
Routing policies for a partially observable two-server
queueing system

Wendy Ellens Péter Kovács* Rudesindo Núñez-Queija
University of Amsterdam, Korteweg-de Vries Institute for Mathematics

{w.ellens,p.kovacs,r.nunezqueija}@uva.nl

Hans van den Berg
TNO / University of Twente
j.l.vandenberg@tno.nl

ABSTRACT
We consider a queueing system controlled by decisions based
on partial state information. The motivation for this work
stems from road traffic, in which drivers may, or may not, be
subscribed to a smartphone application for dynamic route
planning.

Our model consists of two queues with independent ex-
ponential service times, serving two types of jobs. Arrivals
occur according to a Poisson process; a fraction α of the
jobs (type X) is observable and controllable. At all times
the number of X jobs in each queue and their individual po-
sitions are known. Upon its arrival a router decides which
queue the next X job should join. Y jobs (fraction 1−α) are
non-observable and non-controllable. They randomly join a
queue according to some static routing probability.

We address the following main research questions: 1) what
penetration level α is needed for effective control, 2) which
policy should be implemented at the router, and 3) what
is the added value of having more system information (e.g.,
average service times)? An extensive simulation study re-
veals that for heavily loaded systems a low penetration level
suffices and that the performance (in terms of the average
sojourn time) of a simple policy that relies on little system
information is close to w-JSQ (weighted join-the-shortest-
queue policy) which is optimal in a fully controllable and
observable system. The latter result is confirmed by the
analysis of deterministic fluid models that approximate the
stochastic evolution under large loads.

CCS Concepts
•Mathematics of computing→Queueing theory; Math-
ematical analysis; •Networks → Network performance
analysis; •Computing methodologies → Modeling and
simulation; •Applied computing → Transportation;

Keywords
Routing, tandem queue, dynamic control, incomplete infor-
mation, partial control, fluid approximation

1. INTRODUCTION
In this paper we consider a queueing system consisting of

two queues and a controller that assigns newly arriving jobs
to the queues. A special feature of the system is that only
part of the jobs can be observed and controlled, whereas
the other jobs cannot be observed explicitly and choose a
queue themselves. Thus, the controller has to perform its
routing task (aiming at minimising the system delay) based
on partial information about the system state. Our primary
motivation for studying such a queueing system stems from
dynamic road traffic control and on-line navigation systems
based on smartphone applications, see e.g. [20]. It is not
obvious how to deal in an effective way with the partial ob-
servability and controllability of these systems, and how the
performance depends on the penetration grade of the appli-
cation (that is, the fraction of traffic that can be observed).

The aim of the present study is to provide insight into this
type of questions by intensively investigating and compar-
ing the performance of various dynamic routing strategies
for a simplified queueing system. Through extensive sim-
ulations we show that heuristic routing policies work quite
well even for low penetration levels. Their performance (in
terms of the average sojourn time) hardly improves further
if the penetration level is increased beyond, say, 25%. The
performance of these simple policies that rely on little sys-
tem information appears to be close to the weighted join-
the-shortest-queue (w-JSQ) policy, particularly so for heav-
ily loaded systems, which is optimal in a fully observable
and controllable system [7, 21]. This result is confirmed
by the outcome of an approximative analytical study. In
particular, assuming a highly loaded system, we show that
the partial information available for the fluid models of the
heuristic policies is enough to provide dynamics that give
just as good performance as the fluid approximation of the
optimal w-JSQ policy. We conjecture that in the limit the
policies give identical trajectories.

To the best of our knowledge our approach to partial ob-
servability/controllability in queueing systems is novel. Kuri
and Kumar [9] and Mitzenmacher [12], for example, discuss
optimal routing for the case that delayed information on the
queue lengths is available. In Guo et al. [5] the partial system
information available concerns the service time distribution.

*Corresponding author



Router

Server 1

Server 2

µ1

µ2

αλ

(1− α)pY1 λ

(1− α)pY2 λ

λ

Figure 1: A schematic representation of the queueing sys-
tem

Other papers, see e.g. [1], consider controllable (foreground)
and uncontrollable (background) traffic, but there it is as-
sumed that both traffic types are observable (i.e. the routing
of foreground traffic is based on total state information).

When specifically considering road traffic applications, the-
re is an extensive literature on using probe vehicles (which
are the observable/controllable part of the traffic) for traf-
fic control. Also field experiments have been conducted, see
e.g. [6]. The applications vary from estimations on queue
lengths at traffic signals [4], to freeway travel-time predic-
tion [3, 13] and detecting incidents [16]. The number of
probe vehicles and the penetration level needed for these
estimations to work well are also widely considered [2, 10,
17, 19]. Furthermore, there are systems in place that collect
and process data like Vtrack [18] or CroTIS [15], and route
guidance applications based on such data, like Waze [20].

The remainder of this paper is organised as follows. First,
in Section 2, we give a detailed description of the system
model at hand, including the notation, and introduce and
discuss the routing policies considered in this paper. Next, in
Section 3, these policies are extensively evaluated and com-
pared by simulation. The analytical approach based on fluid
approximations, especially useful for highly loaded systems,
is provided in Section 4. Finally, in Section 5, we summarise
the results of our study, provide conclusions and suggest di-
rections for further research.

2. MODEL

2.1 The queueing system
We consider a two-server queueing system, as depicted in

Figure 1. The queues operate independently in a FIFO-
manner with exponential service times of rates µ = (µ1, µ2).
Jobs arrive at the queueing system according to a Poisson
process with rate λ and are of one of the following two types.

Jobs of the first type, called X jobs, are controllable and
observable. They make up for a fraction α of the total load.
X jobs thus arrive according to a Poisson process of rate αλ.
The parameter α is called the penetration level. X jobs are
controllable, because upon their arrival a router decides on
which queue they should join. A policy is a set of rules ac-
cording to which the routing decisions for X jobs are taken.
Saying that X jobs are observable, we mean that at all times
their numbers in both queues (possibly including a job that
is in service) and their individual positions are known. The
numbers of X jobs are denoted by X(t) = (X1(t), X2(t)).
The position of a job in a queue is the number of jobs that
must be served before finishing the given job, thus a job
currently in service is at position 1. We are especially inter-
ested in the positions of the last X jobs in the queue, which
will be denoted by LX(t) = (LX

1 (t), LX
2 (t)). Should there be

no X jobs present in either queue, we set the corresponding
component(s) of LX to 0.

The second type of jobs, Y jobs, represent background
traffic. They are non-controllable and non-observable. They
arrive according to a Poisson-process of rate (1 − α)λ and
join one of the two queues according to the static probabil-
ities pY = (pY1 , p

Y
2 ), where pY2 = 1 − pY1 . For the router

the number of Y jobs in each queue, which will be denoted
by Y (t) = (Y1(t), Y2(t)), is unknown, thus leaving the to-
tal queue lengths, denoted by Q(t) = (Q1(t), Q2(t)), with
Qi(t) = Xi(t) + Yi(t), for i = 1, 2, unknown as well.

The loads on the queues depend on the routing policy and
the penetration level. So as to conduct comparisons for α
ranging from 0 to 1, we will measure the loads in each of the
queues by the actual loads when α = 0. For queue i this is
given by ρYi = pYi λ/µi. When ρY1 = ρY2 we use ρY to denote
either of them. For any choice of parameters for which the
loads in both queues are below 1, it will thus be possible for
the router to maintain the queue stable for all α ∈ [0, 1].

2.2 Routing policies
In order to route incoming X jobs to a queue, one can

think of two types of policies: dynamic policies that use state
information and static policies that do not. We consider the
four dynamic routing policies introduced below.

• Number of X jobs (denoted by #X): this policy sends
an arriving X job to the queue with the fewest X jobs
(including a job currently in service).

• Last X position (abbreviated to LXP) compares the
queues by the position of the last X job and sends
an arriving X job to the queue with the lowest last X
position.

• Weighted last X position (w-LXP) multiplies the last
X position by the mean service time 1/µi (giving an es-
timation of the sojourn time for queue i) and sends an
arriving X job to the lowest weighted last X position.

• Estimated weighted last X position (ew-LXP) does the
same as w-LXP except that it does not assume µ to be
known. The mean service time is estimated by dividing
the sojourn times of the X jobs lastly departed from
queue i by their arrival position. The average is over
the last w number of departed X costumers, with w a
parameter of the policy.

For most of these policies no system information (e.g. the
values of α, λ, pY and µ)) is assumed to be known by the
router. Only in w-LXP µ is used. The first two policies are
designed for symmetric queues (equal service rates), the last
two for the asymmetric case.

In Section 3 we compare the performance of the above
mentioned policies with respect to the expected sojourn time
of the jobs (the total time of a job in the system, also called
response time). Let Si denote the expected sojourn time
in queue i and SX

i the expected sojourn time in queue i
over X jobs only. We use the same symbols for the average
sojourn times in the simulations. The averages over both
queues are denoted by S and SX for all, and for X jobs only,
respectively. In the policy comparison we also consider the
following two reference policies:

• Weighted join-the-shortest-queue (w-JSQ): a dynamic
policy that sends an arriving X job to the queue with



the fewest jobs (X and Y jobs together). In case of
unequal service times, the number of jobs is weighted
by the average service time, as for w-LXP. This ref-
erence policy assumes full state information (that is,
also Y jobs are observable) and knowledge of µ, but
no other system information. Since w-JSQ uses more
information than our policies, it will likely outperform
our policies. Note that it may not be optimal for our
partially controllable system, although it is optimal for
fully controllable systems [7, 21].

• A static policy that applies probabilistic routing. It
sends arriving X jobs to queue i with a fixed proba-
bility pXi . The probabilities pXi are set such that the
difference between SX

1 and SX
2 is minimised2. Note

that the policy has the same goal as the policies dis-
cussed before: it aims at equalising the sojourn times
in both queues. It can be verified that this policy is
not the same as the static policy that minimises S. Al-
though the static policy uses no state information, it
may not always be outperformed by the dynamic poli-
cies, because the static policy uses system parameters
(α, λ, µ, pY ) that are not (all) available to the dynamic
policies.

Although all six policies introduced above assume partial
controllability (i.e., only X cars can be routed), they differ
in terms of the system and state information that is used.
In Section 3 we compare their respective performance.

3. SIMULATIONS
In this section we investigate whether the dynamic policies

with partial observability and controllability described in
Section 2.2 perform better than the static policy and how
close their performance (in terms of average sojourn times)
is to that of w-JSQ. Furthermore, we want to assess the
added value of using extra state and/or system information
and how the performance depends on the penetration level
α. To this end, we have performed many simulations in
MATLAB [11] under various system settings with symmetric
and asymmetric service times and background traffic, and
different loads and penetration levels α.

3.1 Policy comparison

3.1.1 Symmetric queues
We start by considering the case of equal service rates,

µ1 = µ2, see Figure 2 for an example with µ1 = µ2 = 1.
We compare the two simple dynamic policies based on the
numbers of X jobs (#X) and the positions of the last X
jobs (LXP) in the two queues, with the static policy and
the full state information policy JSQ. Every data point in
this plot, as well as in the following plots, is the result of
a simulation experiment with 10 million events (job arrivals
and departures, that is).

The performance of LXP is always slightly better than
that of #X. This can be explained by the fact that LXP
also takes into account the Y jobs that have arrived be-
fore the last X job, while #X only measures the number of

2Simple calculations yield that this is achieved for pX1 =
(µ1−µ2+λ−2pY1 (1−α)λ)/(2αλ), where SX

1 and SX
2 become

equal, or pXi ∈ {0, 1} if it is impossible to reach the desired
equality.

0 0.2 0.4 0.6 0.8 1

2

4

6

8

α

S

all jobs, LXP

all jobs, #X

all jobs, w-JSQ

all jobs, static

X jobs, LXP

X jobs, #X

X jobs, w-JSQ

X jobs, static

Figure 2: Average sojourn time over both queues as a
function of α for several policies, ρY1 = 0.45, ρY2 = 0.9,
µ = (1, 1) and pY = (1/3, 2/3). We display both the average
over all jobs (solid), and over X jobs only (dashed).

X jobs. The relative difference between the two policies is
largest for moderate and somewhat high loads. Under very
high loads (ρY ↑ 1) the dynamic policies show comparable
performance. In comparison the performance of the static
policy is clearly inferior. However, for low α it is better for
the overall average sojourn time to apply the static policy.
Note that the dynamic policies are always better for the X
jobs, and for all jobs when the control level α is relatively
large.

3.1.2 Asymmetric queues
We now allow for unequal service rates for the two queues

describing the results of a similar set of experiments as in
Section 3.1.1. In this case it is natural to use a weighted dy-
namic policy that takes the service rates into account. We
can observe that (non-weighted) LXP also gives better re-
sults than #X for asymmetric queues (see Figure 3). There-
fore we focus on LXP from now on, and consider its weighted
versions w-LXP and ew-LXP. In the former the weights are
given, in the latter they are estimated using data of the w
lastly departed jobs for each queue separately. We refer to
w as the window size of ew-LXP and show results for values
w = 1 and w = 10 in our graphs (denoted by ew-LXP(1)
and ew-LXP(10) in the legends).

From the simulations in Figure 3 we see that, as expected,
the weighted policies (w-LXP and ew-LXP) outperform the
unweighted LXP. This turns out to be true across all values
of α as can be observed in Figure 4. For practically relevant
values of α (that is, relatively small values) this even holds
for a small window size of w = 1.

In practice the mean service times may vary over time.
In this case the policy ew-LXP is particularly relevant. The
recommended window size depends on the desired precision
and on how fast µ is changing; the memory of the policy
should refresh itself on a smaller time scale than the one
on which µ changes. For a static µ, a window size w = 10
gives relatively accurate results as can be seen in Figure 3.
In general, in order to get the same precision, w needs to
be larger for lower loads (see Figure 3), because the queue
lengths are smaller and therefore the average is taken over



0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

ρY

S
#X

LXP

w-LXP

ew-LXP(1)

ew-LXP(10)

w-JSQ

static

Figure 3: Relative average sojourn time over all jobs and
both queues as a function of ρY for several policies, α = 0.2,
µ = (1, 2) and pY = (1/3, 2/3). The sojourn times are
relative to those of w-JSQ.

0 0.2 0.4 0.6 0.8 1

4

5

6

7

α

S

LXP

w-LXP

ew-LXP(1)

ew-LXP(10)

w-JSQ

static

Figure 4: Average sojourn time over all jobs and both
queues as a function of α for several policies, ρY1 = ρY2 = 0.9,
µ = (1, 2) and pY = (1/3, 2/3)

a smaller number of jobs. In addition, we observe in Fig-
ure 4 that w needs to be larger for higher penetration levels
(because the estimates of the average service time are using
more overlapping data when there are fewer Y jobs in the
system).

The figures and observations discussed in this section refer
to the case in which both queues are equally loaded by the
Y jobs (that is, ρY1 = ρY2 ). Note that this does not imply
that the queues are symmetric, as the difference between
the µi can be compensated by the pYi . The observations
turned out (in simulations not presented here) to be valid
also for unequally loaded queues (e.g. if pY is symmetric,
while µ is not). We noticed, however, that then the static
policy outperforms our dynamic policies for low values of α
(as we also observed in Section 3.1.1). So in that case the
dynamic policies are only recommended if it is not possible
to implement the static policy (because of a lack of system
information). For the equally loaded scenario we have seen
in Figure 3 that the weighted policies perform much better

0 0.2 0.4 0.6 0.8 1
2

4

6

8

10

α

S
i

i=1, LXP

i=1, w-LXP

i=1, ew-LXP(1)

i=1, w-JSQ

i=1, static

i=2, LXP

i=2, w-LXP

i=2, ew-LXP(1)

i=2, w-JSQ

i=2, static

Figure 5: Average (over all jobs) sojourn time as a function
of α for both queues separately, ρY1 = ρY2 = 0.9, µ = (1, 2),
and pY = (1/3, 2/3)

than the static policy and that the w-LXP policy is close
to the optimal w-JSQ when ρY approaches 1. This fact is
explained in detail in Section 4.

3.2 The penetration level
One of the questions we raised in Section 1 was to deter-

mine the smallest penetration level α needed for effective
control. To shed light on this question, we now study the
performance of the various policies as a function of α. From
the figures presented in the preceding sections (Figures 2
and 4) we can conclude that the sensitivity of the perfor-
mance to the penetration level is highest for small values
of α (i.e. changes in α cause a larger change in the perfor-
mance when α is small than when it is large), which can be
understood as a “law of diminishing marginal returns”. In
most of the scenarios, the average sojourn time for w-LXP
and ew-LXP is already rather close to its minimum if α is
approximately 25%. The required penetration level depends
on the system load; for lower loads a higher α is required
and if the load caused by the Y jobs is symmetric, a lower
α suffices than if it is asymmetric (because more X jobs are
needed to compensate the ‘wrong’ choices of the Y jobs).

First, let us inspect the average sojourn times S1, S2 for
all jobs (X and Y together). From Figure 5, which is rep-
resentative for a large collection of graphs for a variety of
scenarios, we see that for the dynamic policies the average
sojourn times in both queues decrease when α increases.
This means that increasing the level of control decreases the
average time a job spends in the system, independently of
the queue a job is sent to. In contrast, for the static pol-
icy the sojourn time in one queue increases when more jobs
are being controlled (while the sojourn time in the other
decreases as a function of α). As one can notice from Fig-
ure 4, this may result in non-monotonous average sojourn
times over both queues. However, for the dynamic policies
it is always beneficial to the overall average sojourn time to
increase the amount of control.

If we consider X jobs only, first we should note that the



performance for X jobs is always better than for an average
(X or Y) job. This is essential if jobs can choose themselves
whether to be in the X class (as in the road traffic exam-
ple). For the static policy, the behaviour as a function of α is
the same as before (when looking at both classes together).
However, for w-JSQ the quantities SX

1 and SX
2 are now both

increasing in α. For this policy, increasing the percentage
of controlled jobs improves the overall performance, but de-
teriorates the performance for the controlled jobs, because
the advantage of being directed to the“right”queue becomes
smaller if more jobs are being directed to it. This reasoning
does not hold for the other dynamic policies, because for
those policies increasing α does not only mean more control
(which is disadvantageous for the controlled jobs), but also
more information (which is advantageous). Consequently,
the dynamic policies may show non-monotonous behaviour
for one of the queues.

4. FLUID MODEL APPROXIMATION
The policies that we have proposed and studied through

simulation do not allow exact (analytical) performance anal-
ysis. In this section we approximate the behaviour of some
of the policies under high loads using deterministic fluid
models. For the deterministic fluid models we show that
the partial information exploited by w-LXP is sufficient to
give dynamics that yield just as good a performance as the
fluid approximation of the “optimal” w-JSQ policy. This re-
sult confirms the (in Section 3.1.2 observed) convergence of
w-LXP to w-JSQ for loads approaching 1. A fluid approxi-
mation can often be shown to be the limiting process (fluid
limit) of the original stochastic system under an appropriate
scaling [14]. Here we do not aim at a technical proof of this
limiting procedure, but rather at the analysis of the fluid
approximations themselves. Instead of a technical proof, we
provide a numerical validation study.

At a high level of abstraction, the fluid approximation
may be seen to mimic the dynamics of the stochastic pro-
cess at large system states; i.e., when the queueing processes
move far away from the origin. Consequently, when the
system load is low the applicability is limited to transient
performance analysis, because large system states are rarely
visited and therefore the fluid approximation does not re-
flect the typical behaviour of the process. When the system
load is high, however, the stochastic process does typically
move far away from the origin and the analysis of the fluid
approximation provides valuable insight into the stationary
behaviour of the stochastic process as well.

4.1 High-load conditions and fluid limits
Since Little’s Law applies to the queue lengths and the

sojourn times irrespective of the policy, it is sufficient to
concentrate on queue length dynamics to obtain the expec-
tation of the sojourn time (system delay). Clearly, under
all of the policies presented in Section 2.2 it is possible to
describe the joint queue length processes as a Markov pro-
cess if the state descriptor contains both queue lengths, and
the positions of all jobs, of both types, plus some informa-
tion about the past. Note that indeed, for some policies,
there is a dependence of the dynamics on the positions of X
jobs, and/or the current value of a parameter, which is an
estimate based on past system states. Therefore, the state
space can be rather involved in general. We focus our anal-
ysis on the w-JSQ and w-LXP policies. For these policies

0 2 4 6 8

·105

0.5

1

1.5

2
·105

time

n
u
m
b
e
r
o
f
jo
b
s

total, queue 1

total, queue 2

last X, queue 1

last X, queue 2

0 2 4 6 8

·105

0.5

1

1.5

2
·105

time

n
u
m
b
e
r
o
f
jo
b
s

total, queue 1

total, queue 2

last X, queue 1

last X, queue 2

Figure 6: Simulated evolution starting from high initial
queue sizes for JSQ (top) and LXP (bottom). In both figures
the (red) curve for the number of (X plus Y) jobs in queue
2 and the (purple) curve for the position of the last X job in
this queue coincide. After an initial period all four curves
coincide.

the random vector M(t) =
(
Q1(t), Q2(t), LX

1 (t), LX
2 (t)

)
is

Markovian. Let the Markov processes for the two policies
be denoted by Mw-JSQ and Mw-LXP respectively.

The condition

λ/(µ1 + µ2) < 1, (1)

is obviously necessary for these processes to be stable. In
addition, we assume α to be sufficiently large, such that
with appropriate routing, it is possible to keep both queues
from getting overloaded. Besides (1), we therefore require
the load of Y jobs on each queue to be below 1, i.e.,

pYi (1− α)λ < µi, (2)

for both i = 1, 2. The system is said to be in heavy traffic
if the boundaries of condition (1) are approached, i.e. if λ ↑
µ1 +µ2. If we impose that the system reaches heavy traffic,
while satisfying (2) for both queues, we need

α ≥ 1− 1

pYi

µi

µ1 + µ2
, (3)

for both i = 1, 2. In particular, if α is 0, it must be that
pYi λ ↑ µi for both queues simultaneously, so that µ2p

Y
1 =



µ1p
Y
2 .

Although we do not consider heavy-traffic limits, we as-
sume that the system load is high, that is, λ is close to
µ1 + µ2. Under such high-load conditions, the number of
jobs present in either queue will typically be very large and
any substantial change in the queue lengths requires such a
long time that the arrivals of both types virtually occur in
a continuous fashion. This implies that in at least one of
the two queues, there must be an X job near the end of the
queue. More precisely, for at least one of the two queues,
the number of Y jobs standing behind the last X job in line
is negligible compared to the total number of jobs in the
queue. This intuitive reasoning forms the rationale behind
the fluid approximations proposed in Section 4.2. We con-
jecture that these (deterministic) fluid processes are the fluid
limits of the original (stochastic) processes.

To facilitate the discussion, we end this section with the
definition of a fluid limit, which formally describes the cho-
sen scaling. If {M (c)(t), t ≥ 0}c∈N is a sequence of Markov

processes with ‖M (c)(0)‖1 = c, then we define

M̄ (c)(t) =
M (c)(ct)

c
.

The fluid limit of this sequence is obtained by letting c→∞.
Under suitable conditions, the limit often turns out to be
a deterministic fluid process [14]. We believe (and demon-
strate numerically) that this is also the case for the processes
Mw-JSQ and Mw-LXP.

4.2 Description and analysis of the fluid model
We now propose deterministic fluid processes mw-JSQ and

mw-LXP to approximate the stochastic processesMw-JSQ and
Mw-LXP respectively, under large load conditions. Each
of these processes consists of four components and, sim-
ilar to our notation before, we generically write m(t) =
(q1(t), q2(t), l1(t), l2(t)) .

For w-JSQ the evolution satisfies the following system of
ordinary differential equations (ODEs). For conciseness we
only report the derivatives for positive qi, and li; at level
zero the negative term in the derivative is to be removed,
since there are no departures in this case.

d

dt
qw-JSQ
1 =


αλ+ pY1 (1− α)λ− µ1,

αλµ1/(µ1 + µ2) + pY1 (1− α)λ− µ1,

pY1 (1− α)λ− µ1,

if qw-JSQ
1 /µ1 < qw-JSQ

2 /µ2,

if qw-JSQ
1 /µ1 = qw-JSQ

2 /µ2,

if qw-JSQ
1 /µ1 > qw-JSQ

2 /µ2,

d

dt
qw-JSQ
2 =


pY2 (1− α)λ− µ2,

αλµ2/(µ1 + µ2) + pY2 (1− α)λ− µ2,

αλ+ pY2 (1− α)λ− µ2,

if qw-JSQ
1 /µ1 < qw-JSQ

2 /µ2,

if qw-JSQ
1 /µ1 = qw-JSQ

2 /µ2,

if qw-JSQ
1 /µ1 > qw-JSQ

2 /µ2,

d

dt
lw-JSQ
1 =

{
αλ+ pY1 (1− α)λ− µ1,

− µ1,

if qw-JSQ
1 /µ1 < qw-JSQ

2 /µ2,

if qw-JSQ
1 /µ1 > qw-JSQ

2 /µ2,

d

dt
lw-JSQ
2 =

{
− µ2,

αλ+ pY2 (1− α)λ− µ2,

if qw-JSQ
1 /µ1 < qw-JSQ

2 /µ2,

if qw-JSQ
1 /µ1 > qw-JSQ

2 /µ2.

These equations reflect that newly arriving X jobs are routed
to the weighted shortest queue. Note that the policy’s rule
in case the weighted queue lengths are equal is irrelevant,
because any tie breaking rule forces the process to move
along states with qw-JSQ

1 /µ1 = qw-JSQ
2 /µ2. It is worth em-

phasising that the last-X component of the weighted shortest
queue also contains the effect of Y arrivals: both types of
arrivals occur in a continuous fashion and are interleaved at
the weighted shortest queue. Newly arriving Y jobs thus
push the last X position further back.

The above ODE lacks a description for the behaviour of
the components lw-JSQ

i when the process hits the hyperplane

qw-JSQ
1 /µ1 = qw-JSQ

2 /µ2. We argued in Section 4.1 that for
one of the two queues the last X position must be (almost)
equal to the queue length. For w-JSQ this is the case for the
weighted shortest queue. Indeed, new X jobs are routed to
the weighted shortest queue and the number of Y jobs arriv-
ing in between two arriving X jobs is negligible compared to
the queue lengths. As a consequence, whenever the hyper-
plane qw-JSQ

1 /µ1 = qw-JSQ
2 /µ2 is hit, the last X position of

the largest weighted queue also moves to the level of the cor-
responding queue length. Therefore we have to supplement
the above ODEs with the following jumps:

lw-JSQ
i (t+) = qw-JSQ

i (t), for both i, if qw-JSQ
1 /µ1(t) = qw-JSQ

2 /µ2(t).

Here, by t+ we mean immediately after time t.
We now turn our attention to an approximating deter-

ministic fluid system for w-LXP. Much of the discussion
above holds in this case as well. The difference is due to
the fact that the router now chooses the queue with the
lowest weighted last X position, and only switches to the
other queue when the weighted last X positions are equal.
Thus the ODEs characterising the evolution of mw-LXP are
— similarly to mw-JSQ — as follows:

d

dt
qw-LXP
1 =


αλ+ pY1 (1− α)λ− µ1,

αλµ1/(µ1 + µ2) + pY1 (1− α)λ− µ1,

pY1 (1− α)λ− µ1,

if lw-LXP
1 /µ1 < lw-LXP

2 /µ2,

if lw-LXP
1 /µ1 = lw-LXP

2 /µ2,

if lw-LXP
1 /µ1 > lw-LXP

2 /µ2,

d

dt
qw-LXP
2 =


pY2 (1− α)λ− µ2,

αλµ2/(µ1 + µ2) + pY2 (1− α)λ− µ2,

αλ+ pY2 (1− α)λ− µ2,

if lw-LXP
1 /µ1 < lw-LXP

2 /µ2,

if lw-LXP
1 /µ1 = lw-LXP

2 /µ2,

if lw-LXP
1 /µ1 > lw-LXP

2 /µ2,

d

dt
lw-LXP
1 =

{
αλ+ pY1 (1− α)λ− µ1,

− µ1,

if lw-LXP
1 /µ1 < lw-LXP

2 /µ2,

if lw-LXP
1 /µ1 > lw-LXP

2 /µ2,

d

dt
lw-LXP
2 =

{
− µ2,

αλ+ pY2 (1− α)λ− µ2,

if lw-LXP
1 /µ1 < lw-LXP

2 /µ2,

if lw-LXP
1 /µ1 > lw-LXP

2 /µ2.

As before, if queue j has the lowest weighted last X position
at time t, we must have lw-LXP

j (t) = qw-LXP
j (t). The jumps

on the switching plane are now given by

lw-LXP
i (t+) = qw-LXP

i (t), for both i, if lw-LXP
1 /µ1(t) = lw-LXP

2 /µ2(t).

After a transient period the deterministic fluid approxi-
mations for both policies w-JSQ and w-LXP live on their
switching planes, where respectively q1/µ1 = q2/µ2 and
l1/µ1 = l2/µ2. On the switching planes, jobs are sent to
both queues, so that the last X positions are updated con-
tinuously and are equal to the queue sizes. It follows that
(after a transient period) both fluid processes live on the
same line (q1/µ1 = l1/µ1 = q2/µ2 = l2/µ2) and take the
same decisions, both equalising the load of the two queues.

4.3 Numerical verification of the fluid approx-
imations

We have conducted simulations to verify the suitability
of the deterministic fluid approximations for large system
loads. When the service rates are different, we observe the
same behaviour as with equal µ’s (after applying a correction
for the different service rates). Thus we limit ourselves here
to the symmetric case µ1 = µ2. We set the initial queue
lengths and last X positions intentionally away from the
switching curve, whilst choosing α such that it satisfies (3).

In our first set of experiments (see Figure 6) we illustrate
the appropriateness of the linear deterministic approxima-



tions by plotting the trajectories over a very long time hori-
zon and at very large system states. We only plot the simu-
lation curves, as the deterministic approximations would be
indistinguishable from them in the graphs. In these exper-
iments we fixed α = 0.8, µ = (1, 1), pY = (1/2, 1/2) and
ρY = ρY1 = ρY2 = 0.95.

First we observe the plot of the trajectories of the queueing
processes under JSQ. As long as the two queues have differ-
ent sizes, all jobs are routed to the shortest queue (queue 2
in this experiment); the last X position in queue 2 is there-
fore equal to the queue length in queue 2. For queue 1 we
see that the last X position decreases faster than the queue
length, since new Y jobs are all placed after the last X job.
The position of the last X job may hit zero and remain at
zero until the two queues meet. At that point the last X
position in queue 1 increases instantly to become equal to
the queue length and from then on both queue lengths and
the last X positions remain coupled forever.

Now we turn to the results under LXP. Again we start off
at a very large state for all components, with queue 2 having
the lowest queue length and the lowest last X-position (these
are equal), i.e., the router is sending jobs to queue 2. As soon
as the last X position of queue 1 has dropped to the level of
that of queue 2, it is increased to the size of queue 1. After
a single X job has been sent to queue 1, the next X jobs
are being sent to queue 2 again. This pattern repeats until
the sizes of the two queues meet, from that point on all four
components will have one single value. Note that, since the
curve for the last X position in queue 1 can only bounce at
a countable number of points, basically all X jobs have been
routed to queue 2, as was the case for JSQ. The point where
the two queues meet is therefore exactly the same for both
policies.

Figure 6 considers extremely large system states, which
will only rarely be visited. In Figure 7 we have plotted the
trajectories for JSQ and LXP under a load as high as 0.995
and for system states that are more likely to be reached.
Other parameters were set as α = 0.6, µ = (1, 1), and pY =
(3/5, 2/5). We see that the trajectories meet quickly, after
which the joint trajectories are well approximated by a linear
trend.

Our numerical experiments demonstrate that indeed the
proposed fluid limit approximations closely follow the tra-
jectories of the w-JSQ and w-LXP policies at large system
states under high loads. The simulations also corroborate
our observations in Section 3, where we noticed that in heavy
traffic w-LXP performs comparable to w-JSQ.

5. CONCLUSION
We have investigated routing policies for a multiserver

queueing system based on partial state information. We
took a novel approach in applying the routing control deci-
sions only to a portion of the incoming jobs, as we assumed
that the router has control over just part of the traffic. Rout-
ing traffic based on partial state information is an important
challenge in road traffic control by smartphone applications
and on-line navigation systems, because these applications
only have access to the position of their own users. Inspired
by this application, we considered a two-server queueing sys-
tem in which part of the jobs (the X jobs) can be observed
and controlled (routed to one of the queues), while the other
jobs (the Y jobs) act as background traffic which is neither
observable nor controllable. We analysed the performance of

0 0.2 0.4 0.6 0.8 1 1.2

·105

0

1,000

2,000

time

n
u
m
b
e
r
o
f
jo
b
s

total, queue 1

total, queue 2

last X, queue 1

last X, queue 2

0 0.2 0.4 0.6 0.8 1 1.2

·105

0

1,000

2,000

time

n
u
m
b
e
r
o
f
jo
b
s

total, queue 1

total, queue 2

last X, queue 1

last X, queue 2

Figure 7: Simulated evolution under a high load for JSQ
(top) and LXP (bottom). All curves coincide after a very
brief initial period.

our policies (in terms of the average sojourn time) under the
assumption of Poisson arrivals and independent exponential
service times. We compared the results to join-the-shortest-
queue (JSQ) and to a static policy that routes according to
fixed routing probabilities using no state information, but
full information about the system parameters.

An extensive simulation study revealed that the sojourn
time as a function of the penetration level (i.e. the percent-
age of X jobs) declines fast for small penetration levels, but
slowly for large levels. As a consequence, with only a small
percentage of controllable jobs it is possible to obtain an
average sojourn time which is close to the minimum value.
We also observed in the simulations that a simple policy
that sends arriving X jobs to the queue with the fewest X
jobs performs quite well. If both queues are at least mod-
erately loaded, it is much better than the static policy. A
policy that does not base its decisions on the number of X
jobs in each of the queues, but on the position of the last
X job (that is, its distance to the server in number of jobs)
performs even slightly better. Obviously, if the service rates
of the two queues are unequal, the last X positions of the
queues need to be weighted by their average service times. If
this average is unknown, or varying over time, an estimate of
it based on the measured sojourn time of only a few recently
departed X jobs yields almost as good a performance.

For high loads, the performance of the weighted last X
position policy (w-LXP), which uses partial information, is
close to the performance of weighted JSQ (w-JSQ), the op-
timal policy under full information. When the load of both



queues converges to 1, the performance of w-LXP (without
knowledge of Y jobs in the system) is identical to that of w-
JSQ (with full knowledge of Y jobs in the system). We have
investigated this remarkable result analytically by means of
deterministic dynamical systems approximating the stochas-
tic processes at large system states under high loads. We
conjecture the proposed dynamical systems to be the fluid
limits of the original processes. We have shown that after
a transitory phase the dynamical systems corresponding to
w-LXP and w-JSQ have identical trajectories for the queue
lengths, whatever the initial conditions are. This explains
the similarity of the sojourn times under both policies. To
justify the analysis of these dynamical systems we performed
simulations which confirmed the convergence of the original
stochastic processes to the proposed deterministic dynami-
cal systems.

Note that the routing policies proposed and investigated
in the present paper for the special case of two partially
observable queues can easily be extended to similar systems
with more than two queues. This can serve as a model of a
road network with multiple possible paths for instance.

Further research on the topic could take various direc-
tions. One possibility is to relax the modelling assumptions,
by investigating the performance of the proposed routing
policies under non-exponential service times at the queues.
We would expect similarly good results in that case (par-
ticularly in heavy traffic), but the estimation of µ for the
ew-LXP policy could be less accurate. Other relaxations or
changes in the model could concern non-stationary inputs,
state-dependent service rates or service disciplines that are
different from FIFO. Other routing policies could also be
considered, for instance policies that take into account more
system information, such as the arrival rate of Y-jobs, or
estimate the corresponding parameters. Note however, that
under high loads not much gain in performance can be ex-
pected from such policies, as suggested by the fact that pol-
icy w-LXP, which is oblivious of Y jobs in the system, per-
forms just as good as w-JSQ with full state information.

6. REFERENCES
[1] S. Bhulai, G. Hoekstra, J. Bosman, and R. van der

Mei. Dynamic traffic splitting to parallel wireless
networks with partial information: A Bayesian
approach. Performance Evaluation, 69:41–52, 2012.

[2] M. Cetin, G. List, and Y. Zhou. Factors affecting
minimum number of probes required for reliable
estimation of travel time. Transportation Research
Record: Journal of the Transportation Research Board,
1917:37–44, 2005.

[3] M. Chen and S. Chien. Dynamic freeway travel-time
prediction with probe vehicle data: Link-based versus
path-based. Transportation Research Record: Journal
of the Transportation Research Board, 1768:157–161,
2001.

[4] G. Comert. Simple analytical models for estimating
the queue lengths from probe vehicles at traffic
signals. Transportation Research Part B:
Methodological, 55:59–74, 2013.

[5] P. Guo, W. Sun, and Y. Wang. Equilibrium and
optimal strategies to join a queue with partial
information on service times. European Journal of
Operational Research, 214:284–297, 2011.

[6] J. Herrera, D. Work, R. Herring, X. Ban, Q. Jacobson,
and A. Bayen. Evaluation of traffic data obtained via
gps-enabled mobile phones: The mobile century field
experiment. Transportation Research Part C:
Emerging Technologies, 18:568–583, 2010.

[7] A. Hordijk and G. Koole. On the optimality of the
generalized shortest queue policy. Probability in the
Engineering and Informational Sciences, 4:477–487,
1990.

[8] A. Hordijk, G. Koole, and J. Loeve. Analysis of a
customer assignment model with no state information.
Probability in the Engineering and Informational
Sciences, 8:419–429, 1994.

[9] J. Kuri and A. Kumar. Optimal control of arrivals to
queues with delayed queue length information. IEEE
Transactions on Automatic Control, 40:1444–1450,
1995.

[10] R. Long Cheu, C. Xie, and D. Lee. Probe vehicle
population and sample size for arterial speed
estimation. Computer-Aided Civil and Infrastructure
Engineering, 17:53–60, 2002.

[11] Matlab. www.mathworks.com/products/matlab.

[12] M. Mitzenmacher. How useful is old information?
IEEE Transactions on Parallel and Distributed
Systems, 11:6–20, 2000.

[13] C. Nanthawichit, T. Nakatsuji, and H. Suzuki.
Application of probe-vehicle data for real-time
traffic-state estimation and short-term travel-time
prediction on a freeway. Transportation Research
Record: Journal of the Transportation Research Board,
1855:49–59, 2003.

[14] P. Robert. Stochastic networks and queues. Springer,
2003.

[15] T. Roopa, A. Iyer, and S. Rangaswamy. Crotis:
Crowdsourcing based traffic information system. In
IEEE International Congress on Big Data (BigData
Congress), pages 271–277, 2013.

[16] V. Sethi, N. Bhandari, F. Koppelman, and J. Schofer.
Arterial incident detection using fixed detector and
probe vehicle data. Transportation Research Part C:
Emerging Technologies, 3:99–112, 1995.

[17] K. Srinivasan and P. Jovanis. Determination of
number of probe vehicles required for reliable travel
time measurement in urban network. Transportation
Research Record: Journal of the Transportation
Research Board, 1537:15–22, 1996.

[18] A. Thiagarajan, L. Ravindranath, K. LaCurts,
S. Madden, H. Balakrishnan, S. Toledo, and
J. Eriksson. Vtrack: Accurate, energy-aware road
traffic delay estimation using mobile phones. In ACM
Conference on Embedded Networked Sensor Systems
(SenSys), pages 85–98, 2009.

[19] S. Turner and D. Holdener. Probe vehicle sample sizes
for real-time information: the houston experience. In
IEEE Vehicle Navigation and Information Systems
Conference (VNIS), pages 3–10, 1995.

[20] Waze. www.waze.com.

[21] R. Weber. On the optimal assignment of customers to
parallel servers. Journal of Applied Probability,
15:406–413, 1978.


