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AN ASYMPTOTIC SOLUTION TO A TWO-DIMENSIONAL EXIT PROBLEM 
ARISING IN POPULATION DYNAMICS* 

H. ROOZENt 

Abstract. A study is made of a two-dimensional stochastic system with small stochastic fluctuations 
arising in po?ulation ~iology. A~ the bound~ry of the state space the diffusion matrix becomes singular. By 
an asymptotic analysis, expressions are denved that determine the probability of exit at each of the two 
boundaries and the expectation and variance of the exit time. These expressions contain constants th;;t can 
be computed numerically. 
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I. Introduction. Consider a two-dimensional stochastic system that has a stable 
deterministic equilibrium and in which the stochastic fluctuations are small. Various 
systems of this type have been studied in literature (see Matkowsky and Schuss [9], 
[10], Matkowsky, Schuss, and Tier [11], Hanson and Tier [7], Wazwaz and Hanson 
[ 14], [ 15]). With respect to the behaviour of the deterministic system at the boundary 
of the region under consideration, different cases can be distinguished: the deterministic 
vector field enters the region [9], or it is tangent to the boundary of the region. [n the 
latter case, there may be no deterministic critical points on the boundary [ l O], or there 
may be [ 11]. It is assumed in [9], [ 1 O], and [ 11] that the diffusion tensor is nonsingular. 
The asymptotic theories for small stochastic fluctuations lead to expressions for the 
exit distribution and the (lowest) statistical moments of the exit time. An asymptotic 
analysis of a one-dimensional stochastic system in which the diffusion coefficient 
becomes singular at the boundary is given in [7), [14], and [15]. In this system, both 
the drift and the diffusion coefficients vanish linearly with the distance to the boundary. 

The two-dimensional stochastic system treated in this paper arises in population 
dynamics [8], [ 12]. The diffusion matrix is diagonal and becomes singular at the 
boundary. There, the normal components of both the drift and the diffusion vanish 
linearly with the distance to the boundary. This system differs from the system treated 
in [ 11] in that the diffusion tensor becomes singular at the boundary, and from the 
system in [7], [14], and [15] in the dimension. Extending the methods presented in 
[7] and [ 11], asymptotic expressions are derived for the probabilities of exit at the two 
boundaries as well as the expectation and variance of the exit time. 

Section 2 describes the stochastic model and formulates the boundary value 
problems with respect to exit boundary and exit time. In § 3 we find asymptotic 
expressions for the probability of exit at each of the boundaries, valid uniformly outside 
an asymptotic small neighbourhood of the origin. In§ 4, a derivation largely analogous 
to that in § 3 leads to asymptotic expressions for the expectation and variance of the 
exit time that are uniformly valid. Section 5 is concerned with the numerical determina­
tion of constants that appear in the formulas obtained in §§ 3 and 4. As an example, 
§ 6 treats a predator-prey system. 

2. The stochastic model and boundary value problems. We consider the two­
dimensional stochastic system with small stochastic fluctuations described by the 
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following Fokker-Planck (or forward Kolmogorov) equation: 

av(x, t) 2 [ a e a2 J (2.1) = M,v = I -- [b;(x)v(x, t)] +- - 2 [a;(x)v(x, t)] , 
at i=l ax; 2 ax; 

in which v is the probability density function and 0 < e « 1 is a small parameter. The 
variables x1 and x2 denote the densities of two biological populations. The state space 
consists of the region R: 
(2.2) 

The diffusion matrix is diagonal with elements: 

(2.3) 

in which the aij are positive real numbers. This diffusion matrix is singular at x 1 = 0 
and x2 = 0. The drift vector is of the generalized Lotka-Volterra form: 

(2.4) b1(X) = X1(b10+ b11X1 + b12X2), b2(x) = X2(b20+ h21X1 + bnX2), 

where the bij are real numbers that are restricted by assumptions made below. Thus, 
x 1 = 0 and x2 = 0 are characteristic boundaries. The deterministic system 

(2.5) 

associated with the stochastic system (2.1) has the equilibria: 

(2.6a) 

(2.6b) 

(2.6c) 

(2.6d) 

(0, O), 

(0, -b20/ b12), 

(-b10/ b11 , 0), 

·-c e ')=(b22b10-h12b20 b11b20-b21b10) 
X - Xh X2 - b , . 

b21 12-b11h22 b21b12-b11b22 

By assumption the critical points (2.6b ), (2.6c) lie on the positive x2-axis, x 1 -axis, 
respectively, with order 0(1) distance from the origin: 

(Al) -b20/b22>0, -b20/b22=0(l), -b10/b 11 >0, -b10/bu=O(l), 

and are attracting along the x2-axis and x 1-axis, respectively: 

(A2) b20 > 0, b10 > 0. 

The deterministic system has an equilibrium in R with coordinates of order 0( 1): 

(A3) x~>O, x~=O(l), x;>o, x;=O(l). 

The following assumption is made with respect to the stability of the deterministic 
system at x•. In the neighbourhood of x' we have by linearization of the deterministic 
vector field: 

(2.7) 

where the matrix B is given by 

(2.8) 

The eigenvalues of B are 

(2.9) A 1,2=![b11X~ + h22x; ±.J (b11x~ + b22x;)2-4(b11 b22 - b 12 b21 )x~x;]. 
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The condition fo.r stabi~ity of the deterministic system at x• is that the real parts of A 1 

and A2 are negative. With the use of the assumptions (Al)-(A3) this condition results 

in 

(A4) 

By the assumptions (Al)-(A4) the equilibria (2.6b), (2.6c) are saddle points. The 
equilibrium (2.6a) is an unstable node. 

At the boundary X; = 0 we have 

(2.lOa) 

(2.lOb) 

e a 
l;(x, t) = b;(x)v(x, t)-2 ax. [a;(x)v(x, t)]<O, 

I 

b;(x)=O, a;(x)=O, 

for i == 1, 2. By (2.lOa) the probability current l; at X; = 0 is negative, which indicates 
that the boundary X; = 0 can be reached from R. Once X; = 0 has been reached, by 
(2.lOb) it cannot be left. Thus, X1 == 0 and x2 = 0 are exit boundaries. 

Starting away from X1 = 0 and X2 = 0, the stochastic system described above will 
likely remain in the neighbourhood of the stable equilibrium x• of the deterministic 
system for a long time. With small probabilities large excursions from x• occur. In 
such an excursion the system may exit at x1=0 or x2 = 0. This will happen within a 
finite time with probability one. 

The boundary value problems describing exit are commonly defined on a bounded 
region. However, for the asymptotic analysis held in this paper, the use of the 
unbounded region R and the boundary aR defined by 

(2.11) aR = R\R == {(x1, x2) lx1x2 = 0 and x 1 + x2;;:; O} 

will not lead to any difficulty. This is confirmed by results for the analogous one­
dimensional exit model, which can be computed explicitly. 

To determine the probabilities of exit at x 1 =0 and x2 == 0, a study is made of the 
stationary backward Kolmogorov equation 

2 [ au e a2 u] (2.12a) O=LFu= I b;(x)-+-2 a;(x)-2 inR, 
i=1 ax; ax; 

with the boundary condition 

(2.12b) u == f(x) on aR, 

in which 

(2.12c) u(x) == f f(x')P(x, x') dSx·, 
aR 

where P(x, x') is the probability of exit at x' E aR, starting from x ER. With the definition 

{ 1 for X; == 0, 
(2.1 3) f(x) == 0 else, 

the function u(x) is the probability of exit at the particular boundary X; = 0, starting 
from x E R. In this paper only boundary conditions of the form 

(2.14) f(x)={Cb1, x1=0, 
Cb2. X2=0, 

are considered with Chi, Ch 2 constants that are equal to either zero or one. 
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Another point of interest is the determination of the expectation E T(x) and 
variance Var T(x) of the exit time T(x), starting from xE R. By 

(2.15) ET(x)=T1 , VarT(x)=T2 -Ti, 

the expectation and variance of T are expressed in the moments 

(2.16) 

of T, satisfying the equations 

(2.17a) L,T; = g;(x) in R, 

and conditions 

(2. l 7b) T;=O onaR, 

for i = 1, 2 with 

(2.17c) 

Equation (2.17a) with i = 1 is the Dynkin equation. Although higher moments can be 
determined as well, the analysis of the exit time in this paper is restricted to its 
expectation and variance. For a derivation of the boundary value problems (2.12), 
(2.17), the reader is referred to [4] and [13]. 

In biological terms, exit means extinction of a species. The expected exit time is 
a measure for the stochastic persistence of the ecosystem (see Ludwig [8]). The type 
of interaction between the two populations is mutual ism for b12 > 0, b21 > 0, competition 
for b12 < 0, b21 < 0, and predation-prey in the other cases. 

The motivation for the present study is the following one. In [12] we analyzed 
the exit problem for the system of populations described above by the method of 
Ludwig [8]. In that approach, the boundaries x 1 = 0 and x2 = 0 of R were replaced by 
the boundaries X; =I;, where the I; were small positive numbers, i = 1, 2. Thus the region 
R was restricted to the smaller region R1• Whereas the deterministic flow was tangent 
to the boundaries x; = 0 of R, it was directed inward to R1 at the boundaries X; = l; of 
R1• Consequently, the asymptotics of Matkowsky and Schuss [9] could be applied to 
the problem of exit from R1, as an approximation to the problem of exit from R. In 
the present paper we adopt a different point of view. The behaviour of the stochastic 
system near the boundaries x1 = 0 and x2 = 0 will be treated by a variant of [7] and 
[ 11]. In this approach we may take the limits I;-'> 0, where this was not allowed in the 
previous study [12]. Thus we obtain expressions to the problem of exit from R without 
the need to approximate R by a rather arbitrary smaller region R 1• 

In [5] Gillespie treated an exit problem related to a multidimensional singular 
diffusion arising in genetics. His study differs in various aspects from the present one. 
In our model the deterministic system is more complicated since the behaviour near 
the boundaries x 1 =0 and x2 = 0 is dominated by the critical points (0, -b20 / b22 ) and 
(-b10/ b11 , 0), where no such critical points are present in [5]. Moreover, for our model 
no explicit solution of the stationary forward equation is available and no zero 
probability flux condition holds. These facts give rise to a substantially more elaborate 
study. 

3. The exit boundary. In this section the exit problem (2.12) with fas in (2.14) 
is solved asymptotically for small £. The solution contains an unknown constant. To 
obtain an expression for this constant we use an integral formula that results from the 
divergence theorem. In the integral formula, a formal solution of the forward equation 
adjoint to (2.12a) is needed. This adjoint equation is solved by the WKB-method (see 
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Ludwig [8]). Near the boundaries x1 = 0 and x2 = 0, the solution of the adjoint equation 
is peaked at the critical points ( 0, - b20I b22 ) and (-b 10I b11 , 0 ), respectively. Neighbour­
hoods of these critical points play an important role in the subsequent analysis. This 
approach is a variant of the method of Matkowsky, Schuss, and Tier [11], that was 
indicated in Hanson and Tier [7]. 

3.1. The backward equation. An asymptotic analysis of the boundary value prob­
lem (2.12) reveals the existence of an outer solution, valid away from x1 = 0 and x2 = 0. 
Near these boundaries, an examination of different stretchings of the normal coordinate 
shows the presence of a boundary layer of width O(s). Inside the boundary layers, 
the diffusion parallel to the boundary is negligible, except near critical points of the 
deterministic system. Thus, the following regions are distinguished: 

region A: Xi=MiE, X2+ b1ol bc_2 > M1Fe, 

region B: Xi = M 3 s, lx2 + b2ol b22I = M4./e, 

region C: Xi = M 5 s, M6e < x2 < -b20/ b22 - M1.JE, 

(3.1) region D: Xi = M8s, x2= M 9 £, 

region A': X1 +biol bi 1 > M10./e, X2=M111?, 

region B': lxi +biol bul = Mi2Fe, X2= M13£, 

region C': Mi 4 s < X1 <-biol b11 - Mis.Ji, X2= Mi61? 

where the M; are arbitrary positive numbers independent of e (see Fig. 1). 

0 (E) 
~ 

Xz 

A 

outer 

l l region 
-b20/b22 B 0 (e: 2) 

c I 

0 (e: 2) 

<E ~ 

D C' B' A' l O(e:) 

0 -b!O/bll xl 

FIG. I. The outer region and the boundwy layer regions. In the regions A, A', C, (" the dijji1sion parallel 
to the boundary is negligible while this is not the case in the regions B, B', and D. 
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3.1.1. The outer solution. The reduced equation corresponding to (2.12a) reads 

(3.2) 
2 au L: b;(x)-= o, 

i=I ax; 

which has the solution 

(3.3) 

with C& a constant with respect to x, which is yet undetermined. An expression for Cb 
will be found in § 3.3. The solution (3.3) is valid in R except near x1 = 0 and x2 = O 
because the boundary condition (2.12b), (2.14) cannot be satisfied. 

3.1.2. The boundary layer solution in the regions Band B'. Near the critical point 
(O, -b20/ b22) of the deterministic system, we introduce the stretched coordinates 

(3.4) 

and the boundary layer function 

(3.5) U(:Xi, :X2) = u(exi, -bw/ b22+v'Ex2). 

Substitution into (2.12a) leads to the boundary layer equation 

au a2 U au a1 u 
k 1x1 -::-+ k2.X1 ----=2- k3x2 -:-+ k4 ----=i"= 0, 

ax1 ax1 ax2 ax2 
(3.6) 

in which 

(3.7) 

From the assumptions (Al)-(A4) and the positivity of the aij it follows that the constants 
k; are positive. By the separation of variables 

(3.8) 

(3.6) leads to the ordinary differential equations 

(3.9a) 
d 2 w dw 

k 2x1 d_2 + k 1x1 -d- -Aw= 0, 
X1 X1 

(3.9b) 

in which A is a separation constant. The general solution of (3.9a) is 

(3.10) W(X1) = {C1 W.\1,1;2(-x\) + C2 W_.\"1;2(X1)} exp [ -xi/2], 

in which 

(3.11) 

W,,.1, 112 and w_ ... ,, 112 are Whittaker functions [6], and c1, c2 are arbitrary constants. The 
general solution of (3.9b) is 

(3.12) 

in which 

(3.13) 
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D>., and D_>.,-i are parabolic cylinder functions [3], and c3 , c4 are arbitrary constants. 
At x1 = 0 we have the boundary condition 

(3.14) U(O, x2) = Cb1. 

This condition can be satisfied only if A = 0. The matching condition with the outer 
solution (3.3) is stated as 

(3.15) lim U(xl> X2) = Cb. 
i 1-+oo 

The boundary layer solution satisfying both conditions (3.14) and (3.15) is given by 

(3.16a) U(:X1, x2 ) = Cb + ( Cb1 - Cb) exp [ -x1] 

or, in the original notation 

(3.16b) 

The boundary layer region B' around the critical point (-b10/ b11 , O) yields a similar 
result: 

(3.17) 

in which 

(3.18) 

3.1.3. The boundary layer solution in the regions A, A' and C, C'. Introduction of 
the stretched coordinate x1 in (3.4) and the boundary layer function 

(3.19) 

into equation (2.12a) leads to the boundary layer equation 

au au t <PU x1(b 10 + b12x2) -a_ + x2(b20 + h22x2) -a + i1 -2 (a 10 + a12X2) a _2 = O. 
X1 X2 X1 

(3.20) 

To make this equation separable, the variable i 1 is replaced by the new variable 

(3.21) 

with the function "Y still to be determined. Equation (3.20) becomes 

(3.22) 
a2W ( ) aw x2(b2o+b22x2) aw 0 y--2 +f X2 y-+I -= , ay ay ;z(a10+ a12X2}")1 ax2 

where 

(3.23) 

and 

(3.24) 

The function "Y is chosen such that 

(3.25) 

Then (3.24) is a Bernoulli equation. In terms of the reciprocal "Y- 1, it is a linear equation 
that can be solved by the method of variation of constants [1]. Since (3.24), (3.25) is 
a first-order differential equation, there is one integration constant. This constant 



1800 H. ROOZEN 

follows from a matching condition (see below). The partial differential equation (3.22) 
with (3.25) can be solved by separation of variables: 

(3.26) 

which leads to the ordinary differential equations 

d 2w dw 
(3.27a) y-,+y--Aw=O, 

(3.27b) 

dy- dy 

x2( b20 + b12X2) ~ + Az = 0 
~(a10+ a12X2)Y dx2 ' 

in which A is a separation constant. To satisfy the matching conditions 

(3 .28) U(O, X2) = Cb1, Jim U(.X1 , x 2) = Cb, 
.Xi-700 

A must equal zero and the solution of (3.20), (3.28) is obtained as 

(3.29a) U(.X1' X2) = cb + ( cbl - Cb) exp [ -y(x2).X1J, 

or, in the original notation 

(3.29b) 

The integration constant in the problem (3.24), (3.25) for y is chosen such that (3.29) 
matches the solution (3.16), that is, by the condition 

k1 
Jim y(X2) = k

2
• 

x2- -b20/ bii 
(3.30) 

For future purposes we remark that at x2 = -b20/ b22 and x2 = 0 the function y- 1 has 
the Taylor series expansions: 

(3.31a) _ 1( ) k1 a12b10- a10b12 ( b10) y x, =-+ x,+- + · · · " k1 2k1(b20+ k1) - b21 ' 

(3.31b) 

respectively. 
The boundary layer regions A' and C' along the x 1 -axis are treated similarly. 

There the solution is given by 

(3.32) 

in which y(x1) solves a Bernoulli problem analogous to (3.24), (3.25), (3.30). The 
treatment above in the direction along the boundary leads to a correct result only for 
constant boundary conditions. Readers interested in boundary conditions (2.12b) with 
non constant f are referred to the approach in [ 11]. 

3.1.4. Summary. A boundary layer analysis in the region D leads to a complicated 
expression for u. This is due in part to the conditions to be satisfied by u. Besides 
matching conditions with the solutions in C (see (3.29b) and (3.31 b) with x2 = 0) and 
C' these are the conditions (2.12b ), (2.14) along x 1 = 0 and x2 = 0. To retain simplicity, 
and since it will turn out in the remainder of§ 3 that for small e the asymptotic small 
region D is not important to the dynamics elsewhere, we discard the solution in this 
region. It is easily verified that the results of§ 3.1 can then be summarized as follows. 
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The uniform asymptotic expansion for small s in R\D, Dan O(s}-neighbourhood 
of the origin, of the boundary value problem (2.12), (2.14) is given by 

1 
u(x) = Cb { Ch + ( Cn 1 - Cn) exp [-y(xi}x1/ s]} 

(3.33) 
x { cb +( cb2- Cb) exp [-y(x1)X2/ e ]}, 

in which y, y solve Bernoulli problems as discussed in § 3.1.3. Expression (3.33) is 
the uniform asymptotic expansion in R of the boundary value problem (2.12) with 
the boundary conditions 

(3.34) 
u(O, x2) = Cb1{l + (Co2/ Cb -1) exp [ -2b20x2/ awe]}, 

u(x1' O) = Cdl + ( Cb1! cb -1) exp [ -2b10X1/ Gioe]}, 

which are different from the boundary conditions (2.14) in the region D. The remainder 
of § 3 concerns the determination of Cb, which is yet unknown. 

3.2. The adjoint equation. The forward equation adjoint to (2.12a) is given by 

(3.35) 

with the operator M, defined in (2.1). The function v(x) describes the probability 
density corresponding to the (quasi-) stationary state of the system (2.1). The solution 
of equation (3.35) is needed in § 3.3. 

3.2.1. The WKB-approximation. A solution of (3.35) is sought in the form of the 
WKB-Ansatz [8]: 

(3.36a) 

where 

(3.36b) 

(3.36c) 

s...., 0, 

Q(xr, x;) =0, 

w(x~, x;) = 1 (normalization). 

Substitution of this form into (3.35) leads to leading order O(s- 1) to the eikonal 
equation: 

(3.37) I [b 0Q+!a(0Q) 2 ]=0 
i=I 'ox; 2 ' ox; ' 

and to order O(c: 0 ) to the transport equation: 

2 [ a oQ o 1 o2QJ (3.38) L -(b;w)+--(a;w)+-a;w~ =0. 
i=! OX; OX; OX; 2 ox, 

The numerical computation of the functions Q and w subject to the conditions (3.36b), 
(3.36c) is treated in § 5. 

3.2.2. Behaviour near the boundary. To investigate the asymptotic behaviour of Q 
in the xrdirection for small x 1 , the expansion 

(3.39) Q(x1, x2) = Qo(X2) + 01 (x2)X1 +~Qh::2Jx7+ · · · 

is substituted into (3.37). Terms of order O(x~) are collected, which results in 

(3.40) 
dQo 
-= 
dx2 

b20+ b22X1 

!( a20 + a::!2X:;). 
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This expression indicates that inside the interval x2 E [O, co) the only extremum of Oo 
is a minimum, situated at the critical point x2 = -b20/ b22 • By (3.36a) the probability 
densitv function v is sharply peaked at this critical point. Therefore, the probability 
of me;ting the stochastic system in the boundary layer x 1 = 0( e), asymptotically equals 
the probability of meeting the system in the boundary layer region B. 

To study the WKB-solution in the region B the new variable 

(3.41) 

is introduced and Q is approximated by the Taylor series expansion: 

(3.42) Q(x1, x2) = Qo+ Q1.X2+ 01x1 +1Q3x~+ · · · · 

Note that x 1 is of the order O(x~) in the region B. Substitution of (3.42) into the 
eikonal equation (3.37) determines the constants 

(3.43) 

and leaves the constant Q0 undetermined. The value of Q 0 is obtained by solving the 
problem (3.35), (3.36) numerically. 

A boundary layer analysis is carried out to reveal the behaviour of the transport 
function w in the region B. The WKB-solution of the stationary forward equation of 
a one-dimensional variant of our model can be calculated explicitly and indicates a 
singular behaviour. The stretched coordinates (3.4) and the boundary layer function 

(3.44) 

are introduced. Substitution into (3.35) leads to the boundary layer equation: 

a _ a1 _ a _ a2 v 
(3.45) -ki -_ (x1 V) + k2 ~ (x1 V) + k3 ---::- (x2 V) + k4 -=z = 0, 

ax1 ax1 ax2 ax2 

with the k, defined in (3.7). By the separation assumption 

(3.46) V(x1, i2) = r(x1)s(x2 ), 

(3.45) leads to the ordinary differential equations 

(3.47a) 
d 2 d 

k1d_2 (x1r)-k1 -_ (x1r)-µr=O, 
X1 dX1 

d 2s d 
k4d_ 2 +k3-d_ (i2s)+µs=O, 

X2 X2 

(3.47b) 

in which µ is a separation constant. The general solution of (3.47a) is 

(3.48) r(X1) = { C1 Wµ. 1,1.d-x1) + C2 W_µ. 1 , 1 ;2(x 1 )}x~ 1 exp [x1/2], 

with 

(3.49) 

Ci. C2 arbitrary constants, and X1 defined in (3.11). The general solution of (3.47b) is 

(3.50) s(x2) = { C3Dµ.,CX2) + C4D-µ,-J ( ix2)} exp [ - x~/ 4], 
with 

(3.51) 

C3, C4 arbitrary constants and x2 defined in (3.13). Putting 

(3.52) µ =0, C2=0, c4 =0, 
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the boundary layer solution 

(3.53) v(.Xi, .X2) = const. X~ 1 exp [.i1 - x~/2] 

is obtained. The leading order part of the WKB-solution (3.36a) with Q given by 
(3.42), (3.43) agrees with the exponential function in the boundary layer solution (3.53). 
The solution (3.53) indicates that the transport equation w behaves according to 

(3.54) 

in the region B. Substitution of the expansion 

(3.55) 

into the transport equation (3.38) and using (3.42), (3.43) leaves the constant Wo 

undetermined. Its value is obtained by solving the problem (3.35), (3.36) numerically. 
As a conclusion, in the boundary layer region B the WKB-solution (3.36) behaves 

as 

(3.56) 

in which 

(3.57) 

where w0 , Q0 as in (3.55), (3.42), respectively, have to be determined numerically. A 
similar result can be derived in the boundary layer region B'. There, the WKB-solution 
is 

(3.58) 

where the constants in C2 , which is the analogue of C1 , have to be determined 
numerically. The constants k~, k~ are given by 

(3.59) 

and x1 by 

(3.60) 

3.3. Application of the divergence theorem. Using the divergence theorem the 
following integral relation can be derived: 

(3.61) f (vL,u-uMEv)dR'=f I v;[~a;(vau_u~)+(b;-~aa;)uv]ds, 
R' aR' i=l 2 GX; ax; 2 ax; 

where R' is a region with boundary aR' on which the operators L,, M,. are defined 
and 11 denotes the outward normal on aR'. In the right side of (3.61) v and its conormal 
derivative must be evaluated at the boundary. By (3.56), (3.58) these functions become 
singular at x 1 = 0 and x2 = 0. To avoid singular functions, R' is chosen as a slight 
modification of the region R: 

(3.62) 

and 

(3.63) 

with 

(3.64) 0< 8« e. 
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By (2.12a) and (3.35) the left side of (3.61) equals zero. First the boundary X1 = fi of 
R' is considered. There, the right side of (3.61) is written as 

(3.65) d.x ~ . 

The only significant contribution to this integral comes from the boundary layer region 
B. Using the expression (3.16b) for u and (3.56) for v, the integrand in (3.65) is 
evaluated. Subsequently the limit 8 -7 0 is taken, and asymptotically for small f the 
following result is obtained: 

J'"' [ l I J () ( a10 - b10k2/ k1) cbl -2 a10C,, + { ( a12 - h12k2/ k1 )C1>1 ... 2 U1_,C,, }x .• 

(3.66) 

· (~:)c1 (c) exp [-k1.x~/2k4E] dx2. 

This integral is evaluated by the method of Laplace [I]. The boundary x.' == 8 is treated 
similarly. Both results are used in the divergence formula f).61) to obtain the following 
expression for C,,: 

(3.67) 
c - c, I (\ ( E' ) K I + c,, ~~ C2 ( E ) K .' 
,,- C1(cJK1+C2(dK2 ' 

with the abbreviations 

(3.68) 

Expression (3.67) completes the analysis of§ 3. With LU3) the following result is 
obtained. Denoting the probability of exit at the boundary x, "' 0, starting at x, by 
u;(x), we have 

Ci(c·JK1+C2(e)K2exp[-y(x:;)x1/F] .. 
(3.69a) u 1(x)= , , . ·-[I -exp! yLx 1 1x_,/t]j, 

C 1( f: )K 1 + C 2(f )K 2 

( C\(t:)K 1 exp(-y(x1)x2./r:J+C'2(P)K, 
(3.69b) U2 x) = . -;--, ------ r I exp! y( x.. ~· l l, c I ( c) K I + ( :~( f:) K:; 

asymptotically for small s in R\ D, D an 0( E)-neighbourhood of the migin. It is 
easily verified that in the region R\l), the expression5 13.69aJ and L1.69bJ add up to 
one. Rewriting (3.57) and the analogous expression for C" a-.. 

(3.70) l, 2, 

and using the fact that w0 ,, K; are order 0( I) constants, we can simplify U.69). In 
the case Q01 < 002 we find 

(3.71a) 

and in the case 001 > Om 
(3.71bJ u~(x)---1 exp[ f 1. 

4. The expectation and variance of the exit time. In thi~ section the boundary value 
problems ( 2.17) are solved asymptotically for small f. As~ume that T; ( x) is of the form 

( 4.1) T, ( x) "" C 1,,( E) 7, ( x), 

in which 

(4.2) C /,( E) g, ( X) = O ( t: ) , Ii .... o. 
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Substitution of ( 4.1) into (2. l 7a) yields to leading order the reduced equation 

(4.3) 
2 dT· 2: bj(x)-' = 0, 

)=l dX; 

which is solved by a constant that is taken to be one without loss of generality (any 
other value can be incorporated in C T,;): 

(4.4) T;(X) = l. 

This is the outer solution, valid away from O(e) boundary layers along x 1 =O and 
x2 = 0. A boundary layer analysis can be held as in § 3, with u replaced by r;. The only 
difference is in the boundary condition, for this case stated by (2.17b ). The following 
uniform asymptotic expansion for T; is obtained: 

(4.5) r;(X1, X2) =[I -exp [ -y(x2)x1/ e ]][1-exp [-y(x1)x2/ e]], 

valid in R (the region D included, due to the boundary conditions, which are simpler 
here than in§ 3). The unknown CT,;(e) are determined using the integral relation (3.61) 
with u replaced by T;. After some calculation, this integral relation reduces to 

2 f co J"'· J"'' [ aTJ J"". [ aTJ (4.6) -- vg;dx 1 dx2 = a1v-' dx2 + a2v-' dx 1 • 
E 8 8 8 dX1 x 1=8 s dX2 x,=8 

On the right side, the largest contributions to the integrals are from the boundary layer 
regions B and B'. These integrals are evaluated by the method of Laplace, using 
expressions (4.1), (4.5) with 

( 4. 7) y(X2) = k1/ k1, y(X1) = k;/ k~ 

for T and expressions (3.56), (3.58) for v. The left side of (4.6) is evaluated using the 
WKB-expression (3.36a) for v and the method of Laplace for double integrals. Letting 
8....,. 0, the following expressions are found for Cr:;( e ): 

J2m:/ He(xe) 
(4.8) Cr. 1(e) = C,(e)K, + Ci(e)K2 , CT)e) = 2C~)e) 

in which He(xe) is the determinant of the Hessian matrix of Q at xe. With Q* = 
min ( Q01 , Q02 ) (see (3.70)), and using the fact that w0 ;, K;, He(x") are of order 0(1), 
C7; 1 ( e) is of the order 

(4.9) 

In the evaluation of the left side of ( 4.6) we let e....,. 0, while the WKB-expression (3.36a) 
for v fails to be integrable in this limit. This procedure was proposed by Ludwig [8]. 
Its correctness has not been proven. See also the remarks in [7] at this point. By (2.15) 
the resulting uniform asymptotic expansions in R of the expectation and variance of 
the exit time are given as 

(4.lOa) ET(x) = C71 (e)[l-e-ylx,Jx,/F][l-e-.Ytx,lx,;,], 

Var T(x) = C~; 1 (s)[t-{exp [-y(x2)x1/ e] 

( 4.t Ob) +exp [ -y(x, )x2/ e] - exp [ -y(x2)x1/ e - y(x1)X2/ e ]}2], 

respectively. 

5. Numerical determination of the WKB-solution. To obtain the constants Qo1, 
w01 , Q0 2' Wo2 in (3.70), the WKB-solution (3.36) of the adjoint equation (3.35) is 
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determined numerically. By the Hamilton-Jacobi theory [2], the eikonal equation 

(3.37) is written in terms of the Hamiltonian H: 

(5. la) 

where 

(5.lb) 
aQ 

p;=-. 
dX; 

The corresponding system of bicharacteristics reads 

(5.2a) 

(5.2b) (i=l,2) 

with s a parameter along the characteristics. The rate of change of Q with s is given by 

(5.2c) 
dQ 2 dx- 2 1 
-=-H+ I -'p;= I -a;p7 
ds i=t ds i=I 2 

(which is ~O). 

At s = 0 all characteristics start in a neighbourhood of the equilibrium 

(5.3) x = xe, p = 0, Q = 0, 

of the system (5.2). The initial position of a characteristic is specified on a circle around 

x" with radius r« 1, by the variable 8: 

(5.4) x1 = x~ + r cos 8, x2 = x; + r sin 8. 

The corresponding initial values of p1 , p 2 , Q are obtained by the following local 
analysis. In the neighbourhood of (5.3), Q is approximated by the quadratic form: 

(5.5) Q=4(x-x')'P(x-x•), 

in which P is a symmetric matrix and t denotes the transpose. It follows that 

(5.6) 

Substitution of the approximations (5.6), (2.7) and the approximation 

(5.7) 

of the diffusion matrix into the eikonal equation (3.37) leads to the matrix equation 

(5.8) PAP+PB+B'P=O, 

which is solved to give 

(5.9) 
B22 B21 A, + B11 B12A2 ) 

B~2A2 + [Bi I B22 - B 12B21 + B~2]A I . 
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The initial values of p 1 , p2 , Q are determined by (5.6), (5.5), (5.9). Note that (5.9) 
also determines the determinant 

(5.10) 

in (4.8). Next we consider the transport equation (3.38). With (5.2a) and 

(5.lla) 
2 a (dx;) d 2: - - =-In /I/, 

i=l ax; ds ds 

(see [8]), in which J is the Jacobian 

dx 1 ax1 

(5.llb) 
ds ae 

]= 
dx2 

, 
ax2 

ds ae 

equation (3.38) is rewritten as 

(5.12) d 2 2 [ab. aa-J -(In w /l/)=-2: -'+p;-' . 
ds i=1 ax; ax; 

Differentiation of (5.2a), (5.2b) with respect to e leads to the equations 

(5.13a) d(a~) a~ a~ a~ 
ds ae = ae +ar;p;+a;ai, 

(5.13b) 

i = 1, 2, which describe the rate of change with s of ax;/ ae and, using (5.2a), of 1. The 
initial value at s = 0 of w is chosen according to (3.36c). The initial values of ax;/ae 
and ap;/ae are obtained by differentiation of the initial expressions (5.4) for X; and 
(5.6) for p; with respect to e. 

To obtain Q01 , w01 , the system of 10 ordinary differential equations (5.2), (5.12), 
(5.13) is integrated. By trial and error the angle e of the initial point is manipulated 
to obtain a characteristic containing points close to (O, -b20/ b22 ). Once a (.1~.2, ~)­
neighbourhood of ( 0, -b20/ b22 ) is reached, 0 < ~ « 1, the integration is terminated. 
Using the values of Q, w obtained numerically at points near the end of the characteristic 
and the formulas (3.42), (3.43) for Q and (3.55) for w, valid in the case x 1 = 0(£~), 
x2 small, we approximate the values of Q01 , w01 • 

The solutions of Q and w obtained by the numerical method described above are 
not always unique functions of x. By assumption, the solution is unique along the 
characteristic that starts at the initial point with r = 0 and ends at (O, -b20/ b22 ). In 
numerical computations, this characteristic cannot be followed exactly. Near 
(O, -b20/ b22 ) the characteristics curve upward or downward along x 1 = 0 and get into 
caustic surfaces, as indicated by a change of sign in the determinant (5.11 b ). There, 
the solution is not a unique function of x. The numerical integration has been terminated 
before the determinant vanishes. The boundary x 1 = 0 cannot be approached too closely. 
Consequently, ~ cannot be taken arbitrarily small, which limits the accuracy of the 
computed values of Q01 , Woi · In the subsequent example, the numerical computation 
was stopped at x 1 = 0.02. 
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6. An example. Consider the predator-prey system defined by the diffusion 

a 1(x) = x1(1.28 + 0.80x1 +0.32x2), 
( 6.la) 

and the drift 

( 6.1 b) 
b1(X) = X1(0.72-0.40X1 -0.32x2), 

b2(x) = x2(0.12 + 0.28x1 -0.40x2), 

in which x1 and x2 denote the prey and predator density, respectively. The stochastic 
system defined by (6.1) has previously been studied in [12]. Some trajectories of the 
deterministic system are depicted in Fig. 2. The numerical computation described in 
§ 5 produces the values 

(6.2) Q01 = 0.26, Wo 1 = 1.1, Qo2 = 0.30, Wo2 = 1.5. 

The projection on the x-plane of the characteristics (called rays), used in this computa­
tion, are depicted in Fig. 3. Outside the region D, the probability of exit at the boundary 
X; = 0 is given by u;: 

(6.3a) 

0.69e-0.26/<+1.03 e-(0.30+x,y(x,))/• . 
( ) - [l-e-y(x1)x,/e] 

U1 X - 0.69e-0.26/e+1.03 e-0.30/< • 

(6.3b) 

0.69e-(0.26+xz.Y(x,l)/<+1.03 e-0.30/e 
U (x)= [1-e-y(x,>x/e] 

2 0.69 e -0.26/' + 1.03 e-0.30/ e ' 

according to (3.69), (3.71). We conclude that if the starting point of the system (6.1) 
is outside an O(e )··neighbourhood of the x1-axis, i.e., if the initial predator density is 
not very small, then the prey will become extinct before the predator, with probability 

0 I. 8 

FtG. 2. Trajectories of the deterministic system associated with the stochastic system ( 6.1). The critical 
points are ( 0, 0 ), ( 0, 0.3 ), ( 1.8, 0), (1, I). 
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0.3 

0 I. 8 

F10. 3. The rays used in the numerical computation of Q0 ,, w01 , Q02 , w02 • 

- one in the limit for s ~ 0. The expectation and variance of the exit time satisfy equations 
(4.10), uniformly in R, with 

(6.4) .JS r- 0.26/ e 
0.11 e-0.26;'+0.16 e-o.Jo/e-9.lve e , 

which indicates that if the starting point of the system (6.1) is outside O(s)-neighbour­
hoods of the coordinate axes, i.e., if the initial prey and predator densities are not very 
small, the expected time of extinction of one of the populations is exponentially large. 
The functions y and ii are computed numerically. The expression (3.31a) supplies the 

I. 125 

0.907 

0.788 

0.222 

0 0.3 I. 8 

x. 
l. 

F10. 4. The .functions y, y. The critical points, at which the initial condition for the Bernoulli differential 
equation is spec(fied, are indicated. The values denoted along the vertical axis follow from (3.30), Jim ,,_0 y(x2 ) = 
2b10/aIO (see (3.31b)), and similar.formulas for the other boundary. 
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starting values of y at -b10/ b22 ± Y), where Y) is a small number, and a forward 
(backward) finite difference scheme, based on the Bernoulli equation (3.24), (3.25) is 
used to obtain y(x2 ) for x2 > -b20/ b22 + Y) (x2 < -bc.0/ b22 - Y) ). The graphs of y, y are 
shown in Fig. 4. In the boundary layers along xI = 0 and x2 = 0 a small (large) value 
of y, y respectively, may be interpreted as a relatively weak (strong) stochastic stability. 
From Fig. 4 we conclude that for low prey density the stochastic stability of the system 
( 6.1) decreases with increasing predator density; for low predator density the stochastic 
stability increases with increasing prey density. 

Acknowledgments. I am grateful to Johan Grasman for many discussions on the 
subject treated in this paper. Thanks to both him and Huib de Swart for comments 
on the manuscript. 
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