Skip to main content
Log in

A spectral theory approach for extreme value analysis in a tandem of fluid queues

  • Published:
Queueing Systems Aims and scope Submit manuscript

Abstract

We consider a model to evaluate performance of streaming media over an unreliable network. Our model consists of a tandem of two fluid queues. The first fluid queue is a Markov modulated fluid queue that models the network congestion, and the second queue represents the play-out buffer. For this model the distribution of the total amount of fluid in the congestion and play-out buffer corresponds to the distribution of the maximum attained level of the first buffer. We show that, under proper scaling and when we let time go to infinity, the distribution of the total amount of fluid converges to a Gumbel extreme value distribution. From this result, we derive a simple closed-form expression for the initial play-out buffer level that provides a probabilistic guarantee for undisturbed play-out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Asmussen, S.: Busy period analysis, rare events and transient behavior in fluid flow models. J. Appl. Math. Stoch. Anal. 7(3), 269–299 (1994)

    Article  Google Scholar 

  2. Asmussen, S.: Extreme value theory for queues via cycle maxima. Extremes 1(2), 137–168 (1998)

    Article  Google Scholar 

  3. Asmussen, S., Bladt, M.: A sample path approach to mean busy periods for Markov-modulated queues and fluids. Adv. Appl. Probab. 26, 1117–1121 (1994)

    Article  Google Scholar 

  4. Berman, S.: Limiting distribution of the maximum term in sequences of dependent random variables. Ann. Math. Stat. 33(3), 894–908 (1962)

    Article  Google Scholar 

  5. Bléfari-Melazzi, N., Eramo, V., Listanti, M.: Dimensioning of play-out buffers for real-time services in a b-isdn. Comput. Commun. 21(11), 980–995 (1998). doi:10.1016/S0140-3664(98)00171-6. http://www.sciencedirect.com/science/article/pii/S0140366498001716

  6. Bosman, J., van der Mei, R., Nunez-Queija, R.: A fluid model analysis of streaming media in the presence of time-varying bandwidth. In: 24th International Teletraffic Congress (ITC 2012). Krakow, Poland (2012)

  7. Boxma, O., Dumas, V.: The busy period in the fluid queue. ACM SIGMETRICS Perform. Eval. Rev. 26(1), 100–110 (1998)

    Article  Google Scholar 

  8. Cisco: Cisco Visual Networking Index: Forecast and Methodology, 20122017. Cisco White Paper, Cisco (2013)

  9. Cisco: Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update 20122017. Cisco White Paper, Cisco (2013)

  10. Claerbout, J.: Fundamentals of Geophysical Data Processing. Pennwell Books, Tulsa, OK (1985)

  11. Dua, A., Bambos, N.: Buffer management for wireless media streaming. In: 2007 IEEE Global Telecommunications Conference, GLOBECOM ’07, pp. 5226–5230 (2007). doi:10.1109/GLOCOM.2007.991

  12. Gantmacher, F.: Matrix Theory, vol. 1. AMS Chelsea, New York (2000)

    Google Scholar 

  13. Iglehart, D.: Extreme values in the gi/g/1 queue. Ann. Math. Stat. 43, 627–635 (1972)

    Article  Google Scholar 

  14. Kim, T., Avadhanam, N., Subramanian, S.: Dimensioning receiver buffer requirement for unidirectional vbr video streaming over tcp. In: 2006 IEEE International Conference on Image Processing, pp. 3061–3064 (2006). doi:10.1109/ICIP.2006.313086

  15. Kontovassilis, K., Tsiligaridis, J., Stassinopoulos, G.: Buffer dimensioning for delay- and loss-sensitive traffic. Comput. Commun. 18(5), 315–328 (1995). doi:10.1016/0140-3664(95)96833-C. http://www.sciencedirect.com/science/article/pii/014036649596833C

    Google Scholar 

  16. Kulkarni, V.: Fluid models for single buffer systems. In: Dshalalow, J. H. (ed.) Frontiers in Queueing: Models and Applications in Science and Engineering, pp. 321–338. CRC Press, Boca Raton, FL (1997)

  17. Kulkarni, V., Tzenova, E.: Mean first passage times in fluid queues. Oper. Res. Lett. 30(5), 308–318 (2002)

    Article  Google Scholar 

  18. Molazem Tabrizi, F., Peters, J., Hefeeda, M.: Dynamic control of receiver buffers in mobile video streaming systems. IEEE Trans. Mob. Comput. 12(5), 995–1008 (2013). doi:10.1109/TMC.2012.56

    Google Scholar 

  19. Norris, J.R.: Markov Chains. Cambridge University Press, Cambridge (2008)

    Google Scholar 

  20. Scheinhardt, W.: Markov-modulated and feedback fluid queues. Ph.D. thesis, Faculty of Mathematical Sciences, University of Twente, Enschede, The Netherlands (1998), http://www.ub.utwente.nl/webdocs/tw/1/t0000008.pdf

  21. Scheinhardt, W., Zwart, B.: A tandem fluid queue with gradual input. Probab. Eng. Inf. Sci. 16(1), 29–45 (2002)

    Article  Google Scholar 

  22. Sericola, B., Remiche, M.: Maximum level and hitting probabilities in stochastic fluid flows using matrix differential riccati equations. Methodol. Comput. Appl. Probab. 13(2), 307–328 (2011)

    Article  Google Scholar 

  23. Wu, C., Chen, K., Huang, C., Lei, C.: An empirical evaluation of VoIP playout buffer dimensioning in Skype. In: Proceedings of ACM NOSSDAV 2009 (2009)

  24. Zhang, L., Fu, H.: Dynamic bandwidth allocation and buffer dimensioning for supporting video-on-demand services in virtual private networks. Comput. Commun. 23(1415), 1410–1424 (2000). doi:10.1016/S0140-3664(00)00186-9. http://www.sciencedirect.com/science/article/pii/S0140366400001869

Download references

Acknowledgments

This work has been carried out in the context of the IOP GenCom Project Service Optimization and Quality (SeQual), which is supported by the Dutch Ministry of Economic Affairs, Agriculture and Innovation via its agency Agentschap NL.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. W. Bosman.

Appendix 1: Proof of Lemma 2

Appendix 1: Proof of Lemma 2

1.1 a: Preliminaries

Definition 8

Let \(A\) be a \(n\times m\) matrix:

$$\begin{aligned} A=\begin{pmatrix} a_{1,1}&{}\quad a_{1,2}&{}\quad \cdots &{}\quad a_{1,m}\\ a_{2,1}&{}\quad a_{2,2}&{}\quad \cdots &{}\quad a_{2,m}\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ a_{n,1}&{}\quad a_{n,2}&{}\quad \cdots &{}\quad a_{n,m}\\ \end{pmatrix}. \end{aligned}$$

Then any order-\(p\) minor of \(A\) will be denoted as:

$$\begin{aligned} A\begin{pmatrix} i_{1}&{}\quad i_{2}&{}\quad \cdots &{}\quad i_{p}\\ k_{1}&{}\quad k_{2}&{}\quad \cdots &{}\quad k_{p}\\ \end{pmatrix} := \det \left[ \begin{pmatrix} a_{i_{1},k_{1}}&{}a_{i_{1},k_{2}}&{}\cdots &{}a_{i_{1},k_{p}}\\ a_{i_{2},k_{1}}&{}a_{i_{2},k_{2}}&{}\cdots &{}a_{i_{2},k_{p}}\\ \vdots &{}\vdots &{}\ddots &{}\vdots \\ a_{i_{p},k_{p}}&{}a_{i_{p},k_{2}}&{}\cdots &{}a_{i_{p},k_{p}}\\ \end{pmatrix} \right] , \end{aligned}$$

provided that

$$\begin{aligned}&1\le i_{1}<i_{2}<\cdots <i_{p}\le m,\\&1\le k_{1}<k_{2}<\cdots <k_{p}\le n,\\&p\le m,n. \end{aligned}$$

The Binet–Cauchy formula on minors (see Gantmacher [12], page 12):

Let \(A\) be an \(m\times n\) matrix, \(B\) be a \(n\times q\) matrix and \(C\) be an \(m\times q\) matrix and \(C=AB\). Then any minor of \(C\) of order \(p\) is the sum of the products of all possible minors of \(A\) with order p and corresponding minors of the same order of \(B\):

$$\begin{aligned} C\begin{pmatrix} i_{1}&{}i_{2}&{}\cdots &{}i_{p}\\ j_{1}&{}j_{2}&{}\cdots &{}j_{p} \end{pmatrix} =\sum \limits _{1\le k_{1}<k_{2}<\cdots <k_{m}\le n} A\begin{pmatrix} i_{1}&{}i_{2}&{}\cdots &{}i_{p}\\ k_{1}&{}k_{2}&{}\cdots &{}k_{p} \end{pmatrix} B\begin{pmatrix} k_{1}&{}k_{2}&{}\cdots &{}k_{p}\\ j_{1}&{}j_{2}&{}\cdots &{}j_{p} \end{pmatrix}. \end{aligned}$$

Lemma 9

Let \(A\) be a \(n\times n\) matrix:

$$\begin{aligned} A=\sum \limits _{k=1}^{m}A_{k} \end{aligned}$$

with:

$$\begin{aligned} A_{k}= \begin{bmatrix} a_{k,1,1}&\cdots&a_{k,1,n}\\ \vdots&\ddots&\vdots \\ a_{k,n,1}&\cdots&a_{k,n,n} \end{bmatrix}. \end{aligned}$$

Define \(\mathbf{A}\) as a \(n\times mn\) matrix with:

$$\begin{aligned} \mathbf{A}= \begin{bmatrix}A_{1}&A_{2}&\cdots&A_{k}\end{bmatrix}, \end{aligned}$$

and \(\mathbf{I}\) is a \(mn\times n\) matrix (consisting of \(m\) \(n\times n\) identity matrices \(I_{n}\)) defined by:

$$\begin{aligned} \mathbf{I}= {\begin{bmatrix}I_{n}&I_{n}&\cdots&I_{n}\end{bmatrix}}^\mathrm{T}. \end{aligned}$$

Let \(\mathcal {V}\) be the set of subsets with exactly \(n-1\) elements from the set \(\{1,2,\ldots ,mn\}\) which is defined by:

$$\begin{aligned} \mathcal {V}=\{(k_{1},k_{2},\ldots ,k_{n-1}):1\le k_{1}<k_{2}<\cdots <k_{n-1}\le mn\}. \end{aligned}$$

Then the following holds:

$$\begin{aligned} {{\mathrm{{adj}}}}(A)=\sum \limits _{v\in \mathcal {V}}{{\mathrm{{adj}}}}\Big (F_{C}(\mathbf{A},v)F_{R}(\mathbf{I},v)\Big ), \end{aligned}$$

with operators:

$$\begin{aligned} F_{C}(\mathbf{A},v)=\begin{bmatrix} \mathbf{a}_{1,v_{1}}&\cdots&\mathbf{a}_{1,v_{n-1}}\\ \vdots&\ddots&\vdots \\ \mathbf{a}_{n,v_{1}}&\cdots&\mathbf{a}_{n,v_{n-1}} \end{bmatrix}, \end{aligned}$$
$$\begin{aligned} F_{R}(\mathbf{I},v)=\begin{bmatrix} \mathbf{i}_{v_{1},1}&\cdots&\mathbf{i}_{v_{1},n}\\ \vdots&\ddots&\vdots \\ \mathbf{i}_{v_{n-1},1}&\cdots&\mathbf{i}_{v_{n-1},n} \end{bmatrix}, \end{aligned}$$

Operator \(F_{C}(\mathbf{A},v)\) selects the columns from \(\mathbf{A}\) according to vector \(v\), while operator \(F_{R}(\mathbf{I},v)\) selects rows from \(\mathbf{I}\) according to vector \(v\).

Proof

We write \(\sum \limits _{k=1}^{m}A_{k}=\mathbf{A}\mathbf{I}=\begin{bmatrix}A_{1}&A_{2}&\cdots&A_{k}\end{bmatrix}{\begin{bmatrix}I_{n}&I_{n}&\cdots&I_{n}\end{bmatrix}}^\mathrm{T}\). Using the Binet–Cauchy formula on minors, this can be rewritten to:

$$\begin{aligned} {{\mathrm{{adj}}}}\left[ A \right] = {{\mathrm{{adj}}}}\left[ \mathbf AI \right]&= \begin{pmatrix} \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{1,1}(v) &{}\quad \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{1,2}(v) &{}\quad \cdots &{}\quad \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{1,n}(v)\\ \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{2,1}(v) &{}\quad \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{2,2}(v) &{}\quad \cdots &{}\quad \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{2,n}(v)\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{n,1}(v) &{}\quad \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{n,2}(v) &{}\quad \cdots &{}\quad \sum \limits _{v\in \mathcal {V}}\overline{\mathbf{a }}_{n,n}(v) \end{pmatrix}\\&= \sum \limits _{v\in \mathcal {V}}\begin{pmatrix} \overline{\mathbf{a }}_{1,1}(v) &{}\quad \overline{\mathbf{a }}_{1,2}(v) &{}\quad \cdots &{}\quad \overline{\mathbf{a }}_{1,n}(v)\\ \overline{\mathbf{a }}_{2,1}(v) &{}\quad \overline{\mathbf{a }}_{2,2}(v) &{}\quad \cdots &{}\quad \overline{\mathbf{a }}_{2,n}(v)\\ \vdots &{}\quad \vdots &{}\quad \ddots &{}\quad \vdots \\ \overline{\mathbf{a }}_{n,1}(v) &{}\quad \overline{\mathbf{a }}_{n,2}(v) &{}\quad \cdots &{}\quad \overline{\mathbf{a }}_{n,n}(v) \end{pmatrix}\\&=\sum \limits _{v\in \mathcal {V}}{{\mathrm{{adj}}}}\Big (F_{C}(\mathbf{A},v)F_{R}(\mathbf{I},v)\Big ), \end{aligned}$$

with:

$$\begin{aligned} \overline{\mathbf{a }}_{i,j}(v)=\mathbf{A} \begin{pmatrix} 1&{}\cdots &{}i-1&{}i+1&{}\cdots &{}n\\ v_{1}&{}\cdots &{}v_{i-1}&{}v_{i}&{}\cdots &{}v_{n-1} \end{pmatrix} \mathbf{I} \begin{pmatrix} v_{1}&{}\cdots &{}v_{j-1}&{}v_{j}&{}\cdots &{}v_{n-1}\\ 1&{}\cdots &{}j-1&{}j+1&{}\cdots &{}n. \end{pmatrix}. \end{aligned}$$

\(\square \)

1.2 b: Proof of Lemma 2

Proof

Let \(\mathcal {V}\) be the set of subsets with exactly \(n-1\) elements from the set \(\{1,2,\ldots ,mn\}\) which is defined by:

$$\begin{aligned} \mathcal {V}=\{(k_{1},k_{2},\ldots ,k_{n-1}):1\le k_{1}<k_{2}<\cdots <k_{n-1}\le mn\}. \end{aligned}$$

We define \(\mathcal {P}\) as the set containing all k-permutations of \(n-1\) elements from the set \(\{1,\ldots ,n\}\). Furthermore we define \(\mathcal {C}\) as the set with all combinations of \(n-1\) elements from the set \(\{1,\ldots ,m\}\). For each combination \(c\in \mathcal {C}\) we define:

$$\begin{aligned} \mathbf{A}_{c}&= \begin{bmatrix}A_{c_{1}}A_{c_{2}}\cdots&A_{c_{n-1}}\end{bmatrix},\\ \mathbf{I}_{c}&= {\begin{bmatrix}I_{n} I_{n} \cdots I_{n}\end{bmatrix}}^\mathrm{T}, \end{aligned}$$

and thus:

$$\begin{aligned} \mathbf {A}_{c}\mathbf {I}_{c}=\sum \limits _{k\in c}A_{k}. \end{aligned}$$

Next we apply Lemma 9:

$$\begin{aligned} {{\mathrm{{adj}}}}[A]&=\sum \limits _{v\in \mathcal {V}}\left( \prod \limits _{k\in v}b_{\lceil k / n \rceil }\right) {{\mathrm{{adj}}}}\Big (F_{C}(\mathbf{A},v)F_{R}(\mathbf{I},v)\Big ), \end{aligned}$$

with

$$\begin{aligned} \mathbf{A}= \begin{bmatrix}A_{1}&A_{2}&\cdots&A_{k}\end{bmatrix}, \end{aligned}$$

and

$$\begin{aligned} \mathbf{I}= {\begin{bmatrix}I_{n}&I_{n}&\cdots&I_{n}\end{bmatrix}}^\mathrm{T}. \end{aligned}$$

Because all matrices \(A_{k}\) have rank 1 the only adjugates that remain are those where there are \(n-1\) columns, at \(n-1\) different positions, from \(n-1\) different \(A_{k}\) matrices. All other combinations of columns result in a matrix with rank \(<n-1\) for which the minors of order \(n-1\) are zero. Thus the only elements from \(\mathcal {V}\) that contribute are those that correspond to any k-permutation of \(n-1\) columns from the set \(\{1,\ldots n\}\) where each column is selected from a distinct matrix \(A_{k},~k=1,\ldots ,m\). Note that each selected column remains exactly on its originating column position in the \(A_{k}\) matrix. As the only combinations consisting of \(n-1\) columns at unique positions from \(n-1\) unique matrices contribute to non-zero minors it holds that:

$$\begin{aligned}&\sum \limits _{v\in \mathcal {V}}\left( \prod \limits _{k\in v}b_{\lceil k / n \rceil }\right) {{\mathrm{{adj}}}}\Big (F_{C}(\mathbf{A},v)F_{R}(\mathbf{I},v)\Big )\\ =&\sum \limits _{c\in \mathcal {C}}\sum \limits _{p\in \mathcal {P}}\left( \prod \limits _{k\in c}b_{k}\right) {{\mathrm{{adj}}}}\Big (F_{C}(\mathbf{A}_{c},v_{p})F_{R}(\mathbf{I}_{p},v_{p})\Big ), \end{aligned}$$

where \(v_{p}\) is the vector that selects the \(p_{i}\)th column from matrix \(A_{c_{i}}\):

$$\begin{aligned}&(v_{p})_{i}:=n(i-1)+p_{i}, \quad i\in \{1,\ldots ,n-1\},~p\in \mathcal {P}. \end{aligned}$$

We now define \(\mathcal {V}_{c}\) as be the set of subsets with exactly \(n-1\) elements from the set \(\{1,2,\ldots ,n(n-1)\}\) which is defined by:

$$\begin{aligned} \mathcal {V}_{c}=\{(k_{1},k_{2},\ldots ,k_{n-1}):1\le k_{1}<k_{2}<\cdots <k_{n-1}\le n(n-1)\}. \end{aligned}$$

For each combination \(c\in \mathcal {C}\) we can do the opposite: add again the terms (corresponding to zero valued minors) from the set \(\mathcal {V}_{c}\) corresponding to columns of \(\mathbf{A}_{c}=\begin{bmatrix}A_{c_{1}}&\cdots&A_{c_{n-1}}\end{bmatrix}\):

$$\begin{aligned}&\sum \limits _{c\in \mathcal {C}}\sum \limits _{p\in \mathcal {P}}\left( \prod \limits _{k\in c}b_{k}\right) {{\mathrm{{adj}}}}\Big (F_{C}(\mathbf{A}_{c},v_{p})F_{R}(\mathbf{I}_{p},v_{p})\Big ),\\&=\sum \limits _{c\in \mathcal {C}}\left( \prod \limits _{k\in c}b_{k}\right) \sum \limits _{v\in \mathcal {V}_{c}}{{\mathrm{{adj}}}}\Big (F_{C}(\mathbf{A}_{c},v)F_{R}(\mathbf{I}_{c},v)\Big ),\\&=\sum \limits _{c\in \mathcal {C}}\left( \prod \limits _{k\in c}b_{k}\right) {{\mathrm{{adj}}}}\left[ \sum \limits _{k\in c}A_{k}\right] . \end{aligned}$$

\(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bosman, J.W., Núñez-Queija, R. A spectral theory approach for extreme value analysis in a tandem of fluid queues. Queueing Syst 78, 121–154 (2014). https://doi.org/10.1007/s11134-014-9395-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11134-014-9395-9

Keywords

Mathematics Subject Classification

Navigation