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ABSTRACT   

The use of gradient information is well-known to be highly useful in single-objective optimization-based image 
registration methods. However, its usefulness has not yet been investigated for deformable image registration from a 
multi-objective optimization perspective. To this end, within a previously introduced multi-objective optimization 
framework, we use a smooth B-spline-based dual-dynamic transformation model that allows us to derive gradient 
information analytically, while still being able to account for large deformations. Within the multi-objective framework, 
we previously employed a powerful evolutionary algorithm (EA) that computes and advances multiple outcomes at once, 
resulting in a set of solutions (a so-called Pareto front) that represents efficient trade-offs between the objectives. With 
the addition of the B-spline-based transformation model, we studied the usefulness of gradient information in multi-
objective deformable image registration using three different optimization algorithms: the (gradient-less) EA, a gradient-
only algorithm, and a hybridization of these two. We evaluated the algorithms to register highly deformed images: 2D 
MRI slices of the breast in prone and supine positions. Results demonstrate that gradient-based multi-objective 
optimization significantly speeds up optimization in the initial stages of optimization. However, allowing sufficient 
computational resources, better results could still be obtained with the EA. Ultimately, the hybrid EA found the best 
overall approximation of the optimal Pareto front, further indicating that adding gradient-based optimization for multi-
objective optimization-based deformable image registration can indeed be beneficial. 
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1. INTRODUCTION  
The goal in image registration is to find the best transformation that aligns two images. In most registration methods, one 
image is considered to be the source (also referred to as moving) image, which is mapped via a transformation to the 
target (also referred to as fixed) image. 

In single-objective optimization in general, and also for image registration purposes, the gradient (the direction of 
greatest increase) of the function to be optimized, is frequently used to guide an optimization algorithm faster to (local) 
optima, especially if the gradient can be computed efficiently.1 However, contrary to the state-of-the-art single-objective 
optimization registration methods, gradient information was so far not yet considered in a multi-objective optimization 
approach to registration. 
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In a previously introduced multi-objective optimization framework for deformable image registration2, registration is 
posed as a problem with multiple objectives to be optimized simultaneously. This removes the need of pre-determining a 
singular combination of objectives that are of interest in image registration, such as image similarity and smoothness of 
the deformation. For multi-objective optimization, we employed an advanced, model-based Evolutionary Algorithm 
(EA), known as an Estimation-of-Distribution Algorithm (EDA), which solves an optimization problem by building and 
sampling a probabilistic model.3 The algorithm is a population-based method, i.e., it computes and advances multiple 
solutions at once, resulting in a final set of solutions that represents efficient trade-offs between the objectives, called the 
Pareto front. 

In this paper, we assess the utility of incorporating gradient information in the multi-objective optimization framework 
for deformable image registration. To achieve this, it is important to derive gradient information for both objectives 
analytically for maximum efficiency. Therefore, we used a dual-dynamic transformation model based on B-splines. 
Furthermore, the previously introduced dual-dynamic transformation model has the advantage of being capable of 
tackling large deformations as well as (dis)appearing structures.4 In such a model, there are two moving grids instead of 
one: one for the source- and one for the target image. This allows for better correlation of underlying structures in both 
the source- and target image. To test the impact of using gradient information, we compare three different optimization 
algorithms: 1) a gradient-less EA, 2) a gradient-only algorithm, and 3) a hybrid combination of these two. 
 

2. MATERIALS AND METHODS 

2.1 B-spline-based dual-dynamic transformation model 

Free-form deformation models based on B-splines5,6 are widely used in image registration because they provide 
flexibility, transformation smoothness, and computational efficiency. In such models, the source image is deformed by 
manipulating an underlying grid of control points that govern, via interpolation, the deformation and thereby the 
transformation of the image. 

We build upon a previously introduced concept of a dual-dynamic transformation model that has shown to be capable of 
handling large deformations.4 In this model, both images are considered moving. Here, we propose a B-spline-based 
dual-dynamic transformation model. We consider two meshes nx×my of control points ϕs, ϕt associated with the source- 
and target image respectively, and a "virtual" fixed grid of dimensions N×M. A mapping between the images is defined 
indirectly by mapping the points of the virtual grid to both the source- and the target image through two B-spline 
transformations Ts, Tt: R2 o R2 which are defined as follows:   
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and Bi, Bj are cubic B-spline basis functions. The sets of control points ϕs, ϕt are the parameters to be optimized. 



 
 

 
 

       
 

Figure 1. Axial slices from breast MRI scans acquired from a healthy volunteer. Left: prone breast MRI (source image). 
Right: supine breast MRI (target image). 

 

2.2 Multi-objective deformable image registration 

We formulate deformable image registration as a multi-objective optimization problem. Two objectives are defined: one 
related to the quality of fit, i.e., the degree of similarity between the images, and one related to the smoothness of the 
transformations which favors smooth transformations over strong deformations. These objectives are conflicting; one 
(related to similarity) needs to be maximized, the other (related to smoothness) needs to be minimized. As a 
consequence, a unique optimal solution does not exist, but a set of equally good ones do, each one better in one objective 
than the other solutions but worse in the other objective. EAs are known to deal excellently with multi-objective 
problems7, being able to advance multiple solutions (the so-called population) simultaneously, resulting in a final set of 
solutions (i.e., efficient trade-offs between the objectives) called the Pareto front. Such an optimization method can find 
possibly existing Pareto-optimal solutions that cannot be found by repeatedly using single-objective optimization 
methods with different linearly weighted combinations of the objectives (i.e., if the Pareto front is concave).7

 

2.3 Objectives 
For the similarity measure we use the sum of squared differences in grey value between the target- and the source image. 
This measure must be minimized. To calculate this sum, we perform uniform sampling on the virtual grid, acquiring 
locations in both the source- and target image. We then derive the grey values at these locations using pre-processed B-
spline coefficients8,9, and calculate the sum of their squared differences. Note that the use of this particular similarity 
measure is not a necessity. Other measures could be used here as well. 

To address the ill-posedness of the deformable image registration problem, the second objective is introduced to measure 
smoothness, using second order derivatives of the deformation field.5,10,11 We use a smoothing term that involves the 
second order derivatives of the two deformation fields. Specifically, the smoothing term is the sum of squared second 
order derivatives of the B-spline transformations and   is  denoted  as  ∆T. We formulate the smoothness objective as the 
sum of the squared differences of the smoothness terms evaluated at pairs of points in the source- and target image. 

2.4 Three optimization algorithms 

2.4.1 Gradient-less EA 

We employ a specific type of EA, known as EDA, that aims to exploit features of the problem's structure via 
probabilistic modeling. The specific EDA we use is called iMAMaLGAM (incremental Multi-objective Adapted 
Maximum Likelihood Gaussian Model mixture), in which the probabilistic model is a Gaussian mixture distribution. In 
related work, iMAMaLGaM was shown to perform excellently, finding sufficient approximations of the optimal Pareto 
front for various well-known benchmark problems.12 



 
 

 
 

2.4.2 Gradient-only algorithm 

As a result of being constructed using B-spline transformations as well as using B-spline pixel interpolation, both the 
similarity- and the smoothness objective are smooth functions. Therefore, we are able to derive analytic expressions of 
the gradient for both objectives, which makes the use of gradient information much more computationally efficient. 

For the similarity objective, calculating the analytic expression for the gradient comes down to calculating the following 
term: 
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where Ii = Is, It are the B-spline pixel-interpolation functions associated with the source- and the target image, Ti = Ts, Tt 
are the B-spline transformations, and ϕi = ϕs,  ϕt are the control points. More details about the derivation of the analytic 
gradient can be found in the Appendix. For the gradient of the smoothness objective we essentially have to calculate the 
following term: 
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In single-objective optimization, the application of the gradient is quite straightforward; it is used to indicate the 
direction in which the function to be optimized improves the most. Many powerful single-objective gradient-based 
optimization algorithms exist, such as the conjugate gradients method.13 However, in a multi-objective framework the 
notion of improvement is different and much less is known about the use and possible benefit of using gradient 
information in such a setting. We use a multi-objective gradient-based algorithm from literature that exploits gradient 
information in three different ways.14 

ROCG The first exploitation method is called Random Objective Conjugate Gradients (ROCG); here, every time the 
method is called, one objective is chosen randomly and the conjugate gradients technique is performed for that objective 
only. 

AORL The second exploitation method is called Alternating Objectives Repeated Line search (AORL). AORL performs 
a line search in the direction of the negative gradient of an alternatingly chosen objective - this reduces the chance that 
the algorithm converges to a local optimum for one objective, while making the other worse. 

CORL The third method is called Combined Objectives Repeated Line search (CORL). CORL exploits gradient 
information in a purely multi-objective manner. The set of all improving directions for both objectives is calculated 
(which can be done on the basis of the gradients of the individual objectives), one direction is chosen randomly, and a 
line search is performed in this direction, improving both objectives simultaneously. 

For maximum efficiency, the multi-objective gradient-based algorithm adaptively decides each time an exploitation 
method is called which method (i.e., ROCG, AORL, or CORL) to use, based on the number of improved solutions found 
by that method compared to the number of evaluations it has used. 

2.4.3 Hybrid EA 

Whether the use of gradient information in real-valued multi-objective optimization is beneficial or not, depends highly 
on the problem at hand. High dimensionality and existence of local optima are problematic for pure gradient-based 
algorithms. A combination, however, of the EA with gradient techniques used in an adaptive manner has been shown to 
be capable of overcoming these difficulties and to find improvements on the Pareto front compared to using solely the 
EA. Therefore, we consider also this hybridization here. In this hybrid algorithm, the gradient method is applied to 
solutions that the EA has generated, i.e., at the end of every evolutionary generation cycle. 

2.5 Experiments 

We considered a large-deformation registration case; prone-supine breast MRI registration (Figure 1). MRI scans were 
acquired from a healthy volunteer. First, the two MRI scans were rigidly registered on the bony anatomy. Subsequently, 
one central pair of 2D slices was selected. We performed registration using two 8×8 grids of control points, which 
resulted in 256 parameters to be optimized. To compare the algorithms’  performance   and   to   ensure   robustness   in   the  
results (as all algorithms include a stochastic component), we ran each algorithm (the gradient-less EA, the gradient-only  



 
 

 
 

 
 

 

           
 
 

            
 
  
Figure 2. Results obtained with a budget of 2,500,000 evaluations. Result of from top to bottom: the gradient-less EA, the 
gradient-only algorithm, the hybrid EA. From left to right: target image, resulting Pareto fronts, and transformed source 
images associated with the selected solutions (black triangle) on the Pareto front.               

 
 
algorithm, and the hybrid EA) 10 times, obtaining in total 30 Pareto fronts. Since the optimal Pareto front cannot be 
known beforehand, the set of best solutions out of these 30 Pareto fronts was taken as the surrogate optimal Pareto front. 
To  measure  each  algorithms’  rate  of  convergence  to  the  surrogate  optimal  Pareto  front,  we  used  a  well-known indicator 
in multi-objective optimization, called Inverted Generational Distance (IGD).15 IGD measures how far a result (i.e., an 
approximation front) is from the (surrogate) optimal Pareto front as well as how well the solutions in an approximation 
front are spread along the (surrogate) optimal Pareto front. A value of 0 for the IGD corresponds to optimality, i.e., all 
solutions on the Pareto front are covered by at least one solution in the approximation front. Therefore, the lower the 
IGD value, the better. 

3. RESULTS 
The gradient-less EA as well as the hybrid EA, in combination with the use of the B-spline-based dual-dynamic 
transformation model, are capable of finding good solutions, as opposed to the gradient-only algorithm, that yields 
poorer results (Figure 2). When comparing the solutions found by all runs of the algorithms in Figure 3, we see that the 



 
 

 
 

gradient-only algorithm is less powerful than the gradient-less EA, since it finds inferior approximation fronts compared 
to the gradient-less EA and the hybrid EA. Moreover, the hybrid EA is capable of finding a better-spread approximation 
of the surrogate optimal Pareto front than the gradient-less EA. Even if the solutions that the hybrid EA finds in the 
interesting part of the Pareto front (for this case: high value for the smoothness objective, combined with a low value for 
the similarity objective) are not better than those that the gradient-less EA finds, visually they are comparably good, as 
can be seen in Figure 2. Moreover, the average IGD convergence graphs in Figure 5 indicate that the hybrid EA 
outperforms both the gradient-less EA and the gradient-only algorithm in terms of the number of required evaluations to 
approximate the surrogate optimal Pareto front with a certain quality level which can be interpreted as the convergence 
rate. It finds interesting solutions already after 500,000 evaluations, as shown in Figure 4. The gradient-less EA starts 
with a well-spread Pareto front, but in the end it finds only solutions that are confined to one region (Figure 4). This 
ultimately results in deteriorating IGD values (Figure 5). 

4. DISCUSSION AND CONCLUSION 
For the first time in multi-objective deformable image registration, analytical gradient information is derived based on a 
B-spline-based dual-dynamic transformation model. The possible benefit of exploiting this information in multi-
objective image registration is assessed, with promising results. The assessment is based on the comparison of three 
different optimization algorithms. Moreover, although B-spline deformation models are widely used, they have not been 
yet studied in a multi-objective framework. 

We assessed the utility of multi-objective gradient information for the task of deformable image registration, within a 
previously introduced multi-objective optimization framework, combined with a B-spline-based dual-dynamic 
transformation model to account for large deformations. Results from the comparison of three optimization algorithms 
show that, even given smooth objectives, the use of common multi-objective gradient-only algorithms is not powerful 
enough, however, exploitation of the gradient in combination with an evolutionary algorithm does have the potential to 
improve registration results and achieve faster overall convergence.        

                        

 
 

Figure 3. All 30 Pareto fronts of the three optimization algorithms together with the surrogate optimal Pareto front. 

 



 
 

 
 

       
 
 

Figure 4. Example of the performance of the hybrid EA with a budget of 500,000 evaluations. Left: target image. Middle: 
resulting Pareto front. Right: transformed source image associated with the selected solution (black triangle) on the Pareto 
front. 

 

           
                                                                         Figure 5. Average convergence graphs with IGD. 
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APPENDIX
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The similarity measure we use is the sum of squared intensity di↵erences. For a dual-dynamic transformation
model it is defined as follows:
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To calculate the gradient of the similarity measure with respect to the control points, we need to calculate the
partial derivative
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If we look at the right term of the product, since �
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is associated with the source image, the right sum will

be equal to 0. Now, for one pair (x, y) we can calculate the left term:
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to 0, and therefore the derivative comes down to calculating the following term:
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