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In this paper, a recently developed regression-based option pricing method, the Stochastic Grid Bundling
Method (SGBM), is considered for pricing multidimensional Bermudan options. We compare SGBM with
a traditional regression-based pricing approach and present detailed insight in the application of SGBM,
including how to configure it and how to reduce the uncertainty of its estimates by control variates. We
consider the Merton jump-diffusion model, which performs better than the geometric Brownian motion in
modelling the heavy-tailed features of asset price distributions. Our numerical tests show that SGBM with
appropriate set-up works highly satisfactorily for pricing multidimensional options under jump-diffusion
asset dynamics.

Keywords: Monte Carlo simulation; least-squares regression; jump-diffusion process; Bermudan option;
high-dimensional problem
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1. Introduction

Pricing high-dimensional Bermudan options is a challenging topic. For this type of problem, the
traditional methods based on solving partial differential equations or on Fourier transformation
may fail, because the complexity of these techniques grows exponentially as the dimensionality
of the problem increases. Pricing methods based on simulation generally do not suffer from the
curse of dimensionality and, therefore, have become increasingly attractive for high-dimensional
pricing problems.

Simulation-based pricing for Bermudan options took off in 1993 when Tilley [22] introduced
a bundling algorithm to estimate the continuation values of the option at intermediate time steps.
In 1996, an option pricing method based on regression was introduced by Carriere [7]. The basic
idea was to estimate the option’s continuation values at all time points by projections of the
future option values on finite-dimensional subspaces spanned by pre-selected basis functions.
Depending on the procedure of generating basis functions, regression methods can be catego-
rized into two types: Regress-Now and Regress-Later, as in [13]. More details of these two
methods will be discussed in Section 3. Following Carriere’s work [7], many papers discussing
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International Journal of Computer Mathematics 2407

regression methods based on the Regress-Now feature appeared, for example [17,23]. However,
the investigation on Regress-Later methods is not abundant.

The Stochastic Grid Bundling Method (SGBM), a newly developed method introduced in [14],
belongs to the type of Regress-Later approaches. In SGBM, both ‘bundling’ and ‘regression’ are
utilized to estimate the continuation values. Similar to [5], SGBM produces two estimators: one
biased high and the other biased low, which, respectively, correspond to the ‘value function
approximation’ and the ‘stopping time approximation’ discussed in [21]. Compared to the well-
known least-square method (LSM), introduced in [17], for pricing Bermudan options, SGBM
typically yields estimates with significant lower variances, according to [14,15]. In our numerical
tests, we obtain similar results: for achieving comparable accuracy, many more paths and higher
computational times are required in LSM compared to SGBM. Moreover, according to [14],
SGBM generates upper and lower bounds for the option price and also accurate sensitivities or
Greeks of the option price, while the original LSM is only applicable for calculating the lower
bound of the option price.

In this paper, we extend the discussion of SGBM in four directions. First, we gain insight into
the essential components of SGBM. According to our analysis, it is sufficient to choose the basis
functions of polynomial type, which ensures that conditional expectations of the basis functions
can be calculated exactly. Second, in the error analysis, we explicate that the number of bundles
used is a ‘trade-off’ factor of two types of biases in SGBM. Third, we combine SGBM with
control variates to reduce the variance of the biased low estimator. We implement the traditional
control variates and an improved approach proposed in [19]. According to the tests, the improved
control variates work uniformly better in the one-dimensional case, but for higher dimensional
problems, the cost of calculating the improved control variates is significant and the traditional
control variates appear favourable. Instead of considering plain geometric Brownian motion, we
focus our discussion on assets with their dynamics following the Merton jump-diffusion (MJD)
process for high-dimensional Bermudan option pricing.

This paper is organized as follows. Section 2 gives the formulation of the problem. In
Section 3, we compare SGBM with the standard regression method (SRM). In Section 4, we
focus on the features of SGBM and explain how we can configure SGBM. In Section 5, the
sources of errors in SGBM are compared to those in the SRM. Section 6 discusses traditional
control variates and the improved versions. In Section 7, the MJD model is introduced and in
Section 8, the corresponding numerical results are presented.

2. Problem formulation: Bermudan option pricing

This section describes the Bermudan option pricing problem mathematically and sets up the
notations used in this paper. We assume that the financial market is defined on a complete filtered
probability space (�,F , {Ft}0≤t≤T , P) with finite time horizon [0, T]. Here the state space � is
the set of all realizations of the financial market within time horizon [0, T], F is the sigma algebra
of events at time T, that is, F = FT . We assume that the filtration {Ft}0≤t≤T is generated by the
price processes of the financial market and augmented with the null sets of F . The probability
measure P is defined on F and we assume that a risk-neutral measure Q equivalent to P exists
under which the asset prices are martingales with appropriate numeraire. The Bermudan option
considered can be exercised within a set of prescribed time points T = [t0 = 0, . . . , tm, . . . , tM =
T]. The d-dimensional state of economy is represented by an Ft-adapted Markovian process
St = (S1

t , . . . , Sd
t ) ∈ Rd , where t ∈ T. Let h(St) be the intrinsic value of the option, that is, the

holder of the option receives pay-off g(St) = max(h(St), 0) if the option is exercised at time t.
With the money savings account process βt = exp(

∫ t
0 rs ds), where rs denotes the instantaneous
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2408 F. Cong and C.W. Oosterlee

risk-free rate of return, we define the discounting process as

Dtm = βtm

βtm+1

.

For simplicity, we consider the special case where rs is equal to a constant r. The problem of
valuing a Bermudan option is to find the optimal exercise strategy (or equivalently the optimal
stopping time, τ ∈ T) and calculating the expected discounted pay-off following this strategy,
that is:

V0(S0) = sup
τ∈T

E

[
h(Sτ )

βτ

∣∣∣∣F0

]
. (1)

The expectation E[·] is computed under the risk-neutral measure Q. Here we write the option
value in the form V0(S0) to emphasize that when the asset dynamics are fixed the option value is
uniquely determined by the initial asset value.

The optimal exercise strategy can be determined via a recursive process, by which the option
values, Vtm(Stm), at intermediate time steps can be computed correspondingly. The value of the
Bermudan option at maturity state1 (T , ST ) is equal to its pay-off, that is,

VT (ST ) = g(ST ) = max(h(ST ), 0). (2)

In the recursive process, the conditional continuation value Qtm(Stm) associated with state
(tm, Stm), that is, the discounted expected option value at time tm+1 conditioned on filtration Ftm ,
is given by2

Qtm(Stm) = DtmE[Vtm+1(Stm+1) | Stm ]. (3)

The option value at state (tm, Stm) is then given by taking the maximum of its continuation
value and the direct exercise value,

Vtm(Stm) = max(Qtm(Stm), g(Stm)). (4)

We are interested in finding the option value at initial state (t0, St0), using either Equation (1)
or the recursive process as mentioned above.

3. Regression methods for Bermudan option pricing

We consider the Bermudan option with M equally distributed exercise opportunities before
maturity T, that is, the option can be exercised at time tm = m�t, where m = 1, . . . , M and
�t = T/M . When the Monte Carlo generation for the sample of N paths is done and the func-
tion values h(·) are determined, we find the option value associated with each path at maturity
directly via Equation (2). Similarly for the ith path, we obtain the direct exercise value g(Stm(i))
at each exercise time tm. The remaining problem is to calculate the conditional continuation value
Qtm(Stm) as in Equation (3). To settle this problem, regression methods are employed.

As mentioned, regression methods can be classified into two categories: Regress-Now and
Regress-Later approaches. In the remaining part of this section, we consider the SRM, which
resembles the method introduced in [7], as a typical case of Regress-Now methods and the
SGBM as a representative of Regress-Later methods.
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International Journal of Computer Mathematics 2409

3.1 Standard regression method

The classical SRM, described in [11], has been widely discussed for pricing Bermudan options.
The pricing procedure can be described as follows:

Step I: Get the option value at maturity time for each path:

VtM (StM (i)) = max(h(StM (i)), 0), i = 1, . . . , N .

Recursively moving backward in time from maturity time tM , the following steps are performed
at time tm, m ≤ M .

Step II: Regression step.
For all paths, we get the regression parameters {αk}K

k=1 by regressing the option values
{Vtm(Stm(i))}N

i=1 on basis functions [φ1(Stm−1(i)), . . . , φK(Stm−1(i))]
N
i=1, that are constructed using

the asset values at time tm−1. Linear regression offers us an approximation of the option value
for any specified Stm−1 , that is,

Vtm(Stm) ≈
K∑

k=1

αkφk(Stm−1). (5)

Step III: Calculate the continuation value and the option value at time tm−1 for the ith path:

Qtm−1(Stm−1(i)) = Dtm−1E[Vtm(Stm)|Stm−1 = Stm−1(i)]

≈ Dtm−1E

[
K∑

k=1

αkφk(Stm−1)

∣∣∣∣∣Stm−1 = Stm−1(i)

]

= Dtm−1

K∑
k=1

αkφk(Stm−1(i)). (6)

The first equality is immediate from the definition of the continuation value in Equation (3). The
approximation is supported by Equation (5). The second equality is valid based on a property of
conditional expectations. The option value Vtm−1(Stm−1(i)) can be computed as follows:

Vtm−1(Stm−1(i)) = max(Qtm−1(Stm−1(i)), g(Stm−1(i))). (7)

3.2 Stochastic grid bundling method

The SGBM introduced in [14] belongs to the category of Regress-Later approaches. After
generating all paths by Monte Carlo simulation, the algorithm of SGBM can be described as
follows:

Step I: Get the option value at maturity for each path:

VtM (StM (i)) = max(h(StM (i)), 0), i = 1, . . . , N .

The following steps are subsequently performed at time tm, m ≤ M .
Step II: Bundle paths at time tm−1.
With a specified bundling criterion, we bundle all paths at time tm−1 into Btm−1(1), . . . ,Btm−1(b),

. . . ,Btm−1(B) non-overlapping partitions. Figure 1 illustrates how bundling is performed in the
one-dimensional case. The details of the bundling technique are discussed in the section to
follow.

Step III: Regression step.
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2410 F. Cong and C.W. Oosterlee

0 1 2 3
time step

Figure 1. Paths from initial state to terminal time step 3. At the first backward recursion step, paths are bundled accord-
ing to their state at time step 2, giving the ‘red’ and ‘blue’ paths in two bundles. At the next recursion step, the paths are
bundled according to their state at time step 1, giving the ‘magenta’ and ‘green’ paths.

Assume that there are N(b) paths in bundle Btm−1(b) and denote their asset values at time tm as
{S(b)

tm (i)}N(b)
i=1 and the option values as {V (b)

tm (i)}N(b)
i=1 . For these paths, we get the bundle regression

parameters {αk(b)}K
k=1 by regressing the option values {V (b)

tm (Stm(i))}N(b)
i=1 on the basis functions

[φ1(S
(b)
tm (i)), . . . , φK(S(b)

tm (i))]N(b)
i=1 , which are constructed using the asset values at time tm. For

assets whose values Stm−1 = [S1
tm−1

, . . . , Sd
tm−1

] are covered by bundle Btm−1(b), the corresponding
option value at time tm can be approximated by3

Vtm(Stm) ≈
K∑

k=1

αk(b)φk(Stm). (8)

At each time step, the regression is repeated for all bundles. In each bundle, the same basis
functions [φ1(·), . . . , φK(·)] are utilized.

Step IV: Calculate the continuation value and the option value at time tm−1 for the ith path.
Assume that the ith path at time tm−1 belongs to bundle Btm−1(b). The continuation value at

time tm−1 associated with this path is given by

Qtm−1(Stm−1(i)) = Dtm−1E[Vtm(Stm)|Stm−1 = Stm−1(i)]

≈ Dtm−1E

[
K∑

k=1

αk(b)φk(Stm)

∣∣∣∣∣Stm−1 = Stm−1(i)

]

= Dtm−1

K∑
k=1

αk(b)E[φk(Stm) | Stm−1 = Stm−1(i)].

Note that, compared to Equation (6), the last equation contains conditional expectations of the
basis functions, which is typical for Regress-Later approaches.

The motivation for the equality and approximation signs above is the same as for Step III
of SRM. To obtain a closed-form expression for Qtm−1(Stm−1(i)), we need analytic conditional
expectations of the basis functions, E[φk(Stm)|Stm−1 = Stm−1(i)], k = 1, . . . , K, which are achiev-
able when the basis functions {φk(Stm)}K

k=1 are chosen appropriately. The option value can be
computed via Equation (7).
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International Journal of Computer Mathematics 2411

4. Configuration of SGBM

There are basically two distinct features between the algorithms of SGBM and SRM:

• The basis functions in SGBM are required to have explicit analytic moments so that there is no
error introduced in the last step of the algorithm. For SRM, the basis functions can be chosen
freely.

• At each time step, the regression in SRM is done for all paths, while the regression in SGBM
is done separately within each bundle. By the bundling technique in SGBM, the global fitting
problem reduces to a local fitting problem.

Based on these two points, we will explain how to configure SGBM to make it feasible and
robust for different scenarios.

4.1 Choice of basis functions

The special requirement for the basis functions in SGBM may complicate the application of this
pricing algorithm for some involved options. For example, in [14], the powers of the maximum of
asset values are chosen as the basis functions for pricing max-on-call options. Since the moments
of these basis functions are not analytically available, they need to be approximated by Clark’s
algorithm [8]. Because of the inaccuracy of this numerical approximation, the duality method is
required. This procedure makes the pricing algorithm less tractable.

We find that if the following conditions are satisfied, it is not necessary to choose ‘max’ or
‘min’ function as the basis functions.

Condition 4.1 The transition probability density function f (s, Ss; t, St), which denotes the
probability density function from state (s, Ss) to state (t, St), is continuous with respect to Ss.

Condition 4.2 The option’s direct exercise value g(St) is continuous with respect to St.

With these conditions, we can prove the following theorem.

Theorem 4.3 At each exercise time, the option value Vtm(Stm) can be uniformly approximated
by polynomials formed by Stm .

Proof Consider the backward pricing process of Bermudan options. At maturity time we have
VT (ST ) = g(ST ), which is continuous with respect to ST . This follows directly from Condi-
tion 4.2. We then use backward induction. Assuming that Vtm+1(Stm+1) is continuous with respect
to Stm+1 , we have

Qtm(Stm) = DtmE[Vtm+1(Stm+1) | Stm ]

= Dtm

∫
Rd

Vtm+1(Stm+1)f (tm, Stm ; tm+1, Stm+1) dStm+1

≈ Dtm

∫
H

Vtm+1(Stm+1)f (tm, Stm ; tm+1, Stm+1) dStm+1 .

The second equality is from the definition of conditional expectation and assuming that the
dimension of Stm+1 is d. The approximation sign is because of truncation of the integral from
Rd to H. Without loss of generality, we assume that H is a compact subspace of Rd .

Since Vtm+1(Stm+1) is continuous with respect to Stm+1 on the compact domain H, it is bounded.
With Condition 4.1, we can prove that Qtm(Stm) is continuous with respect to Stm .
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2412 F. Cong and C.W. Oosterlee

The option price Vtm(Stm) is constructed by taking the maximum of the continuation value and
the direct exercise value:

Vtm(Stm) = max(Qtm(Stm), g(Stm)) (9)

and both Qtm(Stm) and g(Stm) are continuous with respect to Stm . So, the option price Vtm(Stm) is
also continuous with respect to Stm .

We conclude the proof by using the generalized Stone–Weierstrass theorem on the space H.
�

Conditions 4.1 and 4.2 generally hold in option pricing. The continuous transition density
functions associated with the commonly implemented models, such as the geometric Brownian
motion and the jump-diffusion model, satisfy Condition 4.1 directly. The direct exercise value of
a call or a put option is continuous with respect to the values of underlying assets.

Theorem 4.3 tells us that it is not necessary to include the ‘max’ or ‘min’ of underlying assets
as a basis function. We choose here to only use polynomials as the basis functions in SGBM for
multidimensional problems.

4.2 Bundling

A good ‘bundling’ technique should make the regression within the bundle easier, or, more pre-
cisely, make the regression less biased even though only a few paths are inside the bundle. This
gives us a hint for bundling: if we bundle the paths such that paths in one bundle have similar
option values, we expect that regression in this bundle would be easier.

The instruction that paths inside one bundle should have similar option values is not directly
under our control, since bundling is done at time tm but the option values considered in regression
are from time tm+1. However, the option value at time tm+1 should be to some degree related to its
intrinsic value at time tm. For example, considering the max-on-call option, if one path has a large
intrinsic value at time tm, which means that one asset associated with this path has a large value,
we expect that the option value of this path at time tm+1 would still be large. In other words, if
dramatic changes in the asset values are rarely to happen within the time interval (tm+1 − tm),
paths, whose intrinsic values at time tm are almost identical, are supposed to have similar option
values at time tm+1.

‘Bundling’ is not new in the field of Bermudan option pricing. Tilley [22] initiated the
technique for pricing Bermudan options by Monte Carlo simulation using a simple bundling
algorithm, which is however only applicable for a one-dimensional problem. Tilley’s bundling
algorithm can be described as a two-step method: ‘reordering’ and ‘partitioning’. In the ‘reorder-
ing’ step, all paths are sorted according to their asset values. Then in the ‘partitioning’ step,
the reordered paths are partitioned into distinct bundles of Nb paths each. The first Nb paths are
assigned to the first bundle, the second Nb paths to the second bundle and so on.

Tilley’s [2,10] bundling is extended to high-dimensional scenarios. The technique in [10],
where multidimensional max options are dealt with using bundling, is to first reduce the multi-
dimensional bundling problem to one dimension by choosing one single asset as representative
for the multidimensional function. All paths are then bundled by applying Tilley’s algorithm on
the one-dimensional data. Within each bundle, a next bundling step is done by choosing another
single asset as the new representative and again applying Tilley’s algorithm. These newly gen-
erated bundles are called the ‘sub-bundles’. The bundling can be done recursively within each
sub-bundle until a prescribed number of bundles is reached.

Inspired by bundling in [2,10,22], we define our bundling algorithm as a two-step method.
For reordering the paths in the multidimensional case, we first transform the multidimensional
problem to a single-dimensional problem. Mathematically, it is equivalent to mapping the vector
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International Journal of Computer Mathematics 2413

St = (S1
t , . . . , Sd

t ) to a number by specifying a function R(·), such that R : Rd → R. In this paper,
we call the variable R(St) the ‘bundling reference’. Sometimes, we need more than one bundling
reference as shown in [10]. In that case, we denote the bundling references subsequently as
R1(St), R2(St) and so on.

In [10,22], the bundling is done to make each bundle cover the same number of paths so
that we call it ‘equal-size bundling’. This is different from the bundling in the original SGBM in
[14], which we call ‘equal-range bundling’.4 In this paper, we will perform ‘equal-size bundling’.
According to our tests, there is no clear advantage on accuracy of either bundling scheme over the
other. However, ‘equal-size bundling’ is more robust than ‘equal-range bundling’, because we
always keep enough paths within each bundle to support the regression. If we choose the latter,
the number of paths within some bundles may be so small that the estimation in those bundles is
highly biased. The necessity of having enough paths inside one bundle will be further discussed
in the next section.

Our bundling algorithm for the paths with asset values {St(i)}N
i=1, where St(i) =

(S1
t (i), . . . , Sd

t (i)), can be described as follows:
Step I: Reordering

(1) Based on the type of option, choose mapping functions R1(·), . . . , RP(·), by which the
bundling references can be generated.

(2) Start with bundling reference R1(St), bundle all paths equally into n1 partitions following
Tilley’s bundling. Record the index of the bundle b1(i)(b1(i) ∈ {1, 2, . . . , n1}), where the ith
(i ∈ {1, 2, . . . , N}) path is located in.

(3) With reference R2(St), divide the paths in a sub-bundle generated in the previous step into
n2 partitions. Again record the index of the bundle b2(i)(b2(i) ∈ {1, 2, . . . , n2}), where the ith
(i ∈ {1, 2, . . . , N}) path is located in.

(3) Repeat the process above with each bundling reference inside a sub-bundle. For the ith path,
we get the vector recording its location (b1(i), . . . , bP(i)), see Figure 2 for an example of
recording the location of a single path.

(4) Construct the global bundling reference for the ith path as

R(St(i)) = b1(i) · NP−1 + b2(i) · NP−2 + · · · + bP−1(i) · N + bP(i), i = 1, . . . , N .

(5) Reorder the paths according to the global bundling reference R(St).

Step II: Partitioning

(a) (b)

Figure 2. Obtaining the location of Path A with two bundling references. (a) Start bundling according to R1(St) = S1
t

with n1 = 4. Record the location of Path A as (1, ·). (b) Within each bundle perform sub-bundling according to
R2(St) = S2

t with n2 = 3. Record the location of Path A as (1, 3).
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2414 F. Cong and C.W. Oosterlee

Partition the sorted paths into
∏P

p=1 np bundles each of N/
∏P

p=1 np paths, where
∏P

p=1 np is an
integer factor of N.

The following examples demonstrate that some common bundling schemes fit into our
generalized bundling technique.

Example 4.4 For a one-dimensional problem, we choose the bundling reference R(St) = St. So
the bundling algorithm covers the simplest one-dimensional case.

For a basket option of assets St = (S1
t , . . . , Sd

t ), if we choose bundling references, respectively,
equal to the value of each individual asset, we will get ‘bundling on the original state space’, as
termed in [14].

4.2.1 Choosing the bundling reference.

After we have specified the basis functions of polynomial type, the performance of SGBM
depends on whether we can choose an accurate bundling reference. For example, when we con-
sider the geometric basket option with underlying assets following multidimensional geometric
Brownian motion, an accurate bundling reference is the geometric mean of the asset values. This
is supported by the fact that the geometric average of (jointly) log-normal random variables is
still log-normal. This implies that when dealing with the geometric basket option, an optimal
bundling reference is the geometric mean of the asset values. Moreover, although there is no rep-
resentation technique for the arithmetic basket option, our tests suggest that the arithmetic mean
of asset values is a preferred bundling reference for arithmetic basket options.

For options whose pay-off functions are related to the ‘max’ or ‘min’ of asset values, choosing
the intrinsic value alone as the bundling reference is not sufficient, as shown in Example 4.5.
Inspired by this example, we should separate paths whose option values are related to only one
asset, from paths whose option values are affected by each asset. This gives us another bundling
reference: the difference between the asset values. In Section 8.2, we can see that combining
them offers us a much better result than using any of them individually and this combination also
outperforms other possible combinations of the bundling references.

Example 4.5 If we consider a two-dimensional put-on-min option with assets St = (S1
t , S2

t ) and
strike K = 2, following the instructions in the previous subsection we choose basis functions as
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Figure 3. Bundling for pricing the two-dimensional put-on-min option: (a) one bundling reference and (b) two
bundling references.
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[1, S1
t , S2

t ]. Assume that we have six paths, respectively, with assets St(1) = (1, 10), St(2) =
(10, 1), St(3) = (1, 0.9), St(4) = (1, 1.1), St(5) = (0.9, 1) and St(6) = (1.1, 1). Their option
values are recorded as [1, 1, 1.1, 1, 1.1, 1].

If we bundle these paths in the same partition based on their intrinsic values (Figure 3(a)),
then the approximated option values will be [1, 1, 1.05, 1.05, 1.05, 1.05]. If we introduce one
more bundling reference (Figure 3(b)) so that the first two points are separated from the other
ones, then the approximated option values for the last four paths will be given by [1.1, 1, 1.1, 1].

5. Error analysis: comparing SRM and SGBM

In this section, we will compare the errors of SRM and SGBM when estimating the conditional
continuation value Qtm−1(Ŝ), where we denote Ŝ as a realization of Stm−1 . Here we consider the
estimation error in one backward pricing step, so the option value Vtm(Stm) at time tm is assumed
to be known exactly. In the following discussions, we will write π(Stm) as the density function
of Stm conditioned on Stm−1 = Ŝ. With these notations, the analytic continuation value Qtm−1(Ŝ)

reads5

Qtm−1(Ŝ) = E[Vtm(Stm)|Stm−1 = Ŝ] = Eπ [Vtm(Stm)], (10)

where Eπ [·] indicates that the expectation is computed with π(Stm) as the density function of Stm .

5.1 Error in the optimal regression-based approach

Let us start with a trivial problem where we perform sub-simulation to calculate Qtm−1(Ŝ). In
the framework of Monte Carlo pricing, we simulate the realizations {Ŝtm(i)}N

i=1 with the dynam-
ics associated with the density function π(Stm).6 We denote their empirical density function as
π̂(Stm), which can be defined by7

π̂(Stm) := N−1
N∑

i=1

δ(Stm(i) − Stm),

where δ(·) indicates a kernel density function. With a suitable simulation technique, we assume
that the empirical density π̂(Stm) resembles its theoretical counterpart π(Stm) when the number
of simulation trajectories goes to infinity.

Since the function Vtm(Stm) is assumed to be known, we find realizations {Vtm(Ŝtm(i))}N
i=1 of the

exact option value. If we estimate Qtm−1(Ŝ) by regression instead of simply by taking the average
of {Vtm(Ŝtm(i))}N

i=1, we can regress {Vtm(Ŝtm(i))}N
i=1 on {φ1(Ŝtm(i)), . . . , φK(Ŝtm(i))}N

i=1 and obtain
the regression parameters {α̂k}K

k=1, which minimize the sum of the squared errors of the samples:

N∑
i=1

(
Vtm(Ŝtm(i)) −

K∑
k=1

α̂kφk(Ŝtm(i))

)2

.

Since {Ŝtm(i)}N
i=1 follows the empirical distribution of density π̂(Stm), the regression parameter

{α̂k}K
k=1 also minimizes the mean square error:

Eπ̂

⎡
⎣(Vtm(Stm) −

K∑
k=1

α̂kφk(Stm)

)2
⎤
⎦ .
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2416 F. Cong and C.W. Oosterlee

If we denote the regression error επ̂ (Stm) as

επ̂ (Stm) = Vtm(Stm) −
K∑

k=1

α̂kφk(Stm),

the least-squares linear regression guarantees

Eπ̂ [επ̂ (Stm)] = 0. (11)

The approximated continuation value Q̂tm−1(Ŝ) can be computed as

Q̂tm−1(Ŝ) = Eπ

[
K∑

k=1

α̂kφk(Stm)

]
= Eπ [Vtm(Stm) + επ̂ (Stm)]

= Qtm−1(Ŝ) + (Eπ [επ̂ (Stm)] − Eπ̂ [επ̂ (Stm)]).

The first equality is directly from the regression-based approximation scheme. The second
equality is valid because we rewrite the approximated option value as the true option value
plus regression error, and the last step is supported by Equation (11). Since we can simulate a
large number of realizations of Stm , the empirical distribution function π̂(Stm) resembles π(Stm).
Moreover, using the Cauchy–Schwarz inequality we have

|Eπ [επ̂ (Stm)] − Eπ̂ [επ̂ (Stm)]| =
∣∣∣∣
∫

H
επ̂ (Stm)π(Stm) dStm −

∫
H

επ̂ (Stm)π̂(Stm) dStm

∣∣∣∣
≤
(∫

H
(επ̂ (Stm))2 dStm

)1/2

·
(∫

H
(π(Stm) − π̂(Stm))2 dStm

)1/2

,

where the integral domain H is defined in Section 4.1 as a truncated subspace of Rd and we
assume that the regression error is bounded on this domain. When the sample size is sufficiently
large, |Eπ [επ̂ (Stm)] − Eπ̂ [επ̂ (Stm)]| will be close to 0 and therefore Q̂tm−1(Ŝ) will be an accurate
approximation of Qtm−1(Ŝ).

However, the above-mentioned process is not achievable in a real application, since we cannot
afford sub-simulation for every state (tm−1, Stm−1). As feasible alternatives, we have the cross-path
regression methods, for example, SRM and SGBM.

5.2 Error in SRM

In the regression step of SRM, we regress the option values {Vtm(Stm(i))}N
i=1 on the basis functions

[φ1(Stm−1(i)), . . . , φK(Stm−1(i))]
N
i=1. Since all paths are generated from the same initial state, we

denote the theoretical density function of Stm by πG(Stm) and the empirical density function,
which is represented by the samples {Stm(i)}N

i=1, by π̂G(Stm). Since the regression is done with
respect to the samples {Stm(i)}N

i=1, we have

Eπ̂G [επ̂G(Stm)] = 0. (12)

After we determine the regression parameters {αG
k }K

k=1, the approximated continuation value
Q̂G

tm−1
(Ŝ) can be generated as

Q̂G
tm−1

(Ŝ) = Eπ

[
K∑

k=1

αG
k φk(Stm−1)

]
= Eπ [Vtm(Stm) + επ̂G(Stm)]

= Qtm−1(Ŝ) + (Eπ [επ̂G(Stm)] − EπG [επ̂G(Stm)]) + (EπG [επ̂G(Stm)] − Eπ̂G [επ̂G(Stm)]).
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The last equality is found by writing Eπ [επ̂G(Stm)] in the form of a telescopic sum and
eliminating the last term based on Equation (12).

When there are enough samples, we have π̂G(Stm) ≈ πG(Stm), which leaves the approximation
bias in SRM merely determined by

Eπ [επ̂G(Stm)] − EπG [επ̂G(Stm)].

Since π(Stm) stands for the analytic density function of Stm conditioned on Stm−1 = Ŝ and
πG(Stm) for the analytic density function of Stm conditioned on St0 , they are obviously not iden-
tical. This makes the path-wise bias in SRM uncontrollable no matter how we change the set-up
of simulation.

5.3 Error in SGBM

In SGBM, we consider the paths originating from the same bundle Btm−1(b), which covers
the state (tm−1, Ŝ), and regress the option values {V (b)

tm (S(b)
tm (i))}N(b)

i=1 on the basis functions
[φ1(S

(b)
tm (i)), . . . , φK(S(b)

tm (i))]N(b)
i=1 . Again we denote the theoretical density function of Stm , whose

previous state (tm−1, Stm−1) is within the spreading of bundle Btm−1(b), by πB(Stm) and the
empirical density function of {S(b)

tm (i)}N(b)
i=1 by π̂B(Stm).

With similar arguments as in SRM, we obtain the approximated continuation value Q̂B
tm−1

(Ŝ)

by SGBM as

Q̂B
tm−1

(Ŝ) = Qtm−1(Ŝ) + (Eπ [επ̂B(Stm)] − EπB [επ̂B(Stm)]) + (EπB [επ̂B(Stm)] − Eπ̂B [επ̂B(Stm)]).

Different from SRM, the set-up in SGBM can help us to control the bias. When we increase
the number of bundles, the spreading of any individual bundle will reduce. In the limiting case
where the bundle covers only the state (tm−1, Ŝ), we will have πB(Stm) = π(Stm). However, in
a simulation-based approach, if we do not increase the total sample size, increasing the number
of bundles will cause a decrease in the number of paths per bundle, which makes the empirical
density function π̂B(Stm) different from the analytic density function πB(Stm).

To summarize, if we regard Eπ [επ̂B(Stm)] − EπB [επ̂B(Stm)] as the ‘distribution bias’ and
EπB [επ̂B(Stm)] − Eπ̂B [επ̂B(Stm)] as the ‘sample bias’, the number of bundles is a ‘trade-off’
between these two types of biases. To make a balance, we should choose the number of bundles
neither too small nor too large so that both the biases are controlled.

Based on the analysis above, we can conclude that the path-wise estimation error of regression
methods comes from two parts: the regression error and the sample bias. By choosing suitable
basis functions, we reduce the impact of the first part. By introducing ‘bundling’, we control the
sample bias and also simplify the problem of global regression to that of local regression.

6. Variance reduction for path estimator

6.1 Path estimator

From the backward pricing algorithm of SGBM, we will get a biased high estimator V̄0(S0)

of the initial option value V0(S0). We call this estimator the direct estimator. Once we obtain
the regression parameters for any bundle at any time step, the approximated continuation value
Q̂tm(Stm) of the option at the given state (tm, Stm) can be calculated. Relying on this approximation,
we can decide either to exercise the option or to hold it at the specified state. Based on this
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2418 F. Cong and C.W. Oosterlee

exercise policy and some fresh simulated paths, we can develop a biased low estimator V 0(S0)

of the option value V0(S0). We call this estimator the path estimator. The procedure of calculating
the path estimator can be described as

Step I Simulate a new sample of paths {S0(i), . . . , StM (i)}, i = 1, . . . , Np.
Step II Based on the approximation of the continuation value, determine the optimal exercise

time τ̂ (i) for the ith path:

τ̂ (i) = min(tm : h(Stm(i)) ≥ Q̂tm(Stm(i)), m = 1, . . . , M ). (13)

Step III Compute the path estimator:

V 0(S0) = 1

Np

Np∑
i=1

h(Sτ̂ (i)(i))

βτ̂(i)
.

The proof of convergence and the bias of the path estimator are shown in [14].

6.2 Variance reduction: control variates

When estimating the option value via Monte Carlo simulation, we not only desire a precise point
estimate but also pursue a reasonable interval estimate, which is constructed in the form of the
point estimate plus-or-minus its standard error multiplied by the confidence factor. A simulation-
based method should provide us a narrow interval estimate, which implies that the method is
valid even in extreme cases.

Within the framework of the general simulation-based estimation, the standard error of
the point estimate is believed to be proportional to the reciprocal of the square root of the sample
size. Therefore, to reduce the range of the interval estimate by a factor of 10, the sample size
should increase by a factor of 100.

Variance reduction methods offer us an alternative approach to reduce the standard error of the
estimation. A commonly used variance reduction method is the control variate method, which
has been implemented for American-style option pricing, for example, in [4,6,19].

As the first choice for control variates for pricing Bermudan options one would consider the
corresponding European options, whose values can be easily computed. From the perspective of
optimal exercise, we never exercise a single asset Bermudan call option before its maturity, so
using the European option will provide us a zero-variance control. As concluded by Rasmussen
in [19], for pricing the Bermudan option ‘a good control variate’ should have the following
two properties: it should be highly correlated with the pay-off of the option in question and its
conditional expectation should be easy to compute.

For simplicity, we restrict the following discussion to using only one control variate. For the
generalized control variate method, where multi-controls are involved, we refer the reader to [1].

6.2.1 Path estimator with control variates

To improve, in particular, the path estimator based on crude Monte Carlo simulation by control
variates, the Bermudan option value h(Sτ̂ (i)(i))/βτ̂(i) for the ith path will be replaced by

Zτ̂ (i) = h(Sτ̂ (i)(i))

βτ̂(i)
+ θ(Y (i) − E[Y ]),

where Y (i) denotes the control variate for the ith path and E[Y ] is its analytic expectation with
filtration F0. The weighting parameter θ can be chosen freely, since the new estimate Zτ̂ is always
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unbiased to the original estimate h(Sτ̂ )/βτ̂ . A reasonable choice would be

θ = Cov(h(Sτ̂ )/βτ̂ , Y )

Var(Y )
,

which controls the variance of Zτ̂ to the minimum value:

Var

(
h(Sτ̂ )

βτ̂

)
(1 − ρ2),

where ρ = Corr(h(Sτ̂ )/βτ̂ , Y ) = Cov(h(Sτ̂ )/βτ̂ , Y )/
√

Var(h(Sτ̂ )/βτ̂ )Var(Y ). In [19], the ratio
1/(1 − ρ2) is called the ‘speed-up factor’, which indicates that utilizing control variates is
equivalent to amplifying the sample size in a crude Monte Carlo by a factor of 1/(1 − ρ2).

6.2.2 Traditional control variates

As mentioned before, the conditional expectations of the control variates should be easy
to calculate. For the Bermudan option with multidimensional underlying assets St =
(S1

t , . . . , Sδ
t , . . . , Sd

t ) ∈ Rd , the traditional choice of control variate is the discounted pay-off of
the European option measured at maturity with the single underlying asset Sδ

t , that is,

Y = g(Sδ
T )

βT
,

and the Monte Carlo estimate with control variate for the ith path is

Zτ̂ (i) = h(Sτ̂ (i)(i))

βτ̂(i)
+ θ

(
g(Sδ

T (i))

βT
− E

[
g(Sδ

T )

βT

])
.

Here E[g(Sδ
T )/βT ] indicates the value of the single asset European option starting at state (0, Sδ

0)

and maturing at time T with the same strike as the discussed Bermudan option.

6.2.3 Improved control variates

Monte Carlo pricing with the option pay-off measured at maturity as control variate is quite
cheap, because after the simulation of the paths, we get {g(Sδ

T (i))}N
i=1 immediately. However,

empirical tests indicate that this choice of control variate is not always efficient. An alternative
introduced in [19] is to replace g(Sδ

T (i))/βT by Wτ̂ (i) which is defined as

Wτ̂ (i) = 1

βτ̂(i)
Eτ̂ (i)

[
g(Sδ

T (i))

βT−τ̂ (i)

]
.

The stopping time τ̂ (i) for the ith path is defined in Equation (13). Eτ̂ (i)[·] indicates the con-
ditional expectation with filtration Fτ̂ (i) and Eτ̂ (i)[g(Sδ

T (i))/βT−τ̂ (i)] denotes the single asset
European option value associated with the ith path starting at state (τ̂ (i), Sδ

τ̂ (i)(i)) and matur-
ing at time T with the same strike as the Bermudan option. The expectation E[Wτ̂ ] is identical to
the single asset European option value E[g(Sδ

T )/βT ]. Rasmussen [19] shows that this new choice
of control variate makes variance reduction more efficient. However, we notice that {Wτ̂ (i)}N

i=1
is not directly available any more, because for the ith path, it is the discounted single asset Euro-
pean option value measured at time τ̂ (i). For one-dimensional pricing problems, fast pricing
algorithms that help us calculate the path-wise control variates {Wτ̂ (i)}N

i=1 efficiently exist. We
will implement the COS method introduced in [9] for the one-dimensional pricing.
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2420 F. Cong and C.W. Oosterlee

In our numerical test, we find that in some situations applying improved control variates is
much more efficient than increasing the sample size. However, for the geometric basket option
and the arithmetic basket option, the effect of using improved control variates is not so obvious
that we still prefer to use traditional control variates and increase the sample size for reducing
the standard error of estimation.

7. MJD process

7.1 Motivation of jump-diffusion model

Despite the wide use of the geometric Brownian motion to model the movement of asset prices,
the almost instantaneous asset price change cannot be captured well. Such rapid price variations
are sometimes modelled by a ‘jump’. It is stated in [16] that the jump model behaves better in
modelling the leptokurtic feature of the asset price distribution and the empirical phenomenon
‘volatility smile’ in option markets.

Jump-diffusion models essentially contain a Brownian component punctuated by jumps at ran-
dom intervals. Compared to their counterparts ‘infinite activity Lévy processes’ in jump models,
‘finite activity jump-diffusion models’ are easier to simulate. In this paper, we will consider an
elementary jump model, the MJD model,8 which was introduced in [18].

7.2 Model formulation

We consider the MJD model with contagious jumps on each asset, that is, the jumps in the
dynamics of each asset arrive following the same Poisson process. Under this model, the d-
dimensional asset prices follow

dSi
t = Si

t((r − δi − λκi) dt + dW i
t + (eZi − 1) d�t), i = 1, . . . , d,

where κi = E[eZi − 1], dW i
t dW j

t = σiσjρij dt, r the risk-free rate, δi the dividend rate, σi the
volatility of diffusion, �t a Poisson process with mean arrival rate λ, Z = [Z1, . . . , Zd ]′ the mul-
tivariate normally distributed jumps with mean μJ = [μJ

1, . . . , μJ
d ]′ and covariance matrix �J

with elements �J
ij = σ J

i σ J
j ρJ

ij .
The analytic formulas for the dynamics read

Si
t = Si

0 exp((r − δi − λκi)t + W i
t ) exp

(
N(t)∑
m=1

Zi
m

)
, i = 1, . . . , d, (14)

where S0 = (S1
0 , . . . , Sd

0 ) is the initial state, W t = [W 1
t , . . . , W d

t ]′ the diffusion component, Zm =
[Z1

m, . . . , Zd
m]′ the jump component and N(t) the number of Poisson jumps within time interval

t with mean arrival rate λ. The diffusion component W t follows multivariate normal distribution
with mean 0 and covariance matrix � with elements �ij = σiσjρijt and the jump component Zm

with mean μJ = [μJ
1, . . . , μJ

d ]′ and covariance matrix �J with elements �J
ij = σ J

i σ J
j ρJ

ij .
The log-process X t = (X 1

t , . . . , X d
t ), where X i

t = log(Si
t), i = 1, . . . , d, has an analytic form:

X t = X0 + μ · t + W t +
N(t)∑
m=1

Zm,

where μ = [r − δ1 − λκ1 − σ 2
1 /2, . . . , r − δd − λκd − σ 2

d /2].
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7.3 Dimension reduction: geometric average of MJD assets

Within the framework of geometric Brownian motion, the dynamics of the geometric average of
multidimensional assets can be formulated as a one-dimensional problem. This technique is also
applicable for the MJD model.9 Suppose that the equivalent one-dimensional MJD model has an
analytic formula:

S̃t = S̃0 exp((r − δ̃ − λκ̃)t + W̃t) exp

(
N(t)∑
m=1

Z̃m

)
,

where W̃t is normally distributed with mean 0 and variance σ̃ 2t and Z̃m normally distributed with
mean μ̃J and variance σ̃ J . To make it represent the geometric mean of the assets with dynamics
shown in Equation (14), we need

S̃0 =
(

d∏
i=1

Si
0

)1/d

, μ̃J =
∑d

i=1 μJ
i

d
,

σ̃ J =
√∑

i,j σ
J
i σ J

j ρJ
ij

d
, σ̃ =

√∑
i,j σiσjρij

d
,

κ̃ = exp

(
μ̃J + (σ̃ J )2

2

)
− 1, δ̃ =

∑d
i=1(δi + σ 2

i /2 + λκi)

d
− σ̃ 2

2
− λκ̃ .

Remark 7.1 This dimension reduction technique also works on the geometric basket contain-
ing assets following geometric Brownian motion and assets following the MJD model, because
geometric Brownian motion can be regarded as an MJD model with zero jump size.

7.4 Analytic moments of basis functions in the MJD model

For the model with dynamics shown in Equation (14), we have the conditional expectations of
polynomial basis functions in closed form. The conditional moments of the original stock prices,
E[(Si

t)
k|Si

0] (i = 1, . . . , d; k = 1, 2, . . .), read

E[(Si
t)

k|Si
0] = (Si

0)
k exp(kμ̂it + 1

2 k2σ 2
i t + λt(exp(kμJ

i + 1
2 k2(σ J

i )2) − 1)), (15)

where

μ̂i = r − δi − σ 2
i

2
− λ

(
exp

(
μJ

i + (σ J
i )2

2

)
− 1

)
.

The conditional moments of the geometric mean of the asset prices {Si
t}d

i=1 can be calculated
by first presenting the dynamics of the geometric mean in one dimension as shown in Section 7.3
then using Equation (15).
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2422 F. Cong and C.W. Oosterlee

Since there exists no general form of the conditional expectation of the log-stock prices
E[log(Si

t)
k|Si

0] (i = 1, . . . , d; k = 1, 2, . . .), we present the first three moments as follows:

E[log(Si
t)|Si

0] = log(Si
0) + μ̂it + λtμJ

i ,

E[log(Si
t)

2|Si
0] = (log(Si

0) + μ̂it)
2 + σ 2

i t + 2(log(Si
0) + μ̂it)(μ

J
i λt)

+ (λ2t2 + λt)(μJ
i )

2 + λt(σ J
i )2,

E[log(Si
t)

3|Si
0] = (log(Si

0) + μ̂it)
3 + 3(log(Si

0) + μ̂it)(σ
2
i t) + 3((log(Si

0) + μ̂it)
2 + σ 2

i t)(μJ
i λt)

+ 3(log(Si
0) + μ̂it)((λ

2t2 + λt)(μJ
i )

2 + λt(σ J
i )2)

+ (λ3t3 + 3λ2t2 + λt)(μJ
i )

3 + 3(λ2t2 + λt)(μJ
i (σ

J
i )2).

The conditional expectation of the cross-product term E[log(Si
t) log(Sj

t)|Si
0, Sj

0](i 
= j) reads

E[log(Si
t) log(Sj

t)|Si
0, Sj

0] = (log(Si
0) + μ̂it)(log(Sj

0) + μ̂jt)

+ σiσjρijt + (log(Sj
0) + μ̂jt)(μ

J
i λt) + (log(Si

0) + μ̂it)(μ
J
j λt)

+ (λ2t2 + λt)μJ
i μ

J
j + λtσ J

i σ J
j ρJ

ij .

8. Numerical experiments

In this section, we perform several numerical experiments to test the performance of SGBM for
pricing different types of Bermudan options with assets following the MJD process. We compare
different choices of bundling references, basis functions and variance reduction approaches for
options on multidimensional assets.

The one-dimensional MJD model is furnished with three different choices of model param-
eters, which, respectively, indicate ‘common’ jump, ‘intensive’ jump and ‘rare’ jump. The
multidimensional tests are conducted for various options: geometric basket, arithmetic basket,
put-on-min and call-on-max. For some scenarios, we get the benchmark value directly from the
literature. However, in case of the absence of references we generate the benchmark ourselves.
For the geometric basket option, the representation discussed in Section 7.3 is implemented and
the one-dimensional problem is solved by the COS method. For the remaining scenarios, we
implement the LSM method [17] to generate the reference values. MATLAB R2011b is used and
the computations are performed on Intel(R) Core(TM) i5 3.33 GHz processor with 16 GB RAM.

The parameter sets used for the tests are listed in Table 1.

8.1 SGBM and tuning parameters

We start testing the performance of SGBM on single asset options under geometric Brownian
motion dynamics, which gives a general insight how SGBM performs with its tuning parameters.
The performance of SGBM is influenced by three parameters:10

(1) N and Np: the number of simulated paths,
(2) n: the number of bundles and
(3) M : the number of exercise opportunities.

In the following tests, the default set-up is as follows: n = 16, M = 20, N = 217, Np = 2−2 ·
N . The model parameters are chosen from Set I in Table 1 without the jump component. We use
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Table 1. Parameter settings used in the test.

Set I(a): ‘common’ jump
S0 = 40, K = 40, r = 0.06, δ = 0, σ = 0.2, λ = 3, μJ = −0.2, σ J = 0.2, T = 1, M a = 20.
Set I(b): ‘intensive’ jump
S0 = 40, K = 40, r = 0.06, δ = 0, σ = 0.2, λ = 8, μJ = −0.2, σ J = 0.2, T = 1, M = 20.
Set I(c): ‘rare’ jump
S0 = 40, K = 40, r = 0.06, δ = 0, σ = 0.2, λ = 0.1, μJ = −0.9, σ J = 0.45, T = 1, M = 20.
Set II:
S0 = [100, 100]′, K = 100, r = 0.05, δ = 0, σ = [0.12, 0.15]′, ρij = 0.3, λ = 0.6,
μJ = [−0.1, 0.1]′, σ J = [0.17, 0.13]′, ρJ

ij = −0.2, T = 1, M = 8.
Set III:
S0 = [100, 100]′, K = 100, r = 0.05, δ = 0.1, σ = [0.2, 0.2]′, ρij = 0, T = 3, M = 9.
Set IV :
S0 = [100, 100, 100, 100, 100]′, K = 100, r = 0.05, δ = 0, σ = [0.15, 0.15, 0.15, 0.15, 0.15]′, ρij = 0.3, λ = 0.5,
μJ = [−0.3, −0.2, −0.1, 0.1, 0.2]′, σ J = [0.1, 0.1, 0.1, 0.1, 0.1]′, ρJ

ij = −0.2, T = 1, M = 8.

aM denotes the number of early-exercise opportunities, which are equidistantly distributed in T years.
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Figure 4. Performance of SGBM with different tuning parameters. The set-up is described in Section 8.1. The reference
option price is generated by the COS method [9]: (a) fix M and n, vary N, (b) fix M and n, vary N, (c) fix N and n, vary
M and (d) fix N and M, vary n.

the improved control variates for variance reduction on the path estimator, and perform three
tests, respectively, by changing n, M and N. The test results are plotted in Figure 4.

Figure 4(a) shows that as the sample size increases, the standard error of the estimators in
SGBM decreases by the order N−1/2. As shown in Figure 4(b), the total computational time
increases in order N. When we increase the number of exercise opportunities up to M = 128,
both the direct and the path estimator of SGBM are satisfactory. If we keep doubling the number
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2424 F. Cong and C.W. Oosterlee

of exercise opportunities, the performance of the direct estimator in SGBM decreases while
the path estimator remains reliable. The poor performance of the direct estimator in case of
many exercise opportunities is mainly caused by the ‘distribution bias’ as explained in Section 5.
However, in any scenario the path estimator is approving, as in LSM. Figure 4(d) displays the
trade-off between the ‘distribution bias’ and the ‘sample bias’. When the number of bundles is
small, the ‘distribution bias’ is the dominant part that makes the direct estimator highly biased.
As the number of bundles increases, SGBM exhibits highly satisfactory performance. However,
when the number of bundles increases further, the ‘sample bias’ forms a problem and the direct
estimator in SGBM becomes unsatisfactory.

8.2 Choice of bundling reference

In this section, we consider different bundling schemes while testing and focusing on pricing
the put-on-min option with assets St = (S1

t , S2
t ) following the two-dimensional MJD model.

The model parameters are chosen from Set II in Table 1. The basis functions are fixed as fol-
lows: 1, log(S1

t ), log(S2
t ), log(S1

t )
2, log(S2

t )
2, log(S1

t ) log(S2
t ). Seven different ways for bundling

are included in the test. They are as follows:

(1) bundling according to one reference:

• bundling reference A: RA(St) = min(S1
t , S2

t ),
• bundling reference B: RB(St) = S1

t ,
• bundling reference C: RC(St) = S1

t − S2
t .

(2) bundling according to two references:

• bundling reference D: RD
1 (St) = S1

t , RD
2 (St) = S2

t ,
• bundling reference E: RE

1 (St) = min(S1
t , S2

t ), RE
2 (St) = S1

t − S2
t ,

• bundling reference F: RF
1(St) = min(S1

t , S2
t ), RF

2(St) = S1
t ,

• bundling reference G: RG
1 (St) = S1

t − S2
t , RG

2 (St) = S1
t .

According to Figure 5, when pricing the put-on-min options, we should not limit ourselves
to bundling with a single reference, which is outperformed by any bundling scheme with two
references. Among the two-reference bundling schemes, the one involving the intrinsic value of
the option and the difference between the asset values is the best choice. For the geometric basket
option and the arithmetic basket option, we do not present our test results. However, for both of
them bundling simply with the option’s intrinsic value yields highly satisfactory results.

8.3 Choice of basis functions

One aspect influencing the efficiency of regression methods for option pricing is the choice
of basis functions. Although we claim that it is sufficient to get convergent results for various
option contracts by simply choosing polynomials as basis functions, in some situations we have
alternative choices. For example, for the geometric basket option, it is recommended in [14]
to choose the powers of the geometric mean of asset prices as basis functions. We compare
three choices of basis functions for pricing the geometric basket option with assets following the
two-dimensional MJD process:

• Basis A: the intrinsic value of option

1,
√

S1
t S2

t , S1
t S2

t ,
√

S1
t S2

t

3

, (S1
t S2

t )
2.
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Figure 5. Comparison of different bundling schemes for pricing two-dimensional put-on-min option. The basis func-
tions are fixed as follows: 1, log(S1

t ), log(S2
t ), log(S1

t )2, log(S2
t )2, log(S1

t ) log(S2
t ). When the bundling is done according

to two references, the number of bundles with respect to each reference is the square root of the ‘number of bundles’.
The sample size for the direct estimator is 217 and the sample size for the path estimator is 218. The reference option
price is collected from [20]: (a) direct estimator (one bundling reference), (b) path estimator (one bundling reference),
(c) direct estimator (two bundling reference) and (d) path estimator (two bundling reference).
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Figure 6. Comparing different choices of basis functions in SGBM for pricing two-dimensional geometric basket
option. The parameters of the MJD model are chosen from Set II in Table 1. The sample size for the direct estimator is
217. The path estimator with sample size 218 is controlled by traditional control variates. (a) Direct estimator in SGBM,
(b) Path estimator in SGBM.

• Basis B: polynomial terms of asset prices:

1, log(S1
t ), log(S1

t )
2, log(S2

t ), log(S2
t )

2, log(S1
t ) log(S2

t ).
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Figure 7. Comparison of two variance reduction approaches. The standard errors of the path estimators following three
different algorithms are presented. ‘Original SGBM’ means standard SGBM algorithm without control, ‘SGBM-CV-1’
stands for SGBM with the traditional control variates and ‘SGBM-CV-2’ for SGBM with the improved control variates.
For all three algorithms, the basis functions, the bundling reference and the number of the paths for the direct estimator
are identical. The x-axis indicates the sample size for the path estimator. (a) Using control variates for a put option
with asset following a one-dimensional MJD model and (b) using control variates for a put-on-min option with assets
following a two-dimensional MJD model.

• Basis C: polynomial terms of asset prices, without the cross-product term:

1, log(S1
t ), log(S1

t )
2, log(S2

t ), log(S2
t )

2.

Figure 6 shows that different choices of basis functions in SGBM have an impact on the option
price estimates. When the number of bundles is small, Basis A performs best. When the number
of bundles is sufficiently large, the final results of SGBM with Basis A and Basis B are very
similar. On the other hand, we notice that although Basis C does not appear satisfactory compared
to the other two choices, the confidence intervals of the associated direct and the path estimator
cover the true option values. For truly high-dimensional problems, including the cross-product
terms into basis functions will lead to a quadratic increase in the number of basis functions,
which further requires an exponential increase in the sample size to make the regression accurate
[12]. In this case, we prefer to form basis functions by the polynomials without cross-product
terms.

So, when dealing with low-dimensional problems, we choose the ordinary polynomials as
basis functions since their conditional expectations are always available. When the dimensional-
ity of the problem is high, we consider polynomials without cross-product terms, or, if possible,
we use polynomials of the option’s intrinsic values as the basis functions. In Section 8.7, we can
see that these choices of basis functions provide us highly satisfactory results.

8.4 Efficiency of using control variates

One problem with SGBM [14] is that the standard error of the path estimator is usually larger than
that of the direct estimator. Here we test the variance reduction methods introduced in Section 6
for reducing the standard error of the path estimator. The test is performed under one-dimensional
and two-dimensional MJD models. Figure 7(a) and 7(b) show that using the control variates
helps to reduce the standard error of the path estimator. In the one-dimensional case using the
improved control variates is extremely efficient with a speed-up factor around 900, while for the
two-dimensional model the improved control variate is less efficient with speed-up factor around
14. In both scenarios, applying the traditional control variates provides us a variance reduction
with speed-up factor around 3.
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Table 2. Comparing two variance reduction approaches in SGBM pricing for different types of two-dimensional
options.

Geometric basket Arithmetic basket Put-on-min

Na
p 216 217 216 217 216 218 219

Control variatesb CV-2 CV-1 CV-2 CV-1 CV-2 CV-1 No
S.e.c 0.0123 0.0097 0.0118 0.0107 0.0093 0.0106 0.0151
RNG timed 6.2051 11.4671 6.2051 11.4671 6.2051 23.7172 48.8246
Computation time 20.3588 2.9489 20.3984 3.2454 21.8977 5.3324 10.1195
Total time 26.5639 14.4160 26.6035 14.7125 28.1028 29.0496 58.9441
Speed-up factor 3.7284 2.1081 2.7834 1.8016 13.8211 3.9224 1

Note: The sample size for the direct estimator is always fixed as 217.
aThe sample size for the path estimator.
b‘CV-1’ stands for SGBM with the traditional control variates and ‘CV-2’ for SGBM with the improved control variates.
cThe standard error of the path estimator.
dThe time for generating the sample of the path estimator. Its unit is seconds.

The traditional control variates is free of additional cost and therefore we should treat the tradi-
tional control variates as an alternative to the improved control variates. As shown in Table 2, for
geometric and arithmetic basket options, the improved control variates is not effective regarding
its cost. In these cases, we will use the traditional control variates and increase the sample size
for variance reduction.

8.5 One-dimensional problem

We start systematic testing under the one-dimensional MJD process. Three different types of
jumps are considered as follows: common jump, intensive jump and rare jump. Their model
parameters are, respectively, Set I(a), Set I(b) and Set I(c) in Table 1. The basis functions in
SGBM are chosen as 1, log(St), log(St)

2, log(St)
3. We choose improved control variate for the

one-dimensional case.
In Figure 8, we see that the path estimator is always an accurate lower bound estimate to the

true option price: its standard error is small and it is consistently smaller than the true option
price. The direct estimator also converges to the true option value as the number of bundles
grows. The convergence is rapid for the MJD process with common jump and for that with
intensive jump. In the rare jump case although the convergence is not satisfactory, the exercise
strategy associated with the direct estimator is accurate since the relevant path estimator is very
close to the true value. The estimation error of the direct estimator is the curse of rare events.
For the MJD model with the rare jump, the sample distribution of the paths within one bundle is
quite likely to be biased to their analytic distribution and consequently SGBM may be inaccurate
according to our discussion in Section 5.

Using improved control variates provides efficient variance reduction in the one-dimensional
case. Even though the path estimator has a sample size of only one-tenth of the direct estimator,
the standard error of the path estimator is smaller. Moreover, even when the number of bundles
is small, the path estimator is much closer to the true value than the direct estimator.

8.6 Two-dimensional problem

In this section, we test SGBM on three different types of two-dimensional options. We fix
the basis functions as 1, log(S1

t ), log(S2
t ), log(S1

t )
2, log(S2

t )
2, log(S1

t ) log(S2
t ) and perform the

bundling based on the bundling references recommended earlier: for the geometric basket option
and the arithmetic basket option, the paths are bundled according to the option’s intrinsic value;
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Figure 8. SGBM with the improved control variates is implemented for pricing options with underlying assets follow-
ing three different one-dimensional MJD processes. The number of the paths for estimating direct estimator is 200,000,
while the number of the paths for estimating path estimator is only 20,000. The reference price is generated using the
COS method [9]: (a) common jump, (b) intensive jump and (c) rare jump.

Table 3. Test of SGBM for two-dimensional max-on-call options.

Reference Reference SGBMb SGBM
S0 upper bounda (s.e.) lower bound (s.e.) upper boundc (s.e.) lower bound (s.e.) Reference valued

(90,90) 8.105 8.067 8.075 8.072 8.075
(0.086) (0.020) (0.011) (0.008)

(100,100) 13.906 13.898 13.907 13.897 13.902
(0.035) (0.023) (0.017) (0.012)

(110,110) 21.339 21.338 21.352 21.338 21.345
(0.023) (0.022) (0.022) (0.015)

aThis upper bound is provided in [14], where duality approach is applied to generate this.
bThe sample size for the direct estimator of SGBM is 217 and that for the path estimator is 216. The single asset European option values
measured at the exercise time are used as the control variates for the path estimator. The bundling done in ‘SGBM’ is based on two
references: the maximum of assets’ prices and the difference between assets’ prices. According to each bundling reference, 16 bundles are
constructed. This leads to 256 bundles in total. The basis functions are as follows: 1, log(S1

t ), log(S2
t ), log(S1

t )2, log(S2
t )2, log(S1

t ) log(S2
t ).

cThis upper bound is just the direct estimator of SGBM.
dThe reference value is obtained from [14].

for the min option, the paths are bundled based on the option’s intrinsic value and the difference
between asset prices.

Besides the test on the MJD model, we also consider pricing the max-on-call option with
assets following two-dimensional geometric Brownian motion. We compare our results to those
of the same test in [14]. The model parameters are presented in Set III of Table 1. The test results
are shown in Table 3. We find that with proper choice of bundling reference SGBM performs
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Table 4. Comparing SGBM and LSM for pricing three different types of options for the two-dimensional MJD model.

SGBM LSMa

DE PE Computation timeb Option value Computation time Reference
(s.e.) (s.e.) (RNG timec) (s.e.) (RNG time) value

Geometric basket option 3.6747 3.6686 8.9260 3.6682 2.4796 3.6693
(0.0055) (0.0053) (34.3233) (0.0063) (46.4791)

Arithmetic basket option 3.3904 3.3812 8.8582 3.3813 1.9655 3.3825
(0.0056) (0.0055) (34.3233) (0.0066) (46.4791)

Put-on-min option 9.5960 9.5404 22.0341 9.5075 2.2155 9.5526
(0.0098) (0.0181) (18.1747) (0.0158) (46.4791)

aThe sample size for LSM is 219.
bThe time for backward recursive calculation. The unit is second.
cThe time for simulating paths. The unit is second.
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Figure 9. SGBM with control variates for pricing three different types of options with assets following two-dimen-
sional MJD process. The sample size for the direct estimator is always fixed as 217. For the geometric basket option
and the arithmetic basket option, we cast the traditional control variates on the path estimator with sample size 218.
For the put-on-min option, the path estimator with sample size 216 is controlled by the improved control variates. We
always consider two controls equal to the European option value of the single asset. The reference option value for the
put-on-min option is acquired from [20]: (a) geometric basket option, (b) arithmetic basket option and (c) put-on-min
option.

highly satisfactorily for pricing max options even though the maximum of the asset values is not
included in the basis functions.

In Table 4, we compare the results of SGBM, presented in Figure 9, to those of LSM. The
parameters of the MJD model are chosen from Set II in Table 1. The estimated option values
using 64 bundles are chosen to stand for the reference results of SGBM. We see that for the mean
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Table 5. SGBM for pricing five-dimensional geometric basket options.

Direct est. Path est. Path est. with CVb Computation timec

K Reference pricea Algorithm (s.e.) (s.e.) (s.e.) (seconds)

90 0.5564 SGBM-Ad 0.5567(0.0010) 0.5572 (0.0033) 0.5575 (0.0029) 12.4011
SGBM-B 0.5588(0.0026) 0.5564 (0.0035) 0.5567 (0.0030) 9.3775
LSM 0.5563 (0.0031) 1.4305

100 3.1231 SGBM-A 3.1233(0.0037) 3.1220 (0.0097) 3.1226 (0.0071) 12.2884
SGBM-B 3.1228(0.0052) 3.1198 (0.0096) 3.1204 (0.0073) 9.4389
LSM 3.1238 (0.0063) 1.8754

110 9.8020 SGBM-A 9.8025(0.0075) 9.8014 (0.0108) 9.8018 (0.0101) 12.2220
SGBM-B 9.8055(0.0080) 9.7986 (0.0104) 9.7990 (0.0102) 9.3486
LSM 9.8045 (0.0103) 2.4182

Notes: The parameters of the model are chosen from Set IV. The sample sizes for both the direct estimator and the path estimator in SGBM
are 217. The sample size for LSM is 218. Sixty-four bundles are constructed in SGBM with the intrinsic value of option as the bundling
reference.
aThe reference price is generated by using the technique introduced in Section 7.3 to reduce the high-dimensional problem to one dimen-
sion and pricing the one-dimensional option by the COS method.
bThe traditional control variates are used here.
cThe computation time includes the time to compute the direct estimator and the path estimator. However, it does not cover the simulation
time, which is around 45 seconds.
d‘SGBM-A’ stands for SGBM with Basis A and ‘SGBM-B’ for SGBM with Basis B.

basket options the result of LSM is similar to the path estimator of SGBM. However, for the
put-on-min option, SGBM gives a better estimate than LSM.

Remark 8.1 In Figure 9(c), we see that the direct estimator of SGBM is not satisfactory. The
main cause for this bias is the volatility of the jump size. High volatility of the jump size implies
difficulty of having unbiased samples. The impact of the jump intensity is similar but much
smaller than that of the volatility of jump size.

The direct estimator has higher bias than the path estimator. This observation is consis-
tent to the conclusion in [21], as the direct estimator can be viewed as the ‘value function
approximation’ and the path estimator as the ‘stopping time approximation’ [21].

8.7 Five-dimensional problem

According to our two-dimensional tests, LSM does not perform well at pricing min options with
jump assets. For the five-dimensional case, since there is no reliable reference price for the min
or max option with jump assets, we restrict our discussion to the geometric and the arithmetic
basket options. In Table 5, we compare LSM with SGBM for pricing five-dimensional geometric
basket options. In-the-money, at-the-money and out-of-the-money options are included and two
different types of basis functions are investigated:

• Basis A: φ1(St) = 1, φk+1(St) = (
∏5

i=1 Si
t)

k/5 k = 1, 2, 3, 4;
• Basis B: φ1(St) = 1, φ2i(St) = log(Si

t), φ2i+1(St) = log(Si
t)

2 i = 1, 2, 3, 4, 5.

In Table 5, we can see that Basis A offers slightly better results than Basis B. However, both
are close to the reference value.

Table 6 contains the results for pricing five-dimensional arithmetic basket options. For this
type of option, since the conditional expectation of the power of its intrinsic value has a com-
plicated form, we will not consider them as basis functions. According to our test, SGBM with
Basis B still performs well with a small difference between the direct and the path estimator,
which means that the true option value is located in an interval with sharp bounds.
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Table 6. SGBM for pricing five-dimensional arithmetic basket options.

Direct est. Path est. Path est. with CVa Computation timeb

K Algorithm (s.e.) (s.e.) (s.e.) (seconds)

90 SGBM-B 0.3516(0.0017) 0.3504 (0.0030) 0.3506 (0.0025) 9.0072
LSM 0.3508 (0.0024) 0.8488

100 SGBM-B 2.5783(0.0048) 2.5745 (0.0078) 2.5748 (0.0060) 9.3762
LSM 2.5795 (0.0059) 1.1445

110 SGBM-B 9.4683(0.0082) 9.4604 (0.0101) 9.4606 (0.0100) 9.0477
LSM 9.4675 (0.0091) 2.4182

Notes: The parameters of the model are chosen from Set IV. The sample sizes for both the direct estimator and the path estimator in SGBM
are 217. The sample size for LSM is 218. Sixty-four bundles are constructed in SGBM with the intrinsic value of option as the bundling
reference.
aThe traditional control variates are used here.
bThe computation time includes the time to compute the direct estimator and the path estimator. However, it does not cover the simulation
time, which is around 45 seconds.

9. Conclusion

We have discussed the SGBM, which is a hybrid of regression-based and bundling-based Monte
Carlo methods. SGBM was compared to the SRM and its configuration is thoroughly discussed,
including how to choose basis functions for regression and how to partition the bundles. We
conducted error analysis on the regression-based pricing methods, especially focusing on the
features of SGBM. Traditional and improved control variate methods were introduced for vari-
ance reduction in SGBM. Numerical examples on the MJD model were presented for problems
up to five dimensions.

Bundling has a significant impact on the accuracy of SGBM. For the arithmetic and geometric
basket options, it is sufficient to choose the intrinsic value of the option as the bundling refer-
ence, but for ‘min’ or ‘max’ options introducing more than one bundling reference is preferred.
Control variates work well for reducing the variance of the path estimator in SGBM. In the one-
dimensional case, using an improved control variate is highly efficient. When the dimension of
problem grows, the cost for implementing the improved control variates increases while its effect
decreases. As a result, we favour the traditional control variates in the high-dimensional case.

We have shown that it is sufficient to choose the basis functions in SGBM as polynomials to get
convergent results. The outcome of our tests suggests that sometimes it is not necessary to include
all terms as the basis functions and in some situations choosing the basis functions determined
by the type of option contract could be more effective. When the dimensionality of the problem
is not large, it appears feasible to use SGBM with basis functions of polynomial type. According
to our experience, choosing polynomials without cross-product terms as basis functions works
even for 10-dimensional problems. However, when the dimensionality of problem surges up, we
need alternatives to polynomials as basis functions to release ourselves from the corresponding
demand for the huge sample size. As mentioned in [14], polynomials of the intrinsic value of
option are promising choices in this scenario.

Notes

1. It denotes the realization at time T with the values of the option’s underlying assets equal to ST .
2. We write Stm , which means that the stock price at time tm is equal to Stm . In the following discussions, the condition

of the expectation may also be formulated as Stm = Ŝ to emphasize that the stock price at time tm is known as a
realization Ŝ.

3. The authors of [3] show that Regress-Later is fundamentally different from Regress-Now, noticing that the former
does not introduce a projection error between two time steps in the regression stage. As a result, Regress-Later
achieves a faster convergence rate than Regress-Now in terms of the sample size.

D
ow

nl
oa

de
d 

by
 [

B
ib

lio
th

ee
k 

T
U

 D
el

ft
] 

at
 0

6:
28

 0
6 

Ja
nu

ar
y 

20
16

 



2432 F. Cong and C.W. Oosterlee

4. If we want to bundle the paths into two parts, the partition point for ‘equal-size bundling’ is the median of the asset
prices while that for ‘equal-range bundling’ is the mean of the asset prices.

5. For simplicity, we neglect the discounting term Dtm−1 .

6. Since π(Stm ) is defined by the density function of Stm conditioned on Stm−1 = Ŝ, the simulation of Stm with respect

to this density function can be treated as a sub-simulation from the unique state Stm−1 = Ŝ.
7. In the following sections, the other empirical density functions can be defined in a similar fashion.
8. SGBM is also feasible for another well-known jump-diffusion model, the Kou model [16]. Since the only distinction

between the MJD model and the Kou model is the distribution of jump sizes, all discussions in this paper about
SGBM can be extended to the Kou model as well.

9. The jumps in the dynamics of each asset should, however, follow the same Poisson process.
10. In fact, the number of basis functions is also a tuning parameter, but large number of basis functions may result in

an over-fitting problem in the regression step. We therefore choose the number of basis functions just three or four
in the one-dimensional case.
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