!R2N- 1, (3.1) 

yielding orthonormal bases for the positive and negative energy subspaces of the 
matrix multiplier H(p), so that 

H(p)w;l(op) = oEpwi(op) (3.2) 

cf. (2.4). The positive energy spinors are defmed by 
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w~(p) = (E:~ mY/2 p +(P)bj, 

where bi are the unit vectors with components 

(b)1 =2- 112(Cii. 1+oi+n,1), j=l, ... ,n, l=1,. . .,2n. 
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(3.3) 

(3.4) 

Using (2.6) and (2.4) it is readily seen that these spinors are indeed orthonormal. 
The negative energy spinors are now given by 

(3.5) 

(As before, the bar denotes complex conjugation and not the Pauli adjoint.) The 
relations (A43) defining Uc imply that the spinors w-!..(- p) yield an orthonormal 
base for the negative eigenvalue subspace of H(p), as promised. 

Using these spinors we can now transform to a spectral representation for Hon 

(3.6) 

in the sense that the transform of ii acts as multiplication by EplnEB - Ep1n on 
this space. Of course, (3.6) is just the space ff of Sect. 2, looked at from another 
perspective. We shall use the following device in an attempt to simultaneously 
prevent confusion and ease the notation: The space ff of Sect. 2 and operators A 
acting on it will be denoted it and A from now on, whereas the notation ;;If and 
A will be reserved for the spectral representation space (3.6) and operators acting 
on it. 

Explicitly, the representation is set up by the unitary operator 

w:ff _,.Jf', gHff- 1gr 1g, (3.7) 

where ff is Fourier transformation, cf. (2.2), and f?O:it _,.y-e is the diagonalizing 
transformation 

(!?Of)j(p)=:wi(p)-j(op), o=+,-, j=l, ... ,n, (3.8) 

whose inverse reads 

(3.9) 

Then one gets 

(3.10) 

as announced. (We suppress the superscriptj whenever it is not acted on.) 
In the next two subsections we shall employ the customary Euclidean group 

representation of the one-particle Dirac theory. Its action on .it' reads 

(U(a,R)f)(x)=S(R)f(R- 1(x-a)), aE!Ri2N-i, RES0(2N-l). (3.11) 

(The spinor representation S(-) of S0(2N - 1) is defined in Appendix A.) Using 
(A29} one gets 

[U(a, R), HJ = 0, [ U(a, R), P ~] = 0. (3.12) 
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We continue by introducing charge conjugation, which plays a crucial role in 
Subsect. 3.3. It reads 

(Cf)(x) = UJ(x) 

and satisfies 

[C, U(a,R)] =0 

due to (ASO). Moreover, (A43) entails 

CH= -HC, CP0 =P_ 0C, 

and from (A46)-(A49) we have 

c2 = ±1, N= g:~ mod4. 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

The properties of Uc can also be used to calculate the transforms of f5 (cf. (2.10)) 
and C to .Yt: These are given by 

(P f)ip) = () f;;(-p) 

(Cf)j_p) = { 1-liCJ:) 
-bf-li(P) 

{ 1,2 
N= 3,0 mod4. 

(3.17) 

(3.18) 

From now on we again assume that an internal symmetry space Ck is tensored 
on to .Yt. As before, we keep the same notation and note that then all of the above 
relations still hold. 

3.2. Approximate Dirac Fields. The free Dirac field is a c2n 0 Ck-valued quadratic 
form on the fermion Fock space ff.,(.Yt) ~ ffa(Yf' +) 0 ffa(Yf' _),defined by 

l/J(t,x) = (2n)-<2N- l)/Z 2: f dp[ai,i(p)w.;.(p) ® e1exp ( - iEi + ip· x) 
j= 1¥ ... ,n 
l=l •... ,k 

(3.19) 

Here, { e 1 , ... , ek} is the canonical basis of Ck. Since the functions involved are 
bounded, we may and shall choose as form domain the dense subspace ~~.o of 
algebraic tensors whose constituent functions are in Cg'. One readily verifies 

Jdxg(x)·tjt(t,x)= q'.l(exp(itH)W- 1g), VgEYt, (3.20) 

where 

$(!) = a(P +f) + b*(P _f), f E.Yf (3.21) 

is the "abstract" Dirac field. This smeared field satisfies the CAR 

{ <P(f), W(g)} = 0, { $(f), q'.l(g)*} = (f, g), (3.22) 

and hence the transformation q'.l(f) ~ @(U f) yields an automorphism of the CAR 
(Bogoliubov transformation) provided U is unitary. 

It is well known that such a transformation can be unitarily implemented if 
and only if the off-diagonal parts U ± + are Hilbert-Schmidt. Moreover, the 
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structure of the unitary implementer is known [16, 17]. It involves a multiplicative 
factor that is in essence an infinite determinant. Omitting this factor yields an 
operator I' )U) (r for renormalized) which is expressed in terms of an operator Z. 
When the HS condition is violated, this expression no longer defines an operator. 
However, it still makes rigorous sense as a quadratic form on the subspace £&4 , of 
algebraic tensors, provided the diagonal parts U ± ± are Fredholm. 

We have already seen that for N > 1 the unitaries of interest to us, viz., the 
multipliers of Subsect 2.4, are trivial when one insists on the HS property, cf. 
Theorem 2.4. However, multipliers in G"" do have the Fredholm property, and in 
particular the standard kinks K •.• of Subsect. 2.2 have Fredholm diagonal parts. 
Therefore, they give rise to well-defined quadratic fonns on P)at· 

We shall take 

(3.23) 

from now on. If k > n one can obtain analogous results, but k = n is the minimum 
value for which we can construct approximate Dirac fields, since we have no explicit 
infonnation on winding-number-one unitaries in G 00 for k < n. The approximate 
Dirac fields are expressed in terms of the form implementers of the Bogoliubov 
transformations generated by the standard kinks. Explicitly, we may and shall take 

(3.24) 

Here, the operators z.,£ are the kink conjugates defined in Appendix D, and 

P :=(2n)-{2N-1)/2§i.&K 
s.t,o s,<,o (3.25) 

cf. (2.20), (2.22); the norm of the kernel functions is chosen with an eye on what 
follows. Furthermore, 

Ec(Z) =exp (Z + _a*b*)I'(Z + + EB z:: _)exp ( -z_ +ba), (3.26) 

where I'(·) denotes the Fock space product operation. 
Next, we introduce the forms 

1/1:,.(a, R) = T(U(a, R))Tr(Ks .• )I'( - l)T(U(a,R))*, ae1R2N-1, ReS0(2N - 1) 

(3.27) 

and their adjoints i/Jse(a,R) with form domain ~at· (This is well defined: £&41 is left 
invariant by T(U) when U ± + = 0 and this is the case here, cf. (3.12).) Moreover, 
we set 

if! +(a, R) =( ~R }lft(O,Ra), 

t/J _(a, R) := ( ~R}l/t(O, Ra), 

(3.28) 

(3.29) 

where uR is defined in Appendix A, cf. (A35). Using (3.20) we then have, e.g., 
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By virtue of Lemma A3 this implies that the smeared fields 

{ir~*>(J, R)I f eL2(1R2N- 1), ReS0(2N - 1)} (3.31) 

act irreducibly in !F,,(7(). We are now in a position to present a principal result 
of this paper, showing that the forms t/r~~J(a,R) may be viewed as approximate 
Dirac fields. 

Theorem 3.1. One has 

fun l/l~~>(a, R) = l/l~*>(a, R) (3.32) .-o 
in the sense of quadratic forms on !i);::,0 • 

Proof. From (3.28H3.30) and (3.20) it follows that 

l/l~*>(a, R) = F(U(a, R))l/t~*>(o, l)F(U(a, R))*, (3.33) 

so that we need only prove this for a= 0 and R = 1, cf. (3.27). Also, we need only 
detail the cases = +,since the cases = - then follows by using parity. Evaluation of 

(F,f' /..K+,JG), F, GefJ;,0 (3.34) 

yields a finite sum of products of terms that are inner products in .Ye, so that we 
need only determine the e-+O behavior of these terms. Four types occur, viz., 

(f,g), (f,Z+,2,aag), (f,Z+,•,,,_,,g), (f,P+ .•. J, (3.35) 

where f, ge C0 (IR2N - i )n2 • Each product contams one and only one term of type 4, 
and using dominated convergence, (3.25) and (2.20), (2.22) one infers 

lim(f,p+, •. 6)=(2n)-<2N-ll/2b '[ fdpJii.h(p)w~'(p)@eh·(u). (3.36) 
... o i1.'2=l 0 

Also, invoking Lemma Dl, one sees that type 2 and 3 inner products converge to 
-(f,g) and 0, respectively. Using these facts it now follows that 

~! l/I~ ,.(0, 1) = l/l*(O, O){ ~) = t/l~(O, 1). (3.37) 

Indeed, one need only check that the factor T( -1) corrects signs where needed. 
Taking the form adjoint of (3.37) completes the proof of the theorem. D 

3.3. Approximate Majorana Fields. The Majorana field is a IC 2"®1C"-valued 
quadratic form on !Fa(.Ye +),given by (3.19) with a~c and b* -+c*. Its form domain 
is defined just as in the charged case, and will be again denoted fJ;i,0 • Now one gets 

J dxg(x)·ifl(t, x) = B(exp (itH)W- 1g), 'r/ge.it, (3.38) 

where 

B(f) = c(P + f) ± c*( CP _ J), N = {!: ~ mod 4, (3.39) 

cf. (3.18). The "abstract" Majorana field B clearly satisfies 
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{B(f).B(g)*} =(f,g), 'Vf,ge.Yf. (3.40) 

Moreover, using (3.16) one obtains 

B(f)* = B(_C/), N s. 1,2mod4. (3.41) 

These two relations give rise to a C*-algebra, the so-called self-dual CAR algebra 
[18], which may also be viewed as a complex Clifford algebra. The second relation 
is the smeared version of the form equality 

l/l(t,x)* = Vcifl(t,x). (3.42) 

For N = 3,0mod4 no such local relation for t/J* in terms oft/! exists. Moreover, 
(3.41) is replaced by 

B(f)* = B( C(P + - P _)f), N = 3, 0 mod 4, (3.43) 

cf. (3.18). Correspondingly, one again gets a self-dual CAR-algebra, the conjugation 
with square 1 now being C(P + - P _). 

The transformation B(f)--+ B( U f) yields an automorphism of these algebras, 
provided U is unitary and satisfies 

CU= UC, N = 1,2 mod4, 

C(P + -P _)U = UC(P + -P _), N:: 3,0mod4. 

Now it is readily verified that a unitary multiplier of the form 

U~ = (ln©0u+O 0 ) 
ln@u_(') , u±(x)eU(k) 

commutes with C provided 

u±(x)eO(k), N = 1 mod4, 

u_(x) == u+(x), N = 2mod4, 

(3.44) 

(3.45) 

(3.46) 

(3.47) 

(3.48) 

cf. (A46), (A47). However, for N = 3, 0 mod 4 no non-trivial multipliers commuting 
with C(P + - P _) appear to exist, since the action of P + - P _ is non-local. 
Therefore, we shall henceforth restrict ourselves to a consideration of the cases 
N= l,2mod4. 

First, let N = 1 mod 4. Then we talce 

~~~©~ ~~ 

(Generalizing what follows to the case C2 --+ C1 is a matter of bookkeeping when 
l > 2, cf. [2], where N = 1 and l ~ 2. However, we see no way to get similar results 
for l = 1.) We now define neutral kinks, using notation that will be clear from 
context: 

"' ~ . (q• x - ie a· x + is ) ~ * 
K'+ • = Mln © d1ag . , _ . , ln, ln M , 

· u·x +re a·x - is 
(3.50) 

K~.=Ml,.@diag ln,lm . ,_ . M, ~ ~ . ( er· x +is O'· x - ie) ~ * 
· a·x-ie cr·x+ie 

(3.51) 
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(3.52) 

Then it is easy to check that the matrices at the right-hand side of (3.50), (3.51) 
are real for any xeR2N- 1• Hence, K: .• commutes with C. Moreover, since M 
commutes with P6, the relevant properties of the neutral kinks can be read off 
from the above results on the charged kinks. Specifically, 

- -112(1) 7Cs)P)=Ks,a,+(P)®2 i (3.53) 

spans Ker R;~ + +, and 

, -c~K~"* -c~( .o..z-112(1)) ICs,< = s,e ICs,e - ICs,E, - IOI i (3.54) 

spans Ker K=.•+ +, cf. Subsect. 2.2; moreover, the operators K;,.~*J are essentially 
unitary, cf. Subsect. 2.4. 

These properties suffice to conclude that the neutral Bogoliubov transformation 
B(f)-t- B(K;,J) can be implemented in form sense by 

f',(K: .• ) = c*(Ps,JEi2;,J + En(2;,Jc(p~,J. (3.55) 

Here, one has 

P(t)::: (27t)-(2N- ll/2!!}1C(1) 
S,l S,£, 

E,,(Z) =:exp(!Z+ _c*c*}I'(Z+ +)exp(-tZ- +CC) 

(3.56) 

(3.57) 

and the neutral kink conjugate z=.• is defined via (D3). (The symbol E6 - 1 now 
denotes the operator that vanishes on the one-dimensional kernel of Ea and equals 
the inverse of E6 on its orthocomplement, cf. [2, 17].) Next, we note f'(U(a. R)) is 
well defined on account of (3.14); in fact, one has f'(U(a, R)) = I'(U(a,R}+ +) due 
to (3.12). Thus we may introduce the forms 

1/1:,Aa,R) = f'(U(a,R))f',(K;,.)I'(- l)T(U(a,R})*, aeR2N- 1, ReS0(2N -1) 
(3.58) 

and their adjoints, with form domain f)at· We also put 

cf. (A35). Thus, e.g., 

I/I +,j(a, R) = (ii; }t/11(0, Ra) j = 1, 2, 

"1-.1(a, R) = ( ~J·tfriO, Ra) j = 1,.2, 

(3.59) 

(3.60) 

f e£2(jR2N-1). (3.61) 
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From Lemma A3 it then follows that the fields 

{i/l.,i(f,R)!feL2(1R2N- 1), ReS0(2N -1)} 
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(3.62) 

act irreducibly in IF a(.Yt' +). The next theorem shows that the forms l/J~~>(a, R) can 
be used to reach this irreducible set of fields for e-+ 0. 

Theorem 3.2. For N = 1 mod 4 one has 

fun l/l~~>(a, R) = 2- 112(1/ts,l (a, R)- il/ls.2{a, R))<•> (3.63) 
..... o 

in form sense on ~:i.o. 

Proof. This follows in the same way as in the charged case, cf. the proof of Theorem 
3.1. Specifically, from Lemma Dl one readily concludes 

s·limZ" = -1 S,8 (3.64) 
..... o 

so that, e.g., 

lim i/l'L(O, l) = lim J dp[c*(p)· P+ .• (p)- c(p)· p'+,.(p)]. (3.65) 
r:~o zs-toO 

Moreover, using (2.22) one gets 

(P+i+·iz·i(p) = (2nr<2N-1>12 exp( -eEp)(wi.i (p)® e1,){ ~ )1-112p-1, (3.66) 

and using (2.20) and (3.18) one gets 

(P'+.J1Jhl(p) = -(2n)-(2N-lJl2 exp(-eEp)(w1.:(p) ® e,)-( ~)r 112(-i)i- 1, (3.67) 

where ii.i2 =1, ... ,n andj= 1,2. Thus, one obtains 

~ ~!, (O, I) ~ T '"if"(O, O)· [ fl- r "'(~ + ·' (0, 1) + i<fi + .,(0, I)) (3.68) 

in form sense. D 

We remark that the corresponding result for N = 1 in [2] differs from (3.63) 
by a factor r 112, cf. I.e. Eqs. (4.44), (4.71). This can and should be corrected by 
adding a factor 2- 112 to Le. Eq. (4.75). 

We continue with the case N = 2 mod 4. Then we choose 

(3.69) 

as in the charged case. To satisfy (3.48), we now take as neutral kinks the multipliers 

[

l cr·x+ie 
,,® . 

v cr·x-ie 
K"+,s= 

0 
u~x-ie]· 

l,,® . 
u·x+ie 

(3.70) 
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Then K;,. commutes with C, as desired. However, for m > 0 the determination of 
the kernels of the diagonal parts is a problem on which the results obtained thus 
far shed little light. Indeed, if we proceed as in the proof of Theorem 2.1, then we 
get as the analog of (2.28), (229).,, taking e.g. s = +: 

( G1 ) f=-1 ( o-·p®l,,G1 +mG2 ), 

g= G2 ' EP -o-·p®1nG2 +mG1 

where G1 , G2 should obey 

Oe 
1,.®u·VG2 =E(-a·p®1,,G2 + mG1). 

p 

(3.71) 

(3.72) 

(3.73) 

Form> 0 we do not know any non-trivial L2-solutions to this system. Therefore, 
we leave the case m > 0 open and take m = 0 from now on. Then we get from 
Lemma Bl and (A47) 

J = - =G1 = cxexp(-elpl)u, G2 = 0, (3.74) 

lJ = + =G1 =0, G2 = cxexp(-elpl)l,.® Yell. (3.75) 

Thus, Ker K"+~.+ +is spanned by 1'+, •• + and, similarly, Ker K".!', 8 + +by 1<-,a,+· We set 

(3.76) 

and note Ker K: .• + + is spanned by 

Ks.e = t.K=.~1Cs,• = ex .... -. (3.77) 

We can now implement the kink Bogoliubov transformation with the form (3.55), 
where the change in meaning of the symbols need not be spelled out Then we can 
use (3.59), (3.60) with the subscript j omitted to define Majorana fields tjl~*>(a, R), 
and we can use (3.58) to define approximate Majorana fields i/t~~l(a, R). We are 
now prepared for the last result of this subsection, which justifies this terminology. 

Theorem 3.3. For N = 2 mod 4 and m = 0 one has 

ltm i/ti;.>(a, R) = l/li*>(a, R) (3.78) 
..... o 

inform sense on ~:.0 • 

Proof. This follows as before. D 

Appendix A. Finite-Dimensional Clifford Algebras and Spinor Groups 

As is well known, the Euclidean Clifford algebra in IR2N has an irreducible 
2n-dimensional representation (recall n = 2N- 1) which is unique up to unitary 
equivalence. This representation can be constructed on the fermion Fock space 

§"(CN) = CEl?CN EB /\ 2cN EB ... EB A NcN (AI) 
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by choosing 

(A2) 

where the c}*} are the creation/annihilation operators on !IF a· Indeed, using the 
CAR one verifies 

{ei,e1}=2bik• ej=ei, j,k=l, ... ,2N-1. (A3) 

We shall use 2 x 2 matrix notation corresponding to the decomposition of !Fa 
into its sectors of even and odd particle number, 

(A4) 

Thus, the matrix of e i is of the form ( ~ ~). From now on we choose orthonormal 

bases in !F 0 and !IF 1 and correspondingly identify !F 0 and !F 1 with C". Moreover, 
we choose the bases such that 

(0 ln) 
Bo= ln 0 . (AS) 

Next, we introduce the self-adjoint matrices 

ak = ie~o. p =So. (A6) 

Then {,B,cx:1 , •. .,ix2N-d also satisfy the Euclidean Clifford algebra in IR2N. Hence, 
the ak can be written 

(A7) 

where {a 1 , ... , u2N- i} are self-adjoint matrices satisfying the Euclidean Clifford 
algebra in 1R2N- 1• The time-independent Dirac operator corresponding to a 
2N -dimensional Minkowski space is now given by 

2N-1 

-i L a.joj+Pm. m~O. 
J=1 

It arises when one writes the time-dependent Dirac equation 

(y"a" + ml 2,.)r/I = o 
in Hamiltonian form. Here one has 

so that 

{y", y"} = 2g"", g = diag (1, - l,. .. , - 1). 

(A8) 

(A9) 

(AlO) 

(All) 

We continue by proving two lemmas that are essential for proving Lemma Bl 
below. The first one is concerned with operators 

a1 = tei®e0 I'( -1N) +fe0 ®e1, j = 1,. .. ,2N -1 (A12) 
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on the Hilbert space 

(A13) 

where r denotes the Fock space product operation. (Thus, I'(- lN) acts as 
multiplication by 1/-1 on !lF 0/!F 1 .) The second lemma may be viewed as a 
corollary of the first. 

Lemma Al. The operators a)*l satisfy the CAR: 

{ a1, ak} = 0, { ai, at} = 201k, j, k = 1, ... , 2N - 1. (A14) 

They leave the subspaces 

!F +=:(ff 0®!!F0)Etl(ff 1 ®!!Fi), 

!F - =(IF 0 ®91' i)Et>(!!F 1 ®ff0 ) 

invariant and act irreducibly there. The vector 

ii= v/llv II, v = a1a3 ···a2N-1.0®£.1 

is well defined and may be viewed as the vacuum in !lF +. That is, one has 

ai}= 0, j = 1, ... ,2N -1. 

Moreover, the number operator 

can be written 

2N-1 

.K= L ajai 
j= 1 

(A15) 

(A16) 

(A17) 

(A18) 

1 2N-1 

.K=t(2N-1)12n®l2n+ 2 i~l ai®aiI'(-lN)· (A19) 

Proof. Using { ei, I'( - lN)} = 0 it is straightforward to verify (A14). 
Since I'(- lN)® I'( - lN) has eigenvalue ± 1 on !F ±,and since the a}*J commute 
with this operator, they leave 91' + and :F _ invariant. Next, we note 

(A20) 

Since the a}*l satisfy the CAR over c2N- 1, this equality implies an irreducible 
action in 91' + and !F _ . 

Consider now the vector ve!F +. Using (A12) and expanding the product, the 
first terms of each ai give rise to a vector of the form A.~t · · · c~n ® n for N even, 
or A.Ncf · · · c~.Q ® cf n for N odd, with A.N =/: 0, cf. (A2). The remaining terms in the 
expansion cannot cancel this vector, so that v # 0. To prove (Al 7) holds true, we 
first note this is clear for j odd, since aJ = 0. Picking now j = 21, one need only 
verify a21a21+1n@n= 0, and using (A12) and (A2) this is easy. Finally, (A19) 
follows from (A12) and (A6). O 

Lemma A2. There exists a unit vector ueCn® en, unique up to a phase, which 
satisfies 
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ff and only if A.= (- t+ 1• The matrix 

2N-1 

&> = ( - )N I u/gi <Ji (A22) 
j= l 

satisfies 

&>u = -(2N - 1)u (A23) 

and has eigenvalues -(2N - 5), -(2N - 9), .. . ,2N - 3 on the orthocomplement ofu. 

Proof. Setting i = 0, 1 for N even, odd, the vacuum Q is in fll';®fl'i. Hence, the 
number operator .Al has spectrum {0,2, ... ,2N - 2} on fl'/Sfl';. Also, using (A19) 
and (A 7) we conclude 

.Kl ff;®f!l'i ;:t(2N - l)ln® ln +!&. (A24) 

Thus, fY' has spectrum {-(2N -1), -(2N - 5), ... ,2N -3}, the spectral value 
-(2N -1) corresponding to 

(A25) 

and being non-degenerate. (Of course, the identification of ff 0 and !F 1 with en 
via the choice of bases made above is understood here.) Using the relation 

2N-l 

I, (a/i9 ln- ~.ln ®a1) 2 = (1 + A. 2)(2N - l)ln ® ln - 2...1.(-)N&, (A26) 
j= l 

the remaining assertions readily follow. O 

Next, let EES0(2N). Then there exists a unitary matrix S(E), unique up to 
phase, such that 

2N-l 

S(E)e,S(E)* = 2: Ekh· (A27) 
k=O 

(Indeed, the matrices at the right-hand side are self-adjoint and satisfy the Clifford 
algebra.) Requiring det S(E) = 1, the phase ambiguity is reduced to ±land a faithful 
representation of the simply-connected spinor group Spin(2N) arises (for N > 1). 
Its Lie algebra is spanned by the matrices 

(A28) 

so that !F 0 and § 1 are left invariant. The irreducible representations obtained by 
restriction are usually denoted L1 + and ,1 _ . 

To avoid confusion, it should be mentioned at this point that the operators 
B(f) and f'(U) of Subsect. 3.3 may be viewed as generalizations of the operators 
e0 , ••• , SzN-i and S(E) to an infinite-dimensional context. However, normal 
ordering is not necessary in the finite-dimensional case, so that eik has non-zero 
vacuum expectation value for j = 2l, k = 2l + 1, cf. (A2), in contrast to operators 
of the form df'( · ). 

It is easily seen that the chiral parts of the standard kinks and hedge-hogs of 
Subsect. 2.2 and 2.4 belong to L1± for fixed xEIRzN- 1, but we have no occasion to 
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make use of this. In fact, we will only employ rotations in S0(2N - 1), obtained 
by taking E01 = E10 = b01 in (A27). Then one gets 

2N-1 

[S(R), P] = 0, S(R)a1S(R)* = I Rkpk> 'V ReS0(2N - 1). (A29) 
k=l 

Also, the Lie algebra is spanned by 

1 ~j < k ~ 2N - 1. (A30) 

Thus, the restrictions of S(R) to fF 0 and fF 1 are given by two identical n x n 
matrices, which will also be denoted S(R). The corresponding irreducible represent
ation of Spin(2N -1) will be denoted Ll. 

From Lemm.a Al one can obtain the decomposition of ,1 ® Ll into its irreducible 
components. Indeed, due to (A12) and (A27) we have 

S(R)®S(R)a*(v)S(R)*@S(R)* = a*(Rv), VveC2N- 1, VReS0(2N -1), (A31) 

and since the a<•> satisfy the CAR, one infers 

S(R) © S(R) ~ I'(R) ffi> I'(R). (A32) 

(Here we are thinking of IF as IF+ EB IF_, cf. Lemma Al.) Therefore, denoting the 
defining representation of S0(2N - 1) by D and noting /\ kD ~ /\ 2N-i-1cD, it 
follows that 

N-1 
Ll®.1~ EB /\kD. 

/c=O 
(A33) 

(This also follows from the theory of weights, cf. e.g. [19].) Since u spans the vacuum 
sector in fF + , we get in particular 

S(R)©S(R)u = u, VReS0(2N -1). 

In Subsects. 3.2 and 3.3 we shall use the following cyclicity result 

Lemma A3. cn@cn is spanned by the vectors 

UR= S(R) ® lnu, ReS0(2N - 1). 

(A34) 

(A35) 

Proof. Denote the span of the uR by V. From (A34) it follows that V can also be 
written 

V = span{1n©S(R)u\ReS0(2N -1)}. (A36} 

Thus, the W*-algebras 

dL: {S(R)©1,.}", dR: {1,.®S(R)}", ReS0(2N-l) (A37) 

leave V invariant. But the S(R) act irreducibly on C", so that 

dL:::: 2(t:n)@ 111 , d R = l 11 @£'(Cn). (A38) 

Hence, V must equal en© C". O 

Our last topic in this appendix is the charge conjugation matrix Uc• which 
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plays an important role in Sect. 3. Its properties depend on N mod 4 in a way 
which can be read off from an explicit representation on @NC2 in terms of the 
Pauli matrices 

(0 1) (0 -i) (1 0) 
' 1 = 1 0 ' ' 2 = i 0 ' ' 3 = 0 -1 -

(A39) 

Instead of presenting unwieldy general formulas, we shall detail the cases 
N = 1,2,3,4, from which it will be obvious how to continue. Using shorthand 
illustrated by r 2 ®1 2 @r3 -203 we set: 

N = 1: s0 =1 
81 =2 

N=4: 80 =1000 
&1=2222 
82 = 2223 
&3 = 2221 
84 = 2230 
85 = 2210 
86 = 2300 
&7 = 2100 

N=2: 80 = 10 
e1 =22 
&2 =23 
83 =21 

N = 3: &o = 100 
81=222 
S2 = 223 
&3 = 221 
84 = 230 
85 = 210 

From this one concludes: (i) (A3) holds true, (ii) one has 

(iii) one has 

(A40) 

(A41) 

n~(~)®N- 1C} ffo~G)®N- 1 c2, ff 1 ~(~)®N-1c2 (A42) 

(due to (A2) and e ~ I'(-~N)); (iv) the at are obtained from the ek by omitting the 
first entry (since h 2r 1 =r3 , cf. also (A5)-(A7)). 

The matrix Uc is the unitary matrix, unique up'to phase, such that 

(A43) 

Equivalently, U, satisfies 

(A44) 

From (A40) we then see that we may take 

U,=3,22, 302, 2202, ... N=l,2,3,4, .... (A45) 

Hence, we conclude 

N= 1 mod4: (A46) 

N=2mod4: (A47) 
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N:=3mod4: (A48) 

N=Omod4: (A49) 

Note that the relation u.Oc = ± 12n is base-independent. It is known that for 
N = 1 mod 4 one can choose orthonormal bases in ? 0 and ? 1 such that v. 
transforms into 1,,, but we shall not need this. (In view of (A40) this amounts to 
the existence of a unitary matrix M satisfying MMT = 0202.) We do need the 
relation 

U,S(R) = S(R)U,, 'VRES0(2N - 1), 

which follows by using (A30) and U0ap.,. = <X./Y·ku., cf. (A43). 

Appendix B. A Zero-Mode Lemma 

The following lemma is needed to complete the proof of Theorem 2.1. 

Lemma Bl. Let GeL2(1R2N- 1,dp)® en® C". Then G satisfies 

(ASO) 

be 
(ln® o:·V)G = (-)N-l E(a·p® 1n)G (Bl} 

p 

if and only if 
G=O, b= +, 
G=aexp(-eEP)u, ixeC, c5= -, (B2) 

where ueC"®C" is the unit vector of Lemma A2. 

Proof. This is obvious for N = 1, so we take N > 1 from now on. Also, from Lemma 
A2 it follows that (B2) implies (Bl). Thus we henceforth assume (Bl) holds, and 
show that this entails (B2). To this end we begin by noting that the multiplier 
(a·p® ln)/EP is bounded, so that (Bl) implies the components of G belong to the 
Sobolev space H 1(1R2N- 1). Form> 0 the multiplier is smooth. Hence, multiplying 
(Bl) by ln®u·V it follows that G satisfies the PDE system 

(-A+ W~(p))G = 0, 

e2p2 ~e (zN-1 1 ) 
W.,(p}=-2 1,,®ln+(-f- 1 - I ai®u1-2u·p®u·p . 

EP EP 1~1 EP 

Since W., is bounded for m > 0, this implies 

GeH2(1R2N- 1)®C"®C" = gj, 

(B3) 

(B4) 

(BS) 

Thus, for m > 0 the existence of L2-solutions to (Bl) reduces to the existence of 
zero-energy bound states for the operator 

Ha= -A+w,,, 
which is clearly self-adjoint on~. 

(B6) 
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Form= 0 the multiplier (a·p@l,J/Ep is not continuous at 0. However, (B3) 
still follows for p ::/. 0. To handle the singularity at p = 0, we exploit the "uncertainty 
principle lemma," 

(B7) 

(For CeCOO(IR~ this follows by generalizing the k = 3 argument on p. 169 of [6] 
in the obvious way; for CeH 1 it then folloyvs by taking limits.) It implies that the 
components of G are in the domain of multiplication by l/lpl. Moreover, since 
W6(p) is smooth for p ::/: 0 and ..1 is hypo-elliptic, (B3) implies that the components 
are CCX) on 1R2N- 1\{0}. Using this and the inequality (B7) one readily verifies 

[ln®o-·V,a·p@ 1../lpl]G(p) =-1
1

1(
2I 1 a1 @a1 -

1
112 a·p@q·p)G(p), (B8) 

p j=l p 

which holds in the sense that the distributional action on G of the commutator 
yields the L2-function at the right-hand side. Thus, (B3) holds weakly for any p, 
and hence one again obtains Gef). 

Next, we claim that H& is self-adjoint on f) form= 0, too. To prove this, it 
suffices to show that the operator of multiplication by 

{ 1 r~R 
<J>(p)/lpl, c/>(r) = 0 r;. R (B9) 

(say) is a relatively compact perturbation of L1, viewed as a self-adjoint operator 
on H2(1R2N- 1) c L2(1R2N- 1). But this follows by noting that the functions <J>(lpl)/lpl 
and 1/(p2 + i) belong to L2N- 2(~2N- l) and using Theorem XI.20 of [7]. 

The upshot of the above is, that both for m > 0 and for m = 0 we are reduced 
to finding the zero-energy bound states of the self-ad joint operator H" with domain 
£!).To this end we note that Lemma A2 entails 

2N-1 

-(2N-3)~ L o)®a1 ru.L~2N-3, 
j;l 

where 

(BlO) 

(Bll) 

V6(r) = e.2r2/E2 + ~e(2N - 1 - r2/E2)/E, E = (r2 + m2) 112• (B12) 

Combining this with the obvious estimate 

we conclude 

Hence we obtain 

1 
-1~-<f·p®a·p:S:1 -E2 -

p 

W o(p) ~ V _(lpl). 

(B13) 

(Bl4) 

(B15) 
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where H is the self-adjoint Schrodinger operator 

H= -Li+ V_, !')(H)eH2(~2N-1). (Bl6) 

We claim that His a positive operator which has an isolated eigenvalue zero, 
the corresponding eigenspace being spanned by the function exp ( - eEP). Accepting 
this for the moment, we can now prove (B2), as follows. First, recall that we have 
already shown that (Bl) entails Ge Ker H~. By virtue of (B15) this implies 

G= exp(-eEP)v, veC"®C". {Bl7) 

Since G satisfies (B 1 }, we conclude 

(a1® 1.)v = (-fo(ln®o)v, j= 1, ... ,2N -1, (B18) 

so invoking Lemma A2 once more we infer v = 0 for 8 = + and v = etu, eteC, for 
o = - , which is (B2). 

It remains to prove the claim just made. For the special case 

(B19) 

this is obvious (at least to a physicist), since H - a2 is just the hydrogen atom 
Hamiltonian. More generally, it is clear that exp(- eEP) is a zero-energy bound 
state of H for any N ~ 2 and m ~ 0, and this fact combined with the positivity of 
exp ( -aEP) will suffice for an expert in Schrodinger operator theory. 

We shall, however, add a few details so as to render the proof somewhat more 
self-contained, and also because in the case at hand we have extra information, 
compared to the general set-up to be found in Chap. XIIl.12 of [8]. First, relative 
compactness arguments as used in the paragraph containing (B9) imply that H 
has essential spectrum [e2, oo). Thus the eigenvalue 0 is isolated, and we have 

E0 = inf a(H) ~ 0. (B20) 

Secondly, we note that exp ( -H) is positivity preserving. Indeed, form> 0 this 
follows from the Trotter product formula for exp(-H), using the fact that exp(Ll) 
is positivity preserving and V _ is bounded for m > 0. Also, using dominated 
convergence we have 

s·limH(m)i/1 = H(O)l{I, 'v'r/JeHz(fR2N-l) (B21) 
m!O 

so that 

s·limexp(-H{m)) = exp(-H(O)). (B22) 
mLO 

Hence, exp ( - H) is positivity preserving for m = 0, too. 
Thirdly, suppose I/I is an eigenvector of H with eigenvalue E0 • We may assume 

I/I is real-valued. Since 

(B23) 

is positivity preserving, we have 

0 ~(I r/11-1/1, A{l!/11 + l/l)) = (! t/11, All/t 1)- (!/!,At/I). (B24) 
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Hence, 

(B25) 

In view of (B23) this implies I t/11 is an eigenvector of H with eigenvalue E0 , too. 
Thus, we must have E0 = 0 and 11/1 I - exp ( -sEP), since 1 t/t I cannot be orthogonal 
to the positive function exp ( -sEp)· Moreover, since "1 satisfies the PDE HI/I = 0, 
it must be continuous for p :I= 0. Because 11/1 I does not vanish, we must have tf; = It}! I 
or t/I = - It}! 1- Thus, 0 is a simple eigenvalue of H and the proof is complete. D 

For m > 0 the Dirac operator involved in (Bl) satisfies the assumptions 
guaranteeing that the index theorems of Callias [20] and Hormander [21] apply, 
cf. also [22]. Consequently, its index can be written in terms of an integral over 
szN-z. Since the index can be read off from Lemma Bl, the value of the integral 
follows as a corollary. Conversely, if one is able to calculate the integral, then the 
value of the index results. This would suffice for the index formulas of Subsect. 
2.4. However, in Sect. 3 the far more explicit information of Lemma Bl is 
indispensable. 

Appendix C. Compactness and Non-Compactness 

Due to Schwartz's nuclear theorem any bounded operator K on L2(1R', dp) can be 
represented by a tempered distribution K(p, q)eS'(IR21). In this appendix we isolate 
conditions on K(p, q) guaranteeing compactness or non-compactness of K (Lemmas 
Cl and C2). We also prove a lemma (Lemma C3) that will enable us to show that 
certain operators occurring in the main text are not Hilbert-Schmidt. 

Lemma Cl. Let K be an operator on L 2(1R1) with kernel 

K(p,q)=F(p-q}B(p,q), FeL1(1R~, BeL°"(R21). (Cl) 

Assume that for any r > 0 one has 

Then K is compact. 

lim sup IB(x + y,x)I = 0, 
R-+co \xl>R 

l.J'i<• 

lim sup IB(x,x+ y)I =0. 
R-+oo l.xl>R 

IYI<• 

(C2) 

(C3) 

Proof The proof is based on two well-known facts. First, norm limits of compact 
operators are compact, and second, an operator T with measurable kernel T(p, q) 
satisfies 

11 Tll 2 ~ supf dpJ T(p,q)jsup f dq!T(p,q)I. (C4) 
4 l' 

(This follows either from the Riesz-Thorin theorem or directly from a slightly 
subtle application of the Schwarz inequality.) 

Due to (C4) and (Cl) we have 

llKll ~ llBll..,llFll1· (C5) 
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Now C0 is dense in L1, so we need only prove compactness of K for FeC0 by 
virtue of (C5) and the first fact. Thus we assume from now on 

sup F c: Br = {ye~1 1 IYI < r}. (C6) 

Next, we take R > 2r and set 

K=KR+HR, KR(p,q)=:[1-xR(P)XR(q)]K(p,q), (C7) 

where XR denotes the characteristic function of BR· Then H R(p, q) has support in 
BR x BR, and since F and Bare bounded, one concludes HR(p,q)eL2(!R 21). Thus, 
HR is Hilbert-Schmidt. Invoking the first fact once more, it remains to prove 

lim llKRIJ =0. 

To this end we exploit the second fact, cf. (C4). We shall show 

sups dpJKR(p,q)J-40, R-4 00 
q 

(CS) 

(C9) 

by invoking (CZ); the second supremum behaves in the same way due to (C3). 
(In fact, the alert reader will have noted that (C2) and (C3} are equivalent.) To 
prove (C9) we fix q and consider 

J dplKR(p, q)I = J dy[l - XR(q + Y)XR(q)] IF(y)B(q + y, q)I, (ClO) 
Br 

cf. (C6)-(C7). Since r < R/2, the function in brackets vanishes on B, when I q I ~ R/2. 
Thus, we obtain 

fdp!KR(p,q)J~ sup J dyJF(y)B(x+y,x)I 
lxl > R/2 IYI <r 

(Cll) 

for any qEIR1• As promised, this yields (C9) due to (C2). D 

Lemma C2. Let K be an operator on L2 (1R\1) whose kernel K(p, q)eS'(~21 ) has the 
following property: There exist f, gES(IR1) and ees1- 1 such that 

lim J dpdqJ(p)K(p + ;l.e,q + 2e)g(q)#O. (C12) 
,_ .... ,,, 

(Here, the integral stands for distributional evaluation.) Then K is not compact. 

Proof- We assume K is compact and derive a contradiction. Denote by U ,_ 
the translation over ;l.e. Then U i weakly converges to 0 for il-4 aJ by the 
Riemann-Lebesgue lemma. Hence, KU i converges strongly to 0, so that 

s·lim U _;;.,KUi =0. (C13) 
J..-+oc 

But this implies 

lim (U d, KU ,_g) = 0, (Cl4) 
l-+oo 

which contradicts (C12). O 

Lemma C3. Let f ~ 0 be a measurable function on IR1, l > 1, and let c ;;:; 0. Then one has 
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d d ( (x + y)2 (x - y)2 
}21 x yf(y) (x+y)2+c +(x-y)2+c 2 <co 

(x2-y2) ) 
[((x + y)2 + c)((x + y)2 + c)]112 

(C15) 

if and only if f = 0. 

Proof. We assume f #= 0 and show that when (Cl5) holds a contradiction arises. 
Indeed, (Cl5) implies by virtue of Fubini's theorem that there exists y0 =F 0 with 
f(y0 ) > 0 such that the x-integral of the bracketed function with y =Yo converges. 
Now introduce 

(C16) 

Invoking Fubini's theorem again, we infer that there exists e such that a# b2 and 

"" J drr1- 1 I(r) < ex:>, (C17) 
0 

where 

/(r)= r2 +2br+a + r2 -2br+a 
r2+2br+a+c r 2 -2br+a+c 

2 (r2-a) 
[(r2 + 2br +a+ c)(r2 -2br+ a+ c)J 1' 2 • 

(C18) 

But one has 

J(r)=2( 1-;2 )-2(1- r~ )(1 + :2 [2b2 -a-c]) + O(r- 3 ) 

4 
=2(a-b2)+0(r- 3 ), r-i-oo 

r 

and since a:/: b2 and l > 1, this contradicts (Cl 7). O 

Appemlix D. A Convergence Lemma 

(Cl9} 

This appendix contains the definition of the kink conjugates z .. e and a lemma that 
is a crucial ingredient in the proofs of Theorems 3.1-3.3. We shall use notation 
explained in Subsect 3.1. Suppose U is a unitary with compact off-diagonal parts 
for which Ker U!. _ is trivial and Ker U __ is one-dimensional. Then Ker U + + is 
trivial and Ker Ut + is one-dimensional, since U is unitary. Thus, the operators 

E _ = U __ U* __ = P _ - U _ + U* + _, 

E+ = U* + + U + + = P + - U* + _ U -'.i. 

(Dl) 

(D2) 

have bounded inverses (as operators on H 6), and we can define an operator Z by 

Z++=-U++E+- 1, Z+-=-U++E+- 1 U_+*• 
Z-+=-U* __ E_ -iu_+, z __ =:-U* __ E_- 1• (D3) 

This operator is referred to as the conjugate of U; it is related to the associate 
A used in [16] by Z(U) = 1 + (P + -P _)A( - U). (This sign convention ensures 
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absence of signs in the associated Fock space implementer, cf. Eq. (5.15) in [16].) 
We have shown that the operators K,.,. satisfy all of the above assumptions, 

cf. Theorems 2.1 and 2.5. Thus we may introduce operators E±,•.• and z •.• in the 
way just described. This prepares us for the following result. 

Lemma DI. One has 

s·limz •.• = -1, s= +, - . 
..... o 

(D4) 

Proof. Once this is proved for s = +, the s = - case follows by using parity. Thus 
we takes = + and suppress this index henceforth. First, we shall handle the massless 
case. We claim that 

11 Ke- + 11 = c < 1, \f e > o, m = o. 
Indeed, using (2.13) we obtain 

llK.- +II= l1D(e)*P _K1P +D(e)ll = llK1 -+ II== C, 

and since E+.1 has a bounded inverse we must have C < 1, cf. (D2). 
Next, we note 

(D5) 

(D6) 

(D7) 

(This is immediate from (2.16).) By majorizing the tail in the Neumann series for 
E., - 1 with the uniform bound (D5) it readily follows from this that 

s·limE.,,,.- 1 =PIJ. 
<-+0 

Moreover, combining (Dl), (D2) with (D5) we get 

llE.i,.- 1 il=(l-C2)- 1t2, Ve>O, m=O. 

Using all this, it is routine to verify (D4): One has, e.g., 

(D8) 

(D9) 

ll(Z.+ + +P +)f 11 ~II K .. + +E+ •• - 1(E+ .• -P +)fll + ll(K.++ -P +)f 11-+0, 8-+0, 
(DlO) 

cf. (D3). 
The massive case involves more work. Suppose we can show 

llK.-+ll~C'<l, V'ee(O,l], m>O. (D11) 

Then we can argue as in the massless case to prove (D4); we need only replace (D9) by 

(D12) 

To prove (Dll) we observe that 

llK.-+ II= llKe-+ II= 11P(m)-D(e)*K1D(e).P(,,,)+ II= lli\em)-KlP(on)+ II =/(em). 
(D13) 

(Here and from now on the mass dependence of P6 is made explicit) Since P(Jl'>' 
is norm continuous in µ on (0, oo), the function f(µ) is continuous on (0, 1]. 
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Moreover, one has f(µ) < 1 on (0, 1]. Therefore, f is bounded away from 1 on 
compact subintervals of (0, 1]. But then we need only show 

limf(µ) = llPco)-K1P<o>+ 11=C<1 (D14) 
ii-o 

to obtain the desired bound (Dl1). 
We shall prove (D14) by making suitable use of the estimate 

ll f(p)g( - iV p) II,~ (2n)-lfr II f llr II g 11,, f, geL"(IR1), re[2, <X) ), (D15) 

where Jl · 11, denotes the Schatten norm at the left and the L" norm at the right, cf. 
Theorem XI.20 in [7]. To this end we introduce (omitting the carets from now on) 

(D16) 

and note 

C(µ)=(P<ii)-(p)-Pco>-(p))M(-iV p)-M( -iVp)(Pc11l_(p)-P<0l_ (p)), 

M(x) = Ki(x)-1. (Dl 7) 

Now it is easily seen that the matrix elements of M(x) and of P(µ)-{p)-P<o)-(p) 
belong to E(IR2N-i) for re(2N - 1, oo]. Moreover, by dominated convergence the 
latter matrix elements converge to 0 in L" for µ--+ 0 and re(2N - 1, oo ). Hence, the 
estimate (D15) entails 

lim 11 C(µ) 11 = o, (D18) 

since the operator norm is dominated by any Schatten norm. 
Next, we multiply C(µ) by P(µJ- from the left and by P(µ)+ from the right, and 

conclude 

lim II P{µ)-K1P(JI)+ - P (µ)-Pcoi-K1P(o)+ P<,,.l+ + P(µ)- P(o)+ K 1P(o)-P(µ)+ ll = 0. 
µ-o 

(D19) 

Since the projections P(µ)b strongly converge to P<oJa for µ--+0, the norm of the 
second operator has limit llP<0 l_K1 Pco)+ II. Hence, (D14) will result from (D19), 
provided one has 

(D20) 

But this can be proved by another application of (Dl5): We may replace K 1 by 
K 1 - 1, and since P(µJ-(p)P<o>+ (p) has matrix elements that converge to 0 in E for 
µ--+O and rE(2N -1, oo), (D20) holds true. D 

Appendix E. The Connection to External Field S-Operators 

In this appendix we present some results on the (interaction picture) evolution 
operators and S-operators corresponding to the Dirac equation with certain 
time-dependent external fields. This will yield a different context for the above 
results, which is closer to the physical picture of chiral anomalies [23]. We shall 
make use of concepts and results that are detailed in [24, 25]. Using the notation 
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of Subsect. 2.1, the external field Dirac operator is given by 

H(t} = H + A.V(t). 

Here, A.eC is the coupling constant and 

(V(t)f)(x) = V(t,x)f(x), f eif, 

S. N. M. Ruijsenaars 

(El) 

(E2) 

where V(t,x) is a 2nk x 2nk matrix-valued function on 2N-dimensional Minkowski 
space. 

First, we shall assume V(t,x) is continuous and vanishes at co, so that II V(t)ll 
is continuous and vanishes at oo. In addition, we assume 

II V(t)l\eL1(1R). (E3) 

These two assumptions guarantee that the evolution operator U ;.(T2 , Ti) is norm 
entire in ,1,. and norm continuous on ~2, where R = ~ u { ± oo} with the obvious 
topology, cf. [24], Sect. 2. 

Theorem El. For any (A, T1 , T2 )eC x R2 the operator U ;.(T2 , Ti) has compact 
off-diagonal parts and Fredholm diagonal parts with vanishing index. 

Proof. We shall first prove this under the extra assumption that the matrix elements 
of V(t,x) are in S(IR2N). Then the operators U = U ;.(oo, - oo) and V= U;.(- oo, oo) 
have Hilbert-Schmidt off-diagonal parts, as follows by generalizing the relevant 
arguments of [25] in a straightforward way, cf. also [26]. Since UV= VU= 1, it 
follows that U and V have Fredholm diagonal parts; furthermore, these have index 
0 since U and V are norm entire in ,1. and equal to 1 for ,1. = 0. Now consider (e.g.) 
U ;.(T, 0) with Te(O, oo ). Multiply V(t, x) by a C00 function ef>.(t) that is 1 on 
[s, T-s],O on (- cx:i,O] and [T, oo), and monotone on [O,e] and [T-e, T]. Then 
the corresponding evolution operator U .i.AT. 0) equals the S-operator for the 
Schwartz space external field At/JAt) V(t, x) and, therefore, has HS off-diagonal parts. 
Using the Dyson expansion to estimate U .1. (T, 0) - U .1.,.(T, 0), it readily follows that 
this difference converges to 0 in norm for e-o. Hence, U;.(T,0)5 _ 6 and, similarly, 
U;.(T2 , T1)ii-ii are compact. 

Next, consider the general case. Since V(t, x) is continuous and vanishes at oo, 
one can find a family V0 (t,x) with matrix elements.in S(lll2N) such that 

II V.(t)- V(t)!i ~s, Vte[T1 , T2 ] c IR. (E4) 

Telescoping the Dyson expansion in the obvious way, one infers n·lim U;.,.(T2 , Ti)= 
o->O 

U;.(T2 , T1 ). Thus the assertions follow for A.eC and 7jelfi, and taking norm limits 
for T; e ~. too. D 

The second assumption (E3) is critical. Indeed, in [1] Matsui proves (for N = 2 
and m = 0) there exist external fields that are continuous and vanish at oo, yet lead 
to an S-operator with index s __ :;CO. For these fields one has II V(t)ll- lti- 1 for 
large times, so (E3) is violated. His fields are in essence pure gauge for large times, 
but they have a time dependence which leads to considerable complications. 
Here, we shall obtain S-operators with non-zero index (for N ~ 1 and m ~ 0) 
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corresponding to external fields that are time-independent for large times (so that 
both assumptions are violated). 

Specifically, let us assume V(t, x) is continuous and self-ad joint on IR2N, vanishes 
for lxl-+ ro and t fixed, and is equal to time-independent matrices V.(x) for 
rt ~ T > 0, where r = +, - . Then the issue of existence of the S-operator for the 
field V(t, x) reduces to the existence problem for the wave operators W + (H, H +) 
and W_(H_,H), where 

H, = H + A.V,(·), r = +, -. (E5) 

Indeed, one has 

U(t, s)=eitHe-i<t-TJH + e-iTH U(T, - T)e-iTHei<s+T)H- e-i>H, t> T, s< -T, (E6) 

cf. Eqs. (2.27), (2.106) in [24]. If V ± =f. 0, the norm limits of the right-hand side for 
t ~ ct:J and s ~ - ro do not exist, but the strong limits may exist. Since Fredholm 
indices can jump under strong limits, the S-operators associated with such fields 
may yield diagonal parts with non-zero index. 

To study this, we further restrict ourselves to the case 

H ::U*HU U =(ln®u,,+0 0 ) 
' ' "' < 0 ln®u,,-0 ' 

where u,,.(x) are U(k)-valued functions with the following properties: 

u,,.(x)EC1, r, s = +, -, 
Vu,,.(x)=o(l), lxl~ro. 

(E7) 

(ES) 

(E9) 

Then it is easy to verify that H, is indeed of the previously assumed form (E5), 
with A.= 1, say. Specifically, one obtains 

V(t,x}=i2I1(-<r/~:9ui,+(x)(oiu.,+)(x) 0 ) 
j=1 O ai@ui,_(x)(oiu,,_)(x) 

+m ti~T ( 0 ln® [ui.+(x)u,,_(x)- lk]) 
ln®[ui,_(x)u,,+(x)- lk] 0 ' 

(ElO) 

Recall that the interpolation of the two fields involved need only be continuous, 
self-adjoint and 0 at oo. First, we require in addition to (E8), (E9), 

u,,.(x)- lk=o(l), lxl~oo. (Ell) 

Thus one has U,EGe c G"", cf. Subsect. 2.4. 

Theorem E2. Under the assumptions just made, the S-operator 

exists and is given by 

s· lim U(T2 , T1 ) 
T2-J.c.o 

Ti--oo 

eiTHu +e-iTHLJ(T, -T)e-iTHU!eiTH = s. 

(E12) 

(E13) 
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Moreover, the operators S ± :r: are compact and the operators S ± ± are Fredholm, and 
one has 

index s~6 =index u +66 - index u -aa· 

Proof In the case at hand we can rewrite (E6) as 

(E14) 

U(t,s)=[e1r8 U~e-1tH]S[e1sHU_e-tsB], t>T, s<-T. (E15) 

Therefore, the first assertion follows if we show that the bracketed operators have 
strong limit 1 for t-+ oo and s-+ - oo, respectively. To this end we need only prove 

s· lim M(·) exp (itii) = 0, (El6) 

where M(x) is continuous and vanishes at oo. Letfbe of the form (ii+ i)- 1g,ge.it. 
An application ofthetraceidealestimate(D15) shows that M(x)(- irt.·V +Pm+ i)- 1 

is compact when M(x) = O(lxl- 1) (say), and hence (taking a norm limit) when 
M(x) = o(l) for lxl-+ oo, too. Since exp (itii) weakly converges to 0 for t-+ oo by 
the Riemann-Lebesgue lemma, we conclude 

M(·)exp(itii)f = M(·)(H + i)- 1 exp(itii}g~O. t-+ oo. (E17) 

From this (E16) readily follows. 
Next, we note that Theorem El implies U(T, - T)6 _.i are compact and 

U(T, -T).,6 are Fredbolm with index 0. Since u.eG,..,, this entails the validity of 
the second assertion. D 

We shall now relax the assumption (Ell). Assume continuous functions 
ut,rtJ:s2N- 2 -+ U(k) exist such that 

u.,a(x)-u.,®c:1)=o(l), lxl-+oo, -r,s= +, -. (E18) 

That is, we allow hedge-hog asymptotics at oo. In particular, U,eGh c G00 for 
m > 0, cf. Subsect 2.4. 

Theorem E3. Under these assumptions the S-operator (E12) exists and is given by 

sh = ut,oo(i:1 ~)su_·"'( -1: 1 ~), (E19) 

where S is de.fined by (EI 3). Moreover, for m > 0 the operators Su :i: are compact 
and the operators Sh± ± are Fredholm, and one has 

indexS11c1c1 =index U +ac1-index U-1Ja· (E20) 

Proof. Because (E15) still holds when (El 1) is replaced by (E18), and because of 
the above argument containing (E16), we need only show 

s·limu* (e1tH!F l:_!F- 1 e- 118) =u* (]!_ H) (E21) 
+,oo I I +,oo I I E ' I-+® X p p 

;~~ U-,,.-,( e1rng;- 1:1 !F-le-itH) = U-,oo( -1:1 ~} (E22) 
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(The notation used here calls for a comment: When A; = a1®1.t, j = 1, ... , 2N - 1, 
are commuting self-adjoint operators and u a map from 1R2N- 1 to U(k), then the 
operators u1,,.(a1 , ..• ,a2N-i) are defined by the functional calculus, and 

k 

u(A) = L Uim(a) ® ezm 
l,m=l 

is unitary, where {e1,,.} is the obvious basis of Mk(C).) 
To prove (E21), (E22) we set 

V1(t);;;;;; eitH(ia1/t)e-itB, t :;CO 

and exploit the fact that 

fun vj(t) = pJ!H (strong resolvent sense). 
ltj-+co 

Taking (E25) for granted, it follows that 

s·lim v1(t)/lv(t)1 = p1H/lplEP. 
ltl-+co 

(E23) 

(E24) 

(E25) 

(E26) 

(To see this, note the discontinuity ofthe function at the left-hand side is harmless, 
since vit) has no point spectrum.) Since one has 

ei1H§(xjflxl)§- 1 e-itH= ±v1(t)/lv(t)i, t~O, (E27) 

and since ut,00 and u_,00 are continuous on S2N-2, (E21) and (E22) follow. 
It remains to prove the relation (E25). Its validity was first shown by Thaller 

and Enss [27], who were studying the (interacting) N = 2, m > 0 case, but their 
argument generalizes to any N ~ 1 and m ~ 0. (Cf. also [1] for what follows.) 
Indeed, following [27], we set F1=rx.;-P;/H and note F;H= -HF1, so that 
F1e-itH = eftHF1. This can be rewritten 

eitH[a1,HJe-itH =~ + e2itB( CX1- ~). (E28) 

Denoting the domain of ia 1 by ~, one readily verifies e1tH f!lJ = ~. Hence, (E28) 
entails that on q) one has 

e1tH(iiJ /t)e-izH = ia-/t + P; + (e21rH -1) (a· -Pi). (E29) 
1 1 H 2itH i H 

But it is obvious that the first term converges strongly to 0 on ~. whereas the 
third term has norm ~ 2 and strongly converges to 0 by virtue of a routine 
argument. Hence, (E25) follows. O 

It is clear from the above proofs that the assumptions can be relaxed to obtain 
similar conclusions, but we shall not pursue this. We do point out that one may 
allow V(t,x) to have jumps as a function of time. (Indeed, this is clear from the 
relation U(T3 , Ti)= U(T3 , T2 )U(T2 , Ti).) In particular, we may take T=O and 
U _ = 1 in the above. Then we conclude that unitary multipliers U eG. for which 
u5 (x), s = +, - , satisfy (E8), (E9) may be viewed as S-operators corresponding to 
external fields that vanish for t < 0 and are given by the right-hand side of (ElO) 
(with ut.s-+u5 ) fort~ 0. 
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In particular, the standard kinks Ks,• of Subsect. 2.2 and any finite product of 
their transforms under translations and rotations satisfy (E8), (E9) and (Ell). From 
the viewpoint sketched in this appendix the results ofTheorem 2.1 can be interpreted 
as follows: Scattering at the external field associated with Ks,• via the right-hand 
side of (ElO) can move states in the negative energy subspace of H to the positive 
energy subspace (viz., those states proportional to K ••• ,-), but not vice versa. 
Equivalently, these states are negative energy states with respect to H, but positive 
energy states with respect to H +, defined via (E7) with U + = K.,., but no states 
exist that have positive energy with respect to H and negative energy with respect 
to H+. 

For the (massive) standard hedge-hogs (2.93) the assumptions (E8), (E9) and 
(E18) are fulfilled. Hence, the index of the corresponding Sh- _ equals 1, cf. 
Theorem E3. However, in this case we have no explicit information on the relevant 
kernel states but for the dimension difference. 
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