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Abstract

Due to the current trend towards smaller cells, an increasing number of users of cellular networks reside at

the edge between two cells; these users typically receive poor service as a result of the relatively weak signal and

strong interference. Coordinated Multi-Point (CoMP) with Joint Transmission (JT) is a cellular networking technique

allowing multiple Base Stations (BSs) to jointly transmit to a single user. This improves the users’ reception quality

and facilitates better service to cell-edge users. We consider a CoMP-enabled network, comprised of multiple BSs

interconnected via a backhaul network. We formulate the OFDMA Joint Scheduling (OJS) problem of determining

a subframe schedule and deciding if and how to use JT in order to maximize some utility function. We show that

the OJS problem is NP-hard. We develop optimal and approximation algorithms for specific and general topologies,

respectively. We consider a time dimension and study a queueing model with packet arrivals in which the service rates

for each subframe are obtained by solving the OJS problem. We prove that when the problem is formulated with a

specific utility function and solved optimally in each subframe, the resulting scheduling policy is throughput-optimal.

Via extensive simulations we show that the bulk of the gains from CoMP with JT can be achieved with low capacity

backhaul. Moreover, our algorithms distribute the network resources evenly, increasing the inter-cell users’ throughput

at only a slight cost to the intra-cell users. This is the first step towards a rigorous, network-level understanding of

the impact of cross-layer scheduling algorithms on CoMP networks.

Keywords: Coordinated Multi-Point (CoMP), Joint Transmission, Cellular Networks, Approximation Algorithms,

Scheduling, Queueing Networks.

I. INTRODUCTION

Cellular networks face an ever-increasing bandwidth demand, driven by the advent of sophisticated mobile devices

and new applications. Satisfying this demand calls for improvements in the spectral utilization and reductions

in inter-cell interference. The latter is becoming more relevant as the number of inter-cell users increases with

ever-decreasing cell sizes. Such users are often unable to receive any transmission due to the high interference.

Interference reduction can be efficiently accomplished through multi-cell coordination, known as Coordinated Multi-

Point (CoMP) or Network-MIMO. One particularly promising category is CoMP with Joint Transmission (JT), where

multiple Base Stations (BSs) jointly transmit to a single user, using the same time-frequency slots. This technique is
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incorporated in the LTE-Advanced standard [1]. Recently, CoMP with JT was shown to obtain substantial throughput

gains in both indoor and outdoor testbeds [20].1

As a result of the implementation of CoMP with JT in the LTE-Advanced standard, algorithm design and

performance evaluation for these systems have recently received increased attention in the research literature (see,

e.g., [15], [22], [37]). However, most existing work is concerned with developing heuristics designed for saturation

conditions. In contrast, we consider a cellular network where new packets are generated over time, and construct a

rigorous framework to develop scheduling algorithms for CoMP with JT that maximize throughput. This is achieved

via a cross-layer approach, consisting of PHY (considering SINR-based transmission probabilities), MAC (deciding

on a transmission schedule), and network layer (forwarding traffic over the backhaul).

We consider a cellular network comprised of multiple BSs interconnected via backhaul links.Users are assigned

a serving and a secondary BS, and packets destined for a user can be transmitted either by the serving BS only, or

jointly by the serving and secondary BSs. The latter provides better signal-to-interference-plus-noise ratio (SINR),

but requires a subframe in both BSs, as well as forwarding the packet from the serving to the secondary BS prior

to the transmission. A scheduling algorithm for CoMP with JT therefore needs to balance the performance benefits

of transmitting packets using JT with the additional resources required for doing so.

We first focus on a single subframe, and study the OFDMA Joint Scheduling (OJS) problem of determining a

schedule to maximize some utility function, given a set of packets for each user. Such a schedule determines which

packets should be forwarded over the backhaul and which packets should be transmitted wirelessly, either using

JT or by the serving BS only. We show that the OJS problem is NP-hard and describe a framework for solving it

efficiently by decomposing it into problems related to knapsack and coloring. This allows us to develop an efficient

algorithm for solving the OJS problem in bipartite backhaul network graphs. While backhaul network graphs are

not necessarily bipartite, this result enables us to develop approximation algorithms for general backhaul graphs.

We then consider the network evolution over multiple subframes. We define a queueing model where the users

are fixed, and packets for the various users are generated over time. Departures are determined by the schedule

obtained from solving the OJS problem in each subframe. We characterize the capacity region (i.e., the packet

arrival rates that can be sustained). Moreover, we demonstrate that when the OJS problem is formulated with a

specific queue-length based utility function and solved optimally in each subframe, we obtain a MaxWeight-like

scheduling policy (e.g., [30]), which we show to be throughput optimal. This is surprising, given the difference

between OJS and the typical matching-type problems where MaxWeight scheduling performs well. Based on the

queueing model, we present extensive simulation results to evaluate the performance of the proposed scheduling

algorithms, as well as the benefits of JT. In particular, we consider different network topologies with an SINR-

based channel model. We show that the bulk of the gains from CoMP with JT can be achieved with low capacity

backhaul links. This result is highly relevant as the deployments of advanced cellular wireless technologies have

a strong impact on mobile backhaul operational expenditure (OPEX), which amount to 20-40% of total mobile

1There are two flavors of CoMP with JT: coherent [20] and non-coherent. We consider coherent JT but remark that all results can be directly
extended to non-coherent JT.



3

operator’s OPEX due to their reliance on T1/E1 backhaul copper lines [31]. A promising alternative is wireless

backhaul (e.g., satellite, microwave), which is becoming a viable technology for geographically challenging regions

and 5G networks. However, since such technology has limited capacity (due to, e.g., limited wireless spectrum and

poor wireless channel conditions), our result are relevant to both present and future networks. We show that our

algorithms distribute the network resources more evenly as the backhaul capacity increases. In fact, they increase

the inter-cell users’ throughput at only a slight cost to intra-cell users.

The main contributions of this paper are two-fold: (i) we define a rigorous model for CoMP with JT and develop

novel scheduling algorithms with throughput guarantees for networks with queueing dynamics; (ii) via extensive

simulations, we observe the benefits of JT and the tradeoffs related to its implementation.

The rest of the paper is organized as follows. In Section II we discuss related work. In Section III we present

the model. In Section IV, we introduce the OJS problem and show that it is NP-hard. We develop approximation

algorithms for OJS in Section V. In Section VI, we develop and present results for a queueing model, which we

study through extensive simulation experiments in Section VII. Section VIII provides conclusions and directions

for future research. All proofs can be found in Appendix A.

II. RELATED WORK

Previous work on scheduling for CoMP with JT has focused exclusively on analyzing the performance of

heuristics, and has been limited mostly to networks that are saturated (i.e., have infinite backlog). The proposed

heuristics are then evaluated via simulations or in testbeds (see, e.g., [20] and references therein). For example, [11],

[22], [23], [32], [34] present heuristics for throughput maximization, assuming a perfect backhaul (infinite capacity

and no delay), while [37] does the same for the finite backhaul case. In [15], the authors devise a heuristic for

networks with perfect backhaul, and aim to minimize the backhaul traffic under certain SINR constraints. To our

knowledge, [6], [34] are the only studies that consider unsaturated networks, where traffic is generated over time

rather than assuming an infinite supply of available packets. Both of these propose heuristics, assuming a perfect

backhaul. The main contrast between our work and [6], [15], [22], [23], [32], [34], [37] is that we derive the first

scheduling policies with performance guarantees. This is done for unsaturated networks, assuming finite backhaul

capacity and positive delay over the backhaul.

Models similar to the one considered in this paper have been investigated in the context of single-cell cellular

transmissions. Packet-level scheduling algorithms for cellular networks are developed in [8], [9]. In [3], approxi-

mation algorithms that provide queue stability are analyzed for a single BS.

Closely-related technologies to CoMP with JT are network-MIMO, multi-cell MIMO, and multi-user MIMO

(MU-MIMO) [5], [12], [17], [33]. While theoretical studies (e.g., [7], [17], [24]) show that under certain conditions

such technologies can completely cancel inter-cell interference, achieving these gains in practical scenarios is still

challenging [5], [12], [33] (e.g., due to the high signal processing complexity). The Study of scheduling schemes

for these technologies is subject to further research.
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(a) wireless network (b) backhaul network and joint transmission graph

Fig. 1. A cellular network comprised of basestations (black circles) and users (grey circles).

III. NETWORK MODEL

We consider an OFDMA cellular network comprised of a set of BSs B = {1, . . . , B} and a fixed set of stationary

users N = {1, . . . , N}, see Fig. 1(a). The BSs are connected by a backhaul network represented by a graph

GJ = (B, C), where C is a set of backhaul links with |C| = C. We refer to GJ as the Joint Transmission Graph,

as only neighboring BSs in GJ can joint-transmit, see Fig. 1(b). We schedule over the downlink and assume that

each backhaul link is bidirectional and that both directions share the link capacity, but remark that all results can

be readily extended to directional backhaul links.

Definition 1. User n is associated with up to two BSs:

- The serving BS is denoted BS(n) and is defined as the BS that provides the highest SINR to user n.

- The secondary BS is denoted B̂S(n) and is defined as the BS with highest SINR that has a backhaul link to

BS(n) in C.

Note that some users may not have a secondary BS.

Packets destined for user n arrive at BS(n) and are stored in a queue Qn. Transmission for user n can be either

single-transmitted by BS(n) or joint-transmitted by BS(n) and B̂S(n). For a packet to be joint-transmitted, it first

has to be forwarded over the backhaul to B̂S(n), and stored in a queue Q̂n for joint transmissions maintained at

both BS(n) and B̂S(n). So a packet departs from Qn when it is single-transmitted or forwarded across the backhaul,

and a packet departs from Q̂n when it is joint-transmitted.

To illustrate this, consider the network in Fig. 2(a) with three users and three BSs. In Fig. 2(b) the primary and

secondary BSs of each user are marked, with a solid and dashed line, respectively. Note that user 2’s secondary
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BS1 user 1

BS2 user 2

user 3 BS 3
(a) example network (b) primary (solid line) and secondary

(dashed line) BSs

Q1 Q̂1 Q3

Q2

(c) the storage locations of the various
queues

Fig. 2. BS allocation and queues.

BS is BS1 and not BS3, although the latter is closer, since BS3 does not have a backhaul link to BS2. User 3 does

not have a secondary BS because its primary BS does not have any backhaul connections. Fig. 2(c) displays the

various queues in play, and their locations.

Both wireless packet transmissions and forwarding over the backhaul lasts exactly a single subframe. Throughout,

we assume that a central processing unit determines the schedule for all BSs based on perfect knowledge on the

network state.

We consider a time-slotted model indexed by t, t = 0, 1, . . . , where each time slot corresponds to a single

subframe. Denote Ln(t) and L̂n(t) the queue length of Qn and Q̂n at the beginning of subframe t, respectively.

Denote by Wn(t) the number of new packets generated for user n at the beginning of subframe t. The Wn(t)

are assumed to be i.i.d. over time, independent between users, and have finite second moment. We denote by

µ
(1)
n (t), µ(2)

n (t), and µ(3)
n (t) the number of packets transmitted towards user n in subframe t using single and joint

transmission, and the number of packets forwarded across the backhaul, respectively. These are determined by the

resource allocation at each subframe, see Section III-A for more details. The evolution of the queue lengths can

then be written as

Ln(t+1) = Ln(t) +Wn(t)− µ(1)
n (t)− µ(3)

n (t), (1)

L̂n(t+1) = L̂n(t) + µ(3)
n (t)− µ(2)

n (t). (2)

A. Subframe model

We now consider a single subframe consisting of scheduled blocks S = {1, . . . , S} for each BS, see Fig. 3.

In Sections IV and V we discuss how to allocate resources within a single subframe, which determines the µ(j)
n ,

j = 1, 2, 3. The evolution of the queue lengths (1) and (2) over time is then discussed in Sections VI and VII.

A packet i which is single-transmitted requires scheduled blocks in a subframe of BS(n(i)), while a joint-

transmitted packet requires scheduled blocks in the subframes of both BS(n(i)) and B̂S(n(i)). In the latter case,
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Fig. 3. Example of a frame (corresponding to 1.4MHz LTE).

the set of scheduled blocks used by BS(n(i)) and B̂S(n(i)) must have identical indices since JT requires both BSs

to transmit on the same scheduled blocks.

A packet i is characterized by the pair (n, β), where n is the receiving user, β ∈ {0, 1} indicates whether a

packet is in Qn (β = 0) or in Q̂n (β = 1). The set of all packets is denoted I, |I| = I . Given a packet i ∈ I, we

denote by n(i), β(i) its user type and queue type, respectively.

When transmitted wirelessly, packet i is received successfully with probability p(i). Additionally, the success

probability p(i) is independent of its allocated scheduled blocks, since we assume that the interference in all

scheduled blocks is similar (due to frequency reuse 1). Note that if some scheduled blocks are unused, the

interference is lower and better performance is obtained. We assume that p(i) is higher if β(i) = 1 compared

to β(i) = 0, since when using joint transmission the two BSs configure their transmission parameters such that the

signal combines constructively at the user, resulting in greater SINR when a packet is joint-transmitted.

To simplify the presentation and due to space constraints, we make three assumptions: (i) forwarding a packet i

over the backhaul is always successful; (ii) all packets are of same length and a packet transmission on a wireless

channel requires one scheduled block from the subframe of each of its transmitting BSs; and (iii) the capacity

of each backhaul link is K packets/subframe. In Appendix B we show that assumptions (i)-(iii) can be relaxed.

Moreover, there we demonstrate the applicability of our algorithms to the case where a packet can be transmitted

using one of several Modulation and Coding Schemes (MCSs). We also remark that all the results in this paper

can be readily applied to the setting with infinite backhaul capacity, by setting K = S. In our simulation study

(Section VII) we evaluate our algorithms for the case where multiple MCSs are supported.

IV. THE OFDMA JOINT SCHEDULING (OJS) PROBLEM

We now formulate the joint scheduling problem. In order to describe the BSs involved in each transmission, we

introduce

h(i) =

 {BS(n(i))} if β(i) = 0,

{BS(n(i)), B̂S(n(i))} if β(i) = 1.

If β(i) = 0 then h returns only the serving BS, and if β(i) = 1 it returns both the serving and secondary BS.
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The function u : I × {0, 1} 7→ R+ represents the utility of scheduling packet i over the backhaul (u(i, 0)) or

wireless channel (u(i, 1)). Examples include throughput-based utility function uT and fairness-based utility function

uF defined by
uT (i, 0) = γ, uT (i, 1) = p(i),

uF (i, 0) = γ, uF (i, 1) = log p(i),
(3)

where γ > 0 is a small constant that ensures packets are forwarded over the backhaul. Since here we consider a

single-slot formulation, the utility of scheduling packets over the backhaul is not evident when the utility function

is based only on wireless throughput; γ compensates for this. In Sections VI and VII we use a queue-length based

utility function
uQ(i, 0) = max{Ln(i) − L̂n(i), 0},

uQ(i, 1) = Ln(i)p(i),
(4)

where Ln and L̂n denote the queue length of Qn and Q̂n, respectively. Our model and analysis can in fact handle

a wide range of utility functions such as those used in [27].

Based on the set of packets I and the utility function u, the centralized scheduler determines the set of wireless

transmissions to take place in the upcoming subframe, and what packets to forward over the backhaul.

The scheduler must also determine which scheduled blocks will be used for each packet transmission, such

that for JT the scheduled blocks of the serving BS and secondary BS are aligned (i.e., have identical index). The

scheduling decisions are represented using indicator variables zi ∈ {0, 1}, yi ∈ {0, 1}, and xis ∈ {0, 1}, where

zi indicates if packet i is transmitted wirelessly, yi indicates if packet i is forwarded over the backhaul and xis

indicates if scheduled block s is used by packet i. The scheduler needs to solve the following integer programming

problem (with zzz = (zi)i∈I , yyy = (yi)i∈I , and xxx = (xis)i∈I,s∈S ).

OFDMA Joint Scheduling (OJS) Problem:

max
xxx,yyy,zzz

I∑
i=1

ziu(i, 1) + yiu(i, 0) =: U(zzz,yyy)

s.t. zi + yi ≤ 1, ∀ i ∈ I, (5)∑
{i:a∈h(i)}

zi ≤ S,∀a ∈ B;
∑

{i:h(i)=l}

yi ≤ K, ∀l ∈ C, (6)

S∑
s=1

xis = zi, ∀i ∈ I; yi = 0, ∀i s.t. β(i) = 1, (7)

∑
{i: b∈h(i)}

xis ≤ 1, ∀b ∈ B ∀s ∈ S, (8)

zi ∈ {0, 1}, yi ∈ {0, 1}, ∀i ∈ I, (9)

xis ∈ {0, 1}, ∀i ∈ I ∀s ∈ S. (10)

Constraint (5) ensures a packet is scheduled at most once and resides in a single queue; (6) ensures capacities in
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Q1 Q̂1 Q3

Q2

12 3 45

67

(a) a wireless network with 3 users and 7
packets (denoted 1..7)

3 3

2 6

4

5

BS1 BS2 BS3
(b) a possible allocation of
the scheduled blocks

(c) the resulting scheduled block graph

Fig. 4. An example of a scheduled block allocation and the resulting scheduled block graph.

each subframe and backhaul link are not exceeded; (7) ensures a scheduled block is allocated for each wireless

transmission and packets in Q̂n cannot be forwarded over the backhaul; and (8) ensures that each scheduled block

is used at most once in the subframe of each BS.

To illustrate this problem, consider the network displayed in Fig. 4(a). This network comprises 3 BSs, 3 users and

7 packets, numbered 1,. . . ,7. BS1 and BS2 are connected with a backhaul, so they can joint-transmit packets for

user 1. Let S = 2, and assume that we want to allocate the scheduled block to achieve the following transmissions:

(i) packet 3 should be joint-transmitted; (ii) packets 2,4,5 and 6 single-transmitted; and (iii) packet 1 forwarded

over the backhaul from Q1 to Q̂1. This schedule can be obtained with the assignment displayed in Fig. 4(b), and

the following solution to the OJS problem:

zzz = (0, 1, 1, 1, 1, 1, 0), yyy = (1, 0, 0, 0, 0, 0, 0), xxx =

 0 0 1 1 0 0 0

0 1 0 0 1 1 0

 .

We now describe the complexity of the OJS problem.

Proposition 1. OJS is strongly NP-hard even for instances in which all of the following hold:

(a) u(i, 0) = 1, u(i, 1) = 1, ∀i ∈ I;

(b) Ln ≤ 1, L̂n ≤ 1, ∀n ∈ N .

The proof of Proposition 1 uses a reduction from the well-known problem of minimum edge coloring [19]. The

reduction demonstrates that even for cases with sufficient bandwidth to accommodate all packet transmissions in

the BSs subframes, obtaining a feasible schedule where joint-transmissions use an identical set of scheduled blocks

is equivalent to the well-known problem of minimum edge coloring [19]. In Section V, we use algorithms for

minimum edge coloring when developing algorithms for OJS.

V. OJS PROBLEM – ALGORITHMS

In this section we develop algorithms to solve the OJS problem. First, we describe a framework for solving the

OJS problem by decomposing it into problems related to knapsack and coloring, see Section V-A. We then use

this decomposition framework to develop efficient algorithms for OJS. In particular, in Section V-B we develop
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TABLE I
THE PERFORMANCE AND INPUT REQUIRED FOR DIFFERENT ALGORITHMS AOJS = [AJTK , AJTC ]

AJTK AJTC Ratio Running time Input GJ
JTK-MMK JTC-BIP α O(TMMK(I, B,C, S)) bipartite
JTK-MAT JTC-BIP 2α

3∆(GJ )
O(CTMMK(I, 2, 1, S)) any

JTK-STA JTC-BIP α
∆(GJ )

O(TMMK(I,∆(GJ )+ any
1,∆(GJ ), S)B2)

JTK-PSP JTC-PSP α
O(2B + TMMK(I, planar
B + 2B , C, S)) ser. paral.

algorithms for instances where the joint transmission graph GJ (consisting of the BSs and the backhaul) is bipartite,

in Section V-C we develop algorithms for instances where the joint transmission graph is planar and series-parallel,

and in Section V-D we develop algorithms for general joint transmission graphs. Note that joint transmission graphs

encountered in practice need not always be bipartite or planar and series-parallel. However, if this is the case, by

using an algorithm that exploits the structure of the graph, we can guarantee lower computational complexity and

more accurate results. The algorithms for the general case in Section V-D are based on those for bipartite graphs

in Section V-B.

We denote the approximation ratio of a given algorithm by α (0 < α ≤ 1). If the algorithm is optimal, we have

α = 1.

A. Decomposition Framework

From Proposition 1 we see that, unless P=NP, an efficient optimal algorithm for general instances of OJS does

not exist. In order to develop efficient approximations for the general case and optimal solutions for a subset of

instances, we present two additional scheduling problems and explore their relation to OJS. These two problems

are obtained by partitioning OJS into two parts, exploiting the fact that xxx only appears in (7), (8), and (10).

Joint Transmission Knapsack (JTK) Problem:

max
zzz,yyy

U(zzz,yyy)

s.t. (5), (6), (9), ∃xxx : (7), (8), (10) hold

Joint Transmission Coloring (JTC) Problem:

given zzz,yyy, find xxx s.t. (7), (8), (10) hold

Note that the JTK problem resembles an assignment problem rather than a knapsack problem. We remark that

this is due to‘ the assumptions that all packets have the same length and use a single MCS. We show in Appendix B

that when relaxing these assumptions, JTK indeed generalizes to a knapsack-like problem.

We use AJTK and AJTC to denote an algorithm for JTK and JTC, respectively. A specific algorithm for problem

P is denoted P-D where D identifies the algorithm. For instance, we write AJTK = JTK-GREEDY if we solve the

JTK problem using a greedy algorithm. An instance of problem P consists of specific values for all variables in its

constraints, except for xxx, yyy, and zzz (JTK) and xxx (JTC).



10

AJTK
OJS
Input

GJ

AJTC xxxJTC

xxxOJS

zzzJTK, yyyJTK

zzzOJS, yyyOJS, GSB

Fig. 5. The decomposition framework leading to algorithm AOJS =[AJTK, AJTC].

The JTK problem differs from OJS in that it does not attempt to find xxx but guarantees that such xxx exists for

its solution zzz,yyy. The JTC problem then finds xxx given zzz and yyy, which is later shown to correspond to a coloring

problem. It is ensured that if a solution exists for JTK, the corresponding JTC problem instance can also be solved.

Thus we can decompose OJS by first solving JTK to obtain zzz,yyy and then solving JTC to obtain xxx, see Fig. 5

(some details in the figure are explained later). In Sections V-B-V-D, we identify instances where the existence of

a feasible xxx is guaranteed without the need to find xxx, and use this to develop efficient algorithms for OJS.

If algorithms AJTK and AJTC are used in this decomposition to solve JTK and JTC, respectively, we denote

the corresponding OJS algorithms as AOJS =[AJTK, AJTC]. As we shall demonstrate in this section, making this

decomposition allows us to find efficient algorithms for solving OJS. Throughout the paper only optimal AJTC

algorithms are considered. The following lemma immediately follows.

Lemma 1. If AJTK is an α-approximation algorithm for the JTK problem and AJTC an optimal algorithm for the

JTC problem, the algorithm AOJS =[AJTK, AJTC] is an α-approximation for the OJS problem.

We introduce the following definitions that will be used to solve JTC. Recall from Section III that GJ = (B, C)

denotes the joint transmission graph that describes what BSs are connected by a backhaul link.

Definition 2. The scheduled blocks graph GSB = GSB(GJ , zzz) = (VSB, ESB) of a JTC instance is defined by

VSB = VJ ∪ {B + 1, . . . , 2B}

and

ESB =
{
{BS(n(i)),BS(n(i)) +B} | zi = 1 and β(i) = 0

}
∪
{
{BS(n(i)), B̂S(n(i))} | zi = 1 and β(i) = 1

}
.

To interpret the definition of GSB, recall that zi denotes whether packet i does a wireless transmission (zi = 1)

or not (zi = 0). So each edge in the scheduled block graph represents a wireless transmission, connecting the BSs

that are engaged in the transmission. To avoid self-loops, we introduce dummy vertices B+1, . . . , 2B in case these

BSs are involved in a single-transmission. Note that while GJ is a simple graph, GSB need not be. As an example

for GJ and GSB consider the network depicted in Fig. 4(a). Using the solution described in the example at the

end of Section IV, the resulting scheduled block graph is depicted in Fig. 4(c)

We now show that, using the scheduled block graph, JTC can be rewritten as an instance of the well-known

edge-coloring (EC) problem [10], and solved accordingly. The input to the EC problem is a graph G = (V,E) and

the output is a coloring on the edges that uses a minimum number of colors.
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Lemma 2. JTC is equivalent to finding an edge coloring using at most S colors on GSB = (VSB, ESB).

As a consequence, JTC can be solved optimally by invoking an optimal algorithm AEC for the EC problem on

GSB. Note that the EC problem is NP-hard.

Table I summarizes the different options we will describe in sections V-B-V-D for solving OJS using the

decomposition framework.

B. Algorithms for Bipartite Network Graphs

We now develop algorithms for OJS instances in which GJ is bipartite. The results in this section can be used to

solve such networks, and will provide the building blocks for the algorithms for general joint transmission graphs

in Section V-D. We start by describing an algorithm for JTK and an algorithm for JTC, and show how using them

in the decomposition framework will result in an approximation algorithm for OJS. We require the following two

lemmas. Denote by ∆(G) the maximum vertex degree of G

Lemma 3. If GJ is bipartite, then GSB(GJ , zzz) is bipartite for every zzz.

Lemma 4. If GSB is bipartite and ∆(GSB) ≤ S, then ∃xxx such that (7), (8), (10) hold.

We now describe an algorithm for JTK based on the well-known Multidimensional Multiple-choice Knapsack

(MMK) Problem [21]. Observing the formulation of MMK in [21], the input to MMK is a subset of the input to

OJS. We define the algorithm AJTK =JTK-MMK as simply running some algorithm AMMK for solving MMK with

a running time of TMMK (for different AMMK algorithms see Table II) and show that it solves JTK for bipartite

networks.

Lemma 5. If GJ is bipartite and algorithm AMMK is an α-approximation algorithm for MMK, AJTK = AMMK is

an α-approximation algorithm for JTK.

Next, we describe an algorithm for JTC when the network graph is bipartite, by exploiting the connection to graph-

coloring problems from Lemma 2. Let JTC-BIP be the edge coloring algorithm from [10]. Using Lemma 3, GSB is

bipartite and since also ∆(GSB) ≤ S it follows from [10] that JTC-BIP finds an edge coloring using at most S colors.

Using Lemma 2 we conclude that JTC-BIP solves JTC. The running time of JTC-BIP is O(|ESB| log ∆(GSB)) =

O(BS logS). The following theorem is the main result of this section.

Theorem 1. For bipartite networks, if AJTK =JTK-MMK is an α-approximation for JTK, then AOJS =[JTK-MMK,

JTC-BIP] is an α-approximation for OJS.

C. Algorithm for Planar Series-Parallel Graphs

We now develop an algorithm for OJS instances in which GJ is planar and series-parallel. We describe algorithms

for JTK and JTC, and use them in the decomposition framework to devise an approximation algorithm for OJS. In
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TABLE II
ALGORITHMS FOR MMK

AMMK Ratio TMMK(I, B,C, S)

DP [21] Optimal O(S(B+C)I(B + C))

PTAS [26] 1/(1 + ε) O(I((B+C)/ε))
Greedy [21] ∞ O(I log(I))

this section we use similar ideas to those in Section V-B. We need the following lemma whose proof is similar to

that of Lemma 3:

Lemma 6. If GJ is planar and series-parallel, GSB is planar and series-parallel for every zzz.

We first describe Algorithm JTK-PSP that solves JTK when GJ is planar and series-parallel. The algorithm

uses AMMK to solve an MMK instance defined as follows. The number of dimensions is D′ = D + |Bodd| where

Bodd = {B′ ⊆ B : |B′| is odd and ≥ 3}. The capacity for each new dimension associated with a set B′ ∈ Bodd is

S(|B′| − 1)/2. The weight in each new dimension for each (i, r) such that r > 0 and h(i, r) ⊆ B′ is set to Γ(i, r);

for all other cases it is set to zero. The algorithm concludes by scheduling packets for transmission according to

the configurations selected in the solution returned by AMMK.

We note that |Bodd| = O(2B) and therefore in general Algorithm JTK-PSP may be impractical due to a very

large running time. This algorithm is therefore more appropriate for small B. We now show that in some instances

the running time can be improved. Note that if a set B′ ∈ Bodd has no more than |B′| − 1 edges in C that connects

two nodes in B′, it can be removed from Bodd; if the number of such sets is large this can significantly decrease

the running time.

For networks that are planar and series-parallel, JTC can be solved using the edge-coloring algorithm from [36].

We call this algorithm JTC-PSP, and note that its running time is O(B∆(GSB)) = O(B ·S). The following theorem

applies the decomposition framework to planar and series-parallel networks.

Theorem 2. For planar and series-parallel networks, if JTK-MMK is an α-approximation for MMK then [JTK-PSP,

JTC-PSP] is an α-approximation for OJS.

D. Algorithms for General Graphs

We now develop algorithms for general OJS instances, without imposing any conditions on GJ . We start with

describing two approximation algorithms for JTK. For each approximation algorithm we show how using it in the

decomposition framework will result in an approximation algorithm for OJS.

First, we describe Algorithm JTK-MAT which is based on computing a matching. For each {a, b} ∈ C, the

algorithm solves an instance of JTK defined by a network that has only two BSs a,b and the backhaul link with

capacity K. Only packets that can be scheduled in such network are considered, and AMMK with B = 2 and C = 1

is used to solve this limited instance. Each edge in C is assigned a weight equal to the total utility obtained when

solving its limited JTK instance. Then, maximum weighted matching is found and the union of all solutions for

edges in the matching is returned. This solution is feasible for the general JTK problem.
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Algorithm JTK-MAT Based on matching
1: for b ∈ B do
2: If b has no backhaul link, run AMMK to solve a JTK instance with B′ = {b}, I ′ = {i ∈ I : h(i) = B′},

C′ = {} and set zi and yi as determined by AMMK.
3: for e = {a, b} ∈ C do
4: Run AMMK to solve a JTK instance with B′ = {a, b}, I ′ = {i ∈ I : h(i) ⊆ B′}, C′ = {e}
5: Assign U(zzz,yyy) found by AMMK as a weight for e
6: Compute maximum weight matching on GJ and store the result in the edge set E
7: Set zi = 1 (yi = 1) only if ∃e ∈ E such that zi = 1 (yi = 1) in the solution returned in line 4 for edge e

Theorem 3. If algorithm AMMK is an α-approximation algorithm, then AOJS =[JTK-MAT (AMMK), JTC-BIP]

is a (2α)/(3∆(GJ))-approximation algorithm for OJS.

The maximum weight matching algorithm from [16] that takes O(|E||V | log |V |) time can be used in line 6; in

this case the running time of Algorithm JTK-MAT is dominated by AMMK in line 4. Therefore, the running time

of Algorithm JTK-MAT is O(CTMMK(I, 2, 1, S)), where TMMK is the running time of AMMK (see Table II).

We now describe Algorithm JTK-STA which iterates over star subgraphs. It is similar to Algorithm JTK-MAT,

but iterates over the vertices b ∈ B instead of the edges e ∈ C. The approximation ratio of JTK-STA is better than

that of JTK-MAT, but its running time is worse. For each vertex b, a JTK instance is constructed using only b and

its neighbors in GJ . The solution of this instance, zzz,yyy, is assigned to b. Next, the algorithm finds the vertex bmax

associated with maximum total utility. If zzzmax, yyymax is the solution associated with bmax, the algorithm schedules

the packets indicated by zzzmax, yyymax. The vertex bmax and its neighbors are removed from B. This process is repeated

until B is empty.

Note that after the first vertex is removed from B, in order to update the weights it is sufficient to consider 2-hop

neighbors of bmax in line 14, since weights of other vertices remain unchanged. The running time of JTK-STA is

O(TMMK(I,∆(GJ) + 1,∆(GJ), S)B2).

The following theorem proves that OJS can be solved approximately when JTK-STA is used in the decomposition

framework.

Theorem 4. If algorithm AMMK is an α-approximation algorithm, then, AOJS =[JTK-STA (AMMK), JTC-BIP] is

an (α/∆(GJ))-approximation algorithm for OJS.

VI. QUEUEING DYNAMICS

The OJS problem discussed in Sections IV and V schedules transmissions within a single subframe. We now

expand the scope to multiple subframes, where packets arrive and depart over time, and study the evolution of the

users’ queues. Our objective is to identify a scheduling policy that is maximum stable (or throughput optimal).

Under such a policy, the queue-length process is positive recurrent for any arrival for which a stabilizing policy

exists, see, e.g., [2], [13], [25], [30]. We prove that by using a specific utility function and an algorithm for solving



14

Algorithm JTK-STA Based on star subgraphs
1: function SOL-STAR(b, B′, C′, I ′)
2: Run AMMK to solve a JTK instance defined with B̃′ = {b} ∪ {a : {a, b} ∈ C′}, C̃′ = {{a, b} : {a, b} ∈

C′, a ∈ B̃′, b ∈ B̃′}, Ĩ ′ = {i ∈ I ′ : h(i) ⊆ B̃′}
return zzz,yyy as determined by AMMK

3: for b ∈ B do
4: ZZZ[b],YYY [b]← SOL-STAR(b, B, C, I)
5: Assign U(ZZZ[b],YYY [b]) as a weight for b in B
6: Initialize B′′ ← B; C′′ ← C; I ′′ ← I
7: repeat
8: Find the vertex bmax in B′′ with maximum weight
9: Ĩ ← {i ∈ I ′′ : ZZZ[bmax]i + YYY [bmax]i = 1}

10: for all i ∈ Ĩ, z′′i ← ZZZ[bmax]i, y′′i ← yyy[bmax]i
11: J ← {a ∈ B′′ : ∃b ∈ B′′, {bmax, b} ∈ C′′, {a, b} ∈ C′′}
12: I ′′ ← I ′′ \ Ĩ; B′′ ← B′′ \ {a : {a, bmax} ∈ C′′}
13: Remove from C′′ edges with an endpoint not in B′′
14: for b ∈ J do
15: ZZZ[b],YYY [b]← SOL-STAR(b, B′′, C′′, I ′′)
16: Update U(ZZZ[b],YYY [b]) as a weight for b in B′′

17: until B′′ is empty
18: return zzz′′

the OJS problem (we refer to this combination as a scheduling policy), we obtain a MaxWeight-like scheduling

policy (see, e.g., [30]), which is throughput optimal.

Let LLL(t) = (L1(t), L̂1(t), . . . , Ln(t), L̂n(t)) denote the queue length process at time t, so {LLL(t)}t≥0 is the

stochastic process that tracks the queue-length evolution over time. We solve the OJS problem in each subframe,

given a certain utility function. Let us denote by yyy(t) = (yi(t))i∈I and zzz(t) = (zi(t))i∈I the solution of OJS in

slot t. Here (yyy(t), zzz(t)) can represent both an exact solution or an approximation.

Recall that Wn(t) is the number of packets generated for user n at time t. Let λn = E{Wn(0)}, and define

λλλ = (λ1, . . . , λN ) to be the arrival rates. We denote by µ(1)
n (t;zzz(t)), µ(2)

n (t;zzz(t)), and µ(3)
n (t;yyy(t)) the number of

packets transmitted towards user n in subframe t using single and joint transmission, and the number of packets

forwarded across the backhaul, respectively, given solution (yyy(t), zzz(t)) of OJS.

Denote In(t) the set of packets in Qn at time t (so |In(t)| = Ln(t)), and În(t) the set of packets in Q̂n. The

µ
(j)
n , j = 1, 2, 3 can be written as

µ(1)
n (t;zzz) =

∑
i∈In(t)

zi(t)Yit, µ(2)
n (t;zzz) =

∑
i∈În(t)

zi(t)Yit, µ(3)
n (t;yyy) =

∑
i∈In

yi(t),

where the Yit ∼ Ber(p(i)) are mutually independent Bernoulli distributed random variables that represent whether

packet transmissions are successful. For notational convenience, we write µ(j)
n (t) to represent the transmission rates

at time t.

It is readily seen that the joint queue-length process {LLL(t)}t≥0 is Markovian.

We now analyze the traffic intensity that can be sustained by the queueing system described by (1) and (2). The
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(a) 3-cluster (b) Cycle topology (c) Star topology

Fig. 6. Simulated network topologies. (a) SINR for the cluster of 3 BSs. The dark
blue area denotes the location of inter-cell users. (b)-(c) Two 7 BS topologies. The
color of the nodes illustrate the throughput gains of users for a sample run. Red
users benefit from JT and the throughput of yellow and black users remains roughly
the same. Black users have throughput of 0 both with and without JT.

(a) (b)

Fig. 7. SINR for the cycle topology for (a) single-
transmissions and (b) joint-transmissions.

stability region of a particular policy is defined as the set of all arrival rates such that the {LLL(t)}t≥0 is positive

recurrent is called the stability region of this particular policy. The capacity region of a network is defined as the

union of the stability region over all policies. If the stability region of an algorithm OJS-ALG and utility function

u is equal to the capacity region, we say that policy (OJS-ALG,u) is throughput-optimal.

In order to investigate the network capacity region in more detail, we first introduce some definitions. We denote

by f (1)
n the rate (long-term average traffic flow) of single-transmission packets for user n, by f (2)

n the rate of joint-

transmission traffic for user n, and by f
(3)
n the rate of user-n traffic sent across the backhaul. Define the vector

fff = (f
(1)
1 , f

(2)
1 , f

(3)
1 , . . . , f

(1)
N , f

(2)
N , f

(3)
N ). Then, for a given arrival rate vector λλλ, the set of all λλλ-admissible traffic

flows can be defined as

Fλλλ =
{
fff ∈ R3N

+

∣∣∣ λn = f (1)
n + f (3)

n , f (3)
n = f (2)

n , n ∈ N
}
. (11)

That is, a flow is λλλ-admissible if for all queues Qn, Q̂n, n = 1 . . . , N , the traffic arrival rate is equal to the departure

rate.

We now introduce the set of all arrival rate vectors such that at least one λλλ-admissible flow can be realized:

Λ =
{
λλλ ∈ R3N

+ | ∃fff ∈ Fλλλ ∃rrr ∈ conv(R)f (j)
n < r(j)

n if f (j)
n > 0, n ∈ N , j = 1, 2, 3

}
,

where conv(R) denotes the convex hull of R, the set of all rates across the various links that can be achieved in

saturation.

We now show that any λλλ ∈ Λ can be stabilized, and that any λλλ outside of the closure of Λ cannot. For stabilizing

λλλ ∈ Λ we use the policy (OJS-OPT,uQ), where OJS-OPT represents any algorithm that solves OJS exactly, and

uQ is the queue-length based utility function from (4). The following theorem then implies that Λ is indeed the

capacity region, and that (OJS-OPT,uQ) is throughput-optimal. The proof relies on a standard drift argument using

a quadratic Lyapunov function [30].

Theorem 5. Let λλλ ∈ Λ, then the queue-length process is stable under policy (OJS-OPT,uQ). If λλλ 6∈ Λ̄, then there

exists no policy that stabilizes the network.
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The reason for choosing the queue-length based utility function (4) becomes clear when substituting it into the

objective function of OJS.

U(zzz) =

N∑
n=1

(
Ln(t)E{µ(1)

n (t)}+ L̂n(t)E{µ(3)
n (t)}+

(
Ln(t)− L̂n(t)

)
µ(2)
n (t)

)
. (12)

This yields the objective function of the celebrated MaxWeight scheduling algorithm. This algorithm, first introduced

in [30], has been shown to be throughput-optimal in a wide range of settings, see, e.g., [25], [30]. Note that although

our objective function of maximizing the queue-weighted throughput is similar to that used in traditional work on

MaxWeight scheduling, the constraints of the OJS problem are markedly different. Specifically, the MaxWeight

scheduling literature is typically concerned with maximum (weighted) set problems, which are fundamentally

different from the OJS problem.

Since the maximization for utility function (4) is a specific instance of the OJS problem, it follows from

Proposition 1 that solving this problem is NP-hard. Thus, using an optimal algorithm OJS-OPT (as in Theorem 5)

is typically not feasible in practice for general graphs. In Section VII we investigate the performance of a wider

set of (suboptimal) algorithms via simulation. Theoretical results on the capacity loss for general algorithms will

be the subject of future work.

VII. NUMERICAL RESULTS

We conducted a simulation study to evaluate the performance of the various algorithms introduced in Section V.

Throughout this section we consider the case where a packet can be transmitted using one of several Modulation and

Coding Schemes (MCSs); Details on extending the algorithms to support several MCSs are given in Appendix B.

The simulation results provide insights on the network-level benefits and tradeoffs of JT under various network

scenarios.

A. Simulation Setup

OJS algorithm. We implemented the four algorithms presented in Table I. The majority of the algorithms

and the queueing dynamics are implemented in Python, while the AMMK procedure is written in C. We did not

implement any JTC algorithms, since it was proved in Section V that JTK guarantees that a feasible solution always

exists. Furthermore, as we show in Section VII-B1, the greedy algorithm shown in Table II performs well in most

considered scenarios.

Network setup. We consider three network topologies. In Section VII-B2, we analyze a network of 3 BSs, with

backhaul links between each pair (Fig. 6(a)). In Section VII-B3, we look at two different backhaul topologies for

a 7 BS network, shown in Fig. 6(b)-6(c). The backhaul capacity (BC) is the same for all links.

We use a fixed packet size of 73 bytes, and the backhaul capacities are normalized to units of packets/subframe.

The distance between neighboring BSs is 700 m. The height of each BS’s antenna is 20 m. The BSs’ transmit

power is 39 dBm and 30 dBm for the 3 and 7 BSs network, respectively. Lower transmission power is used for

the larger network, since more BSs transmit interfering signals.
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We simulate N = 20 users for the 3-cluster, and N = 50 for the 7-cluster topologies. The users are placed

uniformly within a circle that contains the entire simulation area, and with radius 1050 m.

Wireless model. We set S = 50 scheduled blocks, corresponding to a 10MHz LTE system. Once the location for

a user is determined, the received power level from each BS is computed based on the Hata propagation model [18]

which was shown suitable for LTE in urban areas [29]. The power levels from the different BSs are used to compute

the SINR for single and joint transmission to the user. The SINR values for single and joint transmissions for the

cycle topology are plotted in Fig. 7. Given the SINR values, the success probability for single and joint transmission

is computed for each MCS (QPSK-1/2, QAM64-1/2, and QAM64-3/4) using data taken from [4].

Queueing Dynamics. The queueing dynamics are implemented as in Section VI. Unless otherwise noted, packet

arrivals for users follow a binomial distribution with n = 3 and p = 0.5. In every subframe, an algorithm for solving

OJS is executed with the utility function (4). Throughout the simulation, we track the normalized throughput of

a user, defined as the fraction of arrived packets that have been successfully transmitted. The average normalized

throughput is computed over all users. The simulation duration is 1,000 subframes and each data point is obtained

by averaging over 1,000 runs.

We also distinguish the performance of inter-cell users from that of the intra-cell users in order to evaluate the

benefits of CoMP JT for both types. In this section, we refer to inter-cell users as those whose power levels from

two BSs is above a threshold. This threshold is determined numerically by observing the physical location of these

users (illustrated by the darker regions of Fig. 6(a)).

B. Simulation Results

1) Performance of the Approximation Algorithms: In practice, approximation algorithms may perform signifi-

cantly better than their guaranteed approximation ratios. Hence, we carry out a single-subframe evaluation with

the goal of isolating the performance of the algorithms from the long-term effects of the queueing dynamics. We

consider the OJS formulation with the throughput utility function (3). We consider all algorithms, for two different

topologies with 3 BSs: complete graph and a bipartite graph.

When an optimal AMMK subroutine is used, JTK-MMK and JTK-PSP are optimal under the complete graph and

bipartite topologies, respectively, by Theorems 1 and 2. These two algorithms, are therefore, used as benchmarks.

JTK-MAT and JTK-STA operate on general networks, but only consider a subset of the backhaul links. Therefore,

they achieve a fraction of the optimal utility, denoted utility ratio in Fig. 8. We vary the number of users from 1

to 80, reflecting the range of users that can be expected in small cell deployments. In each run, a set of items I is

sampled randomly. To obtain a single point, 10,000 iterations are averaged.

We first use the optimal DP algorithm for AMMK, for which α = 1 (Table II). Since the maximum vertex degree

is ∆(GJ) = 2 for both topologies under consideration, JTK-MAT and JTK-STA are 1/3- and 1/2-approximations,

respectively (Table I). For the complete graph topology, JTK-MAT achieves a utility ratio of 0.6 at its worst, while

JTK-STA does better with a ratio of 0.8 (Fig. 8(a)). Similar insights hold for the bipartite topology in Fig. 8(b).
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Fig. 8. The ratio between the optimal utility for the OJS problem for a single subframe, and the utility obtained by the different algorithms
under the two topologies.

Fig. 9. The throughput of both intercell and intracell users for a range of backhaul capacity levels.

In addition to using the optimal AMMK, we ran the same simulations for the case when a greedy algorithm is

used for AMMK (Table II), denoted with the prefix “G-” in Fig. 8. In this case the approximation ratios no longer

hold, as there are no performance guarantees for the greedy algorithm. However, we found that when AMMK is

solved greedily, the algorithms are very close to optimal for more than 10 users. Moreover, the running time of the

greedy algorithm is significantly lower than the duration of a subframe. Due to their improved running time, we

only use the greedy version in the following sections. For clarity, we omit the “G-” prefix.

2) Impact of Backhaul Capacity: Backhaul links are typically expensive to deploy, and operators frequently have

to lease them. Therefore, it is important for the operator to strike a balance between improving performance and

containing backhaul costs. To obtain a better understanding of the required backhaul capacity, we evaluated its

impact on the long-term throughput of the the queueing system.

In Fig. 9, the user-averaged normalized throughput is shown when the backhaul capacity between each pair of

BSs is scaled from 0 to 6 packets/subframe. Inter-cell users in particular gain from JT (Fig. 9(a)) when network-level

behavior is considered. A 28% throughput gain is observed for those users with the addition of backhaul. Half of

this gain is achievable with 1 unit of backhaul capacity, while 2 units realizes 80% of the potential gains. However,

intra-cell users gain 5% throughput. As cell sizes become smaller, the portion of inter-cell users increases and the

overall gain from using CoMP JT will be higher.

The achieved throughput depends on the used algorithms. The largest benefits are possible with the JTK-PSP

and JTK-STA algorithms, which utilize 3 or 2 backhaul links in every subframe, respectively. It is also observed

that in clusters of this size, JTK-STA performs as well as the optimal JTK-PSP, despite its lower running time.
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JTK-MAT requires more backhaul capacity to achieve the same throughput. Overall, in this case JTK-STA is the

best choice while JTK-MAT can be used to reduce computational resources at the cost of a larger investment in

infrastructure.

3) Impact of Topologies: We now consider the star and cycle topologies with 7 BSs, illustrated in Fig. 6(b)

and 6(c), respectively. Since both of these topologies are bipartite, we use the optimal algorithm JTK-MMK in this

section.

To study the impact of network topology on JT, we study the throughput gains that are obtained when backhaul

links with a 3 unit capacity are introduced in the different topologies. We invoke the algorithm for the same user

placement and average the results. The throughput gains of individual users under the cycle and star topologies are

illustrated in Fig. 6(b) and 6(c), respectively. Overall, we see that in each topology there are 4 users that observed

an increased throughput from JT while the throughput of the other users remained very similar. While we do not

list here the change in throughput for each individual user, the trend is as follows. The red users have throughput

of 0 without JT, since the SINR for a single transmission to these users leads to a packet transmission success

probability of zero. With JT, the throughput of the red users is very close to 1 and the throughput of each yellow

users is reduced by at most 0.001.

In both topologies we see improvement in the throughput of 4 users alongside a negligible decrease in throughput

of some of other users. However, we observe that the users that benefit from JT (i.e., red users) are different for the

different topologies. The throughput of users B,C,D, and E increased in the cycle topology but for the star topology

the throughput of users B,C,F, and G increased. Clearly, this is to be expected as the users who gain from JT are

those that reside between two BSs that are connected via a backhaul link. Additionally, we notice that in each

topology there are two users that exhibit a throughput of 0 both with and without using JT. For the cycle topology

(Fig. 6(b)) the users are F and G, while for the star topology (Fig. 6(c)) the users are D and E. To conclude, the two

different topologies result with different distribution of the throughput among the users that are located between

the BSs. Since the users are located somewhat evenly in the simulation area, the number of red users is similar for

both topologies. However, for a different user placement a specific topology may benefit a larger number of users.

The impact of the topology on the stability region of user A from Fig. 6(b)-6(c) is illustrated in Fig. 10(a).

The aggregate queue size at the end of the simulation run, under different arrival rates and backhaul capacities,

highlights that this user’s queues can be stabilized for higher arrival rates under the star topology. This behavior is

representative of other inter-cell users.

To further study the performance of our algorithms under the different topologies we plot in Fig. 10(b) and

Fig. 10(c) the throughput as a function of the arrival rate, for the cycle and star topologies, respectively. In both

figures JT improves the network throughput by 9%, even for low loads. This can be explained by the observation that

certain inter-cell users may never receive a packet through single-transmission. For the cycle topology (Fig. 10(b)),

the performance of JTK-STA and JTK-MAT is comparable, despite the different approximation ratio. This is

because in the cycle topology a matching may include 5 out of the 6 available backhaul links, making JTK-MAT

comparable to JTK-STA. It turns out that for higher rate values, JTK-MAT performs slightly better than JTK-STA.
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(a) a user’s queue sizes (b) Throughput for cycle toplogy (c) Throughput for star topology

Fig. 10. (a) The final sum of queue sizes of user A from Fig. 6(b), as the arrival rate is varied. Larger backhaul capacities (BCs) keep the
queues bounded for higher arrival rates; (b)-(c) Throughput obtained by the proposed scheduling algorithms vs. the arrival rate for the star and
cycle topologies.

Therefore, an operator may choose to run both JTK-MAT and JTK-STA and select the schedule that yields the

highest throughput in each subframe. Studying such algorithm is out of scope and left for future research. In the

star topology (Fig. 10(c)), since JTK-STA is an optimal algorithm, we omit the curve for JTK-MMK from the

figure. For lower arrival rate the performance of JTK-MAT is very close to optimal; As the arrival rate increases

JTK-STA is clearly favorable. This is expected since for the star topology the matching computed by JTK-MAT

will include at most one backhaul link.

The joint impact of backhaul capacity for star and cycle topologies is shown in Fig. 11(a) and Fig. 11(b),

respectively. Recall that JTK-STA is optimal in Fig. 11(b) and note that, compared to the optimal JTK-MMK in

Fig. 11(a), bakchaul capacity of 3 or more is beneficial only for the cycle topology. This is due to the fact that

users residing between the center BS and another BS exhibit greater interference than users that reside between

two non-center BSs. Therefore, in the star topology, such users gain significant increase in their throughput by just

forwarding their packets. As we observed in Fig. 6(c), there are two such users and since the arrival rate is 1.5, a

backhaul capacity of 3 suffices for the star topology. However, in the cycle topology, while mainly two users gain

a significant throughput increase, other users which can get their packets using single transmission can still benefit

from JT. Therefore, increasing the backhaul capacity further improves the overall throughput.

Fig. 11(a) and Fig. 11(b) also demonstrate the relationship between the network topology and the performance of

our algorithms. For the cycle topology (Fig. 11(a)), a matching may include 5 out of the 6 backhaul links, for this

reason JTK-MAT is relatively close to optimal and even surpasses JTK-STA for most backhaul capacity values. On

the other hand, for star topology (Fig. 11(b)), while JTK-STA is guaranteed to be optimal, the matching computed

in JTK-MAT contains at most one backhaul link and therefore the algorithm obtains low performance. Note that

JTK-MAT with backhaul capacity 6 performs closely to JTK-STA with backhaul capacity 1 since it utilizes at most

one out of the 6 backhaul links in every subframe.

VIII. CONCLUSIONS

In this paper, we considered a cellular network with Coordinated Multi-Point (CoMP) Joint Transmission (JT)

capabilities that allow multiple BSs to transmit simultaneously to each user. We first formulated the OFDMA

Joint Scheduling (OJS) problem of determining a subframe schedule and deciding if to use JT. By exploiting the
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(a) Throughput for cycle toplogy (b) Throughput for star topology

Fig. 11. Throughput obtained by the proposed scheduling algorithms vs. the backhaul capacity for the star and cycle topologies, for an arrival
rate of 1.5 packets per user per subframe.

characteristics of this problem, we developed efficient scheduling algorithms for bipartite graphs and approximation

algorithms for general graphs.

We then considered a queueing model that evolves over time. In this model, we proved that solving the OJS

problem with a specific queue-based utility function (in every subframe) achieves maximum throughput in CoMP-

enabled networks.

Via extensive simulations we showed that the bulk of the gains from CoMP with JT can be achieved with low

capacity backhaul links. We showed that our algorithms distribute the network resources evenly, increasing the

inter-cell users’ throughput at only a slight cost to the intra-cell users.

This paper is the first step towards a rigorous, network-level understanding of the impact of cross-layer scheduling

algorithms on CoMP networks with JT. In future research, we will extend the model by allowing more than two

BSs to jointly transmit, and by allowing longer backhaul delays. Moreover, we will apply our techniques to CoMP

related technologies such as network-MIMO, multi-cell MIMO, and MU-MIMO. Finally, we will study the design

considerations of the backhaul network and the impact of decentralization on the performance.

ACKNOWLEDGEMENTS

This work was supported in part by NSF grant CNS-10-54856 and CIAN NSF ERC under grant EEC-0812072, and

the People Programme (Marie Curie Actions) of the European Unions Seventh Framework Programme (FP7/20072013)

under REA grant agreement no. [PIIF-GA-2013-629740].11. The authors also gratefully acknowledge Marc Kurtz

for his contributions to the development of the simulation code and performance evaluation methodology.

REFERENCES

[1] 3GPP. Technical Specification Group Radio Access Network; Coordinated multi-point operation for LTE physical layer aspects (Release

11), TR 36.819, Sept. 2013.

[2] M. Andrews, K. Kumaran, K. Ramanan, A. Stolyar, R. Vijayakumar, and P. Whiting. Scheduling in a queuing system with asynchronously

varying service rates. Probability in the Engineering and Informational Sciences, 18(02):191–217, 2004.

[3] M. Andrews and L. Zhang. Scheduling algorithms for multi-carrier wireless data systems. In Proc. ACM MOBICOM’07, Sept. 2007.

[4] K. Balachandran, D. Calin, F.-C. Cheng, N. Joshi, J. H. Kang, A. Kogiantis, K. Rausch, A. Rudrapatna, J. P. Seymour, and J. Sun. Design

and analysis of an IEEE 802.16e-based OFDMA communication system. BLTJ, 11(4), 2007.

[5] H. V. Balan, R. Rogalin, A. Michaloliakos, K. Psounis, and G. Caire. Achieving high data rates in a distributed MIMO system. In Proc.

ACM MOBICOM’12, 2012.



22

[6] S. Brueck, L. Zhao, J. Giese, and M. A. Amin. Centralized scheduling for joint transmission coordinated multi-point in LTE-advanced.

In Proc. IEEE WSA’10, Feb. 2010.

[7] V. Cadambe, S. A. Jafar, and S. Shamai. Interference alignment on the deterministic channel and application to fully connected AWGN

interference networks. In Proc. ITW’08, May 2008.

[8] R. Cohen and G. Grebla. Multi-dimensional OFDMA scheduling in a wireless network with relay nodes. In Proc. IEEE INFOCOM’14,

pages 2427–2435, Apr. 2014.

[9] R. Cohen and G. Grebla. Joint scheduling and fast cell selection in OFDMA wireless networks. IEEE/ACM Trans. Netw., 23(1):114–125,

2015.

[10] R. Cole, K. Ost, and S. Schirra. Edge-coloring bipartite multigraphs in O(E logD) time. Combinat., 21(1):5–12, 2001.

[11] Q. Cui, S. Yang, Y. Xu, X. Tao, and B. Liu. An effective inter-cell interference coordination scheme for downlink CoMP in LTE-A

systems. In Proc. IEEE VTC’11, May 2011.

[12] M. Di Renzo, H. Haas, A. Ghrayeb, S. Sugiura, and L. Hanzo. Spatial modulation for generalized MIMO: challenges, opportunities, and

implementation. Proceedings of the IEEE, 102(1):56–103, 2014.

[13] A. Eryilmaz, R. Srikant, and J. Perkins. Stable scheduling policies for fading wireless channels. IEEE/ACM Trans. Netw., 13(2):411–424,

2005.

[14] G. Fayolle, V. Malyshev, and M. Menshikov. Topics in the Constructive Theory of Countable Markov Chains. Cambridge University Press,

Cambridge, UK, 1995.

[15] S. Fu, B. Wu, H. Wen, P. Ho, and G. Feng. Transmission scheduling and game theoretical power allocation for interference coordination

in CoMP. IEEE Trans. Wireless Commun., 13(1):112–123, Jan. 2014.

[16] Z. Galil, S. Micali, and H. Gabow. An O(EV log V ) algorithm for finding a maximal weighted matching in general graphs. SIAM J.

Comput., 15(1):120–130, 1986.

[17] D. Gesbert, S. Hanly, H. Huang, S. Shamai, O. Simeone, and W. Yu. Multi-cell MIMO cooperative networks: A new look at interference.

IEEE J. Sel. Areas Commun., 28(9):1380–1408, 2010.

[18] M. Hata. Empirical formula for propagation loss in land mobile radio services. IEEE Trans. Veh. Technol., 29(3):317–325, 1980.

[19] I. Holyer. The NP-completeness of edge-coloring. SIAM J. Comp., 10:718–720, 1981.

[20] R. Irmer, H. Droste, P. Marsch, M. Grieger, G. Fettweis, S. Brueck, H.-P. Mayer, L. Thiele, and V. Jungnickel. Coordinated multipoint:

Concepts, performance, and field trial results. IEEE Commun. Mag., 49(2):102–111, 2011.

[21] H. Kellerer, U. Pferschy, and D. Pisinger. Knapsack Problems. Springer, 2004.

[22] K. Kwak, H. Lee, H. W. Je, J. Hong, and S. Choi. Adaptive and distributed CoMP scheduling in LTE-Advanced systems. In Proc. IEEE

VTC’13, June 2013.

[23] J. Li, T. Svensson, C. Botella, T. Eriksson, X. Xu, and X. Chen. Joint scheduling and power control in coordinated multi-point clusters.

In Proc. IEEE VTC’11, May 2011.

[24] P. Marsch and G. Fettweis. On multicell cooperative transmission in backhaul-constrained cellular systems. Ann. Telecommun., 63(5-

6):253–269, 2008.

[25] N. McKeown, V. Anantharam, and J. Walrand. Achieving 100% throughput in an input-queued switch. In Proc. IEEE INFOCOM’96,

Mar. 1996.

[26] B. Patt-Shamir and D. Rawitz. Vector bin packing with multiple-choice. Discrete Appl. Math., 160(10-11):1591–1600, 2012.

[27] F. Ren, Y. Xu, H. Yang, J. Zhang, and C. Lin. Frequency domain packet scheduling with stability analysis for 3GPP LTE uplink. IEEE

Trans. Mob. Comput, 12(12):2412–2426, 2013.

[28] C. E. Shannon. A theorem on coloring the lines of a network. J. Math. Physics, 28:148–151, 1949.

[29] N. Tabia, A. Gondran, O. Baala, and A. Caminada. Interference model and evaluation in LTE networks. In Proc. IFIP WMNC’11, Oct.

2011.

[30] L. Tassiulas and A. Ephremides. Stability properties of constrained queueing systems and scheduling policies for maximum throughput in

multihop radio networks. IEEE Trans. Automat. Contr., 37(12):1936–1948, 1992.

[31] O. Tipmongkolsilp, S. Zaghloul, and A. Jukan. The evolution of cellular backhaul technologies: current issues and future trends. IEEE

Communications Surveys & Tutorials, 13(1):97–113, 2011.



23

[32] J. Yu, Q. Zhang, P. Chen, B. Cao, and Y. Zhang. Dynamic joint transmission for downlink scheduling scheme in clustered CoMP cellular.

In Proc. IEEE ICCC’13, Aug. 2013.

[33] X. Zhang, K. Sundaresan, M. A. Khojastepour, S. Rangarajan, and K. G. Shin. NEMOx: scalable network MIMO for wireless networks.

In Proc. ACM MOBICOM’13, Sept. 2013.

[34] Y.-P. Zhang, L. Xia, P. Zhang, S. Feng, J. Sun, and X. Ren. Joint transmission for LTE-advanced systems with non-full buffer traffic. In

Proc. IEEE VTC’12, Sept. 2012.

[35] X. Zhou, Y. Matsuo, and T. Nishizeki. List total colorings of series-parallel graphs. J. Discrete Algorithms, 3(1):47–60, 2005.

[36] X. Zhou, S.-I. Nakano, H. Suzuki, and T. Nishizeki. An efficient algorithm for edge-coloring series-parallel multigraphs. In Proc. LATIN’92,

volume 583 of LNCS, pages 516–529, Apr. 1992.

[37] F. Zhuang and V. K. Lau. Backhaul limited partial cooperations for MIMO cellular networks via semidefinite relaxation. IEEE Trans.

Signal Process., 62(3):684–693, 2014.



24

APPENDIX A

PROOFS

(Proposition 1): To prove Proposition 1, we use the following definition:

Definition 3. The chromatic index of a graph G [19], χ′(G), is the number of colors required to color the edges

of G such that no two adjacent edges have the same color.

It is known by Vizing’s theorem that for every simple graph G, χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1, where

∆(G) is the maximum vertex degree of G. The Minimum Edge Coloring Problem (MECP) [19] is to determine

whether χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1. It is well-known that MECP is NP-hard [19], therefore to complete

the proof we present a polynomial-time reduction from MECP to OJS.

Given a simple graph G = (V,E) with maximum vertex degree ∆(G), we now describe how to construct an OJS

instance. We set B = V . For each edge {v1, v2} ∈ E, we add a user n to N for which BS(n)=v1, B̂S(n) = v2, and

there exists only a single pending packet in Q̂n. Thus, for every packet i we have β(i) = 1. The utility is defined

as u(i, 1) = 1 and u(i, 0) = 1 for every i. Also, we set S = ∆(G), K = S, and C = {{a, b}, a, b ∈ B ∧ a 6= b}.

Note that for the constructed instance (a)-(b) stated in the lemma hold.

We now show that the optimal solution to the OJS instance has a utility of |E| if and only if χ′(G) = ∆(G).

Let xxx∗, yyy∗, zzz∗ be an optimal solution to the OJS instance with a total utility of |E|. Due to the utility u used and

since the total number of packets is |E|, z∗i = 1, ∀i. Consider an edge e = {v1, v2} ∈ E and a pending packet i′

such that h(i′) = {v1, v2}. Due to (7), there is exactly one s′ for which xi′s′ = 1. We assign e the color s′ and

continue the process for the remaining edges and packets. Since 1 ≤ s′ ≤ S = ∆(G), at most ∆(G) colors are

used. Since (8) also holds, no two adjacent edges are colored using the same color s. We showed an edge coloring

with at most ∆(G) colors, χ′(G) = ∆(G). The other direction, namely showing that if χ′(G) = ∆(G) then the

optimal solution to the OJS instance has a utility of |E|, can be proved similarly.

(Lemma 1): The proof immediately follows from the definitions of the JTK and JTC problems.

(Lemma 2): Given a solution x′x′x′ to a JTC instance, we now define a coloring on GSB that uses at most S

colors. Observe that by Definition 2 and since constraint (7) holds, there exists a one-to-one mapping from every

pair (i, s) such that x′is = 1 into an edge in ESB. This mapping defines an edge coloring using at most S colors

(1 ≤ s ≤ S). Since constraint (8) holds, no two edges of the same color touch a vertex in GSB. The other direction,

namely, finding a solution x′x′x′ to JTC, given an edge coloring on GSB, can be proved similarly.

(Lemma 3): Using Definition (2), it is clear that the subgraph G′ = (V ′, E′) of GSB defined by V ′ = B and

E′ = {{a, b} ∈ ESB : a, b ∈ B} is bipartite. Since each b ∈ VSB \V ′ has at most one neighbor, GSB is bipartite.

(Lemma 4): Using the result from [10] and since GSB is bipartite and ∆(GSB) ≤ S, GSB has an edge coloring

that uses at most S colors. By Lemma 2, such a coloring defines a solution x′x′x′ such that (7), (8) hold.

(Theorem 1): We already showed that for bipartite networks JTK-MMK solves JTK and JTC-BIP solves

JTC. Lemma 1 concludes the proof.



25

(Lemma 5): Let zzz∗, yyy∗ be an optimal solution for JTK. Without (7) and (8), JTK would be equivalent to

MMK with some restrictions on its parameters (unit-size MMK items and two MMK capacity values). Therefore,

let zzz′, yyy′ be the solution returned by JTK-MMK, U(zzz′, yyy′) ≥ αU(zzz∗, yyy∗). Finally, the solution is feasible due to

Lemmas 3 and 4.

(Theorem 3): Let B0 be the set of BSs with no backhaul links (BSs whose degree is 0 in GJ ). In line 2 of

JTK-MAT the selected transmissions are determined using AMMK. This set of transmission is an α-approximation

with respect to a JTK instance with B′′ = B0. Therefore, to complete the proof we can assume that every BS has

a backhaul link and show that the transmissions determined in line 7 are an (2α/3∆(GJ))-approximation.

Let zzz∗OJS, yyy
∗
OJS be an optimal solution for OJS. The sum of weights for all edges in C, as computed in line 5 of

JTK-MAT, is at least αU(zzz∗OJS, yyy
∗
OJS).

Any graph G has an edge coloring using at most ( 3
2 )∆(G) colors [28]. Such a coloring for GJ partitions C

into ( 3
2 )∆(GJ) matchings. Since in line 6 of JTK-MAT a maximum weight matching E is obtained, the sum of

weight for edges in E is at least αU(zzz∗OJS,yyy
∗
OJS)

(3/2)∆(GJ ) = (2α)/(3∆(GJ))U(zzz∗OJS, yyy
∗
OJS). Let zzz′, yyy′ be the solution returned

by JTK-MAT. Then, U(zzz′, yyy′) ≥ (2α)/(3∆(GJ))U(zzz∗OJS, yyy
∗
OJS).

We now show that zzz′, yyy′ is feasible. Note that (5) and (6) hold since the solution associated with each edge {a,b}

is feasible (line 5) and solutions of different edges in E use items whose h(i) is in disjoint (no two edges in E

share a vertex). Due to line 7 of Algorithm JTK-MAT, in the returned solution if z′i = 1 and h(i) = {a, b} then

{a, b} ∈ E . Since E is a matching, GSB is bipartite and ∆(GSB) ≤ S. Using Lemma 4 we conclude that zzz′, yyy′ is

feasible.

Finally, by Lemma 2 JTC-BIP solves JTC. By applying Lemma 1, we complete the proof.

(Theorem 4): Let zzz∗OJS be the optimal solution for OJS. The sum of weights for all vertices in B, as computed

in line 5 of JTK-STA, is at least αU(zzz∗OJS). In each iteration of the repeat loop (line 7 of JTK-STA), in line 10 the

utility added to the solution z′′z′′z′′ equals U(bmax) (note that z′′i gets updated to 1 at most once due to the update of I ′′

in line 12). In line 12, bmax and its neighbors are removed from consideration. The utility lost due to this removal

is at most ∆(GJ)U(bmax). Therefore, the total utility of z′′z′′z′′ returned in line 18 is at least (α/∆(GJ))U(zzz∗OJS).

To show that z′′z′′z′′ returned by JTK-STA is feasible, it is sufficient to note that due to the correctness of AMMK

function SOL-STAR returns a feasible instance with respect to I ′′ and that Ĩ (line 9) in different iterations contains

packets of disjoint sets of transmitting BSs (therefore having positive weight only in disjoint sets of dimensions).

Finally, by Lemma 2 JTC-BIP solves JTC. By applying Lemma 1, we complete the proof.

(Lemma 6): It is clear that if GJ is planar, GSB is also planar. Therefore, to complete the proof it is sufficient

to show that GSB is series-parallel.

To show GSB is series-parallel, we use the following definition [35]. A multigraph is series-parallel if it has no

subgraph isomorphic to a subdivision of a clique of size 4. Since GJ has no subgraph isomorphic to a subdivision

of a clique of size 4, by adding parallel edges to GJ such a subgraph cannot be created in GSB. Therefore, by the

above definition GSB is series-parallel.

(Theorem 2): The following result, mentioned in [36], is needed.
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Let EU ⊆ E denote edges in E whose both vertices are in U and let δ(G) = max{ 2|EU |
|U |−1 : U ⊆ V,

|U | ≥ 3 and odd}. If G is planar and series-parallel then χ′(G) = max{∆(G), dδ(G)e} and JTC-PSP

from [36] finds an edge coloring that uses χ′(G) colors.

Recall that in JTK-PSP an instance for MMK with D+ |Bodd| dimensions is constructed. The weight constraints

for the new |Bodd| dimensions are equivalent to requiring that for a feasible solution z′z′z′, δ(GSB) ≤ S. Therefore,

for such GSB there exists an edge coloring that uses at most S colors, and by Lemma 2 such a coloring defines

a solution x′x′x′ such that (7), (8) hold. Since JTK-PSP invokes AMMK which returns an α-approximation solution to

the constructed MMK problem, JTK-PSP is an α-approximation for JTK.

Finally, by Lemma 2, JTC-PSP solves JTC. By applying Lemma 1, we complete the proof.

(Theorem 5): Let λλλ ∈ Λ. In order to demonstrate positive recurrence of {LLL(t)}t≥0, we define a Lyapunov

function, and show that it has negative drift outside some closed set of states. Let lll = (l1, l̂1, . . . , lN , l̂N ) and define

the quadratic Lyapunov function V (lll) =
∑N
n=1 l

2
n + l̂2n.

Consider the one-slot drift

∆V (lll) = E{V (LLL(t+ 1))− V (LLL(t)) | LLL(t) = lll}. (13)

By (1) and (2) we compute

Ln(t+ 1)2 = Ln(t)2 + 2Ln(t)
(
Wn(t)− µ(1)

n (t)− µ(3)
n (t)

)
+
(
Wn(t)− µ(1)

n (t)− µ(3)
n (t)

)2

,

L̂n(t+ 1)2 = L̂n(t)2 + 2L̂n(t)
(
µ(3)
n (t)− µ(2)

n (t)
)

+
(
µ(3)
n (t)− µ(2)

n (t)
)2

,

Substituting this into (13) we obtain

∆V (lll) =

N∑
n=1

E{
(
Wn(t)− µ(1)

n (t)− µ(3)
n (t)

)2

+
(
µ(3)
n (t)− µ(2)

n (t)
)2

| LLL(t) = lll}

+ 2

N∑
n=1

E{Ln(t)
(
Wn(t)− µ(1)

n (t)− µ(3)
n (t)

)
+ L̂n(t)

(
µ(3)
n (t)− µ(2)

n (t)
)
| LLL(t) = lll}. (14)

Since the Wn(t) have finite second moment, and the µ(j)
n (t) have finite support, we can bound (for some constant

C <∞),
N∑
n=1

E{
(
Wn(t)− µ(1)

n (t)− µ(3)
n (t)

)2

+
(
µ(3)
n (t)− µ(2)

n (t)
)2

| LLL(t) = lll} < C.

The second part of (14) can be written as

2

N∑
n=1

E{Ln(t)
(
Wn(t)− µ(1)

n (t)− µ(3)
n (t)

)
+ L̂n(t)

(
µ(3)
n (t)− µ(2)

n (t)
)
| LLL(t) = lll}

= 2

N∑
n=1

(
lnλn − lnE{µ(1)

n (t) + µ(3)
n (t) | LLL(t) = lll} − l̂nE{µ(3)

n (t)− µ(2)
n (t) | LLL(t) = lll}

)
. (15)

Since λλλ ∈ Λ, we know by the definition of Λ that there exists a flow vector fff such that the conditions in (11)
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hold. Moreover, λλλ ∈ Λ also implies that there exists a rrr ∈ Conv(R) such that f (j)
n < r

(j)
n if f (j)

n > 0, j = 1, 2, 3,

n = 1, . . . , N . Since fff is dominated by rrr, and rrr ∈ Conv(R), there exist σ1, . . . , σR such that

fff =

|R|∑
i=1

σirrri,

|R|∑
i=1

σi < 1, (16)

where rrri = (r
(1)
i,1 , r

(2)
i,1 , r

(3)
i,1 , . . . , r

(1)
i,N , r

(2)
i,N , r

(3)
i,N ) represents the i-th vector in R.

Using (16) we obtain

lnλn = ln(f (1)
n + f (3)

n ) = ln

|R|∑
i=1

σi
(
r

(1)
i,n + r

(3)
i,n

)
, (17)

0 = l̂n(f (2)
n − f (3)

n ) = l̂n

|R|∑
i=1

σi
(
r

(2)
i,n − r

(3)
i,n

)
. (18)

By combining (17) and (18), and exploiting the structure of the µµµ chosen according to uQ (see (12))

2

N∑
n=1

lnλn = 2

N∑
n=1

|R|∑
i=1

σi

(
ln(r

(1)
i,n + r

(3)
i,n) + l̂n(r

(2)
i,n − r

(3)
i,n)
)

≤ 2

N∑
n=1

(
ln(E{µ(1)

n (t) + µ(3)
n (t) | LLL(t) = lll}) + l̂n(E{µ(2)

n (t)− µ(3)
n (t) | LLL(t) = lll})

) |R|∑
i=1

σi. (19)

Substituting (19) into (15) yields

2

N∑
n=1

E{Ln(t)
(
Wn(t)− µ(1)

n (t)− µ(3)
n (t)

)
+ L̂n(t)

(
µ(3)
n (t)− µ(2)

n (t)
)
| LLL(t) = lll}

≤ − 2
(

1−
|R|∑
i=1

σi

) N∑
n=1

(
lnE{µ(1)

n (t) + µ(3)
n (t) | LLL(t) = lll} − l̂nE{µ(3)

n (t)− µ(2)
n (t) | LLL(t) = lll}

)
< 0, (20)

where the last inquality follows from the choice of µ(j)
n (12). The expression in (20) can be made arbitrarily small

by increasing the state lll. Positive recurrence of {LLL(t)}t≥0 then follows from [14, Theorem 2.2.4].
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APPENDIX B

EXTENDED RESULTS

In this appendix we relax assumptions (i)-(iii) from Section III and show the applicability of our algorithms

to the case where a packet can be transmitted using one of several Modulation and Coding Schemes (MCSs).

This appendix contains three sections. In Section B-A we present the extended network model. In Section B-B we

introduce the extended OJS Problem and in Section B-C we describe the decomposition framework and extend our

algorithms.

A. Network Model

Each wireless transmission requires an MCS, which is selected from a finite set M = {1, . . . ,M} of supported

MCSs. We define the configuration set R = {0} ∪M such that r ≥ 1 indicates wireless transmission using MCS

r, and r = 0 indicates a packet forwarded to another BS over the backhaul. Thus, a pair (i, r) (i ∈ I, r ∈ R)

defines a wireless transmission of packet i with MCS r (r ≥ 1) or packet i forwarded over the backhaul (r = 0).

Note that the pair (i, 0) is not feasible if β(i) = 1.

For each packet-configuration pair (i, r), we define two properties: its size Γ(i, r) and its success probability

p(i, r). In case of forwarding over the backhaul, Γ(i, 0) represents the size of packet i in bytes. For r ≥ 1, the

Γ(r, c) represents the number of scheduled blocks required for transmission with MCS r, which depends on the

packet size in bytes Γ(i, 0) and the MCS r.

The success probability p(i, r) represents the probability that packet i will be successfully received by the user

n(i) (r ≥ 1) or that packet i forwarded over the backhaul is successfully received by B̂S(n) (r = 0). We assume

that p(i,m) is higher if β(i) = 1 compared to β(i) = 0, since the SINR of a user is greater when a packet is

joint-transmitted. The capacity of a backhaul link between BSs a and b is lab bytes.

B. The OFDMA Joint Scheduling (OJS) Problem

We now formulate the extended version of the joint scheduling problem presented in Section IV. Capacity

constraints apply both to the subframes of the B BSs as well as the C backhaul links, and we denote the total

number of such constraints by D = B+C. We order these constraints such that the constraint b corresponds to the

BS b, b = 1, . . . , B, and constraints B + 1, . . . , D correspond to the backhaul. Define the D-dimensional capacity

vector KKK = (K1, . . . ,KD) such that for 1 ≤ d ≤ B, Kd = S (number of scheduled blocks), and Kd = lab for

d ≥ B + 1.

In order to describe the capacity used by the wireless transmission of packet i, we introduce

h(i) =

 {BS(n(i))} if β(i) = 0,

{BS(n(i)), B̂S(n(i))} if β(i) = 1.

If β(i) = 0 then h returns only the serving BS, and if β(i) = 1 it returns both the serving and secondary BS.

We define the function w : I × R → (N0)D, where w(i, r) denotes the D-dimensional vector that represents the



29

capacity used for (i, r). If r ≥ 1, then w(i, r) is the all-zero vector except for [w(i, r)]b = Γ(i, r) for b ∈ h(i).

If r = 0, then only the entry corresponding to the appropriate backhaul link is positive, and equal to the length

in bytes of packet i. The function u : I × R 7→ R+ represents the utility of scheduling packet i according to

configuration r, and is essentially an extension of the utility function presented in Section IV.

Based on the set of packets I and the utility function u, the centralized scheduler determines the set of

transmissions to take place in the upcoming subframe, by maximizing the aggregate utility. The scheduler must

also determine which scheduled blocks will be used for each packet transmission, such that for JT the scheduled

blocks of the serving BS and secondary BS are aligned (i.e., have identical index). The scheduling decisions are

represented using indicator variables zir ∈ {0, 1} and xirs ∈ {0, 1}, where zir indicates if a transmission (i, r)

takes place, and xirs indicates if scheduled block s is used by a transmission (i, r). The scheduler needs to solve

the following integer programming problem (with zzz = (zir)i∈I,r∈R and xxx = (xirs)i∈I,r∈R,s∈S ).

OFDMA Joint Scheduling (OJS) Problem:

max
xxx,zzz

I∑
i=1

R∑
r=1

ziru(i, r) =: U(zzz)

s.t.
R∑
r=0

zir ≤ 1, ∀ i ∈ I, (21)

I∑
i=1

R∑
r=0

zir[w(i, r)]d ≤ Kd, ∀1 ≤ d ≤ D, (22)

S∑
s=1

xirs = zirΓ(i, r), ∀i ∈ I ∀r ≥ 1, (23)

R∑
r=1

∑
{i: b∈h(i)}

xirs ≤ 1, ∀b ∈ B ∀s ∈ S, (24)

zir ∈ {0, 1}, ∀i ∈ I ∀r ∈ R, (25)

xirs ∈ {0, 1}, ∀i ∈ I ∀r ∈ R ∀s ∈ S. (26)

Constraint (21) ensures a packet is scheduled only once; (22) ensures capacities in each subframe and backhaul

link are not exceeded; (23) ensures sufficient scheduled blocks are allocated for each (i, r) transmission; and (24)

ensures that each scheduled block is used at most once in the subframe of each BS.

C. OJS Problem - Algorithms

1) Decomposition Framework: Similar to what was done in Section IV for the basic problem, we can decompose

OJS into two parts as follows.

Joint Transmission Knapsack (JTK) Problem:

max
zzz

U(zzz)

s.t. (21), (22), (25), ∃xxx : (23), (24), (26) hold
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TABLE III
THE PERFORMANCE AND INPUT REQUIRED FOR DIFFERENT ALGORITHMS WITHIN

THE DECOMPOSITION FRAMEWORK [AJTK , AJTC ]

AJTK AJTC Ratio Running time Input GJ
JTK-MMK JTC-BIP α O(TMMK(I, R,D, S)) bipartite
JTK-MAT JTC-BIP 2α

3∆(GJ )
O(C · TMMK(I, R, 3, S)) any

JTK-STA JTC-BIP α
∆(GJ )

O(B2TMMK(I, R, 2∆(GJ ) + 1, S)) any

JTK-PSP JTC-PSP α O(2B + TMMK(I, R, 2B , S)) planar ser.paral.

TABLE IV
ALGORITHMS FOR MMK

AMMK Ratio TMMK(I, R,D, S)

DP [21] Optimal O(SDIRD)

PTAS [26] 1/(1 + ε) O((IR)(D/ε))
Greedy [21] ∞ O(IR log(IR))

Joint Transmission Coloring (JTC) Problem:

given zzz, find xxx s.t. (23), (24), (26) hold

Solving JTK to obtain zzz and then solving JTC to obtain xxx, provides a solution to OJS.

The scheduled block graph for this version of JTC is the same as what was presented in Definition 2, except

that every pair (i, r) such that r ≥ 1 and zir = 1 contributes Γ(r, c) edges to ESB instead of 1.

2) Algorithms for General Graphs: We now describe the algorithms JTK-MAT and JTK-STA for the extended

model. The performance ratio of JTK-MAT and JTK-STA in the extended model are the same as those in Section V.

The proofs use similar ideas to those used in Section V and are omitted for brevity. Tables III and IV summarize the

different options for solving OJS using the decomposition framework. Finally, note that the stability result presented

in Theorem 5 can also be extended to this setting.

Algorithm JTK-MAT Based on matching
1: for b ∈ B do
2: If b has no backhaul link, run AMMK to solve a JTK instance with B′ = {b}, I ′ = {i ∈ I : h(i) = B′},

C′ = {} and set zir as determined by AMMK.
3: for e = {a, b} ∈ C do
4: Run AMMK to solve a JTK instance with B′ = {a, b}, I ′ = {i ∈ I : ∃r ∈ R, h(i, r) ⊆ B′}
5: Assign U(zzz) found by AMMK as a weight for e
6: Compute maximum weight matching on GJ and store the result in the edge set E
7: Set zir = 1 only if ∃e ∈ E such that zir = 1 in the solution returned in line 4 for edge e



31

Algorithm JTK-STA Based on star subgraphs
1: function SOL-STAR(b, B′, C′, I ′)
2: Run AMMK to solve a JTK instance defined with B̃′ = {b} ∪ {a : {a, b} ∈ C′}, C̃′ = {{a, b} : {a, b} ∈

C′, a ∈ B̃′, b ∈ B̃′}, Ĩ ′ = {i ∈ I ′ : h(i) ⊆ B̃′}
return zzz as determined by AMMK

3: for b ∈ B do
4: ZZZ[b]← SOL-STAR(b, B, C, I)
5: Assign U(ZZZ[b]) as a weight for b in B
6: Initialize B′′ ← B; C′′ ← C; I ′′ ← I
7: repeat
8: Find the vertex bmax in B′′ with maximum weight
9: Ĩ ← {i ∈ I ′′ : ∃r, ZZZ[bmax]ir = 1}

10: for all i ∈ Ĩ, z′′ir ← ZZZ[bmax]ir
11: J ← {a ∈ B′′ : ∃b ∈ B′′, {bmax, b} ∈ C′′, {a, b} ∈ C′′}
12: I ′′ ← I ′′ \ Ĩ; B′′ ← B′′ \ {a : {a, bmax} ∈ C′′}
13: Remove from C′′ edges with an endpoint not in B′′
14: for b ∈ J do
15: ZZZ[b]← SOL-STAR(b, B′′, C′′, I ′′)
16: Update U(ZZZ[b]) as a weight for b in B′′

17: until B′′ is empty
18: return zzz′′
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