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abstract: An algebraical ttieory called ASP is presented, describing synchronous 
cooperation of processes. The theory ASP was first mentioned in BERGSTRA & KLOP [4] as an 
alternative for the theory ACP, which works with asynchronous cooperation (see also in [5]). 
One of the main differences between ASP, as it is presented here, and the algebraic theory 
SCCS of MILNER [9] is the representation of parallelism, which is done by considering a 
computation step as a vector, each component of which represents an atomic action on a 
corresponding channel. 
This paper concludes with an example, to give an idea how to work with ASP. 

1. IN1RODUCTION 

In the current research on (hardware) verification one of the main goals is to find strong proof 

systems and tools to specify and verify designs of algorithms and architectures. For instance, in the 

development of integrated circuits the important stage of testing a prototype (to save the high costs 

of producing defective processors) can be dealt with much more efficiently, when a strong 

verification tool is available. Therefore, developing a verification theory has very high priority and 

is subject of study at many universities and scientific institutions. 

In BERGSTRA & KLOP [4] a theory called Algebra of Communicating Processes (ACP) is 

presented, which is an algebraic theory providing us with a formal description of concurrent 

processes. In ACP, parallelism is described as interleaving and therefore in ACP we have 

asynchronous cooperation of parallel processes. In many cases it turns out, however, that a process 

can be described much easier in a clocked network instead. Therefore in [4] a variant on ACP, 

called Algebra of Synchronous Processes (ASP), was suggested in which synchronous cooperation 

could be modeled. 

In this paper we will present the algebra ASP in full detail. The language used here is quite different 

from the usual approaches in BERGSTRA & KLOP [4], MILNER [9] and HENNESSY [11]. Especially 

the fact that parallel composition is represented by taking vectors of atomic actions will turn out to 

simplify the theoretical aspects of the theory. 

The idea of developing an algebraic theory for synchronous processes is not new. In fact, the 

algebra ASP presented in this paper is very similar to the theory SCCS of Milner. On the other 

hand, there exist some important differences between both theories: 
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Since in ASP we use a vector notation to represent parallelism (instead of a new operator as 

in SCCS and ACP) the theory has a smaller signature. For this reason one may expect that the 

study of its theoretical aspects will become much easier to deal with. For example, in SCCS the 

operator x stands for both parallel composition and communication. In ASP we have the operator I 

which stands for communication only. 
In SCCS we have handshaking, i.e. apart from occurrences of terms that evaluate to idle 

actions l, in any communication one has at most two participants. In ASP this restriction is not 

needed. 
Abstraction is dealt with in ASP by use of a general renaming operator (like in ACP) 

whereas sees has abstraction automatically which is a restriction, since we do not always want to 

hide all communication actions of a process. In ASP one can abstract automatically (if it is 

convenient) by chosing an appropriate communication function. 

As indicated before in SCCS we have an operator x. Now assume in a large and complex 

configuration we want to evaluate an expression of the form t=axbxaxcxbx .... then we need to find 

all pairs of the form (a,a) such that both a and a are subterms oft - recall that in SCCS we have 

axa=l for all constants a. This is quite an elaborate job once the complexity oft becomes larger. 

One could solve this problem by not considering t as a term but as a sequence of symbols with one 

coordinate for every symbol: t=[(a,a), (b,b), (c), ... ] and then we can evaluate tin linear time. In 

ASP this evaluation method follows immediately from the construction of vectors of atomic actions 

and the definition of the communication function. 

After having introduced the algebraic theory ASP we will consider two of its models, which may be 

looked at as an operational and a denotational semantics for ASP. Next we will introduce the notion 

of recursion and finally study a particular example, in order to illustrate in which way one can work 

with ASP in practical applications. 

At this place I especially want to thank Jos Baeten, who took the time to correct several draft 

versions of this paper. 

2. AN ALGEBRA OF SYNCHRONOUS PROCESSES 

In process algebra we start from a collection A of given objects called atomic actions, atoms or 

steps. These actions are taken to be indivisible, usually have no duration and form the basic 

building blocks of our systems. The first two compositional operators we consider are., denoting 

sequential composition and+ for alternative composition. If x and y are two processes, then x·y is 

the process that starts the execution of y after the completion of x, and x + y is the process that 

chooses either x or y and executes the chosen process (and not the other). Each time a choice is 

made, we choose from a set of alternatives. We do not specify whether a choice is made by the 

process itself or by the environment. Axioms Al-5 in table 1 below give the laws that. and+ obey. 

We leave out· and brackets as usual in regular algebra, so xy + z means (x·y) + z .. will always 
bind stronger than other operators, and+ will always bind weaker. 

On intuitive grounds x(y + z) and xy + xz present different mechanisms (the moment of choice is 

different), and therefore an axiom x(y + z) = xy + xz is not included. Furthermore, we have a 
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special constant 8e A denoting deadlock, the acknowledgement of a process that it cannot do 

anything anymore, the absence of an alternative. Axioms A6-7 give the laws for 8. In table 1 all 

axioms of the Basic Process Algebra BPA0 are presented (see BERGSTRA & KLOP [4]). 

x+y=y+x Al 

x + (y + z) = (x + y) + z A2 

x + x = x A3 

(x + y)z = xz + yz A4 

(xy)z = x(yz) AS 

x + 8 = x A6 

ox = 8 A7 

Table 1. Basic Process Algebra BPA0. 

The following proposition provides us with a useful tool for induction methods. 

PROPOSITION 2.1 Suppose t is a closed term in BPA0 then t can be written in one of the following 

forms: 

1. t is a constant from A 

2. t is of the form u + v, where u and v are closed terms of less complexity (depth) than t 

3. t is of the form a·u, where a is a constant and u is a closed term of less complexity than t. 

Next, suppose a port P is associated to our basic algebra BPA0, and suppose we have a binary 

function I which is both commutative and associative. We may look at a I bas a communication 

action which is the result of simultaneously performing a and b. 

Furthermore, assume there exists a unit element 1 E A such that 1 I a= a I 1 = a for all ae A. This unit 

element stands for an idle action during which a process is still running but not performing any 

significant step. The notion of an idle action was first introduced by MILNER [9] in a different 

setting. 

In the sequel we assume I to bind stronger than+ but weaker than · . It follows immediately that: 

PROPOSITION 2.2 (A, I , 1) is an Abelian monoid. 

A function I as described so far is called a communication function if 8 is a zero element for I , i.e. if 

for all ae A we have 8 I a = 8. The symbol 8 is chosen here because of its long tradition in process 

algebra, especially in ACP. 

Resuming, we find that I is a communication function if the following conditions are satisfied (see 

table 2): 
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alb=bla Cl 

a I (b I c) = a I (b I c) C2 

ol a= 8 C3 
11 a= a C4 

Table 2. Communication function (a,b,ce A). 

So far, we only considered I to be defined on atomic actions. This definition can be extended to 

processes over BPA5 as follows. Assume two processes a·b and c·d are both performed in parallel, 

then I acts as a synchronous communication merge on both processes, i.e. (a·b) I (c·d) =(a I c)-(b Id). 

So from two BPA15-processes we can construct a new BPA15-process by 'stepwise communication'. 

This intuition can be formally described by adding the following axioms to our algebra for all a,be A 

(see table 3): 

ax I b = (a I b)x 

a I by = (a I b)y 

ax I by= (a I b)(x I y) 

(x + y) I z = x I z + y I z 

x I (y + z) = x I y + x I z 

SCI 

SC2 

SC3 

SC4 

SC5 

Table 3. Communication merge on processes (a.be A). 

Another way to look at I is as follows: from axiom C2 it follows that in expressions with only I , 
we may leave out the brackets; thus we write a I a I b I c instead of ((a I (a I b)) I c).Therefore, we may 

consider such expressions as multisets of atomic actions, which are all performed simultaneously. 

Note that, in case one of the two processes terminates in one step (e.g. in a I (b·y) ), after the 

communication action a I b the process continues with y, which fits into the idea of a multiset 

representation of .actions. 

Next, we introduce renaming operators on BPA15-processes (see BAETEN & BERGSTRA [2]). 

Assume f:A-7A is a function on A, a so-called atomic renaming. Then in table 4 the axioms of the 

renaming function Pr are presented. 

pf(o) = o 

pf(l) = l 
pf(a) = f(a) (a;eo, 1) 

pf(x + y) = pf(x) + pf(y) 

pf(xy) = pf(x)·pf(y) 

(Pf Pg)(x) = Pfog(x) 

Table 4. Renaming in ASP (ae A). 

Rl 

R2 

R3 

R4 

R5 

R6 
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A specific example of an atomic renaming is the one which renames all constants from a certain set 

I~A into one particular constant re A, leaving all other elements from A unchanged. The renaming 

r1(8) = o 
rr(l) = l 
q(a) = r foreveryael (a;e8,l) 

r1(a) = a for every ae I 

r1(x + y) = r1(x) + r1(y) 

r1(xy) = r1(x)·r1(y) 

(r1or1)(x) = rruJ(X) 

Table 5. Simple renamings in ASP (re A, I,Jl:;;A). 

function that results from such an atomic renaming is denoted by r1 and will be referred to as a 

simple renaming function. In table 5 the rules of table 4 are translated for simple renaming 

functions. Having the axioms Rl-R6 we do not need to add them to our system ASP. 

In table 6 all axioms introduced so far, are presented together. The algebra which is thus 

constituted, will be called the Algebra of Synchronous Processes, or ASP for short. Since the set of 

atomic actions A is a parameter of ASP, we will often write ASP(A). However, if A is some 

arbitrary fixed set then we will write ASP for short. In fact ASP is an axiom scheme since we have 

its axioms for any pair of constants a,be A, all sets I~ and all functions f:A~A. 

x+y = y+x Al alb=bla Cl 

x + (y + z) = (x + y) + z A2 (a I b) I c = a I (b I c) C2 

x+x = x A3 o I a= o C3 

(x + y)z = xz + yz A4 11 a= a C4 

(xy)z = x(yz) A5 

x+8 = x A6 

ox = 0 A7 

pr(8) = 0 Rl 

pr(l) = 1 R2 ax I b = (a I b)x SCl 

pr(a) = f(a) (a;eo, 1) R3 a I by = (a I b)y SC2 

pr(x + y) = Pr(x) + Pr(Y) R4 ax I by = (a I b)(x I y) SC3 

Pr(xy) = Pr(x)·Pr(Y) R5 (x + y) I z = x I z + y I z SC4 

(Pf°Pg)(x) = Pfog(x) R6 x I (y + z) = x I y + x I z SC5 

Table 6. ASP(A). 
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We tum the axioms of table 6 into a term rewriting system in order to be able to define normal 

forms in ASP. The resulting system will be called RASP. 

DEFINITION 2.1 The term rewriting system RASP can be found from table 6 by omitting the 

axioms Al, A2, Cl and C2 and next replacing all occurences of'=' by~ (see table 7). 

RASP is a term rewrite system on ASP-terms modulo commutativity and associativity of+ and I , so 

we may consider a RASP-normal form to be built from multisets of summands and 

communications. Note that SC2 and SC5 can be omitted from RASP since I is commutative. 

Obviously, we wish all RASP-reductions to correspond to ASP-derivations. The commutativity 

and associativity of I cannot be derived from ASP for arbitrary processes, however, but we can 

prove it for all closed terms (note that RASP acts on closed ASP-terms only). The proof of the 

following proposition is easy by induction on the structure of closed terms. 

PROPOSITION 2.3 For all closed ASP-terms s and t we have that: 

ASP 1- (s I t) = (t I s) and ASP 1- (s I t) I u = s I (t I u). 

So, RASP-reductions correspond to ASP-derivations. RASP has some more properties, however, 

that are crucial in some later proofs. 

PROPOSITION 2.4 

1. RASP is strongly terminating. 

2. !ft is a normal form with respect to RASP then it is a BPA5-term. 

The proof of proposition 2.4 (1) can be found by using structural induction on ASP-terms. It says 

that the term rewrite system RASP has no infinite reductions. 2.4 (2) can easily be proved by 

structural induction on terms that are not a BPA5-term (hence containing at least one occurrence of 

I ) and by showing that such a term is always the instantiation of the lefthand side of some rule from 

RASP. For further information we recommend the reader to consult [4] in which a similar proof is 

presented in full detail. 
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x+x-tx 

(x + y)z -t xz + yz 

(xy)z -t x(yz) 

x+8 -t x 

ox -t 5 

P1\8) -t 8 

pr(l) -t 

Pr(a) -t f(a) (a;t.8, 1) 

pr(x + Y) ~ P1(x) + P1(y) 

pr(xy) -t P1(x)·p1(y) 

(Pf°Pg)(x) -t Pfog(x) 

Table 7. RASP(A). 

THEOREM 2.5 (elimination) 

RAl 

RA2 

RA3 

RA4 

RAS 

RRl 

RR2 

RR3 

RR4 

RR5 

RR6 

8la-t8 

11 a~ a 

ax I b ~ (a I b)x 

ax I by -t (a I b)(x I y) 

(x + y) I z -t x I z + y I z 

RCl 

RC2 

RSl 

RS2 

RS3 

For any closed ASP-terms, there exists a closed BPA0-term t such that ASP f-- s=t. 

145 

PROOF From proposition 2.4 it follows that any ASP-term s has a reduction to a normal form t 

which is a BPA0-term. Such a reduction corresponds to a proof in ASP and hence we find that 

ASP f-- s=t. D 

So starting from any closed term with I we can find a derivation, using equations from ASP, to a 

closed term without these operators (i.e. a closed BPA0-term). 

PROPOSITION 2.6 RASP is confluent. 

The proof of proposition 2.6 follows immediately from a routine investigation of the critical pairs in 

RASP. Recall that if rand r' are rewrite rules such that lhs(r) unifies with a non-variable subterm of 

r', then lhs(r') can be reduced in two ways: by application of either r or r'. The pair of reducts 

resulting from every two such rules is called a critical pair. Obviously, a term rewriting system is 

confluent if and only if every critical pair is joinable - i.e. both terms in the pair have a common 

reduct. 

DEFINI110N 2.2 The rewriting system RBPA consists of the rules RA1-RA5 from RASP. 

RBP A is the subsystem in RASP acting on BP A0-tem1s, i.e. terms without I and Pf· Note that the 

rules RA1-RA5 produce BPA0-terms as well, hence RBPA can be thought of as a rewriting system 

on BPA0-terms. 
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PROPOSITION 2.7 !ft is in normal form with respect to RBPA, then so it is with respect to RASP. 

PROOF Since RA1-RA5 are the only rules in RASP with a BPA3-tenn on the lefthand side, it is 

clear that a normal form in RBPA cannot be further reduced in RASP. D 

Thus we find that every ASP-term has a normal form (proposition 2.4(1)) which is a BPA0-term 

(proposition 2.4(2)) and which is unique modulo the ordering of the summands and 

communications (proposition 2.6). As a result we find: 

THEOREM 2.8 ASP is a conservative extension of BPA3. 

PROOF Assume ASP I- s=t for two BPA0-tenns s and t, then there exists a proof in ASP 

consisting of equations s=u1, Uj=Ui+l• uk=t (O<i<k) that are closed instances of axioms from 

ASP. Note that every equation is an instance or a context of an instance of a rule or the reverse 

of a rule in RASP, and therefore by propositions 2.4(1) and 2.6 s, Uj (O<i<k) and tall have the 

same normal form. 

Since RBPA is a subsystem of RASP, it is terminating and since sand tare BPA3-terms they 

have normal forms with respect to RBPA. These RBPA-normal forms are normal forms with 

respect to RASP as well (see proposition 2.7) and since RASP is confluent they are equal. 

Hence, there exists a RBPA-reduction from s and t to a common normal form which 

corresponds to a proof in the theory BPA0. Thus find BP As I- s=t. D 

It is important to see a conceptual difference between I and the x-operator in SCCS, introduced by 

MILNER [9]. As is indicated above, I should be interpreted as a communication function, working 

on a certain port which is associated to the algebra (see also [!]). In [9], however, x is introduced as 

a (synchronous) parallel composition operator, which is quite different from our notion of 

communication. Actually, Milner requires every ae A to have an inverse element a, such that for all 

ae A: axa = 1 (hence, (A-(o},x,1,-) is an Abelian group). So, an expression such as axbxaxc can be 

evaluated to axaxbxc (using commutativity ofx), which is equal to lxbxc, and thus we obtain bxc 

(since 1 is a unit element). This expression, which is in normal form, should be interpreted as the 

parallel execution of two atomic actions. Note, that in SCCS we automatically abstract from 

communications such as axil. 

Naturally, the question arises how parallel composition can be represented in the theory ASP. Since 

all atomic actions of the form a I b are considered as a communication and not as the parallel 

execution of two atoms, we have to find a new construct in our theory. 

DEFINITION 2.3 Let Pbe a set of ports and assume A to be a fixed set of atomic actions. 

Then A P is defined as the set of all functions from Pinto A. 

Functions ve A Pare called (atomic) vectors and represent the simultaneous execution of the atomic 

actions v(P) at all ports Pe P. Vectors are considered to be the new atomic actions in our algebra 

ASP(AP). 
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EXAMPLE 

Suppose a buffer B consists of two ports 'left' and 'right'. Assume A=(r(x),s(x),l,o: xE {a,b}), 

where r(x) stands for receiving the value x, and s(x) stands for sending x. A possible definition 

of B could read as follows: 

B = (r(a) 1)-(1 s(a)) + (r(b) 1)-(l s(b)). 

So, B can receive a value (either a orb) from the left port and next send it away to the right port. 

Note that in the signature of both ASP(A) and ASP(AP), there exist constants 8 and 1. Although it 

is not necessary to identify these constants with atomic vectors (they both can exist in their own 

right) we often choose to interpret 8 as the vector with only 8's at all its components, and 1 as the 

vector with all I's. The vectors 8 and 1 are denoted by o and 1 respectively. So O=(o o ... o) and 

1=(1 1 ... 1). 

Starting from a fixed algebra ASP(A), we have to define a new communication function between 

the atomic vectors (apart from the axioms of table 2 there are no further constraints on the choice of 

such a function). From the definition of the communication function on A, we often choose to 

define I on atomic vectors from AP as follows. 

DEFINITION 2.4 Suppose I is a communication function on A, then the natural extension of I is 
defined by: if v and ware two functions from A P then for all PEP 

{ 
o if for some PE Pwe have (v(P) I w(P)) = o 

(v I w)(P) = 

v(P) I w(P) otherwise. 

So the natural extension of a communication function results from applying the communication 

function at all ports separately but with the restriction this does not yield a deadlock, not at any port. 

Otherwise the whole communication fails, i.e. is equal to o. 
In the same way we define a natural extension of the renaming operators. Although ASP(AP) 

pem1its us to define different renamings, it turns out to be useful to define a natural extension of 

renamings from ASP(A). 

DEFINITION 2.5 Let f:A-tA be an atomic renaming on A. Then for all VE APthe natural extension 

fP off is defined by: fP(v)(P) = f(v(P)). 

The natural extension pfP of Pr is defined as: pfP := PrP, often denoted by Pr if no confusion 

arises. Similarly, the natural extension of a simple renaming r1 is denoted by rIP or r1. 

Note that the natural extension of a simple renaming need not be simple. In section 5 we will find 

an application of the definitions 2.4 and 2.5. 

3. MODELS 

In this section we will study on two models for ASP providing us with a clear operational and a 

declarative semantics for ASP. 
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3.1 THE TRANSITION MODEL 

The first model we will present here is the transition model. The way in which the model will be 

described strongly resembles the presentation from VAN GLABBEEK [10). 

On BPA0-tem1s, for each ae A-{ 8} we define a binary predicate __.a and a unary predicate -.a-/. 

Intuitively, x-->a y means that process x can evolve into process y by executing a. x __.a ..J means 

that process x can tenninate successfully after the execution of a. In table 9 the proof rules for these 

two predicates are presented. From now on we assume _,a and __.a ..J to be the minimal predicates 

that are closed under derivations from table 9. 

a: a--> 3 -/ (a*8) 

x __..a x' x __.a-/ y -+a y' y _,a ..J 
+· 

(x + y) _.a x' (x + y)->a ..J (x + y) __.a y' (x + y) __.a ..J 

x __.a x' x _.a ..J 

x·y --> 8 x'-y X·y __.a y 

Table 9. The transition predicates _,a and _,a -.J on BPA0-terms (aE A-( o} ). 

DEFINITION 3.1 A bisimulation is a binary reflexive relation Ron BPA0-terms with the following 

properties (ae A-{ 8} ): 

1. If R(p,q) and p-->a p', then there exists q' such that q-->a q' and R(p',q') 

2. If R(p,q) and q-->a q', then there exists p' such that p-->a p' and R(p',q') 

3. If R(p,q), then p->a ..J if and only if q-->a "./. 

If there exists a bisimulation R between processes p and q, then we say p and q are bisimilar, 

notation: pt:t q. 

THEOREM 3.1 ti is a congruence relation on BPA0-terms. 

The proof of theorem 3.1 is left to the reader. Recall that a relation is called a congruence if it is an 

equivalence relation which respects function symbols. 

The key point of bisimulation equivalence is the fact that except for having the same traces, all 

moments of choice in the process are maintained. For instance note that a(c + d) $. (ac +ad), since 

we have a(c + d) ...... a (c + d) whereas only (ac + ad)-+a c and (ac + ad)-+a d, and clearly we have 

neither (c + d) t:t c nor (c + d) t:t d. 

DEFINITION 3.2 The transition model 'Jr is the set of closed BPA0-terms modulo ti. 
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DEFINITION 3.3 A basic tennis a closed BPA0-term defined inductively as follows: 

1. All constants from A are basic terms. 

2. If to, ... ,tn-1 are basic terms then so is t == aoto + · ·· + an- l tn-1 + bo + ··· + bm-l for certain n,m 

with n+m>O, ai,bj E A and ai ;to. 
A basic tem1 is often written as (Li<n aiti + Lj<m bj). 

DEFINITION 3.4 The depth dp(t) of a basic term t is defined inductively as follows: 

1. for all aE A: dp(a) == 1 

2. for all aE A-{ o} and basic terms s: dp(a·s) == 1 + dp(s) 

3. for any two basic terms sand t: dp(s + t) == max(dp(t), dp(s)). 

PROPOSITION 3.2 For every BPA0-term & there exists a basic term t such that BPA0 f- s==t. 

PROPOSITION 3.3 Lett be a basic term and aE A-{ o ). Then the following statements hold: 

1. /f t-+a s, then sis a basic tenn and dp(s)<dp(t); 

2. lft-+3 s, then BPA0 f- t ==as+ t (i.e. a·s is a summand oft); 

3. lft-+a {then BPA0 f- t ==a+ t. 

The proof of proposition 3.2 is easy and proposition 3.3 can be proved using induction on dp(t). 

Both proofs are left to the reader (see also BAETEN & VAN GLAB BEEK [3]). The following theorem 

is an important result about the transition predicates of table 9. 

THEOREM 3.4 For all closed BPA0-terms sand t we have: BPA0 f- s==t ==> s=tt. 

PROOF We only need to prove that tt respects all axioms of BP Ao- For instance consider the axiom 

(A 1) (s + t) =t (t + s). Set R == I u { (s + t,t + s)} u { (t + s,s + t)), where I is the binary identity 

relation. Assume we have R(p,q) then we find that either p and q are identical or p == (s + t) and q 

== (t + s). Now suppose (s + t)-+a u then this transition is an instance of one of the +-rules in 

table 9. Therefore it follows, that either s-+a u or t->a u and so (t + s)-+a u (applying the +-rule 

again) and by definition we have R(u,u). In the same way it follows from (s + t)->a '1 that (t + 

s)->a -V. Hence we find that Risa bisimulation between (s + t) and (t + s). 

In the same way we find that (A2) ((s + t) + u) tl (s + (t + u)) and (A3) (s + s)=ts. 

In order to prove (A4) (s + t)u =t (su +tu) set R == Iu{((s + t)u,su + tu))u{(su + tu,(s + t)u)}, 

then it easily follows that R is a bisimulation between (s + t)u and (su + tu). 

In the same way we find (AS) (st)u t:t s(tu). Note that o nor O·x can be the left hand side of any 

transition, and therefore we have (A6) s + 8 =t s and (A 7) os ~ o. D 

Clearly o represents an atomic action which cannot proceed (and hence cannot terminate). 

The converse of 3.4 holds as well, as is stated in the following theorem: 

THEOREM 3.5 1r is an initial algebra/or BPA0. 
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PROOF So we have to prove BPA15 I- s=t <=> Sttt. By proposition 3.2 it is sufficient to prove this 

for basic terms sand t only (using transitivity of =t). 

~ by theorem 3.4. 

<= This is done by induction on dp(s) + dp(t), as follows. 

If dp(s) + dp(t) = 2 it directly follows that both s,t are sums of atomic actions from A and hence 

S=t t if and only if BPA15 I- s=t. Now assume Stt t for BPA0-terms s and t and for all s', t' such 

that dp(s') + dp(t') < dp(s) + dp(t) and s'i:d, it is already proved that BPA15 I- s'=t'. 

It is enough to prove that any summand a or a·s' of sis also a summand oft (and vice versa) 

since then it follows that both BPA15 I- s = s + t and BPA15 I- t = t + s, which yields BP A15 I- s=t. 

(1) Assume a is a summand of s (ae A), then s =a+ r ors= a. Clearly s-+a .Y and hence t---.a .Y 
since Stt t, and therefore by proposition 3.3 it follows that a is a summand oft. 

(2) Assume a·s' is a summand of s, i.e. s = a·s' + r ors= a·s'. Then s-+a s', and so t---.a t' for 

some t' with s'ttt'. By proposition 3.3 it follows that t' is a basic term with dp(t')<dp(t) and at' 

is a summand oft, i.e. BPA15 I- t =at'+ t. Furthermore, dp(s')<dp(s) so by induction we 

conclude that BPA15 I- s'=t'. Hence BPA0 I- at'=as' and therefore BPA0 I- t =as'+ t. D 

Theorem 3.5 makes clear that BPA0 is in fact a full axiomatisation of bisimulation equivalence on 

closed BP A15-terms. 

In order to extend BPA0 to the larger theory ASP, consider the additional rules in table 10: 

I: 
x-+a x'' y ---.by' x---.a x' ' y---.b .Y 

(a I b*o) 
x ly -+alb x' iy' x I y-.al bx' 

x---.a ,) , y---.b y' x---.a .Y , y---.b,) 
(alb * o) 

x I y-.al by' xly-.alb-.j 

x---.a x' x-+a .Y 
Pr: (a*o,l; f(a)*o) 

pf(x)-+f(a) pf(x') pf(x)---.f(a) .Y 

x-+1 x' x-+l .Y 

pf(x)-+l pr(x') pr(x)-+l .Y 

Table 10. The transition predicates ..... a and _,a .Y on ASP-terms (aE A-( li}). 

Again, we will assume these transition predicates to be the minimal interpretation which is closed 

under the rules of table 9 and table 10. 
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DEFINITION 3.5 The transition model with communication TIC is the set of ASP-terms modulo 

bisimulation equivalence. 

THEOREM 3.6 TIC is an initial algebra for ASP. 

PROOF It is straightforward to prove that ASP I- s=t :=:) S!:!t (*). 

So assume S!:::!t for some ASP-terms sand t. By theorem 2.5 it follows that for some BPA15-

terms s' and t' we have that ASP I- s=s' and ASP I- t=t'. Now using (*) it follows that S!:! s' 

and t!:l t', so using the transitivity and the commutativity of !:! we find that s' !:! t'. Since both s' 

and t' are BPA15-terms, it then follows from theorem 3.5 that BPA13 I- s'=t', hence ASP I- s'=t'. 

From ASP I- s=s' and ASP I- t=t' it then follows that ASP I- s=t. D 

Later on we will return to the subject of transitions, and consider the transition predicates in models 

that have a larger domain. 

3.2 THE GRAPH MODEL 

In this section we consider another model for ASP consisting of equivalence classes of process 

graphs (see BAETEN, BERGSTRA & KLOP [I]). 

DEFINITION 3.6 A process graph is a labeled, rooted, finitely branching, directed multi graph. 

Recall that rooted graphs are graphs with precisely one node indicated as the root (without further 

restrictions), and that in a multigraph one may have more than only one arrow (edge) in between 

two nodes pointing at the same direction (even if they carry the same label). 

An edge goes from a node to another (or the same) node, and is labeled with an element from A. 

We consider only finitely branching process graphs, so every node has only finitely many outgoing 

edges. Although a process graph may have infinitely many nodes we must be able to reach any 

node in only finitely many steps. A graph which has finitely many nodes will be called regular. 

An edge from nodes to nodes', with label a, will be denoted as s-7a s'. The nodes in a process 

graph can be looked at as states. s~a s' is called an a-step from s to s'. 

DEFINITION 3. 7 A simulation from a graph g to a graph h, notation R: g~h. is a relation R between 

nodes of g and nodes of h such that: 

1 . The roots of g and h are related by R; 

2. If R(s,t) and from s we can do an a-step to a nodes', i.e. we have s-7a s' with label aE A-{o} 

(so a;eo) then in h we can do a-step from t to a node t' with R(s',t'). 

3. If R(s,t) and sis an end point in g then t is an end point in h. 

A bisimulation between two graphs g and h, notation R: g±±h, is a relation R such that both R: 

g::zh and R-1: h,::±g. Furthermore, we write g.::±h if there exists an R such that R: g-7h and similarly 
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we write gHh if there is an R such that R: gHh. 

g: h: 

/-\~A 
figure 1. R: g---7h. 

The notion of bisimulation was originally due to PARK [12). For more information, see MILNER 

[8], BAETEN, BERGSTRA & KLOP [l]. 
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PROPOSITION 3.7 His an equivalence relation on the set of process graphs. 

PROOF H is reflexive (i.e. for all process graphs g we have g±:±g) since the identity relation on 

nodes of g (relating any node precisely with itself) is a bisimulation. 

H is commutative (i.e. for all g and h: g!:Zh => hHg) directly from the definition. 

His transitive (i.e. for all f, g and h: fHg and gHh => fHh), which is proved as follows: 

Suppose R: f±:±g and S: gHh. Define the relation T between f and h, such that for any two 

nodes r in f and tin h: T(r,t) iff there exists a nodes in g such that R(r,s) and S(s,t). 

1. Now clearly the roots off and hare related by T. 

2. Next, assume T(r,t) and suppose from r we can do an a-step to a node r', so: r-7a r' (a;1:8). 

Lets be a node in g such that R(r,s) and S(s,t). Since Risa simulation from f tog, we can do 

an a-step from s to a node s', i.e. s-7a s', such that R(r',s'). Furthermore, since S is a 

simulation from g to h, we have edges t-7a t' in h such that S(s',t'). Directly we find that T(r',t') 

which satifies the second condition in definition 3.7. 

3. Finally, assume for some end point r in f we have T(r,t). Lets be such that R(r,s) and S(s,t) 

then it directly follows that s is an end point in g hence so is t in h. 

Thus we find that T: f-7h. For reasons of symmetry we conclude T: h-7f, hence T: fHh. D 

Note that &-edges are not mentioned in the definition of bisimulation. As a consequence we find that 

starting from a 8-edge, there is no restriction whatsoever on its subgraph (example 2). 

Next we will introduce the ASP-operators +, · and I on process graphs in order to turn the set of 

graphs (modulo H) into a model for ASP. 

DEFINITION 3.8 The binary functions +, · and I are defined on process graphs as follows. Assume 

g and h are two such graphs, then: 

1. (g + h) is obtained as follows: start from a new root node r, and add a new edge r-7a s' for 

each edge r g-7a s' in g which starts from the root node r g of g (ae A); similarly, add a new edge 

rh-7a t' for each t-7a t' in h which starts from the root node rh (ae A). Finally, remove all nodes 

which have become inaccessible from r. 

+ 

2. (g·h) is obtained by identifying all end points of g with the root of h. If g has no end points, 

this is just g. The root of g·h is the root of g. 
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= a b 

3. (g I h) is a sub graph of the cartesian product of g and h (i.e. the graph corresponding to the 

cartesian product of the sets of edges and nodes of g and h) defined as follows: 

(a) the root of (g I h) is the pair roots of g and h. 

(b) if (s,t) is a node in (g I h) then: (i) if s--7a s', t--7b t' are edges in g and h respectively, then 

(s,t)--7(a I b) (s',t') is an edge in (g I h); (ii) ifs is an end pointing and t--7b t' is an edge in h then 

(s,t)--7b (s,t') is an edge in (g I h), and (iii) if s-7a s' is an edge in g and t is end point in h then 

(s,t)--7a (s',t) is an edge in (g I h). 

c 

d 

DEFINITION 3.9 The unary functions Pr are defined on process graphs by simply replacing all labels 

a (;to,1) by f(a). 

THEOREM 3.8 H is a congruence on process graphs with respect to +, ., I and Pf· 

PROOF By proposition 3.7 His an equivalence relation. Now assume R: uHu' and S: v-Hv'. 

Set T =Ru S and T+ =Tu ( (r(u + v),r(u' + v')),(r(u' + v'),r(u + v))} where r(g) stands for 

the root node of the graph g, and define R I S on the cartesian product of nodes from u and v 

such that: (R I S)((s,t),(s',t')) if and only if R(s,s') and S(t,t'). 

1. T+: (u + v) .t::t (u' + v'), which follows directly from the definitions 3.7 and 3.8-1. 

2. T: (u·v) H (u'·v'): the roots of (u·v) and (u'·v') are related. Next, assume in (u·v) we have 

T(s,t) and s--7a s', then clearly s and s' both originate from either u or either v. Therefore in 

either u' or v' (so in u"v') we have t--7a t' such that T(s',t'). 

Assume T(s,t) and sis an end point in u·v then it easily follows that t is an end point in u'·v'. 

3. (R I S): (u Iv) H (u' Iv'). The roots of (u Iv) and (u' Iv') are related by (R I S). Next, assume in 

(u Iv) we have (s,t)->a (s',t') and (R I S)((s,t),(p,q)); by definition we have s--7b s' and t-7c t' in 

p and q respectively, such that (b I c) =a. Since Rand S are simulations and since R(s,p) and 
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S(t,q), there exist p~b p' and q-?c q' in p' and q' respectively such that R(s',p') and S(t',q'). 

Hence we have (p,q)~(b I c) (p',q') in (u' I v') and clearly (R I S)((s',t'),(p',q')). 

Finally, assume that R((s,t),(p,q)) for any end point (s,t) in (u Iv) then it follows easily that 

(p,q) is an end point in (u' I v'). 

4. R: pf(u)Hpr(u'). Suppose in pf(u) there is an edge s-?a s' and suppose we have R(s,t). Then 

in u there exists and edge s-?b s' such that either be { o, 1} or f(b)=a. Now there are two cases: (i) 

if bE { o,l} then a=b, and since R is a bisimulation between u and u' there is an edge t-?b t' in u' 

with R(s',t'). Therefore in Pr(u') there exists an edge t-?b t', i.e. an edge t-?a t' such that 

R(s',t'); (ii) if b:;to,1 then a=f(b). In u' there exists an edge t-?b t' with R(s',t') and clearly we 

find that in pf(u') there exists an edge t-?a t' such that R(s',t'). Hence R: pr(u)Hpr(u'). D 

DEFINIDON 3.10 The graph model G is the algebra of all process graphs modulo H. 

In this algebra the constants ae A are interpreted as two-node graphs with one edge in between, 

labeled with a. The function symbols are defined as in definition 3.8 and 3.9. 

THEOREM 3.9 G is a model for ASP. 

PROOF The axioms Al-A3 follow almost immediately from the definition of+ and bisimulation. In 

this proof we assume u, v and w to be arbitrary process graphs. 

Construct u' from u by taking together all end nodes into one (new) end node. Consider the 

relation R, which is the identity on u except for the end nodes in u that are related with the new 

end node in u'. Clearly R is a bisimulation and sou Hu'. From this construction and the 

definition of· we immediately find A4: (u + v)·w H u·w + v·w. 

Axiom AS follows immediately from the definition of·. Moreover, the identity relation on u is a 

bisimulation between u and (u + o), so A6: u H u + o. The relation which only relates the root 

nodes of o and o·u is a bisimulation between o and o·u, so: A7: o H o·u. 

The axioms Cl-C4 and SCl-3 simply follow from definition 3.8. The axioms Rl-R6 

immediately follow from the definition ofrenaming on graphs (definition 3.9). D 

4. RECURSION 

In the previous section we have defined the graph model G, which turned out to be a model for 

ASP in which we have graphs representing (possibly) infinite processes. In the following we will 

investigate a way in which infinite processes can be described algebraically. 

DEFINITION 4.1 A recursive specification over ASP is a set of equations E = { x = tx : xe V}, where 

Vis a set of variables and tx are ASP-terms only containing variables from V. 

DEFINITION 4.2 Lett be an ASP-term and x a variable from t. The occurrence of x in t is called 

guarded if x is preceded by an atomic action from A, i.e. if t has a subterm of the form a·s with 

ae A, and this x occurs in s. If not, the occurrence of x is called unguarded. 

A recursive specification is called guarded if each occurrence of a variable is guarded. 
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DEFINITION 4.3 The Recursive Definition Principle (RDP) is the rule saying that every guarded 

recursive specification has a solution. 

We will write JlF= RDP ifthe recursive definition principle RDP holds in the algebra~ 

Recursive specifications are used to specify processes. If a recursive specification E is satisfied in a 

model and xe V, then <x I E> will denote the x-component of some solution of E. So if E has more 

than only one solution, <x I E> will denote some kind of quantified variable ranging over all E's 

witnesses (see VAN GLAB BEEK [10]). If E has no solution, then <x I E> remains undefined. Finally, 

<t I E> denotes the term tin which each occurrence of a variable xe Vis replaced by <x I E>. The fact 

that <x I E> is a solution of E can simply be expressed by: <x I E> = <tx I E>. 

recursion: 
<tx I E>-.a .y 

<x I E>-.-.a..J 

Table 11. Additional transitions for recursion. 

DEFINITION 4.4 The Recursive Specification Principle (RSP) says that every guarded recursive 

specification has at most one solution. 

So, in a model with both RDP and RSP every guarded recursive specification has precisely one 

solution and every term <t I E> has a unique interpretation. 

Let us extend the signature of ASP with unary operators 1tn (ne (J)) called projection functions, with 

the axioms of table 12 below (ae A): 

1tn(a) =a PRl 

7t1(a·x) =a PR2 

1tn+1(a·x) = a·1tn(x) PR3 

1tn(X + y) = 1tn(x) + 1tn(Y) PR4 

Table 12. The projection functions 1tn for n11. 

The operator 1tn cuts off the process after it has executed n atomic steps. 

Now suppose 'fiCR is the extension of 'fC with new terms <tx I E> for every recursive specification 

E and every variable x in E, satisfying the transitions of table 11. It is easy to extend the models 

'fiCR and G with the new operators 1tn, obeying the laws in table 12. The extension of the theory 

ASP with these axioms will be denoted by ASP + PR. 

DEFINffiON 4.5 The Approximation Induction Principle (AIP) is the rule that reads: 

(VnH: 7t0(x) = 1tn(Y)) => x=y. 
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PROPOSITION 4. I 

1. TC f= AlP 

2. TCR f= RDP, RSP, AIP 

3. G f= RDP, RSP, AIP 

The proof of proposition 4.1 is left to the reader. 

In order to prove AIP in the graph model it turns out to be necessary that process graphs are 

finitely branching. If not, consider the infinitely branching graphs informally denoted by: 

g = (:Ene wan) and h = (Loew an)+ aw, 

where aw denotes the infinite repetition of a-steps. Clearly, for all nE (J) we have n:n(g) = TI:n(h) but 

we do not have gHh. 

Clearly TC 17' RDP since no closed term has infinitely many transitions, whereas a process 

satisfying x = a·x can do infinitely many a-steps. Note that in the models TCR and G we do not 

have that every recursive specification has a solution. For instance {x =a+ xa} has no solution in 

the model of finitely branching process graphs. 

Finally, recall that TCR and G are isomorphic if and only if we allow the specifications E to be 

infinite as was shown in VAN GLABBEEK [10]. 

5. EXAMPLE: COMPUTER INTEGRATED MANUFACTURING 

In this section we present an example of an application of ASP which is taken from MAUW [7]. In 

Computer Integrated Manufacturing (CIM), computers are integrated in the overall production 

process of some industrial product. From a high level of view, a plant can be seen as constructed 

from several concurrently operating workcells. Every workcell represents a well-defined part of the 

rnanufacturing process and a master control is needed to make the components cooperate c01Tectly. 

In the following we will present a strong simplification of the CIM-architecture in [7]. It is not our 

aim to study the theoretical aspects of CIM-architectures in general, but merely to give an 

illustration of the way ASP applies to practical problems. 

Consider the configuration as pictured in figure 2 (next page). This workcell has three components: 

(WA) The workstation WA, which receives a 'semiproduct' p from port 4 which is passed through 

to port 5. 

(WB) The worksta[ion WB accepts a product p from port 5, and produces a new product prod(p) 

which is sent away via port 6. 

('iVC) The workcell controller receives a certain number n at port 1, which is sent to WA and WB. 

After the number is accepted WA and WB will both repeat n times (independently) after which a 

message r ('ready') is sent to the workcell controller. 

Imagine a factory in which unfinished semiproducts p have to be turned into commercial products 

prod(p). Now, the complete configuration should work as follows: from port 1, WC receives a 

message to generate n products of the form prod(p). So, WC will send the instruction to WA to 
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'pick up' n products from port 4 and pass it through to WB. Moreover, WC will send the 

instruction to WB to pick up n products from port 5 and produce n products of the form prod(p ). 

we 

5 
WB 

6 4 
WA 

Figure 2. A workcell configuration 

The configuration of figure 2 consists of three components interconnected by 6 ports. So we set: 

p = { 1, 2, .. ., 6). 

Along ports 1, 2 and 3 a positive integer n can be sent. We will assume that n~N for some fixed 

NE w. A ready message 'r' can be sent from WA and WB to WC and products of the form p or 

prod(p) can be sent through ports 4, 5 and 6. So we have a data set D defined by: 

D = {n: l~n5.N}u{r)u{p, prod(p)}. 

In order tO fix the alphabet of ASP, we define the set A of atomic actions as follows: 

A= (r(x), s(x), c(x): XE DJ U{ l, o}. 

On atomic actions from A, the communication function I is defined as follows: 

r(x) I s(x) = s(x) I r(x) = c(x) 

whereas all other communications on A not containing 1 's are equal too. 

Next we are ready to present a proper specification of the workcell. From now we will work within 

the algebra ASP(A1) with the natural extensions of the communication function I (definition 2.4) 

and the renaming operators (definition 2.5). The constants of ASP(A1) consist of all 6-dimensional 
vectors (a1 a2 ... a6) where aiE A are atomic actions from ASP(A). 

At this point we will introduce some shorthand notations that are very useful to avoid the elaborate 

vector notations. 

DEFINITION 5.1 Assume we have a set of ports Pand let aE A be some atomic action from ASP then 

for all Qe Pwe define 11QE APby: 
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'Q(P} • { : 

if P=Q 

So in our setting we have that r(p)i = (1 r(p) 1 1 l 1) and s(r)5 = (1 1 1 1 s(r) 1). Because of a 

strong tradition in process algebra we will write r2(p) instead of r(p)i and s5(p) instead of s(p)5. 

Now let us give a precise definition of the three components of the workcell. 

WA= 1· 2:Is.ns.N r2(n)·WA(n) 

WA(O) = s2(r) 

WA(n+ 1) = r4(p)-s5(p).W A(n) 

WB = 1· 2:liniN r3(n)·l·WB(n) 

WB(O) = s3(r) 

WB(n+l) = rs(p)-s6(prod(p))-WB(n) 

WC = I:liniN r1 (n)-WC(n) 

WC(n) = (s2(n) I s3(n))·2n·r2(r)-r3(r)-s1 (r) 

Table 13. A formal specification of the workcell. 

In the equation for WC(n) we have used the abbreviation n for in. Formally we could have defined 

in by use of the inductive definition {II= 1, 1n+l = 1·1°). In the same way we define tn for 

ASP-terms t and n2 l. 

Now define: 

I= {r(p),c(x): xeD} 

WORKCELL= l1(WA I WB I WC). 

We abstract from actions like r(p) and thus from an unlimited supply of goods available at port 4. It 

turns out that we can prove the following theorem: 

PROOF The proof of theorem 5.1 can be given by use of induction on n: 

Induction hypothesis For all 1 ~n~k we have: 

(i) I 1( W A(n) I l ·WB(n) I 2n·r2(r)·r3(r)·s1 (r) ) = 2· (s6(prod(p)-1)0 ·s1 (r) 

(ii) 11(WA(n) I s6(prod(p))-WB(n) I 2n·r2(r)·r3(r)-s1(r))) = (s6(prod(p))·l)n+l .s1(r). 
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k=l: 
(i) 11(WA(l) I l·WB(l) I 2·r2(r)·r3(r}s1(r))) = 

= 11( r4(P)·s5(p)·s2(r) I 1-r5(p)·s6(prod(p))·s3(r) I 2·r2(r)·r3(r)·s1(r))) = 
= 11( (r4(p) 111 1)-(s5(p) I r5(p) 11)-(sz(r) I s6(prod(p)) I rz(r))-(s3(r) I r3(r))·s1 (r)) = 

= l1(r4(p}c5(p)·(c2(r) I s6(prod(p))·c3(r)·s1(r)) = 

= 2·s6(prod(p))· l·s1 (r). 

(ii) l1(WA(l) I s5(prod(p)).WB(l) I 2·r2(r)·r3(r)·s1(r))) = 

= l1(r4(p)·s5(p)·s2(r) I s6(prod(p))·r5(p)·s6(prod(p))·s3(r) I 2·r2(r)·r3(r}s1 (r)) = 

= 11( (r4(p) I s6(prod(p)) I l)-(s5(p) I r5(p) 11)-(sz(r) I s6(prod(p)) I rz(r))-(s3(r) I r3(r))·s1(r)) = 

= l1((r4(p) I s5(prod(p)))·c5(p)-(cz(r) I s6(prod(p)))·c3(r)·s1(r)) = 

= (11 s6(prod(p)))·Hl I s5(prod(p)))·l·s1(r)= 

= (s6(prod(p ))· 1 )2 · s1 (r). 

k+l: 

(i) 11( WA(k+ 1) I l·WB(k+l) I 2(k+l)·r2(r)·r3(r}s1(r))) = 

= lr( r4(r)·s5(p)·WA(k) I 1-r5(p)·s5(prod(p))·WB(k) I 1·1·2k-r2(r)·r3(r)·s1(r))) = 

= 11( (r4(p) 111 1) · (c5(p) 11) · (WA(k) I s6(prod(p))·WB(k) I 2k-r2(r)·r3(r)·s1 (r))) = 

= 2· 11(WA(k) I s5(prod(p))·WB(k) I 2k-rz(r)·r3(r)·s1 (r)) = 

= 2· (s6(prod(p))· l)k+l ·s1 (r) (use (ii) with n=k). 

(ii) lr(WA(k+l) I s6(prod(p))·WB(k+l) I 2(k+l)·r2(r)·r3(r)·s1(r))) = 

= 1 r< r4(p)·S5(p)·WA(k) I S5(prod(p))·r5(p)-s6(prod(p))·WB(k) I 1-1 ·2k·r2(r)-r3(r)·s1 (r))) = 

= 11( (r4(p) I s6(prod(p)) 11) · (c5(p) 11)-(WA(k) I s6(prod(p))·WB(k) I 2k·r2(r)·r3(r)·s1(r)))= 

= (11 s6(prod(p)) 11) · 1 · (s6(prod(p))·l)k+I ·s1 (r) (again, use (ii) with n=k) 

= (s6(prod(p))·l)k+2 ·s1(r). 

So we have proved the induction hypothesis to be true for all k. Then it easily follows that: 

WORKCELL= 11(WA I WB I WC)= 

= 11( ~ls.ns.N (1 11 I ri (n)) · (rz(n)·WA(n) I r3(n)· l ·WB(n) I WC(n)) )= 

= :Elins.N r1(n)·11( (rz(n) I r3(n) I sz(n) I s3(n)) · (W A(n) 11.WB(n) I 2n·r2(r)·r3(r)·s1 (r)))) = 

= :Eu.ns.N r1 (n)· 11( (cz(n) I c3(n))· (WA(n) I l·WB(n) I 2n·r2(r)·r3(r)·s1(r)))) = 

= L.15.ns.N r1(n)·1-11(WA(n) I l·WB(n) I 2n·r2(r)·r3(r)·s1 (r))) = 

= L.1 s.ns.N r1(n)-3-(s6(prod(p))·1)0 ·s1 (r) (using the induction hypothesis (i)) D 

By theorem 5.1 we have formally proved that after having received a certain value n, WORKCELL 

will produce n products of the form prod(p) and then return a message that it is ready. Of course we 

could have considered much more complicated examples than the one presented here. 

In the above example we have chosen to use the natural extensions of both operators I and Pr· In 

quite a few applications however these extensions do not give us precisely what we want and we 

are forced to introduce different renaming functions. For instance, the natural extension of r1 in our 



W.P. Weijland / The Alg;ebra of Synchronous Processes 161 

example, will rename the atomic action r(p) into 1, no matter at which port it occurs. But what to do 

then, if we wish to abstract from the occurences of r(p) at one particular port only, and encapsulate 

all r(p)'s occurring at other ports? 

Define the following atomic renamings: 

DEFINITION 5.2 For all ve A P f(v) is defined as follows: 

for all iE P, XE D: 

if { (i=4 and v(i)=r(p)) or v(i) = c(x)} then f(v)(i) = 1 else f(v)(i) = v(i). 

DEF!NlTION 5.3 For all VE AP g(v) is defined as follows: 

if for some iE P, xE D: { v(i) = s(x) and i.c6 and i7:l} or ( v(i) = r(x) and i.c 1} 

then g(v) = 8 else g(v) = v. 

Using both definitions, and using the axioms of renamings (see table 4) we can derive the 

following theorem: 

The proof of theorem 5.2 follows easily from the proof of theorem 5.1 and is left to the reader. 

REFERENCES 

[l] Baeten, J.C.M., Bergstra, J.A. and Klop, J.W., On the consistency of Koomen's fair 

abstraction rule, TCS 51 (1/2), pp. 129-176, 1987. 

[2] Baeten, J.C.M. Bergstra, J.A., Global renaming operators in concrete process algebra, report 

CS-R8521, Centre of Math and Comp. Sci., Amsterdam 1985. 

[3] Baeten, J.C.M. and Van Glabbeek, R.J., Another look at abstraction in process algebra, 

proc. 14th ICALP conf., Karlsruhe (Th. Ottman ed.), Springer LNCS 267, pp. 84-94, 1987. 

[4] Bergstra, J.A. and Klop, J.W., Process algebra for synchronous communication, 

Inf.&Control 60 (1/3), pp. 109-137, 1984. 

[5] Bergstra, J.A. and Klop, J.W., The algebra of recursively defined processes and the algebra 

of regular processes, proc. 11 th ICALP, ed. J. Paredaens, pp. 82-95, Antwerp, Springer 

LNCS 172, 1984. 

[6] Bergstra, J.A. and Klop, J.W., The algebra of communicating processes with abstraction, 

TCS 37(1), biz. 77-121, 1985. 

[7] Mauw, S, Process algebra as a tool for the specification and verification of CIM-architectures, 

report P8708, Programming Research Group, University of Amsterdam, 1987. 

[8] Milner, R., A calculus of communicating systems, Springer LNCS 92, 1980. 

[9] Milner, R., Calculi for synchrony and asynchrony, TCS 25, pp. 267-310, 1983. 



162 W.P. Weijland / The A /gebra of S_n1c!zronous Processes 

[10] Glabbeek, R.J. van, Bounded nondeterminism and the approximation induction principle in 
process algebra, proc. STACS (F.J.Brandenburg, G.Vidal-Naquet & M.Wirsing eds.), 

Springer LNCS 247, pp.336-347, 1987. 

[11] Hennessy, M., Synchronous and Asynchronous Experiments on Processes, Inf.&Control 

59, pp. 36-83 (1983). 

[12] Park, D.M., Concurrency and automata on infinite sequences, Proc. 5th GI Conf., Springer 

LNCS 104, 1981. 


