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ORM ASYMPTOTIC EXPANSIONS OF A CLASS OF INTEGRALS IN 
::IVIS OF MODIFIED BESSEL FUNCTIONS, WITH APPLICATION TO 

CONFLUENT HYPERGEOMETRIC FUNCTIONS* 

N. M. TEMMEt 

,5tract. The integral 

FA (z, a)= L"" tA-t e-"-"1'f(t) dt 

idered for large values of the real parameter z; a and A are uniformity parameters in [O, oo). The 
otic expansion is given in terms of the modified Bessel function KA (2./(;Z). The asymptotic nature 
~,cpansion is discussed and error bounds are constructed for the remainders in the expansions. An 
e is given for confluent hypergeometric or Whittaker functions. In this example the integrals are 
rrned to standard forms and the mappings are investigated. 

y words. uniform asymptotic expansions of integrals, modified Bessel function, confluent hyper­
ric function, Whittaker function, construction of error bounds, transformation to standard form 
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• Introduction. We consider integrals of the form 

FA(z, a)= I'" tA-l e-zt-a/'J(t) dt, 

reduces to a modified Bessel function in the case that f is a constant. We have 

2(a/z)A12K;..(2.J<ii) = f" tA-l e-rr-a/t dt. 

itegral in ( 1.1) is considered with a, A ~ 0 and large positive values of z. We aim 
ive asymptotic expansions for F:.. (z, a) that hold uniformly with respect to both 

.A in the interval [O, oo). To handle the transition of the case a= 0 to a> 0, the 
ied Bessel function ( 1.2) is needed. Observe that when a= 0 the essential singular­
the integrand of (1.1) disappears and that (1.1) becomes a more familiar Laplace 
al, which can be expanded by using Watson's lemma. 
'irst we consider fixed values of A. To describe the asymptotic features we introduce 
>sitive number f3 defined by 

f3 =.Ja/z. 

:tddle points of exp (-zt+ a/ t) are located at t = ±{3. When f3 is bounded away 
:ero, we can use the familiar Laplace method, since at the point t = f3 the integrand 
e form of a Gaussian function. When, however, a-+ 0, that is, f3-+ 0, the internal 
~ point coalesces with the point t = 0, where the argument of the exponential 
on has a pole. In addition, there is an algebraic singularity (if A ~ 1 ), but the 
nee of the essential singularity due to the pole is more significant. Observe that 
limit a = 0, as mentioned earlier, the pole disappears; also, both saddle points 

•ce with the pole. These asymptotic features are typical for certain integrals 
ng Bessel functions. For this reason the modified Bessel function in (1.2) serves 
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as a basic approximant in the uniform asymptotic expansions in this paper. In § 4 we 
show how an integral with the same phenomena can be transformed into the standard 
form (1.1). 

The integral in (1.1) is the simplest case with the asymptotic features described 
above, especially when the parameters are in the indicated intervals. We apply the 
results to a confluent hypergeometric function. By allowing different intervals of 
integration, say a contour in the complex plane, we can also consider negative values 
of a. Then the ordinary Bessel function J.(z) shows up. This case is more difficult, 
but the applications are very interesting in the theory of special functions. 

Consider as an analogue of (1.1) a loop integral in the form 

(1.4) f (O+) 

G>.(z, a) =-2
1 . t->.-I e"+"'1'f(t) dt. 
1Tl -00 

This notation means that the contour of integration starts from -co, arg t = - Tr, describes 
a circle counterclockwise around the origin, and returns to -oo, arg t = +Tr. The integral 
( 1.4) has the modified Bessel function I>- (2Jai) as approximant. When f = 1 we have 

(1.5) G>.(z, a)=(z/a)>.121>.(2.f<iZ). 

When a is negative this function is an ordinary I-Bessel function. In [2] and [6] 
integrals of the type (1.4) are treated and the method is used for obtaining a uniform 
expansion of Laguerre polynomials. We plan to return to this problem in a future paper. 

The starting point ( 1.1) is of interest since it has a real interval of integration. 
Thus the transformation to the standard form ( 1.1) involves a real mapping. This makes 
the first steps of the analysis rather simple, since we do not need to trace the transformed 
contour in the complex plane. For studying the asymptotic nature of the expansion, 
we use complex variables, however. 

The plan of the paper is as follows. In § 2 we construct a series expansion based 
on an integration by parts procedure, and we give estimates for the remainder in the 
expansion. In§ 3 we consider an expansion that is based on expanding! at the internal 
saddle point. In § 4 we give an application to confluent hypergeometric functions. In 
§ 5 the parameter A is considered as a second uniformity parameter in [O, oo ), and 
again we apply the methods on a confluent hypergeometric function. Especially, we 
pay attention to the mappings needed for a transformation to the standard form. 

Terminology. We call a parameter fixed when it does not depend on the parameters 
z, a, A. ffi z = x, :S z = y are the real and imaginary part of z = x + iy. 

2. An integration by parts procedure. The procedure of this section takes into 
account both saddle points ±(3 of the exponential function (where f3 is given in (1.3)), 
although -{3 lies outside the interval of integration. For this reason we assume that f 
is also defined at negative values of its argument, and that f is sufficiently smooth for 
the operations to be used here. Further conditions on f will be given later. 

2.1. Construction of the formal series. The first step is the representation 

(2.1) /(t) = a0 + b0( t-{3) + (t-{3 2 / t)g(t), 

where ao, bo follow from substitution oft= ±{3. We have 

ao= /(/3), 
1 

bo = 213 [/(/3)-f(-(3 )]. 

Inserting (2.1) into (1.1) we obtain 

F>. (z, a)= aoA>. (z, /3) + b0 B>- (z, {3) + F~1 >(z, a), 
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where A.1., B.1. are combinations of the modified Bessel functions introduced in (1.2). 
It is straightforward to verify that 

(2.2) A.1. (z, /3) = 2/3>.. KA (2{3z), B.1. (z, {3) = 2{3.1.+ 1[K.1.+ 1 (2{3z) - KA (2{3z)]. 

An integration by parts gives 

1 Joo F~0(z, a)= -- t.1.g(t) d exp (-z(t + {3 2/ t)) 
z 0 

1 J"" =- t.1.- 1exp(-z(t+[3 2/t))f1(t)dt 
z 0 

with 

d 
f1(t)=t 1-A dt[tAg(t)]=Ag(t)+tg'(t). 

We see that zF~1 l(z, a) is of the same form as FA(z, a). The above procedure can now 
be applied to zF~1 \z, a), and we obtain for (LI) the formal expansion 

00 00 

(2.3) FA(z,a)-AA(z,{3) L asz-s+BA(z,{3) L bsz-s asz~co, 
s=O s=O 

where we define inductively Jo= f, g0 = g and for s =I, 2, · · · 

(2.4) 

fs(t) = f I-A :( [t>..gs-1(f)] = Qs + b5 (f - {3) + ( (-~2) gs(t), 

a5 =fs({3), 
1 

bs = 2{3 [fs({3) - fs( -{3)]. 

Remark 2.1. As mentioned earlier, for this procedure we need function values of 
f and derivatives at negative values, although the integral ( 1.1) is defined only for 

t-values in [O, ro). When we consider analytic functions f, as we do later, we assume 

that f is analytic in a domain 0 in the complex plane that contains the real line. When, 
however,! is supposed to belong to Ck[O, co), we assume in the above procedure that 
f has been smoothly continued on (-co, O]. 

2.2. The remainder of the expansion. We introduce a remainder for the expansion 
in (2.3) by writing 

n-1 n-1 

(2.5) FA(z,a)=A.1.(z,{3) L a .. z-s+B.1.(z,{3) L b5z- 5 +z-nRn, 
s=O s=O 

where n = 0, I, · · · . When n = 0 the sums are empty and R0 = F.1. ( z, a). The integration 

by parts procedure yields for Rn the representation 

(2.6) Rn= f" tA-I exp (-z(1+1f3
2

) )fn(t) dt, 

where f,, is defined by (2.4). 
When a bound for lfn ( t )I is available, say, 

(2.7) t ~ 0, n = 0, 1, · · · , 

then a bound for Rn reads 

(2.8) 
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Since fn depends on {3, the quantity Mn may also depend on {3. It follows that for 

bounded values of {3, say {3 E [O, {30 ], {3 0 fixed and finite, the estimate (2.8) of the 

remainder Rn shows the asymptotic nature of the expansion (2.5), provided that (2.7) 

is satisfied. 
We must point out that, in general, it is rather difficult to find realistic numbers 

Mn in order to obtain sharp estimates in (2.8). Also, the estimate in (2.7) is rather 

global, since it takes into account values of fn in the complete interval [O, oo). 

A sharper and more realistic bound for Rn may be obtained as follows. Let 

(2.9) wcr(t) ==exp { cr(t+ {3 2 / t- 2{3)}, t > 0, O";;;;:; o. 

Observe that wcr(/3) = 1 and that when er> 0 

lim w"(t) = lim wcr(t) = +oo. 
r-+0 t_,+oo 

We assume that we can assign quantities crn and Mn, which may depend on {3 and 

which satisfy 

(2.10) en fixed and positive, 

such that for all t > 0 we have 

(2.11) 

Then instead of (2.8) we obtain 

(2.12) 

where 

(2.13) 

When fn ({3) = 0 a slight modification is needed. The idea about this approach is that 

in (2.11) function values outside a neighborhood of t = f3 may be estimated very 

roughly, and that the integral, which results after inserting the right-hand side of (2.11) 

into (2.6), can be written in terms of one of the approximants in front of the series in 
(2.5). 

A possible approach to computing M" and crn of (2.11) is to start with trial values 

of Mn satisfying (2.10). Then we compute 

O"n=supjn(t), 
t~O 

{3 fixed in [O, oo), 

where 

t rf {3, fn({3) ;C 0. 

Observe that the function defined in (2.13) satisfies 

A,.. (z, /3)/ A;.. (z, {3) = 1 + o(l) as z"' ro, 

uniformly with respect to f3 E [O, oo ). This follows from (2.2) and well-known asymptotic 

relations for the Bessel function. 

3. Expansion at the internal saddle point. In the expansion (2.3) we have used 

function values off at the negative saddle point -{3. These values appear in the 

coefficients as, bs of the expansion. The form of the expansion is very attractive, since 

only two special functions arise, and also since the parameters f3 and z are nicely 
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separated in both series. Although the expansion (2.3) has a canonical form, there 
remains the drawback that the function f must be defined at ( -oo, O] in order to obtain 
for /3 a uniformity domain [O, co). For example, it is not possible to obtain such a 
uniformity domain when f(t) = 1/(t+ 1). In this section we only expand the function 
f at the internal saddle point, and we formulate further conditions on f in order to 
obtain an optimal domain for {3. 

3.1. The functions Q.(,) and Q,((). We expand fin the form 

00 1<•l(f3) 
f(t)= L a.(f3)(t-f3)', a.=--1 -. 

•=0 s. 
(3.1) 

Substituting (3.1) in (1.1), we obtain after interchanging the order of summation and 
integration the formal result 

00 

(3.2) F;.(z, a)-z-;. L a.({3)Q,(()z-•, as z~co, 

where 

(3.3) 

(3.4) 

s=O 

Q,(,) = (•+• {"" t;.- 1(t-1)' e-W+l/i) dt, 

'= f3z. 

The functions Q,(() can be expressed in terms of the modified Bessel functions defined 
in ( 1.2). It is easily verified that 

(3.5) 

On the other hand, integrating by parts in (3.3), we obtain the recursion relation 

(3.6) Q.+2=(s+,\+1- 2no.+1 + '(2s + ,\ + l)Q, + s{2 Q.-1, s=0,1,2,···. 

For proving the asymptotic properties of (3.2) it is useful to introduce the functions 

(3.7) Q.(() = (J.+s I" t.1.-1lt- l15 e-W+J/1) dt. 

By applying Laplace's method it is found that for large positive values of ( 

(3.8) Q,({)-,A+<•-1>12 e-2•re; 1), s=O, 1,2,· · ·. 

Furthermore, we have when z is fixed 

Jim Q.(()=f(A +s). 
~-+O 

3.2. Error bounds and interpretation of the expansion. We introduce a remainder 
in the expansion (3.2) by writing 

n-1 

(3.9) f( t) = L a,({3)( t- /3 Y + Rn(t, /3)( t- /3Y, n =O, 1, 2, · · ·. 
s=O 

Then we obtain for (3.2) 

(3.10) F;. (z, a)= z-;. [:~: a,(f3)Q.(nz-• + En(z, a )z-n]. 
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where 

(3.11) En(Z, a)= ZA+n I"" t'"- 1(t-,B)"Rn(t, ,8) exp (-zC+;82)) dt. 

Let f be analytic in a connected domain n of the complex plane; n may depend 
on ,8, and we assume that the radius of convergence Rp of the expansion (3.1) satisfies 
the condition 

(3.12) ,8?;,0 (p, K fixed, p > 0, K ?;,!). 

This condition says that the distance between the singularities off and the point t = ~ 
should be of order 0(,81(), uniformly with respect to ,8 E [O, co). When K < ! the 
singularities off are too close to the saddle point. Furthermore, we assume that f has 
the following growth condition in il: there is a real fixed number p such that 

(3.13) sup (1 + /tl)-P/f(t)/ 
ren 

is bounded for~ E [O, oo). 
The coefficients a,(,8) of (3.1) can be written as 

(3.14) 1 f f(t) 
a,(/3)=27Ti c,(t-{3)5+1 dt, 

where C, is a circle with centre {3 and radius r( 1 + f3 t; r may depend on ,8, but should 
be uniformly bounded away from zero and small enough to keep C, inside .0.. Using 
(3.14) we obtain the following form of Cauchy's inequality 

(3.15) 

where 

(3.16) M,(~) =sup /f(t)/. 
teC, 

In the next theorem we introduce an asymptotic sequence {4',}, which is constructed 
on the basis of the estimates in (3.7) and (3.15). For the concept of asymptotic scale 
and (generalized) asymptotic expansion we refer to [ 4, p. 25]. 

THEOREM 3.1. Let l = ~z, K ~ !, and let 

s=0,1,2,···. 

Then {4>,} is an asymptotic scale as z__.oo, uniformly with respect to ,8 e [O, ro). 
Proof 

(3.18) </>s+ I ( _ r;:,-:;- 1 1 --;:= 1+/3) l(vl+lz- ~..fi ifz?;,l. 

Now we write the expansion (3.2) in the notation 

00 

(3.19) z ... F ... (z, a)- L a,(MQ.(l)z-'; 
s~o 

{cp,} as z__.co, 

and we have the following theorem. 

THEOREM 3.2. The expansion (3.19) is a uniform asymptotic expansion as z ~ oo 
uniformly with respect to f3 e [O, oo ). ' 
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Proof. According to the definition of generalized (uniform) asymptotic expansions, 
we have to prove 

(3.20) n = 0, 1, 2, · · ·, 

as z ~ oo, uniformly with respect to f3 E [O, oo). The interval of integration in (3.11) is 
split up as follows 

(3.21) [O, oo) =A_ U [L, t+] U A+, 

where 

(3.22) A_= [O, L], A+=[t+,oo), 0 < r 1 < r, r1 fixed, 

with r as in (3.14). When L happens to be negative, we replace it by 0. For tE [L, t+] 
we can write 

(3.23) 1 f f( T) 
R,.(t,{3)=21Ti c,(T-t)(T-,8)"dT, 

with C, as in (3.14). If TE C" we have IT- tl ~ (r- r,)(1 + ,8)". Thus we obtain as in (3.15) 

(3.24) 

Hence z" times the integral over [ L, t+] in (3.11) gives a contribution which is bounded 
by 

(3.25) 
zAM,(,8)(l+/3)-""J 1+ A-I n ( (t+/3 2

)) 
n-i( ) t lt-/31 exp -z -- dt 

r r - r1 ,_ t 

= M,(/3)(1 + {3)-""z-"Q,.(()0'(1) as z~oo, 

uniformly with respect to f3 E [O, oo). Using (3.7), (3.8), and (3.17), we conclude that 

(3.26) 

uniformly with respect to f3 E [O, oo), where I± are the contributions to (3.11) from A±. 
For t E .6."' we write 

n-1 

(t - /3)" R,.(t, /3) = f(t)- L as(/3)(t- /3)', 
s=O 

and the proof is finished when we have shown that 

(3.27) zA f t>.-i e-z(t+/3'!•> g(t) dt = O'(<f>,.) as z~oo, 
~"' 

uniformly with respect to f3 E [O, oo), where g(t) is lf(t)I or las(t-/3Yl(O~ s ;;an -1). 
In fact, it is possible to prove that 

(3.28) 

uniformly with respect to f3 E [O, oo). That is, I± are asymptotically equal to zero with 
respect to the scale {</>5 }. The proof of (3.28) is similar to that given for another type 
of integral in [5, Lemma 3.3] and will not be repeated here. 0 

The above theorem gives only an order estimate in terms of </>,. for the remainder 
defined in (3.11) and gives an interpretation of the asymptotic nature of the expansions 
(3.2) and (3.19). To obtain a numerical upper bound for E,.(z, A) we proceed as in 



248 N. M. TEMME 

the previous section. Since f(t) satisfies the growth condition (3.13), it is possible to 

find numbers M,,, u,, satisfying (2.10), such that 

(3.29) 0< t<oo. 

Using this in (3.11), we obtain the bound 

(3.30) IEn(z, All~ Mn lan(/3 ll e-213"• On ((- /3<r,, ), 

When a,,({3) happens to vanish as a function of f3 E [O, oo), this approach needs a slight 

modification. 

4. Application to confluent hypergeometric functions. We start with the confluent 

hypergeometric function defined by 

(4.1) I'(a)U(a,b,x)= f'° ua- 1(1+u)b-a-i e-xudu. 

We consider a as the large parameter and x as a uniformity parameter in [O, oo); b is 

a fixed real parameter. We take b ~ 1; the relation 

U(a, b, x) = x 1-bU(a + 1- b, 2- b, x) 

can be used when b > 1. 

4.1. Transformation to the standard form. First we give a simple intermediate 

transformation. The function [u/(u+l)]a assumes its maximal value (on [O, oo)) at 

u = oo. This function controls the asymptotic behaviour of the integrand and, hence, 

we transform it to an exponential function by writing u/ (u + 1) =exp (-w). Then (4.1) 

becomes 

(4.2) I'(a)U(a, 1-A,x) = f 00 wA-i exp (-aw--f-)j(w) dw, 
o e -1 

where 

(4.3) _ [l-e-w]A-1 
f(w)= --

w 

We transform (4.2) into (1.1) with the help of the transformation 

(4.4) J! /32 
w+--=t+-+A 

ew-1 t ' 

where v = x/ a and {3, A are to be determined. We compute them on the following 

condition on the mapping: the critical points of the w-function in ( 4.4) must correspond 

with the critical points of the t-function. Critical points are ± w ± t where 
o, o, 

(4.5) to= {3, Wo = cosh- 1 (1 + v/2) =In ( 1 + v +2 Wo), W0 =Jv2 +4v. 

It follows that 

(4.6) A=-~ 
2' f3 w0 +sinh w0 1 ( v+ W0 ) 1 

------" = - In 1 +--- +- W. 
2 2 2 4 O· 

From the simple differential equation 

df3 1 
-d =-v'(v+4)/v 

v 4 
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and a Taylor expansion of the right-hand side, it follows that {3 2 of (4.4) is an analytic 
function of 11, at least in the disc ! 11! < 4. Conversely, 11 is an analytic function of {3 2 
in some neighborhood of the origin. These domains can be extended to domains 
containing [O, oo). 

With these values of A, /3 the mapping w >-? t is regular at w = ± w0 and at w = 0. 
In fact it is regular in 1R and as a conformal mapping in a large domain n. of the 
complex plane. We have the correspondences 

(4.7) t(±oo) = ±oo, t(±w0) = ±{3, t(O) = 0. 

More details on the mapping are given in the next subsection. 
Using transformation (4.4) in (4.2), we arrive at the standard form 

(4.8) F;i..(z, a)= r(a) e-x/2 U(a, b, x) = f" t"- 1 e-zt-a/'f(t) dt, 

with z =a, a= z/3 2, A= 1- b, f3 defined in (4.6) with 11 = x/ a, and 

t =(1-e-w)>.-ldw dw=(ew-1) 2 t2 -f3 2 

(4-9) J() t dt' dt t (ew-1)2 -vew· 

The function t( w) defined in ( 4.4) is an odd function of w. This easily follows from 
rewriting ( 4.4) in the form 

(4.10) 
1 11 {3 2 
-v+w+--= t+-. 
2 ew -1 t 

After these preparations the expansion of (3.2) can be constructed. The expansion 
holds uniformly with respect to f3 E [O, co); that is, uniformly with respect to x E [O, co). 

The asymptotic nature of the expansion follows from combining (3.20) and (3.17). 
For this particular case we can derive an upper bound for M,(/3) of (3.16). The t-values 
on the circle are written as t = f3+TJf3+1, with \TI= r, r fixed. When f3 and 11 are 
large, we derive from ( 4.6) f3 = v / 4 +In .JV + O'( 1). So, for large values of {3, we obtain 
(using (4.10)) t+ {3 2/ t- v/2 = w + 11/(ew -1) =In 11+ T 2 + O'(l). That is, w-ln 11. Then 
it follows from (4.9) that f(t) = 0({3 112->-), tE C,. Consequently, we can find a fixed 
number K, such that 

(4.11) M,(/3) ;a K (/3 + 1) i12-", f3 E [0, oo). 

To conclude this subsection, we give the first coefficient ao(/3) of (3.2). A few 
calculations based on (4.9) and l'Hopital's rule yield 

dwl - =J2tanh(w0/2)//3. 
dt t=±/3 

So we obtain 

(4.12) 

4.2. Analytical properties of the mapping (4.4). We now consider the mapping 
(4.4) in more detail. We restrict w to the strip 

(4.13) H={wlffiwEIR,~wE[-7T,7T]}, 

and we prove the following. 
THEOREM 4.1. Let n be the image of H under the mapping W>-?t defined in (4.4). 

Let v E [O, co) and let A, f3 be defined by (4.6). Then t(w, f3) is analytic in H. 
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In the following proof we show that t(w, /3) and w(t, {3) are analytic in a fixed 

neighborhood of (O, 0). Accordingly, we concentrate on small (complex) values of the 

parameters. For remaining values the proof is much easier. For instance, when /3 is 

bounded away from zero, the critical points t = ±{3 and the pole at t = 0 of the right-hand 

side of (4.4) are well separated. The preparations for applying the Implicit Function 

Theorem mentioned below are more straightforward then. 

Proof From ( 4.6) it follows that 

w0 =/3[1+o(l)], v=f3 2[1+o(l)] asf3~0. 

Recall that t( w) is an odd function of w (see (4.10)). We introduce a function y = y( w, [3) 

by writing 

( 4.14) t=w[:/(w2 -w~)y]. 
This matches the points w = O<:=:> t = 0 and also the critical points w = ± w0 <:=:> t = ±[3; y 

is an even function of w and should vanish with [3. Substituting ( 4.14) in ( 4.10), we obtain 

vt <f>(w)2-</>~ Wo) +2- (1-2-) + ( w2- w~) (1- 2/3) y - w2( w2- w~)2y2 = 0, 
W W-Wo Wo Wo Wo 

where <f>(w) = w/(exp w-1)-1 + w/2. We expand 

</>(w)-<f>(wo)=~b( 2_ 2)s-1 
2 2 £... s W Wo , 

W -wo s=! 

{3-wo 
b1=--. 

VWo 

Since </> ( w) is analytic if I wl < 21T, the series converges if f3 and w are small. Finally, 

we obtain the equation F(y, w, /3) = 0, where F is given by 

vf3 ~ bs(w2 -w6Y-2 +vy I bs(w2 -w~y- 1 +(1- 213)y-w2y 2• 
Wo s=2 s=I Wo 

The series represents analytic functions of w, Wo. When f3 is small, w0 is an analytic 

function of f3 (see (4.6)). Hence, F is analytic in a fixed neighborhood of (0, 0, 0), 

F(O, 0, 0) = 0, and Fy(O, 0, O) = -1. After these preparations we can use an Implicit 

Function Theorem (see, for instance, [1, p. 36]) and solve for y(w, {3); it is analytic 

in a fixed neighborhood of (O, O). By using (4.14) it follows that the same holds for 
t(w,{3). D 

The first terms in the expansion 

t(w, /3) = c1(.B)w+c3(/3)w 3 + · · · 
easily follow from (4.10). We have 

2 /32 VC1 
Ci+--c --

6 I 4 

v 

THEOREM 4.2. The mapping (4.4) is univalent in H. 

Proof. First we show that the mapping is univalent on 

2+ = { w = u +iv I u E IR, v = 1T}, 

~hich is the u~per part of the boundary aH of H. We write t = r ei8• The image of X+ 
m the t-plane 1s defined by the equations 

. ( [32) 
(4.15) 1T = r sm (J 1- , 2 , 'lt(u) = <P(O), 
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where 

W(u) = v/2+ u - v/(eu + 1), et>( 8) = r cos 8 ( 1 + ~:). 
The first equation in (4.15) defines a curve given by 

r( 8 ) = 7T+J7T2 +4,B 2 sin2 8 

2 sin 8 ' 
0<8<7T. 

It follows that r > 7T I sin 8. Furthermore, we have 

1¥( -co) =<I>( 1T) = -oo, 'I"( +oo) = ct>(O) = +oo. 

The function 'l"(u) is one-to-one on IR. The same is true for ct>(8) on (O, 7T), but the 
proof requires a little extra work. We have, using the first equation in (4.15), 

dr r cos 8(r2 - ,8 2) 
-=-
d8 sin 8( r2 + ,8 2 ) • 

It follows that 

( 4.16) d<l>(8)=_sin8(r2 +,B 2)[ 2 (dr) 2] 

d8 r 3 r + de ' 

which shows that <I>( 8) is one-to-one on (0, 7T ). We infer that for each value u E IR we 
can find one and only one value 8e(O, 7T), such that 'l"(u)=ct>(8), and, hence, one 
and only one value r( 8). Since t( w) is an odd function of w (see ( 4.10) ), the mapping 
w ~ t is one-to-one on a H. When ITT w ~ ±oo we have w - t. Hence the mapping t( w) 
is also one-to-one as w ~co, we H. We now consider a large closed rectangle ABCD 
of which upper side AB and lower side CD are finite parts of aH, and BC and AD 
are far away to the right and to the left, respectively. From the above arguments it is 
not difficult to conclude that the mapping is univalent on BC, AD, and on the whole 
Jordan curve ABCDA, provided that the vertical sides are far away. Then we use a 
well-known result of complex function theory, which says that consequently the 
mapping is also univalent in the interior of rectangle ABCD, since it is analytic there. 
See [3, Vol. II, p. 118]. We can take the finite rectangle as large as we please. Thus 
the result also holds for H. D 

For the uniform expansion of ( 4.8) we take 0 as the image of the strip H under 
the mapping w~t. From f(t) defined in (4.9) it follows that (3.13) is bounded in 0 
if p = 1 - A and that M,(,B) of (3.16) is well defined. There remains to show that the 
radius of convergence R 13 of the series in (3.1) satisfies (3.12). It appears that we must 
take K = ! . In fact, we show that 0 contains a disc around .B with radius pJ /3+1 (p 
fixed), for all .BG; 0. The points of intersection of the circle with radius r around the 
point t = .B with the curve defined by the first equation of (4.15) are governed by the 
equations (we write t = <T + ir) 

T> 7T. 

When we require that the circle is tangent at the curve we have the extra condition 

<T - .B 2u( -r - 7T ) 2 

-T-= 7T,8 2 +2r(T-7T)2 " 
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This equation is obtained by equating dT /du of both equations and eliminating -r2 + u 2 

by using the second one. For large values of {3 the solution of these three equations reads 

T = ?T+ aJP[l + o(l)], u= ,8 + b~[l + o(l)], r = c.J'/3[1 + o(l)], 

with a = b = ·hr /2, c = ..r:i. 
This shows that 0 is large enough to apply Theorem 3.2. From a further analysis 

it follows that the value K = ! is best possible in this case. Apart from the real critical 
points ± w0 given in ( 4.5), which are regular points for the mapping, we have other 
ones located at ±w0 ± 27Tni, n = 1, 2, · · ·. For large values of ,8 those are mapped at 
a distance 0( ~) from the critical point t = {3. 

Remark 4.1. The behaviour of f(t) of (4.9) in the left half-plane ffit <0 is quite 
different from that in ffit> 0, except when A= 1. Consequently, the approach of§ 2 is 
less attractive. See also Remark 2.1. 

Remark 4.2. When b =!. (4.1) is a parabolic cylinder function, and the functions 
Q,({) defined in (3.3), (3.5) are elementary functions (A=~). Then (3.2) gives an 
expansion of the parabolic cylinder function D,,(z), as v-+ -ro, which is uniformly 
valid with respect to z E [O, oo). 

5. A second uniformity parameter. In this section we consider ( 1.1) with A as a 
second uniformity parameter in [O, oo ). Thus we take further advantage of the fact that 
the modified Bessel function is a function of two variables. In this case it is convenient 
to put the reciprocal gamma function in front of the integral. So, now we write 

(5.1) 1 foo F (z a)=-- t>.-l e-zt-a/'j(t) dt 
>. ' f(A) o • 

In [5] we considered (5.1) with a= 0, again with z-+ ro and A as a uniformity parameter 
in [O, oo). In [6] we applied the present method for a loop integral (without proofs) 
to the case of Laguerre polynomials. 

We write A = µ,z. The critical points of the integrand are now defined as the points 
where the derivative of t + {3 2 / t - µ ln t vanishes. This gives the real critical points 

(5.2) µ±T 
t ---,,- 2 ' 

Observe that also in this case one of the real saddle points is outside the interval of 
integration, and that the "phase function" that is used to compute the critical points 
has a logarithmic singularity at t = 0. The two critical points coincide with this singular­
ity when f3 andµ both vanish. At the same moment, however, the logarithmic singularity 
disappears. 

First we construct an expansion by using the integration by parts procedure of 
§ 2. The modification of (2.1) is 

(5.3) f(t) =co+ d0(t- t+)+ (t- µ - ,82 / t)h( t). 

Using this in (5.1) we obtain, after repeating the procedure, 

n-1 n-1 

(5.4) F>.. (z, a)= C(z, {3, µ) L c,z-• + D(z, ,8, µ) L d.z-s + z-n Rn. 
s=O s=O 

The functions in front of the series are again combinations of Bessel functions as in 
(2.2). We have 

2,8>. 
D(z, /3, µ) = r(A) [µK>.+ 1(2,8z) - t+KA (2,8z)]. 
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icients c., d. follow from the recursion relation 

~(t)=f(t), d ( /32) fs(t)= t dt h._1(t)= c.+d.(t-t+)+ t-µ-t h.(t), 

's =fs(t+), 
d. =f(t+)-f(t_). 

t+-L 

.inder Rn in (5.4) can be written in the form 

} f 00 R =-- t'- 1 e-zr-o:/•.r (t) dt 
n f(,\) o Jn • 

can be constructed by using constants a-", M" satisfying (2.10), and using a 

wu(t) =exp ( a-(t+~2 
-µIn t-t+-~: +µIn t+)) 

, as in (2.11), for all t>O 

IJn (t)I ~ Mnlfn (t+)I Wu,, ( f ). 

obtain 

· 1+) = 0, a slight modification is needed. An optimal value of a-" follows from 
od described in § 2.2. 
analogue of the expansion of § 3 is obtained by substituting 

n-1 ls)(t+) 
f(t)= L c.(f3,µ)(t-t+)5+R"(t,f3,µ.,)(t-t+)", c.=--. 

s ! s=O 

>tain 

En(z,a,A)=zA+n Loo tA-l(t-t+)"Rn(t,{3,µ)exp(-zC+/3
2
)) dt, 

zA+s f oo ( (t+ /32)) P.=f(A) 
0 

t1.- 1(t-t+)5exp -z - 1- dt 

2zA+sf3A s (s) 
= f(A) r~o r (-t+)'-'{3 'KA+,(2/3z ). 

ion relation for P. follows from the above integral representation. 

~ zA+s f"' ( (t+/32)) 
P.=r(,\.) 

0 
t1.- 1lt-t+l·exp -z -t- dt 

_ YJA+(s-1)/2 (- ( {32))[{32+t~]-(s+l)/2 (~) 
f(A) exp T/ l+ t~ 2t~ f 2 as T/ ~ oo, 
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where 'T/ = zt+. Since z is the large parameter, 'T/ is large if at least one of the uniformity 

parameters {3, µ is bounded away from zero. 

The coefficients Cs and the remainder Rn can be written as 

__ 1 f j(r) dT 
c,([3, µ)-2 · ( t )' ' 

1TI C, T- + 

where C, is a circle around t+ with radius r( 1 + t+) ", K ~ ! , r > 0. We accept that f 
depends on both uniformity parameters {3, µ, and we assume that the domain of 

analyticity D is large enough to contain such a circle for all /3, µ iS: 0. 

As in § 3 we have the following theorems. The quantity M,({3, µ) is defined as in 

(3.16); we also assume that (3.13) is bounded for all /3, µ E [O, co). 

THEOREM 5.1. Let 'T/ = zt+, K ;s;L and let for s = 1, 2, · · · 

=M,([3,µ) {1+7J)<s-1J;2 ex (- (l+/32))[{32+t!]-(s+o;2. 
(5.8) Xs r(A)zs (l+t+l"' P 'T/ t! 2t~ 

Then {x.} is an asymptotic scale as Z-?CO, uniformly with respect to {3, µ E [O, co). 
THEOREM 5.2. The expansion 

00 

(5.9) z'F,(z, a)- L cs(f3,µ)Psz-'; {x,} as z -7 co, 
s=O 

is a uniform asymptotic expansion as z---+ oo, uniformly with respect to [3, µ E [ 0, o:::i ). 

A bound for the remainder En of (5.6) can be constructed by combining the 

methods used for (3.30) and the above estimate for the remainder of (5.4). 

5.1. Application to a confluent hypergeometric function. Our starting point is ( cf. 
( 4.2)) 

(5.10) 

f(a) 
f(A) U(a, l-A,x) 

=-1-f 00 exp (-z[-µ ln (1-e-w)+ w+---;;-]) dw_w, 
f(A) 0 e - l 1- e 

with z =a, µ=A/ z, v = x/ z. The real critical points of the "phase function" are 

(5.11) ( µ+i-± w) 
w± =In 1 + 2 , 

The transformation to the standard form (5.1) reads 

( 5.12) -µIn (ew -1)+ (µ + l)w+-v-= t+ 132 -µ In t+ A· 
ew -1 t , 

A, f3 are determined by substituting w± and t±, where t± are the critical points defined 
in (5.2). We have the correspondences 

t( ±oo) = ±oo, t(O) = 0. 

Observe that the introduction of a second parameter (here in the form of µ) does not 

require a third constant in the equation (5.12). It has the same number of constants 

as (4.4). In fact, in order to obtain a regular mapping w>---+ t, the constants multiplying 

the log-functions in the left- and right-hand side of (5.12) must be the same. We assume 

that the log-functions take their principal branches. 
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Elimination of A from the two equations (5.12) (with w = w±> t = t±) gives a 
relation for the unknown parameter f3 in terms ofµ,, v: 

2+µ,+v+W W+µ,+v T+µ, 
(µ,+l)ln -µIn +W=2T-µ,ln--. 

2+µ,+v-W W-µ,-v T-µ, 
(5.13) 

By consideringµ, E [O, oo) as a fixed parameter, we obtain a more transparent relation 
for f3 ( v) in the form of a differential equation: 

(5.14) df3 ( II) = f3 W 
dv 211T' 

,B(O) =0. 

The value of A follows from (5.12) by substituting w = W+, t = t+. We have 

µ,+v+W µ,+v-W 
A=(µ,+l)w+-µ,ln -T. 

µ,+T 2 

Using (5.13), we can eliminate W/2-T and we obtain 

(5.15) 1 [ .B' J A = l ( µ, + 1) In ( µ, + 1) + µ, In -;- ,u - v . 

The transformation (5.12) is discussed in the next subsection. By using it in (5.10) 
we obtain the standard form (5.1): 

F ( ) - ezAr(a) U( - ) __ 1_ f '° A-1 -zt-Oi/'J( ) d 
>. z, a - f(A) a, 1 A, x - f(A) 0 t e t t, 

where z =a, a= z,8 2 ; f3 2 follows from (5.13) withµ.,= A/ z, 11 = x/ z. Furthermore, 

t dw ew(ew-l) t 2 -µ,t-f3 2 

(5.16) f(t)=l-e-w dt (ew-1)2-(µ+11)(ew-1)-v' 

The first coefficient of (5.9) equals f(t+). A few computations give 

Co(,B, µ,) = ew+l 2JT/ W. 
The function f satisfies f( t) - t as t ~ +oo, whereas f is exponentially small at -oo. 
This time we can also derive an expansion based on (5.4). 

5.2. Analytical properties of the mapping (5.12). The mapping w ~ t defined in 
(5.12) is one-to-one on the strip H given in (4.13). First we prove this property for 
the boundary. The proof is similar to that for Theorem 4.2. The equations for the image 
of the upper part of aH are given by (cf. (4.15)) 

where 

1T = r sin 8 ( 1 - ~:)- µ,8, 'l'( u) =<I>( 8), 

v 
'l'(u) =-A+(µ.,+ l)u--u-, 

e +1 
<I> ( 8) = r cos e ( 1 + ~:) - µ, In r. 

It follows that the image is given by 
-~~~~~~~ 

µ,8 + 1T +.J (µ,8 + 1T ) 2 + 4{3 2 sin2 e 
r( 8) = 2 . e ' sm 

0< 8 < 11'. 

The function 'l'(u) is one-to-one on IR. When we compute d<t>( 8)/ de, we find the same 
expression as in (4.16). As in Theorem 4.2, we conclude that the mapping is univalent 
on the boundary for all /3, µ., E [O, oo). 
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It remains to show that the mapping is analytic inside H. The interesting question 

is: Is t( w) analytic at t = 0, t = w±, uniformly with respect to the parameters v, µ,? 

Especially interesting are small values of the parameters, since then the critical points 

coalesce with the pole and log-singularity at w = 0. When one of the parameters is 

bounded away from the origin, the critical points w± are well separated. In that case 

the problem is simpler. Here we prove that t( w, v, µ,) is analytic for complex values 

of the three arguments in a fixed neighborhood of (0, 0, O). The proof follows the idea 

of§ 4.2. 
First we have the following theorem. 

THEOREM 5.1. /3 2 = /3 2( v, µ) defined by (5.13) is an analytic function of v, µ,. 

Proof. As remarked earlier, we concentrate on small values of the parameters. For 

µ = 0 the relation between 11 and f3 is given in (4.6), and we have mentioned there 

that /3 2( v, O) is analytic in the domain of interest. On the other hand, we have the 

expansion 

/3 2(11,µ)-c 1(µ)v+c 2(µ)v 2 +c3(µ)11 3 +· · · as v~o. 

The coefficients c_. are analytic functions of µ. The first few easily follow from ( 5 .13): 

Cr(µ) = e<,..+r) 10 (µ+!)/µ-! = 1 +~ µ _ _!__ µ 2+ O(µ 3 ) asµ.,~ 0, 
2 24 

C1(µ.,)[µ+2-2C1(µ.,)) =_!__+()( ) 
µ 2 12 µ, asµ., ~o. 

Next we observe that the quantity T of (5.2) is singular at [3 2 = -µ 2/ 4 and that W of 

(5.11) has singular points at 11 = 110 , 11 = vr, where 

(5.17) Vo=-(µ +2)+2.J JL + 1, 111=-(µ.,+2) - 2.J µ., + 1. 

It is obvious that the singularities at - µ 2 / 4, 110 must correspond. That is, a necessary 

condition for /3 2 to be regular for small values of Iµ., I is f3 2 ( v0 , µ.,) = - µ., 2 / 4. Note that 

110--µ., 2/4 as µ.,~0 and that (5.13) is satisfied when we substitute T= W=O. 

We "remove" the singularity at v = 110 from (5.13), and we introduce a function 
X = X(q, µ)by writing 

(5.18) 
T+µ W-µ-11 

T-µ W+,u+v 
1+Jqx 
1-vl(jX' q = lJ - Vo. 

In other words, 

( 5.19) 
v'q X = µ W-(v+ µ)T 

WT-,u(µ,+11)' T = ,u[ W + ( v + ,u )-Jq X]/ D, 

D= v+µ+./qXW 

Now we can rewrite (5.13) in the form K+L+M=O with 
' 

K = ( w - 2 T)D = W( II - ,u) +vl(j X( v 2 + 411 - ,u 2 ), 

L=D(µ+l)ln2+,u+v+W D(µ+l)ln l+Jqz 
2+,u+v-W 1-Jqz' 

T + II. w - µ - I/ 1 + r: x 
M=Dµ ln--r =Dµ Jn vq 

T-µ W+µ+v 1-Jqx' 
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where 

z = ~ = .Jq+ 110-111 

2 + µ.. + V q + 2 + µ.. + Vo. 

We expand K + L+ M in powers of q. A first observation is that F(q, X, µ..) := 
(K + L+ M)/vq is a function of q, X, µ..,the factor Fq being completely removed. We 
expand F in powers of q. We have 

F(q, X, µ..) = F0 + F 1q+ F2 q2 + · · ·, 

where Fs(X, µ..)do not explicitly depend on q (or v). We compute 

It appears that F 0 (X, µ..) = 0, and that, hence, we can continue with the equation 
G(q, X, µ..):=FI q = F 1 + F2 q + · · · = 0. We claim that the equation G(q, X, µ..) = 0 can 
be solved for X = X(q, µ),and that X is analytic for small values of both arguments. 
By calculating some limits, it follows from (5.18) or (5.19) that X(O, O) =-!.This is 
used to show that G(O, -!, O) = F 1(0, O) = 0. In order to apply an Implicit Function 
Theorem (see [l, p. 36]), we need to show that G is analytic in a neighborhood of 
(0, -!, 0) and that G(O, -!, O) = 0, Gx(O, -LO)~ 0. It is straightforward to verify that 
G(q, X, µ) is analytic in a neighborhood of (0, -!, 0). Furthermore, Gx(O, -!, 0) = 
aF1/ aX = 4 at (X, µ..) = ( -!, O). We have shown that we can solve the equation G = 0 
and that the solution X ( q, µ..) is analytic in a fixed neighborhood of ( 0, 0). 

It remains to show that {3 2 is analytic. We consider T of (5.2) given in the middle 
of (5.19). We are done when we have shown thatµ../ Dis bounded away from zero 
when µ is small, since then we can divide the denominator of T by µ... From the above 
result it follows that we can expand 

X(q, µ..) =X0 (q)+X1(q)µ..+· · ·, 

where the coefficients X., are analytic functions of q. From the first equation of (5.19) 
we compute X 0 = -1/~ = -1/.Jv+4. Hence 

D = 11+ µ.. + (v- v0)~ X0 + O(µ..) = O(µ..) 

as µ.. ~ 0. It now follows that T 2 is an analytic function of q, µ.. in a fixed neighborhood 
of (0, 0), and, consequently, that {3 2 is analytic. This proves the theorem. D 

Remark 5.1. It is possible to base a proof on the differential equation (5.14 ). The 
condition /3(0) = 0 is not enough to prove the theorem, since the ratio /3 2 Iv (at v = O) 
turns out to be undefined. Requiring that this ratio equals c1 (µ) is sufficient, however. 

In Theorem 4.1 we expanded the functions of (4.10) at the critical points ±wo, 
and in ( 4.14) we used a representation of t in which y can be viewed as a part of the 
complete expansion. In fact, ( 4.14) is a change of variables. In the present case we 
expand at the critical points w±, and the expansions have the form 

(5.20) tf;(w)= I [ak+wbk]Vk, 
k=O 

V= V(w)=(w-w_)(w-w+)-

When l/J is sufficiently smooth, the coefficients ak> bk are uniquely defined. The first 
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few are given by 

I/I~+ 1.fi'_ - 2bo 
b1 = ( )2 , W+-W-

where w0 = w+ + w_, and i/J+ =if;( w+), etc. For analytic functions the coefficients can 
be represented as Cauchy-type integrals. We have 

(5.21) ak=~J (w-w0)v-k-1(w)l/J(w)dw, 
21r1 c 

bk=~ J v-k-l(w)i.fi(w) dw, 
21r1 c 

where C is a contour around the two critical points; 1.fi must be analytic inside C and 
continuous on C. This can be verified by substituting a new variable w = v + wo/2. 
Then we have 

By separating odd and even parts (with respect to v ), and representing ck. bk as Cauchy 
integrals in the V-plane, we arrive at (5.21). (Note that a circle around the origin in 
the w-plane is traversed twice in the V-plane.) For MacLaurin series the domain of 
convergence is a disc. For expansions as in (5.20) the domain of convergence is defined 
by IV(w)l<IVCwsll, where ws is a singularity of 1.fi; this domain is bounded by a 
Cassini's oval with foci at w±. See also [7, Exercise 24, p. 149]. 

The parameter t of (5.12) is represented in the form 

(5.22) t=w[B+Cw+ V(w)y], 

where B, C do not depend on w, and we require that the points { w_, 0, w+} correspond 
with {L, 0, t+}· This gives for B, C the values 

(5.23) 
2 2 

B = W+L-w_t+ 

W+w-(w+-w_)' 

C = t+w_-LW+ . 
w_ w+( W+ - w_) 

The critical points w±, t± are not analytic for small values of the parameters. However, 
we have the following lemma. 

LEMMA 5.1. B, C, W+ w_, Wo = W+ + w_ are analytic functions ofµ, v in a fixed 
neighborhood of (O, 0). Moreover, B = 1 + o(l), C = o(l) near (0, O). 

Proof We use the notation of Theorem 5.1. We have w0 =In (1 + µ) and the 
product W+ w _is an even function of W So the singularity in W =vii J v - v1 is removed 
when we expand W+W- in powers of W. Using (5.2), we can write 

(5.24) 2C = __ µ_ [1- Tin (1 + µ)/ µ]. 
W+W- W+-W-

We introduce a parameter TJ by writing 

2 

E = _.!:'::._= -~ 
4v0 4 · 

Then we have T = 2JqJ E + vri; TJ = ri( v, µ,) is analytic in a neighborhood of (0, 0). 
Next we use w+-w- =In [(1 +JqZ)/(1-Jq Z)]. Since the factor vii can be removed, 
we infer that the fraction TI ( w+ - w_) is regular. It is easily verified that the expression 
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between square brackets in (5.24) vanishes when 11~0 and that w+w-=-11F, where 
F = F( 11, µ,) is analytic at (0, 0), with F = 1+0( 11 + µ. ), as 11, µ. ~ 0. This proves that C 
is analytic at (0, O); the factorµ. in the first fraction of (5.24) takes care of the vanishing 
of C at (O, O). A more detailed analysis shows that C - -µ,/24, µ. ~ 0, 11 = 0. The proof 
for B now follows from the representation B + w0 C = ( t+ - t_)/ ( W+ - w _) = 
T/(w+- w_). At 11 = Othis expression reduces to µ./In(µ.+ 1) = 1 +0(µ,),as µ. 'O. 0 

COROLLARY 5.1. Let If! of (5.20) be analytic in a domain containing the points w±. 
Then the coefficients ak. bk are analytic functions of the parameters µ., 11. 

Proof. This follows from the fact that sum and product of w± occur in V( w) and 
that the Cauchy-type integrals in (5.21) are analytic functions of W+ + w_ and 
W+W_. D 

After these preparations we are ready to consider the following theorem. 
THEOREM 5.2. The function t(w, 11, µ.) defined by (5.12), with {3 2 defined in (5.13), 

is analytic in a fixed neighborhood of (0, 0, O). 
Proof. We write (5.12) in the form 

(5.25) F( t, w, µ., 11) = tH( w) - S( t) = 0, 

where 

(5.26) 
ew-1 11 

H(w) =-µ. ln--+(µ.+l)w+-w--A, 
w e -l 

t 
S(t) = t 2+ /3 2 - µ.t In - . 

w 

Using (5.22) we can consider F as a function of w, with two known parameters µ., 11, 
and one unknown parameter y. We expand Fas in (5.20): 

00 

(5.27) F= L [uk+wvdVk(w), 
k=O 

where the coefficients uk, vk do not depend on wand t; they do depend on y, however. 
The first coefficients are 

u0 = -C2 b2a- C 2 a 2 -aB2 -2aBCb+ f 0 B+ goaC -{3 2 

+µ,a ( Cc0 + Bd0 + Cbd0 ), 

v0 = -2aBC- C 2 b 3 - bB2+ f 0 C + g0 B-2C2 ab-2b2BC+gobC 

+ µ. ( Cad0 + Bc0 + Cbc0 + bBd0 + Cb2 do), 

u 1 = -B2 - C 2 b2 -2aBy-2Cbay-2C2 a + f 0 y+ f 1B-2BCb+ goC+ g1aC 

+ µ,(aBd 1 + Cbad1 + Cac1 + Cc0 + Bd0 + Cbdo+aydo), 

v 1 = -2bBy-2Cb2y-2BC-2Cay-2C2 b+goy+ f1C+g1B+ g1bC 

+ µ.(bBd 1 + Cb 2 d 1 + Bc1 + Cad1 + Cbc1 + Cdo+ yco+bydo), 

u2 = -ay2 + g1C+ f2B+ f1y-2By+ gzaC-C 2 -2Cby 

+ µ,(Cac2+ aBd2+ Bd1 + Cc 1 + yd0 + Cbd1 + Cbad2+ ayd1), 

v 2 = g2 bC-by2+ giy-2Cy+ gzB+ f2C 

+ µ.(Cb 2d 2 +byd1 + Cbc2 + Cad2 + Bc2+ bBd2+ yc1 + Cd1), 

where a, bare defined by w2 =a+bw+V(w), i.e., a=-w+w_, b=w++w_ and the 
coefficients ck, dk> fk, gk occur in the expansions 

wH(w)=fo+gow+f1 V+g1wV+f2V2 +g2wV2 +· · ·, 

In~= Co+dow+ C1 V+ d1wV+ Cz V 2+d2wV2+ .... 
w 
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The coefficients u0 , v0 vanish identically. This can be verified by straightforward 
manipulations. It also follows from the observation that the representation (5.22) can 
be viewed as a truncated expansion for t, in which the first coefficients B, C are defined 
properly. If more coefficients D, E, · · · had been included in y (and defined properly), 
more and more coefficients uk> vk would vanish identically. When using (5.22), only 
a few coefficients will vanish. Although u1> v1 contain the parameter y (also via Ci. 

d1 ), these coefficients vanish too. Again, this can be verified by straightforward manipu­
lations. 

It follows that we can proceed with the equation G = 0, where 

F(t, w, µ, v) 
G = G(y, w, µ,, v) = V2( w) 

The coefficient u2 contains a term -2By, with B given in (5.23). From Lemma 5.1, it 
follows that B is bounded away from zero when the parameters µ, v are small. The 
remaining contributions to u2 containing the parameter y tend to zero as µ, v ~ 0. All 
coefficients uk> vk are analytic functions of µ, v, and the convergent infinite series 
(including coefficients v2 and higher) represents a function of y, w, µ, v that is analytic 
in a neighborhood of (0, 0, 0, O). Consequently, since aG(O, 0, 0, 0)/ ay = -2, we can 
solve for y and this solution is an analytic function of w, µ, v in a fixed neighborhood 
of (0, 0, 0). The same holds for t given in (5.22). 0 

Remark 5.3. A simpler version (µ = O) of the above theorem is considered in 
Theorem 4.1. Another simpler version (v = O) is given by [5, Tum. 2.1]. 

We still have to show that n (the image of strip H of (4.13) under the mapping 
W'""' t defined in (5.12)) is large enough to contain a disc around t+ with radius 
p(l + t+)\ K 6; !, p fixed. It is not difficult to verify that when 13 > µ the proof runs as 
in § 4.2. If µ is much larger than (3, the situation improves, and we can take K = I. 

We conclude by computing a bound for the quantity M,(13, µ)used in (5.8), and 
defined as in (3.16). The t-values on the circle C, are written as t = t+ + TJ t+ + 1, with 
ITI = r, r fixed. We assume that at least one of the parameters v, µ is large. We have 

13 2 13 2 T(l + t+) 
t+--µlnt-t++--µlnt++ T 2 +0'(t:;: 1). 

t t+ t+(µ + T) 

We denote the factor multiplying T 2 by q. Observe that, roughly speaking, q belongs 
to the interval [!, 1]. Using this in (5.12), we obtain 

qr --µln-w--+(µ+I)(w-w+)+v -----. 2 e 111 -1 [ 1 I J 
e +-I ew-1 e"'+-1 

J?enoti~g the right-hand side by t/I( w ), we see that t/J( w+) =If/( w+) = o. A few computa­
t10ns give 

t/l"(w+)=l+ 2(v+W) 
(v+ µ, + w)2 

l+o(l). 

To solve the equation t/l(w) = qT2 we expand tfi(w++ v) =!v2 1j/'(w+)+ .... We can take 
the fixed number r as small as we please. Then the solution of the above equation 
reads . . w- W+ + Tffq. Using this in (5.16), we infer that f( t) -4./4./ T, under the 
cond1t1on that t EC, and that at least one of the parameters 11, µ is large. Consequently, 
we can find a fixed number K, such that 

M,(13, µ) ;;a K v' 1 + t+/ r, v, µ E (0, oo). 
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