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SUMMARY. An. iterative method is proposed for estimating a certain regression model 

with mixed cross-section and time-series data, where each observational unit is not necessarily 

available at each time point of the time series. We give theorems on consistency and asymp­

totic normality of estimators of the regression coefficients as the size of the cross-section increases 
while the length of the time series remains bounded. We discuss the connection between our 
method and the EM algorithm. 

l. INTRODUCTION 

In an econometric study of the cost-structure of Dutch hospitals 
(see Van Aert and Van Montfort (1979) the need arose to combine cross­
sectional regression analyses over a (relatively short) time-series of years. 
Individual hospitals were to be treated as independent observations. It had 
to be taken into account that the hospitals taking part in each year's annual 
surveys varied over the years ; the effects of some explanatory variables might 
be allowed to vary over the years but those of others should be oonstant; 
and the disturbance term for each observation could be highly correlated 
over the years. There is an extensive statistical and econometric literature 
on combining time-series and cross-sectional data, even with incomplete 
observations; see the excellent survey by Dielman (1983). However the 
present paper addresses some novel issues and on the way provides some 
new methods and results on missing data in multivariate analysis. We do 
assume that observations are missing independently of the random compo­
nents in our model (and condition on the observed patterns of missing 
data) but on the other hand make no special assumptions about the distri­
butions of the disturbance term over the years. So the well known variance 
components (random effects) and first order auto-correlation models are statis­
tically testable special cases of our model. In the next section we describe 
the model and our estimation and testing procedures. The following section· 
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contains formal statements on asymptotic properties of the estimators under 
regularity assumptions; the (routine) proofs are contained in a technical 
report available from the author. In the final section we discuss some other 
possible approaches for estimation of our model. Also we show how our 
approach can be applied to the multivariate incomplete data problem. 

2. DESCRIPTION OF THE MODEL .A.JV) ESTIMATORS 

First we introduce some notation. Random variables are set in bold. 
Indices n = 1, 2, ... , N refer to the N observations ; j (or j') = 1, 2, .. ., J 
refer to the J time points for which at least for some observations data is 
available; and k (or k') = 1, 2, .. ., K refer to the K explanatory variables. 
J and K are :fixed, but the model is supposed to be specified for each N = 1, 
2, ... as we will be interested in asymptotic properties of our estimators as N 
tends to infinity. We can now specify our 

Model : For n = 1, ... , N let P.,, C {I, .. ., J} be a non-empty set 
of indices j. Let Xnjlc (n = 1, ... , N, j E P n and k = 1, ... , K) be real 
numbers. For n = 1, ... , N and j E P n suppose Yn =:Ek Xnjlc fh+eni where 
the random varibles en1 satisfy &(en1) = 0 and &(eni en'J') = onn' CTJJ' (o is 
the Kronecker symbol) where fJ = (/JTc) is a fixed Kx I-vector and Z: = (CTJJ') a 
fixed positive-definite symmetric J X J -matrix. 

So P n denotes the pattern of non-missing time points for the n-th obser­
vations. "Fixed" means in the above specification "not depending on N 0 " 

All other quantities may vary with N but we generally suppress this depen­
dence in our notation. The symbol ~ denotes convergence in distribution 

.zi. 
as N tends to infinity. The Xntlc's are the non-random values taken by our 
K explanatory variables, Ynt is the dependent variable ; fJ and :E are unknown 
parameters. We observe Xnflc and Yni for those n and j such that j e P n· 

Without loss of generality we suppose that eni is defined for all n a;nd j (still 
satisfying the model assumptions). 

The variance components and the :first order autocorrelation m.odels 
are obtained on placing appropriate restrictions on 2::. Some or all explana­
tory variables can be allowed to have arbitrarily varying effects over time by 
expanding the design matrix and vector of regression coefficients in the usual 
way. 

We propose an iterative method to estimate the regression coefficients f:J 
and the covariance matrix of the disturbances ::E, which we now present 

·informally. 
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Step 1 : Estimate /3 by ordinary least squares (i.e. as if a'Ji = a'2 for 
some a'2 > 0 for each j, and a'fj = 0 for j =I= j' ; call this estimator b(Ol. 

Step 2 : Estimate l: from the residuals of step 1 by adding the product 
of the residuals for the time instants j and j' over n such that j, j' E P n and 
dividing by the number of such n to get a.n estimate of a'jJ. Call thi:> estima­
tor S(O>. 

Step 2r+ 1 (r = 1, 2, ... ) : With the estimate of l: obtained from step 
2r, reestimate /3 by the method of generalized least squares (i.e. as if the esti­
mate were the value of l:}. This defines an estimator b<r>. 

Step 2r+2 (r = 1, 2, ... ) : With the estimate of j3 from step 2r+l and 
the estimate of~ from step 2r, construct a new estimate of~ by (a) calculat­
ing the residuals--from now on we behave as if these residuals were the rea­
lized error terms a.nd the estimate of ~ were its true value-, (b) using these 
to predict by least squares the error terms en1 fo1 those n and j such that 
j ~ Pn, and (c) estimating~ in the obvious way from the now "completed" 
set of error terms, except that a correction term based on the old estimate 
of~ is added to a summand in the sums of s,quares or products of errors, c.q. 
predicted errors, whenever the product consists of two predicted errors. The 
correction term is (estimate of) the partial covariance of the two errors 
which have to be predicted given those on which the predictions are based. 
This defines an estimator S(r). 

To explain this last step and introduce some important notation let 

e = (e~, e};)T be a Jx 1 random vector (T denotes transpose) partitioned 

according to a pattern of observed components P and it complement of mir:.-

sing onesM; &(e) = 0, et(eeT) = ~ = ( i: i::) =·C~::.pZ.M) where l: is 

positive definite and partitioned conform e itself. Then the linear least 

squares predictor of eM given ep is d(eM I ep) = ~MP '2::.;J, ep which has the 

covariance matrix 8.(d(eM I ep)8(eM I ep)T)=1:MP ~;],~PM· So 8.(eM eJ;>= 

8.(ci(eM I ep)S(eM j ep)T)+(~MM-~MP~_pp::PM) where the last term, also equal 

to the covariance matrix of eM--B(eM I ep), is conventiona.ily called the partial 

covariance matrix of eM givenep. On theotherhandd(eM ei)= &(8.(eMI ep e~) 

=~MP· 

Our estimators are defined formally in the corollary to Theorems 1 to 4 
(which deal in turn with steps 1, 2, 2r+l and 2r+2 above). The estimator 

B I-13 
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of step 2 is essentially Glasser's (1964) method for estimating a covariance 
matrix with incomplete observations, while that of step 2r+~ is one step of 
the EM algorithm for determining the maximum likelihood estimator of I: 
(assuming normality) ; see Dempster et all. (1977). Consistency asym1)to­
tic normality and efficiency properties of these estimators are given in the 
next section. In particular, under multivarite normality of the en/s, b<rl 
is an efficient estimator of j3 for each r > 1 and (this is the reason for iterating 
past r=l) if b<r> and S<r> converge to say band Sas r-+ oo, then b and Sare 
stationary points of the likelihood function l(f3, .2;) for jJ and ~ given the data. 
In any case l(b<r>, s<r>) is nondocreasing in r. Rough tests of hypotheses of 
interest may be carried out by assuming the usual asymptotic maximum like­
lihood theory applies, provided convergence appears to have taken place. 
Our practical experience and the similarity to the EM algorithm suggest 
that it occurs, but rn.ther slowly ; see Cziszar and rrusnady (1984) and 
Meilijson (1986). 

A major assumption of the theorems is that for each pair of time instants 
j and j', the number of observations n fo1· which j, j' E P.,, t<mds to infinity 
as N .-+ oo. This is obviously in general a necessary conditiori for consistent 
of ~ arid hence for efficient estimation of (3. 

3. ASYMPTOTIC RESULTS 

The model and notation of the previous section is still supposed to hold 
throughout this one. In particular recall that dependence on N is generally 
suppressed, the oi1ly fixed quantities being J, K, /3 a,nd L;. 

We also need the following notation. Let r n be the number of elements 

in P,,,,. Let X,,,, be the rnXK matrix of elements Xnjk such thatj E P,,,, and 
similarly let y,,,, and e,,,, be the r,,,, X 1 vectors of elements YnJ and enJ respec­

tively for which j E P ,,,,. Define the r,,,, X r n matrix z;., = ~PnPn' Next ·we 

defineX, y, e and~ by XT=(X{ ... Xz;), iF =(yf ... Yk), and eT=(e{ ... e}{), 

while ~ is the block-diagonal matrix with diagonal submatrices ~... If S is 

some estimator of :S, then S is defined analogously. We can now write the 

model assumptions as y = X/3+ e, &(e) = 0, and &(eeT) = f. 
Finally before stating our theorems we list the assumptions which will 

be made in some or all of them. They can be much weakened, but lead to 
very easy proofs. 
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c\.l For each P, J·, )01
, k and k' lim 1 ~ v x' x· t (a11d i·s .c • ~J.v- ...,n:Pn=P1inJk M'k' e is s .v__,,,,,, 

finite). 

A2. lirn N-1 XT-'Y (which exist:; if assumption Al is made) is positiVe 
N~oo 

definite. - - -A3. lim N-1XT2:.-1X (which exists if assumption Al is made) is positive 
N~co 

definite. 

A4. (BnJ ;j =l, ... , J), n =I, ... ; N ar<:< independe11t and, also over N = 
l, 2, ... , ide1.tically distrib•1ted random vectors. 

A5. For each j and j' lim =lf {n : j, j' E P n}-4 co. 
N~"' 

A6. For some constant 0 < oo not depending on N, sup I Xnfk I < 0. 
n,j, k 

A7. e is multivariate normally distributed. 

Theorem 1 : Under AI and A2, (XTX) is for sufficiently large N non· 

singular and defining b<0> = (XTX)-1XTy, b<0> i8 a \/Ii-consistent estimator of 

ff; i.e. Ni (b(O>-jJ) is bounded in probability as N-4 oo. 

·Theorem 2 : Suppose. Al, A4 and A5 hold and that b<0 > is any consistent 

e.stimator of fi. Then s< 0 > d~fined by s\9) = n:;} 2: (Yn1- 2:. Xnjlcb~0l) 
JJ n:jj'ePn k 

(Yni'- 1: Xnj'k' b<j}>) where n11 1 = =!=\= {n : j, }' P ,,} is a consistent estimator of 2:. 
k' 

Theorem 3 : Suppose Al and A3 hold and let s<ri be any consistent esti-

mator of L:. Then with probability converging to 1 a,s N ~ oo, s<rl and xs<r>-1 X 
are nonsingular and defini'.rig b<r+1> = (XT S<r>-1 X)-1XT §lrHy, then b<r+I> 

is a y!N-consistent est·imator of jJ. If furthermore A4 and A6 hold or A7 holds, 

then N*(b<r+1>-j3) ~ 7t(O, A) where A is defined by A-1 = lim N-1XT~-1 X; 
,.& N~~ 

in the latter case bCr+l> is an asymptotically efficient estimator of j3. The matrix 

A can be consistently est,imated by (N-1 XTS<rl-1X)-1. 

Theorem 4: Si~ppose AI and A4 hold, and suppose b<r+1> is any y'N­

consistent estimator of fJ and suppose s<rl is any cons1'.stent estimator of 1:. 

Then s<r+i> cle·-r.1'.·1,ed by1 :. - y -X b<r+i> ~ = s<r> S <rl-1 e~ where P =P 
;}' " "'n - n n ' n •P PP n "' 

and s<r+l) = N-1"'2:,p 2: . . (~ ~T + scr> _ s(r) s<r) -l s<rl)- is also a consistent 
n:Pn=P n 11 .p PP P. ' 

estirnator of ~. 

Corollary to 'I'heorerns 1 to 4 : Let b(O) and s<0> be defined as in Tkeoi-ems 
1 and 2. For r ;;;;,: 0 define bCr+1> and S<r+1i as in Theorems 3 and 4. The?i 

under Al to A5,. b<rJ and S<rl are consistent estiinators o.f fJ and ~-
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respectively for each r > 0; while for r > l, under AI to A6, or Al to A5 
and A7, Nt (b<r>-fJ) 1. (0, A) where A can be consistently estimated by 

(N-lXTS<r>)-lX)-1. Fo1· each r > 1, under Al to A5 and A7, b(r) is an 

efficient estimator of /J. 

When the data is complete and under multivariate normality S<r> is 
actually efficient too, for each r. All these efficiency results are part of the 
general phenomenon observed and explained in Dzhaparidze (1983). 

Theorem 5 : Define (b, S) as the limit as r~ oo of (b<r>, S<r>) if this limit 
exists. Then under A7, (b, S) is a stationary point of the likelihood function 
for (/J, !:) given the data. The likelihood junction, l(fJ; !:), evaluated at (/J, !:) 
= (b<r>, s<r>), is non-decreasing in r. 

Other appi·oaches : First of all we briefly discuss estimation of the ra.n­
dom effects model and the first order autocorrelation model. These are both 
special cases of out model with restrictions on 1;. Wiorkowski (1975) des­
cribes a simple technique for obtaining maximum likelihood estimates even 
with incomplete data for the first of the t·wo models ; the second can be treated 
in the same way. We can test such submodels by the usual asymptotic 
likelihood ratio test. 

Next we look at other ways of estimating our own model. If the data 
is complete it is very easy under multivariate normality of e to write down 
the maximum over f1 of the likelihood function for f1 and 1;. This gives a 
(random) function of!: which can itself be maximized over !: by (heavy) iter­
ative numerical optimization techniques. One can actually write the model 
as a special case of the "ACOVSM" model of Joreskog (1970), but this does 
not help matters. 

We next consider the question of whether our model could have been 
estimated by the EM algorithm of Dempster et al. {1977). Our method 
works by switching between estimating f1 and ~ : we estimate f1 by maximum 
likelihood as if the current estimate of I: were the true value of ~. and then 
improve our estimate of !: by carrying out one iteration of the EM algorithm, 
as if the current estimate of fJ were its true va.lue. However the EM algori­
thm could be applied to improve the current estimates of f1 and ~ simultane­
ously; using maximum likelihood at each step based on predicted complete 
data sufficient sta.tistios (we have a curved exponential family). However, 
even with complete data a numerically intensive method has to be used to 
iet ma.Jtjmum Ukelihood estimates t;io this it;1 not very feasible. 
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Another way of estimating our U:sual model as well as the models of ra.n­
dom effects and first order autocorrelation under multivariate normality is 
to make use of the method of restricted maximum likelihood (Corbeil and 

Searle (1976) ; Harville (1977)). In these models i: is in each case equal to 
u2H(fJ} for some u 2 > 0 and a vector fJ of (a fairly small number of) parame-

ters. Corbeil and Searle (1976) suggest transforming y into two parts by 

means of two linear transformations of y, such that the disribution of one 
of these parts depends only on u2H(fJ) and not on fJ (assuming multivariate 

normality of e). fJ and o-2 are estimated by maximum likelihood applied to 
this part of the data. Then with the estimate of fJ so obtained, f3 is estimated 
by the obvious generalized least squares formula. 

Finally, it is sometimes reasonable to consider the Xn's as being the 
realized values of stochastic variables Xn ; e.g. suppose that (yn, Xn}, n = 1, 
... , N, are independent observations each with (J-rn).(K+l) missing com­
ponents from some J. (K+l)-variate distribution, the observations being 
independent of one another. We could now estimate the mean vector and 
covariance matrix of the underlying joint distribution; f3 and l: are fnnctions of 
these parameters. The fact that Yni has the same regression on Xnjlc, k= I, ... ,K 
for each j means that some constraints should be introduced. 

The method described in this paper it,,;;elf supplies a "modified EM algo­
rithm" for observations from a multivariate distribution with components 
missing according to some fixed patterns. For seiiting K = J and Xnfk = 1 
if j = k and 0 otherwise gives us exactly this model. Even when the observa­
tions are not multivariate normally distributed, "maximum likelihood esti­
mation under multivariate normality" can still give cousistent and even asym­
ptotically normally distributed estimators of mean vector and covariance 
matrix; see Gill (1977, 1986) and van Praa.g, De Leeuw and Kloek (1986). The 
advantage of our modification is that the estimators have good statistical 
properties right from the first iteration step. 
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