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ABSTRACT
CSMA/CA is a popular random-access algorithm for wire-
less networks, but its stability properties are poorly under-
stood. We consider a linear multi-hop network of three
nodes where the neighbouring nodes interfere with each other
and medium access is governed by the CSMA/CA algorithm.
We assume that the source node is saturated and packets
are forwarded through the network, each node transmitting
towards its neighbour on the right. We demonstrate that
the queue of the second node is saturated (unstable) and
the queue of the third node is stable; this confirms heuris-
tic arguments and simulation results found in the research
literature. Providing a rigorous proof for the (in)stability of
these nodes is complicated by the fact that neither queue is
Markovian when considered in isolation, and the two queues
are dependent. We then compute the limiting behavior of
node 3, and use this to determine the end-to-end through-
put of the network. Finally, we vary the access probabilities
of the nodes, and evaluate how this affects the stability and
throughput of the system.
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1. INTRODUCTION
Random-access protocols such as Carrier-Sense Multiple-

Access with Collision Avoidance (CSMA/CA) [8] have gained
much popularity for their ability to regulate the access of
network nodes to a shared medium in a fully distributed
fashion, and are for instance used in the IEEE 802.11 stan-
dard. A node using the CSMA/CA protocol attempts to
access the medium after some random back-off time; nodes
that sense activity of interfering nodes freeze their back-off
counter until the medium is sensed idle.

The CSMA/CA algorithm has been widely studied in re-
cent years, see, e.g., [3, 6, 7] and references therein. How-
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ever, only very little attention has been devoted to unsat-
urated CSMA/CA networks, that consider packets arriving
according to some extraneous process rather than being al-
ways available. In [4, 12] the authors consider a single-hop
CMSA/CA network and show that it is very difficult to an-
alyze any such network unless all nodes are mutually inter-
fering. In [10] stability and throughput results are obtained
for more general networks, but under the assumption that a
node freezes its arrival process during a back-off period. The
lack of results for even the smallest unsaturated CSMA/CA
networks is representative of the difficulty of analyzing such
models, caused by the fact that the packet-level dynamics
affect the nodes’ behavior in intricate ways.

We consider a linear CSMA/CA multi-hop network of
three nodes, where node 1 is saturated and messages are
forwarded to nodes 2 and 3, where they leave the network.
Transmitting nodes will block their direct neighbor(s) from
activating. The stability of nodes 2 and 3 and the end-to-
end throughput of this network has been studied in [2,5,11],
where the authors present heuristic arguments to assert that
node 2 is unstable and node 3 is stable, and use this knowl-
edge to compute the throughput.

Rigorous treatment of such networks is elusive because
nodes 2 and 3 need to be considered in isolation in order to
determine their (in)stability. However, in this case they are
no longer Markovian, rendering inapplicable most of the ma-
chinery for proving stability. In this paper we analyze these
non-Markovian processes, and demonstrate (in)stability. In
fact, we generalize the access probability to the case that
certain nodes are more aggressive, and study the stability
behavior of the individual nodes and the resulting end-to-
end throughput.

The remainder of the paper is structured as follows. In
Section 2 we present the model and in Section 3 we describe
our main results. We conclude in Section 4 by highlight-
ing various possible extensions and directions for future re-
search.

2. MODEL OUTLINE
We consider a random-access network consisting of 3 nodes

on a line, numbered 1, 2, 3. Time is slotted, and at the be-
ginning of each time slot a feasible subset of nodes is acti-
vated for the duration of that slot. We denote the schedule
of slot t by X(t) = (X1(t), X2(t), X3(t)) ∈ {0, 1}3, with
Xi(t) = 1 if node i is active in slot t and Xi(t) = 0 oth-
erwise. The set of feasible activity states is then given as
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 0, 1)}. An active node
will only activate if it has packets available, and if active it



will transmit a single packet during a slot.
Node 1 is saturated, and packets are forwarded from node

1 to node 2 and from node 2 to node 3. Once transmitted
by node 3, packets leave the system. Let Q = (Q2(t), Q3(t))
denote the queue length at time t, the evolution of which is
given as

Q2(t+ 1) = Q2(t) +X1(t)−X2(t),

Q3(t+ 1) = Q3(t) +X2(t)−X3(t).

The node activity X(t) is independent between slots, and
is generated as follows. Each slot is partitioned into a con-
tention period and a transmission period. At the beginning
of each contention period, if it has packets available, node i
draws a random back-off window Ui ∼ UNIF(0, ui) with
some fixed ui > 0, i = 1, 2, 3. Nodes activate when their
back-off timer expires, unless a neighboring node is already
transmitting. We introduce the following notation:

p23 :=P(X(t) = (0, 1, 0) | Q2(t), Q3(t) ≥ 1)

=P(U2(t) < min{U1(t), U3(t)}), (1)

p2 :=P(X(t) = (0, 1, 0) | Q2(t) ≥ 1, Q3(t) = 0)

=P(U2(t) < U1(t)). (2)

Because of the saturation assumption and the nature of
the access mechanism, node activity will only take values in
X(t) ∈ {(1, 0, 0), (0, 1, 0), (1, 0, 1)}. Note that, if Q2(t) = 0,
X = (1, 0,1{Q3(t)≥1}), so p23 and p2 completely characterize
the distribution of the node activity, and thus the evolution
of Q(t). Moreover, p23 and p2 can each achieve any value
in (0, 1) by choosing appropriate ui, i = 1, 2, 3. In the re-
mainder of this paper we shall take the p23, p2 as a starting
point of our analysis, without specifying the parameters of
the CSMA/CA algorithm that achieves these probabilities.
In view of (1) and (2), we assume p23 < p2 throughout.

By evaluating the dynamics, it is readily seen that the
function Q2(t) + Q3(t), representing the total number of
messages at nodes 2 and 3, does not decrease with prob-
ability 1. Thus, the Markov process Q is transient for all
p2, p23, which precludes a stationary analysis of the system.
However, we shall see in Section 3 that by evaluating the
stability of each node individually, we are able to compute
the end-to-end throughput of the network despite the tran-
sience of the underlying Markov chain.

3. MAIN RESULTS
Depending on the choice of p23, the network exhibits dif-

ferent behavior. In this note we limit ourselves to the case
p23 < 1/2. First we can show that node 3 is stable, irrespec-
tive of p2.

Proposition 1. Let p23 < 1/2, then

lim inf
t→∞

Q3(t) <∞ a.s

Proof. Denote q2 := Q2(t), q3 := Q3(t) and let q3 ≥ 1.
It is immediate that

E(Q3(t+ 1) | HQ3(t)) =

{
q3 − 1, if q2 = 0,
q3 − (1− 2p23), otherwise,

whereHQ3(t) denotes the history of the process {Q3(u)}u≥0,
up to and including time t. Hence, irrespective of q2,

E(Q3(t+ 1) | HQ3(t)) ≤ q3

as long as q3 ≥ 1. We can now use Theorem 2.1 from [9] to
conclude the proof.

Next, we can show that node 2 is not stable whenever
p2 < p∗2 := 1

2

(
2 + p23 −

√
p23(4 + p23)

)
.

Lemma 1. Let p23 < 1/2 and p2 < p∗2, then Q2(t) → ∞
a.s. as t→∞.

Proof. Note that it is sufficient to show that Q2(2t)→∞
a.s. as t → ∞. Indeed, as node 2 can at most transmit a
single message in a time slot, Q2(2t+ 1) ≥ Q2(2t)− 1, and
the result follows.

Fix a value Q2(2t) = q2 ≥ 3, and observe that Q2(2(t +
1)) ∈ {q2 − 2, q2, q2 + 2}. Denote Q2(t) = q2, Q3(t) = q3,
and

p+2(q2, q3) := P(Q2(2(t+ 1)) = q2 + 2),

p0(q2, q3) := P(Q2(2(t+ 1)) = q2),

p−2(q2, q3) := P(Q2(2(t+ 1)) = q2 − 2).

Observe that, irrespective of q3, p+2(q2, q3) ≥ (1− p2)2 and
p−2(q2, q3) ≤ p2p23. Since p23 < p2 < p∗2, it is readily
verified that p+2(q2, q3) > p−2(q2, q3) for any values of q3.

The rest of the proof will use the ideas of the proof of
transience in Theorem 3.1 of [9]. Introduce a process

Y (t) = 1− 1

Q2(2t) + 1

and remark that 0 ≤ Y (t) ≤ 1 a.s. for all t. It is clearly
sufficient to show that Y (t) → 1 a.s. as t → ∞. For this,
according to Theorem 2.2 from [9], it is sufficient to show
that

E(Y (t+ 1) | Y (t) = y,HY (t)) ≥ y (3)

for large enough values of y, where HY (t) is the history of
Y (u) up to time t.

Now denote y = Y (t) and q2(y) = y/(1 − y), and let
Q2(t) = q2(y). Observe that q2(y) is increasing in y. By
rewriting (3), we obtain

1− p+2(q2(y), q3)
1

q2(y) + 3
− p0(q2(y), q3)

1

q2(y) + 1

− p−2(q2(y), q3)
1

q2(y)− 1
≥ 1− 1

q2(y) + 1

for large enough q2(y). After some calculations this can be
shown to simplify to

p−2(q2(y), q3)

q2(y)− 1
≤ p+2(q2(y), q3)

q2(y) + 3
.

This indeed holds for large enough q2(y) as p+2(q2(y), q3) >
p−2(q2(y), q3).

We have demonstrated that for p23 < 1/2 and p2 < p∗2,
Q2(t) is not stable, but Q3(t) is. A natural question to ask
now is what is the limiting behavior of Q3(t), and how can
this be used to determine the end-to-end throughput of the
network. Since Q3(t) in isolation is not a Markov process,
determining its limiting behavior is not straightforward, and
we first require the following auxiliary result.

Specifically, let us introduce a Markov chain Q̃3(t) with
the following transition probabilities:

P(Q̃3(t+ 1) = j|Q̃3(t) = i)

= P(Q3(t+ 1) = j|Q3(t) = i, Q2(t) > 0)



and define ptij := P(Q̃3(t) = j|Q̃3(0) = i).

The Markov chain Q̃3(t) behaves as Q3(t) in case Q2(t)
always has packets available, and we intend to show that the
limiting behavior of these two processes is indeed the same.
Although this is intuitively clear since we show in Lemma 1
that Q2(t) is unstable, it takes some effort to show this.

The process Q̃3(t) is a one-dimensional birth-death pro-
cess with negative drift, and its limiting distribution can be
readily obtained from the balance equations. The following
result is thus stated without proof.

Lemma 2. Let p23 < 1/2, then Q̃3(t) has a limiting dis-
tribution (πj)j=1,2,.., i.e., p

t
ij → πj as t→∞, regardless of

i. It is given as

πj =

{ 1−2p23
1−2p23+p2

, if j = 0,

π0
p2p

j−1
23

(1−p23)j
, if j ≥ 1.

(4)

We are now in position to state and prove the main result on
the limiting behavior of Q3(t) and the end-to-end through-
put of the network.

Theorem 1. Let p23 < 1/2 and p2 < p∗2, then

P(Q3(t) = j|Q3(0) = i)→ πj as t→∞,

regardless of i, with (πj)j=0,1,.. from (4).

Proof. This is a direct application of Lemma 1 from [1]
and Lemmas 1 and 2.

The end-to-end throughput θ of the network is simply the
rate at which packets leave the third node, i.e.,

θ(p23, p2) := (1− π0)(1− p23) =
(1− p23)p2

1− 2p23 + p2
. (5)

It is worth noting that Theorem 1 covers the case consid-
ered in [2,5,11] in which all nodes have equal probability of
activating first. In this case, p23 = 1/3 and p2 = 1/2, and it
follows from Theorem 1 that node 2 is unstable, node 3 is
stable, and the end-to-end throughput equals θ(1/3, 1/2) =
2/5.

We conjecture that p2 < p∗2 is only a technical condition
facilitating our proof and that instability of node 2 holds for
p2 ≥ p∗2 as well. Should this indeed be the case, one can
see from (5) that the throughput is an increasing function
of both p2 and p23 and by making p23 close to 1/2 and p2
close to 1, we can make the throughput of the system close
to 1/2 (which is of course the highest possible throughput
given the system constraints).

4. OUTLOOK
The results presented in this paper suggest several natural

extensions. For instance, we can extend Proposition 1 in a
straightforward manner to networks of arbitrary length and
interference range (distance within which nodes are blocked
from activating simultaneously). It is not immediately clear
how the instability result of Lemma 1 can be extended to
larger networks, although the heuristics presented in [11]
suggest that this should indeed hold. In order to facilitate
a rigorous analysis of larger networks, one needs to extend
Lemma 1 from [1] to higher-dimensional systems, which con-
stitutes an interesting direction for future research.

For the case p23 > 1/2, we can prove the following ana-
logue of Proposition 1 for the buffer of node 2 (with similar
proof).

Proposition 2. If p23 > 1/2, then

lim inf
t→∞

Q2(t) <∞ a.s..

The behaviour of the third note in case p23 > 1/2 is more
involved and does not appear to allow for straightforward
analysis. Observe that Q2(t) + Q3(t) will diverge a.s., and
that this quantity can only increase whenever Q3(t) = 0.
This seems to suggest that Q3(t) will hit 0 infinitely often
and is thus in some sense stable. On the other hand, we
know that the total number of packets in nodes 2 and 3
diverges and the system thus seems to exhibit a rather un-
usual behavior. Moreover, both nodes 2 and 3 seem to be in
some sense stable and they also depend on each other - to
the best of our knowledge, there are no theoretical results
on such processes and this suggests an interesting avenue for
future research.

5. REFERENCES
[1] I. Adan and G. Weiss. A skill based parallel service

system under FCFS-ALIS–steady state, overloads, and
abandonments. Stochastic Systems, 4(1):250–299,
2014.

[2] A. Aziz, S. Shneer, and P. Thiran. Wireless multi-hop
networks beyond capacity. In 19th IEEE International
Workshop on Local and Metropolitan Area Networks
(LANMAN), Brussels, Belgium, April 10–12 2013.

[3] R. Boorstyn and A. Kershenbaum. Throughput
analysis of multihop packet radio. In Proc. ICC, pages
1361–1366, 1980.

[4] F. Cecchi, S. Borst, and J. Van Leeuwaarden.
Throughput of CSMA networks with buffer dynamics.
Performance Evaluation, 79:216–234, 2014.

[5] D. Denteneer, S. Borst, P. van de Ven, and G. Hiertz.
IEEE 802.11s and the philosophers’ problem.
Statistica Neerlandica, 62(3):283–298, 2008.

[6] M. Durvy and P. Thiran. A packing approach to
compare slotted and non-slotted medium access
control. In Proc. Infocom, Barcelona, Spain, April
23–29 2006.

[7] M. Garetto, T. Salonidis, and E. Knightly. Modeling
per-flow throughput and capturing starvation in
CSMA multi-hop wireless networks. IEEE/ACM
Trans. Netw., 16(4):864–877, 2008.

[8] L. Kleinrock and F. Tobagi. Packet switching in radio
channels: part I - carrier sense multiple-access modes
and their throughput-delay characteristics. IEEE
Trans. Commun., 23(12):1400–1416, 1975.

[9] J. Lamperti. Criteria for the recurrence or transience
of stochastic process. i. J. Math. Anal. Appl.,
1(3):314–330, 1960.

[10] R. Laufer and L. Kleinrock. The capacity of wireless
CSMA/CA networks. IEEE Trans. Netw. (to appear),
2015.

[11] V. Shneer and P. van de Ven. Comparing slotted and
continuous CSMA: throughputs and fairness. In Proc.
Performance, pages 35–37, Amsterdam, NL, October
18–20 2011.

[12] P. van de Ven, S. Borst, J. van Leeuwaarden, and
A. Proutière. Insensitivity and stability of
random-access networks. Performance Evaluation,
67(11):1230–1242, 2010.


	Introduction
	Model outline
	Main results
	Outlook
	References

