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REGRESSION ANALYSIS FOR INCOMPLETE MIXED
CROSS-SECTION AND TIME-SERIES DATA
BY A MODIFIED EM ALGORITHM
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SUMMARY. An iterative method is proposed for estimating a certain regression model
with mixed cross-section and time-series data, where each observational unit is not necessarily
available ab each time point of the time series. We give theorems on consistency and asymp-
totic normality of estimators of the regression coefficients as the size of the cross-section increases
while the length of the time series remains bounded. We discuss the connection between our
method and the EM algorithm.

1. INTRODUOTION

In an econometric study of the cost-structure of Dutch hospitals
(see Van Aert and Van Montfort (1979) the need arose to combine cross-
sectional regression analyses over a (relatively short) time-series of years.
Individual hospitals were to be treated as independent observations. It had
to be taken into account that the hospitals taking part in each year’s annual
surveys varied over the years ; the effects of some explanatory variables might
be allowed to vary over the years but those of others should be constant ;
and the disturbance term for each observation could be highly correlated
over the years. There is an extensive statistical and econometric literature
on combining time-series and cross-sectional data, even with incomplete
observations ; see the excellent survey by Dielman (1983). However the
present paper addresses some novel issues and on the way provides some
new methods and results on missing data in multivariate analysis. We do
assume that observations are missing independently of the random compo-
nents in our model (and condition on the observed patterns of missing
data) but on the other hand make no special assumptions about the distri-
butions of the disturbance term over the years. So the well known variance
components (random effects) and first order auto-correlation models are statis-
tically testable special cases of our model. In the next section we describe
the model and our estimation and testing procedures. The following section’
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contains formal statements on asymptotic properties of the estimators under
regularity assumptions; the (routine) proofs are contained in a technical
report available from the author. In the final section we discuss some other
possible approaches for estimation of our model. Also we show how our
approach can be applied to the multivariate incomplete data problem.

2. DESCRIPTION OF THE MODEL AND ESTIMATORS

First we introduce some notation. Random variables are set in bold.
Indices n = 1, 2, ..., N refer to the N observations ; j (or j') =1, 2,..., J
refer to the J time points for which at least for some observations data is
available ; and k (or %) =1, 2, ..., K refer to the K explanatory variables.
J and K are fixed, but the model is supposed to be specified for each NV = 1,
2, ... as we will be interested in asymptotic properties of our estimators as IV
tends to infinity. We can now specify our

Model : For n=1,..., N let P,(C{l, ..., J} be a non-empty set
of indices j. Let @y (=1, ..., N, jE€P, and k=1,.., K) be real
numbers. For » =1, ..., N and j € P, suppose y, = i Tnjx Sr-+€ns where
the random varibles e,; satisfy @(es) = 0 and &(ens €n’y?) = Sunr oy (8 is
the Kronecker symbol) where § = (fx) is a fixed K X 1-vector and X = (o) &
fixed positive-definite symmetric J X J-matrix.

So P, denotes the patfern of non-missing time points for the n-th obser-
vations. “Fixed” means in the above specification “not depending on N,”
All other quantities may vary with N but we generally suppress this depen-
dence in our notation. The symbol 7&) denotes convergence in distribution

as N tends fo infinity. The xyp’s are the non-random values taken by our
K explanatory variables, y,; is the dependent variable ; # and X are unknown
parameters. We observe z,j; and yyus; for those n and j such that jeP,.
Without loss of generality we suppose thab e,; is defined for all n and j (still
satisfying the model assumptions).

The variance components and the first order autocorrelation models
are obtained on placing appropriate restrictions on X. Some or all explana-
tory variables can be allowed to have arbitrarily varying effects over time by
expanding the design matrix and vector of regression coefficients in the usual
way.

We propose an iterative method to estimate the regression coefficients £
and the covariance matrix of the disturbances X, which we now present
‘informally. ‘ '
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Step 1 : Estimate £ by ordinary least squarss (i.e. as if oy = o? for
some 02 > 0 for each j, and oy = 0 for j £ j' ; call this estimator b,

Step 2 :  Estimate X from the residuals of step 1 by adding the product
of the residuals for the time instants j and j’ over % such that j, j' € P, and
dividing by the number of such = to get an estimate of o;;. Call this estima-
tor SO, '

Step 2r+1 (r=1,2,...): With the estimate of £ obtained from step
2r, reestimate f by the method of generalized least squares (i.e. as if the esti-
mate were the value of Z). This defines an estimator b'",

Step 2r+2 (r =1, 2, ...) 1 With the estimate of j from step 2r+1 and
the estimate of X from step 2r, construct a new estimate of = by (a) calculat-
ing the residuals—from now on we behave as if these residuals were the rea-
lized error terms and the estimate of X were its true value—, (b) using these
to predict by least squares the error terms e,; for those n and j such that
j ¢ P, and (c) estimating X in the obvious way from the now ‘“‘completed’
set of error terms, except that a correction term based on the old estimate
of Z is added to a summand in the sums of squares or products of errors, c.q.
predicted errors, whenever the product consists of two predicted errors. The
correction term is (estimate of) the partial covariance of the two errors
which have to be predicted given those on which the predictions are based.
This defines an estimator S,

To explain this last step and introduce some important notation let
e = (e} ef;)T be a JXx1 random vector (T denotes transpose) partitioned

according to a pattern of observed components P and it complement of mis-

sing ones M 5 &(e) = 0, &(ee”) = % =( 5 TP | = (EpSy) whero T is
positive definite and partitioned conform e itself. Then the linear least
squares predictor of ey given ep is c’f(eM]ep) = Zyp Zpp ep which has the
covariance matrix g(é(eM[ep)é(eM |ep)T)=Zyp 253 Epm. So &(em ef)=
&(é(ex| ep)&(ens | €p)T)+(Snm—EmpE5h Epar) where the last term, also equal
to the covariance matrix of ey --&(ey | ep), is conventionally called the partial
covariance matrix of ey giver: ep. On the other hand &(ey ef)= &(é(eM | ep €f)
= Zyp.

Our estimators are defined formally in the corollary to Theorems 1 to 4
(which deal in turn with steps 1, 2, 2r+1 and 2r-+2 above). The estimator

B 1-13
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of step 2 is essentially Glasser’s (1964) method for estimating a covariance
matrix with incomplete observations, while that of step 2r+4-2 is one step of
the EM algorithm for determining the maximum likelihood estimator of T
(assuming normality) ; see Dempster et all. (1977). Consistency asympto-
tic normality and efficiency properties of these estimators are given in the
next section. In particular, under multivarite normality of the ey’s, b\
is an efficient estimator of 4 for each r > 1 and (this is the reason for iterating
past 7=1) if b'" and S converge to say b and S as r— oo, then b and S are
stationary points of the likelihood function I(f#, Z) for £ and T given the data.
In any case I(b'"), §®) is nondecreasing in. 7. Rough tests of hypotheses of
interest may be carried out by assuming the usual asymptotic maximum like-
lihood theory applies, provided convergence appears to have taken place.
Our practical experience and the similarity to the EM algorithm suggest
that it occurs, but rather slowly ; see Cziszar and Tusnady (1984) and
Meilijson (1986).

A major assumption of the theorems is that for each pair of time instants
J and j’, the number of observations n for which j, j' € P, tends to infinity
as N— co. This is obviously in general a necessary condition for consistent
of X and hence for efficient estimation of f. '

3. ASYMPTOTIC RESULTS

The model and notation of the previous section is still supposed to hold
throughout this one. In particular recall that dependence on N is generally
suppressed, the only fixed quantities being J, K, £ and X.

We also need the following notation. Let 7, be the number of elements
in P,. Let X, be the r,X K matrix of elements x5 such thatj € P,, and
similarly let y, and e, be the r,x 1 vectors of elements yn; and ey; respec-
tively for which j € P,. Define the r,Xr, matrix I, = ZP”Pn. Next we

define X, §, & and = by X7 =(X7...X5), y? = (y7... y%), and &7 =(el...e}),
while 3, is the block-diagonal matrix with diagonal submatrices Z,. If S is

some estimator of X, then S is defined analogously. We can now write the

model assumptions as § = )?ﬂ-}— e, &€) =0, and &(éeT) = s.

Finally before stating our theorems we list the assumptions which will
be made in some or all of them. They can be much weakened, but lead to
very easy proofs.
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Al. Foreach P, 4,7, k and k' lim _lﬁd

N~ “n:P,= — pXnjkXnine eXists (and is
N—>w <+ n )
finite).
A2, lim N-? XrxX (which exists if assumption Al is made) is POSlblve
N .
definite.
A3. lim N-IXTE-LX (which exists if assumption Al is made) is positive
N-—dPoc
definite.
Ad. (ey;;7 =1,...;J),n =1,..., N are independent and, also over N =
1, 2, ..., identically distribated random vectors.

A5. For each j and j’ Alrim Hn:jj E€Pl>x.
. —>x

A6. For some constant C' < o0 not depending on N, sup |ap| < C
n,4,
A7. & is multivariate normally distributed.

Theorem 1 : Under Al and A2, (:X;ij ) ts for sufficiently large N non-
singular and defining b'® = (X’Tf )-12~ZT;17, b® is a \/N-consistent estimator of
B ie. Nt (BO—p) is bounded in probability as N—> co.

Theorem 2 : Suppose Al, Ad and A5 hold cmol that B is any consistent

estimator of f. Then S defined by s =05 = (Ynj— 2 xnﬂcb("))
" :jj'ePn

(Yngr— 122 Tnite OY) where nyyr = H={n 14, i P,} is a consistent esmmator of Z.
Theorem 3 :  Suppose Al and A3 hold and let S} be any consistent esti-
mator of Z. Then with probability converging to 1 as N—» oo, S gnd XS§n-1 X
are nonsingular and defining b+ = (ng")‘U? )—IXT§<r>~1g, then br+D
is a \/N-consistent estimator of B. If furthermore A4 and A6 hold or AT holds,
then NYbr+1) —g) ——) 72(0, A) where A is defined by A-1= lim N-1X131 X

N—oo
in the latter case b H) s an asymptotically efficient estimator of f. The mairiz

A can be consistently estimated by (Nt )ETg""—lff)-l.

Theorem 4 : Suppose Al and A4 hold, and suppose B"+V is any o/N-
consistent estimator of [ and suppose S is any consistent estimator of Z.
Then SU+D  defined by &, = y,—X, BT+, &, = SO SE-1 3, where P =P,,
and 87D = N-Zp % o P(én e+ 8" 80 8§11 8, is also a consistent
estimator of .

Corollary to Theorems 1 to 4 : Let b'® and SO be defined as in Theorems

1 and 2. For r> 0 define b"+V and SU+V as in Theorems 3 and 4. Then
under Al to A5, b and ST are consistent estimators of B -and %
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respectively for each r > 0 ; while for r > 1, under Al to A6, or Al to Ab
and A7, N*(bT—p) —’g (0, A) where A can be consistently estimated by

(N“IETS"’))‘l}?)‘l. For each » > 1, under Al to A5 and AT, B is an
efficient estimator of f.

When the data is complete and under multivariate normality S is
actually efficient too, for each r. All these efficiency results are parb of the
general phenomenon observed and explained in Dzhaparidze (1983).

Theorem 5 : Define (b, S) as the limit as r— o of (b, S8®) if this limit
exists. Then under A7, (b, S) is a stationary point of the likelihood function
for (B, Z) given the data. The likelikood function, U(f, Z), evaluated at (8, %)
= (b, 81, is non-decreasing in 7.

Other approaches : First of all we briefly discuss estimation of the ran-
dom effects model and the first order autocorrelation model. These are both
special cases of out model with restrictions on X. Wiorkowski (1975) des-
cribes a simple technique for obtaining maximum likelihood estimates even
with incomplete data for the first of the two models ; the second can be treated

in the same way. We can test such submodels by the usual a,symptotic'
likelihood ratio test.

Next we look at other ways of estimating our own model. If the data
is complete it is very easy under multivariate normality of & to write down
the maximum over f of the likelihood function for f and X. This gives a
(random) function of X which can itself be maximized over X by (heavy) iter-
ative numerical optimization techniques. One can actually write the model

as a special case of the “ACOVSM” model of Jéreskog (1970), but this does
not help matters.

We next consider the question of whether our model could have been
estimated by the EM algorithm of Dempster ef al. (1977). Our method
works by switching between estimating £ and % : we estimate £ by maximum
likelihood as if the current estimate of ¥ were the true value of X, and then
improve our estimate of X by carrying out one iteration of the EM algorithm,
as if the current estimate of # were its true value. However the EM algori-
thm could be applied to improve the current estimates of # and = simultane-
ously ; using maximum likelihood at each step based on predicted complete
data sufficient statistics (we have a curved exponential family). However,
even with complete data a numerically intensive method has to be used to
get maximum likelihood estimates so this is not very feasible. ' '



MIXED CROSS-SECTION AND TIME-SERIES DATA 101

Another way of estimating our usual model as well as the models of ran-
dom effects and first order autocorrelation under multivariate normality is
to make use of the method of restricted maximum likelihood (Corbeil and

Searle (1976) ; Harville (1977)). In these models I is in each cage equal to
o2H(0) for some % > 0 and a vector 0 of (a fairly small number of) parame-

ters. Corbeil and Searle (1976) suggest transforming g into two parts by

means of two linear transformations of y, such that the disribution of one
of these parts depends only on o2H(f) and not on f (assuming multivariate

normality of ). 0 and o? are estimated by maximum likelihood applied to
this part of the data. Then with the estimate of 6 so cbtained, g is estimated
by the obvious generalized least squares formula.

Finally, it is sometimes reasonable to cousider the X,’s as being the
realized values of stochastic variables X, ; e.g. suppose that (yn, Xn), n = 1,
..., N, are independent observations each with (J—ry,).(K-+1) missing com-
ponents from some .J. (K--1)-variate distribution, the observations being
. independent of one another. We could now estimate the mean vector and
covariance matrix of the underlying joint distribution; § and X are functions of
these parameters. The fact that y,s has the same regression on @, k=1, ...,K
for each j means that some constraints should be introduced.

The method described in this paper itself supplies a “modified EM algo-
rithm” for observations from a multivariate distribution with components
missing according to some fixed patterns. For setting K = J and zygr = 1
if j = k and 0 otherwise gives us exactly this model. Even when the observa-
tions are not multivariate normally distributed, “maximum likelihood esti-
mation under multivariate normality” can still give cousistent and even asym-
ptotically normally distributed estimators of mean vector and covariance
matrix ; see Gill (1977, 1986) and van Praag, De Leeuw and Kloek (1986). The
advantage of our mcdification is that the estimators have good statistical
properties right from the first iteration step.
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