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1
Introduction

Next-generation wireless networks will likely evolve from cellular and small-scale

home networks to large, inter-connected networks that form the backbone for low-

cost internet access. Such large-scale networks are difficult to evaluate due to the

complex spatial and temporal interactions among their users; small networks with

few users, in contrast, are relatively well-understood. The study of many-user net-

works requires models that capture distinct aspects of wireless networks such as

interference and the role of medium access control, as well as traffic characteristics

and congestion effects. Traditional queueing models are unable to capture the in-

teraction between users, while current models specifically geared towards wireless

networks are often limited in scope and network topology, and do not take traffic

behavior into account.

In this thesis we develop and examine various mathematical models that capture

how users share the wireless medium. We aim to gain a better understanding of

wireless networks, and devise schemes to improve their performance. In this chapter

we provide a brief introduction to wireless networks, present an overview of the most

relevant literature, and summarize the results obtained in this thesis.

1.1 Background

A wireless network can be modeled as a collection of nodes (representing users) that

can transmit and receive data. Two nodes can be grouped into a transmitter-receiver

pair to form a link, as shown in Figure 1.1. Here the nodes are represented by circles,

while an arrow indicates a link from transmitter to receiver. A node may receive data

from different sources, and can transmit towards various destinations. Thus, a node

can be associated with multiple links.

A link indicates potential data transmission from the transmitting node to the

receiver, through the wireless medium. Links can be either active or inactive, de-

pending on whether data is currently being transmitted on that link or not. Let n

denote the number of links, then the network state can be represented by a vector
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Figure 1.1: A wireless network consisting of various nodes and links.

ω = (ω1,ω2, . . . ,ωn), where ωi describes the state of link i as

ωi =
{

1, if link i is active,

0, otherwise.

1.1.1 Interference constraints

Wireless communications are commonly characterized by their broadcast nature, as

wireless signals typically propagate in all directions rather than towards the intended

receiver of the signal only. As a result, nodes may hear many ongoing transmissions,

including those intended for others. In fact, a transmission may not be received

correctly if the intended receiver overhears too much conflicting activity. We say in

this case that the transmission has suffered a collision due to the interference caused

by other ongoing transmissions.

Wireless signals are transmitted at a certain power, and the success of a transmis-

sion depends on its signal strength as seen by the receiver compared to the strength

of the competing transmissions. The strength of a signal decreases with distance, so

a wireless network can support multiple simultaneous successful transmissions, but

only if the active links are sufficiently far apart.

We assume that all activity conducted by competing links contributes to the inter-

ference, and that all interference is treated as noise. In principle this need not be the

case since clever coding schemes may mitigate or even completely cancel the adverse
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effect of simultaneous transmissions on each other, cf. [48]. However, such coding

schemes are difficult to implement, and are not very common in practice.

Whether or not a transmission is successful depends on many different factors

such as fading, shadowing and capture effects, which are difficult to determine exactly.

In the research literature, various models are presented that describe in detail when

a transmission is successful. We will focus on the physical model and the protocol

model [30].

• Physical model. We denote by Pi the power at which the signal over link i is

transmitted, and Gij represents the fraction of signal strength remaining (path

loss) after traveling from the transmitter of link i to the receiver of link j. Thus,

the receiver of link i overhears a signal of strength PjGjiωj coming from the

transmitter of link j. In the physical model the success of a transmission is

determined by the ratio of the strength of the transmission signal at the receiver

and the background noise N plus noise it receives from other transmissions.

A transmission on link i is considered successful if and only if the Signal to

Interference-plus-Noise Ratio (SINR) is above a certain threshold ξ:

SINRi = PiGii

N +∑j≠i PjGjiωj
≥ ξ. (1.1)

Denote by Xi and Yi the locations of the transmitter and receiver of link i, re-

spectively. A common assumption is that signal strength attenuates according

to a power law, i.e., Gij = ||Xi − Yj||−γ , with || · || the Euclidian distance and

γ the path loss exponent. This exponent depends on the environment, and is

usually assumed to take values between γ = 2 (free space) and γ = 4 (lossy

environments).

• Protocol model. According to this model, a transmission on link i is successful

if and only if

||Xj − Yi|| ≥ (1+∆)||Xi − Yi||, ∀j ≠ i : ωj = 1, (1.2)

for some guard zone ∆ > 0. Essentially, (1.2) says that all links within a certain

distance of the receiver have to be inactive in order for a transmission to be

successful; the required distance is determined by the guard zone. If all links

have the same length d (distance between transmitter and receiver), then (1.2)

gives rise to an interference range η = (1 + ∆)d centered around the receiving

node of a link. A transmission over this link will be successful if and only if no

nodes within the interference range are transmitting.

If, depending on the choice of model, (1.1) or (1.2) is satisfied for every active

link i, all ongoing transmissions are successful. We say that such a state ω ∈ {0,1}n
is collision-free, and denote by Ψ ⊆ {0,1}n the set of all collision-free states.

The physical model gives a more detailed description of the wireless network com-

pared to the protocol model, as it factors in transmission power and signal attenua-

tion, rather than just the distance between nodes. In regimes in which only one or a

few links significantly contribute to the interference, the physical model and protocol

model are very similar. This is the case for instance if nodes are far apart (sparse net-

works) or if the signal strength (in the physical model) decreases rapidly with distance

(γ large).
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To decide whether a state ω ∈ Ψ remains collision-free after activating some link i,

we have to compute the mutual interference between link i and the links already

active. For the physical model, a transmission on link i will affect the entire network,

whereas for the protocol model only links j such that ||Xi − Yj|| ≤ (1+∆)||Xj − Yj ||
and ||Xj − Yi|| ≤ (1 + ∆)||Xi − Yi|| have to be inspected for activity. We say that

feasibility for the protocol model can be verified locally, as opposed to globally for

the physical model.

1.1.2 Capacity region

An important measure of the quality of a link is the throughput θi , defined as the

expected long-term number of successful packet transmissions over link i per time

unit. We denote by θ = (θ1, θ2, . . . , θn) the throughput vector that describes the

throughput of all links, and we are interested in the capacity region C of the network,

defined as all possible values that the throughput vector can take, given the network

structure.

The throughput vector is restricted by the interference constraints ((1.1) or (1.2),

for instance), and can be attained if and only if there exists some time-sharing of the

collision-free states that yields these throughputs. Assuming that transmissions are

completed at unit rate, the capacity region of the network can be written as the convex

hull of Ψ :

C = conv(Ψ) = {θ ∈ [0,1]n | θ =
∑

ω∈Ψ
α(ω)ω,

∑

ω∈Ψ
α(ω) = 1, α(ω) ≥ 0 ∀ω ∈ Ψ}.

(1.3)

The rate at which packets are transmitted may vary between links, depending on

packet length, transmission power, and channel state among other things. Denote

by Ri the transmission rate across link i, defining the expected number of packets

that are transmitted per time unit if link i is active. The capacity region in this case

is similar to (1.3), only with the activity of all links weighted with their respective

transmission rates. Transmission rates may also fluctuate over time, due to changes

in the channel conditions. Assuming that the feasible transmission rates evolve in a

Markovian fashion over a finite number of channel states, the capacity region is given

by a weighted average over the capacity region associated with each channel state

(see [67]).

The above description is limited to a single-hop capacity region, where all traffic is

transmitted directly from source to destination. Alternatively one may look at a multi-

hop capacity region, by allowing intermediate nodes to forward messages intended for

others. The advantage of multi-hop communication is that by routing traffic through a

series of nearby nodes, the transmit power required for each individual transmission

is reduced, which may increase spatial reuse. Moreover, the use of intermediate nodes

allows for communication over larger distances than would be possible otherwise. The

multi-hop capacity of a network can then be computed by varying the transmit power

and packet routing. This approach is taken in [30], where it is investigated how the

multi-hop network capacity scales with the number of nodes, under the assumption

of equal throughputs for every source-destination pair in the network. It is shown

that the throughput for every source-destination pair scales like m−3/2 as m → ∞.
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This work has generated a lot of interest in scaling laws for wireless network capacity

under various assumptions; see [103] for an overview.

1.1.3 Traffic modeling

There exists a variety of approaches for modeling the arrival of traffic into the net-

work. The bulk of this thesis is concerned with the saturated model, where links are

assumed to always have packets available for transmission. This model represents

congested traffic conditions as well as networks that operate under certain network-

layer protocols that ensure that links are never starved.

The second traffic scenario under consideration is the unsaturated model, where

packets arrive at the links according to some external arrival process, see Figure 1.2.

Packets are temporarily stored in a buffer at the corresponding link pending transmis-

sion. In the unsaturated scenario buffers may occasionally be empty, during which

time the corresponding link cannot activate. The number of packets stored in a buffer

is called the backlog or queue length of a link. We assume that packets arrive accord-

ing to a renewal process, with λi the packet arrival rate (reciprocal of the expected

inter-arrival time) at link i, and we write λ = (λ1, λ2, . . . , λn). In Chapter 4 we analyze

this model under the assumption that packets leave the system immediately once

transmitted (Figure 1.2(a)), and in Chapter 8 we consider a multi-hop scenario where

packets may be routed between nodes (Figure 1.2(b)).

(a) Single-hop (b) Multi-hop

Figure 1.2: Single-hop and multi-hop unsaturated networks.

In Chapters 2 and 3 we consider a traffic model where the collection of links evolves

over time, so-called flow-level dynamics. New transmitter-receiver pairs form flows

that arrive into the system at random times and locations with some finite number

of packets to be transmitted. A flow will leave the system once it has transmitted all

its packets. This is illustrated in Figure 1.3, which shows three snapshots of the net-

work evolution. Alternatively, one may consider a hybrid traffic model that combines

persistent flows and short-lived flows [54, 55].
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Figure 1.3: An illustration of flow-level dynamics.

The notion of a capacity region as discussed in Section 1.1.2 is predicated on

the assumption of a fixed set of links, and does not readily apply in the case with

flow-level dynamics. However, one could define the throughput to be the aggregate

transmission rate over all users, so as to arrive at a scalar quantity that measures the

total number of packets transmitted.

1.1.4 Medium access control

We have seen that transmissions are subject to certain interference constraints: Only

certain subsets of links can be activated simultaneously without giving rise to colli-

sions. Since collisions degrade the network performance, it is essential to devise algo-

rithms that regulate the link activity to reduce interference. Many such medium access

control algorithms exist, with different implementations and varying degrees of effi-

cacy in preventing collisions. We consider both discrete-time algorithms, where link

activity can be changed at the beginning of each time slot t = 0,1, . . . , and continuous-

time algorithms where the set of active links can be modified at any time instant t ≥ 0.

Throughout this thesis it will be clear from the context whether t is discrete or con-

tinuous.

We distinguish between two classes of access schemes: scheduled-access algo-

rithms (discrete-time only) and random-access algorithms (both continuous-time and

discrete-time). Random-access algorithms form a class of distributed, randomized

access schemes, where links decide for themselves when to activate, based on local

information only. Due to their localized nature, and since link activity is based to some

extent on chance, random-access algorithms may not entirely preclude collisions. It

is possible to synchronize all links using message passing algorithms, although this

is not required. Consequently, for many random-access algorithms both slotted and

non-slotted versions exist, such as the Aloha algorithm [2, 73] and the Carrier-Sense

Multiple-Access (CSMA) algorithm [19, 44].

Scheduled-access algorithms implement a time-slotted mechanism, where in each

slot a new set of links is selected for transmission. Because of the additional coor-

dination among links, scheduled-access algorithms typically satisfy the interference

constraints. Scheduled-access algorithms can be implemented both in a centralized

and a distributed way. The former employs a centralized entity that controls the be-

havior of all links, while in a distributed implementation links decide for themselves
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when to activate, based on local information and message passing.

In this thesis we focus on two medium access control algorithms. In Section 1.2 we

describe the MaxWeight scheduling algorithm, a centralized mechanism that sched-

ules transmissions so as to maximize a certain weight. Section 1.3 discusses the

random-access CSMA algorithm, under which links activate and deactivate autono-

mously and asynchronously.

1.1.5 Stability region

In Section 1.1.4 we have seen that there exists a wide range of algorithms for sharing

access to the wireless medium. These algorithms vary in implementation complexity

and performance. In the case of saturated traffic conditions we see that different

algorithms may result in markedly different throughput vectors.

Throughput is also an important performance measure in the unsaturated case,

but additionally we can ask ourselves whether the network is stable under a particular

algorithm and given certain traffic conditions. Stability of the network roughly means

that the throughput of each link is equal to its arrival rate, so it is not overloaded. In

contrast, the throughput of an unstable link is lower than the arrival rate. We consider

two definitions of stability: (i) the queues at the various links empty infinitely often

with finite expected time (positive recurrence in case the queue length process is a

Markov process); and (ii) rate stability, i.e., the departure rate equals the packet arrival

rate. Note that definition (i) is stronger than (ii), because a rate stable system does

not necessarily empty in finite expected time.

The stability region of a scheduler is defined as the set of all arrival rate vectors

that yield a stable network. The stability region of a specific policy should be distin-

guished from the capacity region of the entire network. Naturally, the stability region

of a scheduler is always contained in the capacity region of the network, since the

latter marks the physical limits of the network transport capacity. When the stability

region of a scheduler is identical to (the interior of) the capacity region, we say that

this scheduler is throughput-optimal or maximum stable. Ideally we would like to

find throughput-optimal schedulers that are applicable in a wide variety of scenarios,

without prior knowledge on the network parameters.

1.2 MaxWeight scheduling

The MaxWeight scheduling algorithm is a time-slotted algorithm that has gained im-

mense popularity as a powerful concept for achieving maximum throughput and

queue stability in a wide variety of scenarios. It works in a time-slotted fashion, and

schedules a collision-free subset of flows (links) for transmission in each slot. Denote

by Ri(t) the number of packets that flow i could transmit if selected for transmission

in time slot t . Let Qi(t) denote the queue length of flow i at the beginning of slot t ,

then the MaxWeight scheduling algorithm selects a set of flows so as to maximize the

aggregate product of queue length and feasible transmission rate:

arg max
ω∈Ψ

n
∑

i=1

Qi(t)Ri(t)ωi . (1.4)
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In a pivotal paper [88], a MaxWeight scheduling policy is considered for throughput

maximization in multi-hop wireless networks, where only those subsets of links may

be activated simultaneously that satisfy the interference constraints, see also [37].

In [89] a MaxWeight policy for allocating a server among several parallel queues with

time-varying connectivity is described.

Broadening the latter framework, MaxWeight-type policies were developed for

power control and scheduling of wireless channels with rate variations, see for in-

stance [4, 24, 66, 67]. Extending the scope further, in [23, 68, 82, 83] algorithms were

devised for joint congestion control, routing and scheduling based on MaxWeight

principles. The powerful properties of MaxWeight-type policies have emerged as one

of the central paradigms in the broader realm of cross-layer control and resource

allocation in wireless networks, see [28] for a comprehensive overview.

MaxWeight-type algorithms have also been proposed for throughput maximization

in input-queued switches, where only certain subsets of input-output pairs (e.g., match-

ings) may be simultaneously connected because of compatibility constraints, see for

instance [58, 59]. Extensive background material on MaxWeight policies is contained

in [61]. Crucial heavy-traffic results for MaxWeight algorithms were obtained in [81].

A particularly appealing feature is that MaxWeight policies only need information

on the current backlogs and instantaneous service rates, and do not rely on any ex-

plicit knowledge of the rate distributions or the traffic parameters. On the downside,

finding the maximum weight subset is often a challenging problem and potentially

NP-hard. This is exacerbated in a distributed setting, where message passing and

exchange of backlog information create a substantial communication overhead in ad-

dition to the computational burden. This issue is especially pertinent as the maximum

weight problem generally needs to be solved at a very high pace, commensurate with

the fast time scale on which scheduling algorithms tend to operate. In order to ad-

dress this issue, it was shown in [15, 24, 87] that randomized policies involve less

stringent requirements and yet suffice for achieving maximum stability. In addition,

several authors have considered algorithms that solve the maximum weight prob-

lem in some approximate sense, and quantified the resulting penalty in guaranteed

throughput, see for instance [51, 77, 78, 100, 101].

1.2.1 Flow-level dynamics

As mentioned above, MaxWeight-type policies have been shown to achieve maximum

stability under fairly mild assumptions. A fundamental premise however is that the

network consists of a fixed set of queues with stationary ergodic traffic processes.

In reality, the number of users in the wireless network dynamically varies, as ses-

sions eventually end, while new sessions occasionally start. In many situations the

assumption of a fixed set of queues is still a reasonable modeling convention since the

scheduling actions and packet-level queue dynamics tend to occur on a very fast time

scale, on which the population of active sessions evolves only slowly. In other cases,

however, sessions may be relatively short-lived, and the above time-scale separation

argument does not apply. The impact of flow-level dynamics over longer time scales

is particularly relevant in assessing stability properties, as the notion of stability only

has strict meaning over infinite time horizons.

Motivated by the above observations, we examine the stability properties of Max-
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Weight scheduling policies in a scenario with flow-level dynamics. We demonstrate

in Chapters 2 and 3 that the maximum stability guarantees are no longer valid in

this case. For transparency, we focus on a point-to-point shared wireless downlink

channel with rate variations in Chapter 2, and do not consider multi-hop scenarios.

In Chapter 3 we show that rate variations are not necessary for the instability to arise,

and we show that MaxWeight scheduling is not throughput-optimal in a spatial setting

with fixed transmission rates either.

The intuitive explanation of the instability encountered in Chapter 2 is that Max-

Weight policies tend to favor flows with large backlogs, even when their service rates

are not particularly favorable, and thus the rate variations of flows with smaller

backlogs are not fully exploited. In Chapter 3 we see that MaxWeight policies may

constantly get diverted to arriving flows, while neglecting the opportunity to exploit

higher spatial reuse patterns involving a persistently growing number of flows with

relatively small remaining backlogs, so the opposing effect is never triggered.

Note that flows with large backlogs are also favored in the absence of any flow-level

dynamics. In that case, however, the phenomenon cannot persist since the flows with

smaller backlogs will build larger queues and gradually start receiving more service,

creating a counteracting force.

It is worth drawing a distinction with [52, 63] that show the stability of joint

scheduling and congestion control algorithms in the presence of flow-level dynam-

ics without relying on the conventional simplifying time scale separation argument.

The main difference with Chapters 2 and 3 lies in the fact that in these studies the

set of flow routes is fixed and that scheduling operates at a class level. Inspection

of the results in Chapters 2 and 3 suggests that conventional forms of congestion

control would not prevent the kind of instability phenomenon that we observe. In

other words, the root cause for the instability appears not to be the lack of conges-

tion control, but the fact that the rate variations are not maximally exploited in the

presence of flow-level dynamics.

In the spatial setting of Chapter 3, the possibly unbounded number of flow lo-

cations greatly exacerbates the computational complexity of solving the maximum-

weight problem noted earlier. However, in the analysis we assume that the maximum-

weight problem itself is solved to optimality in each time slot. Thus the instability

of MaxWeight policies as discussed above is entirely disjoint from the throughput

penalty which may result from solving the maximum-weight problem only approxi-

mately as considered for example in [51, 77, 78, 101].

1.3 Carrier-sense multiple-access

Random-access algorithms form a distributed alternative for centralized mechanisms

such as MaxWeight scheduling. Nodes using a random-access algorithm decide for

themselves when to transmit, based only on local information. The first such random-

access algorithm was Aloha [2]. After finishing a transmission, nodes using this algo-

rithm will remain silent for some random time, before activating again. This so-called

back-off mechanism reduces simultaneous activity of nearby links, and hence helps to

prevent, although not preclude, collisions. The back-off mechanism is implemented

by drawing some random back-off time, and then counting down at unit rate; a new
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transmission is started when the back-off timer expires. The CSMA algorithm refines

Aloha, by introducing a so-called carrier-sensing mechanism that tells nodes to moni-

tor nearby activity [44]. Nodes in back-off continuously sense their surroundings, and

freeze the back-off timer when they observe too much nearby activity. Only when the

measured activity drops below a certain threshold, the back-off process continues to

count down. This mechanism reduces collisions since it prevents nearby nodes from

activating simultaneously. The CSMA algorithm is for instance implemented in the

well-known IEEE 802.11 standard [1].

The CSMA algorithm is studied in Chapters 4-8, where we mostly limit ourselves

to the case that nodes have at most one destination, i.e., each node is the transmitter

of at most one link. Thus we can uniquely associate every link with its transmit-

ting node, and we can modify the notation and terminology introduced earlier in this

chapter accordingly. So in the following when we discuss for example the activity (ωi ),

throughput (θi), position (Xi) and transmit power (Pi) of node i, we refer to the corre-

sponding variables of the link to which node i is the transmitter. The transition from

links to nodes is done to simplify notation and terminology only, and all our results

hold for the more general model where nodes may have multiple destinations. In fact,

in Chapter 7 we consider a model where nodes are associated with two receivers.

Similar to the discussion on interference constraints in Section 1.1.1, we may em-

ploy various models to decide whether the carrier-sensing mechanism of a node is trig-

gered given a certain configuration of active links. According to the physical model,

the carrier-sensing mechanism of link i is triggered if

N +
∑

j≠i

Pj||Xi −Xj ||−γωj ≥ ζ, (1.5)

that is, if the aggregate noise and interference level exceeds some carrier-sensing

threshold ζ. The protocol model gives rise to a certain carrier-sensing range β such

that the carrier-sensing mechanism is triggered if at least one node within distance β

is transmitting, i.e.,

||Xi −Xj || ≤ β, for some j ≠ i :ωj = 1. (1.6)

This translates into an undirected conflict graph, where the vertices of the graph

represent the links of the network, and two links share an edge if and only if their

transmitters are within sensing range from each other, see Figure 1.4.

1.3.1 Feasible states and collisions

The carrier-sensing mechanism restricts the possible activity states that the network

can take since (1.5) or (1.6) has to be satisfied in order for a node i to activate. We

denote by Ω ⊆ {0,1}n the set of feasible states according to (1.5) or (1.6), i.e., all

states that can be reached under CSMA.For the protocol model, the set of feasible

states corresponds to the incidence vectors of all independent sets of the conflict

graph. Recently it was shown that one can implement an interference range even for

the physical model [26]. This is done by modifying the carrier-sensing mechanism to

monitor changes in the received power rather than the instantaneous power only, and

using these differentials to compute the distance to all active nodes.
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β

σmin

(a) Sensing range β (b) A conflict graph

Figure 1.4: Constructing a conflict graph.

In general, Ψ and Ω are different, and neither set necessarily contains the other.

Thus there may be collision-free states that are not feasible, as well as feasible states

that are not collision-free. These two types of states are related to the concept of

exposed nodes and hidden nodes, which are discussed in detail in Chapter 7.

Feasible states that are not collision-free correspond to states where one or more

collisions occur. The CSMA algorithm does not necessarily completely preclude col-

lisions, since the carrier-sensing is done by the transmitting node, while collisions

occur at the receiving end. Due to this information asymmetry, the transmitter is not

aware of the exact interference that the receiving node is subjected to. However, if

the carrier-sensing mechanism is configured in a sufficiently conservative manner, we

can completely exclude the possibility of collisions, i.e., we have that Ω ⊆ Ψ . This

is done by by choosing a small sensing threshold ζ (physical model) or setting the

sensing range β sufficiently large (protocol model). Note that by doing so we may also

eliminate some collision-free states, effectively reducing the network capacity.

In recent years this tradeoff between network capacity and collision reduction has

received much attention [50, 57, 104, 107]. Most of these analytic studies assume that

the activity of nodes and their back-off processes are independent, which greatly sim-

plifies the analysis. However, the interaction between nodes has a large impact on the

performance of the network. The tradeoff between preventing collisions and spatial

reuse is the subject of Chapter 7, where we do take this interaction into account, by

keeping track of the activity of nodes over time.

1.3.2 CSMA model

We consider a network of n nodes sharing a wireless medium according to a CSMA-

type protocol. The network is described by an undirected conflict graph (V, E), where

the set of vertices V = {1, . . . , n} represents the nodes of the network and the set
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of edges E ⊆ V × V indicates which pairs of nodes cannot activate simultaneously.

In other words, nodes that are neighbors in the conflict graph are prevented from

simultaneous activity by the carrier-sensing mechanism. An inactive node is said to

be blocked whenever any of its neighbors is active, and unblocked otherwise. We

assume for now that the carrier-sensing mechanism is configured such that collisions

are completely precluded; this assumption is relaxed in Chapter 7.

Consider a scenario where nodes are saturated, i.e., always have packets to trans-

mit. The transmission times of node i are independent and exponentially distributed

with mean 1/µi . When node i is blocked, it remains silent until all its neighbors are

inactive, at which point it tries to activate after an exponentially distributed (back-

off) time with mean 1/νi . Node i activates if it is still unblocked when the back-off

timer runs out. If a node finds itself blocked when the back-off timer expires, it waits

until all neighboring nodes become inactive once more and then repeats the back-off

procedure. Equivalently, we could think of the potential activation epochs of a node

as occurring according to a Poisson process, and actual transmission periods start-

ing whenever a potential activation event occurs while the node is unblocked. For

conciseness, denote σi = νi/µi .
The setΩ of all feasible joint activity states of the network in this case corresponds

to the incidence vectors of all independent sets of the conflict graph. By the assump-

tion that all collisions are precluded, we haveΩ ⊆ Ψ . Let the network state at time t be

denoted by Y(t) = (Y1(t), Y2(t), . . . , Yn(t)) ∈ Ω, with Yi(t) indicating whether node i

is active at time t (Yi(t) = 1) or not (Yi(t) = 0). Then {Y(t)}t≥0 is a Markov process

which is fully specified by the state space Ω and the transition rates

r(ω,ω′) =











νi , if ω′ = ω + ei ∈ Ω,
µi, if ω′ = ω − ei ∈ Ω,
0, otherwise.

(1.7)

Here ei denotes the vector of length n with all zeros except for a 1 at position i.

Since Y(t) is reversible (see [11]), the following product-form stationary distribu-

tion π exists:

π(ω) = lim
t→∞

P(Y(t) = ω) =
{

Z−1
∏n
i=1 σ

ωi

i , if ω ∈ Ω,
0, otherwise,

(1.8)

where

Z =
∑

ω∈Ω

n
∏

i=1

σ
ωi

i (1.9)

is the normalization constant that makes π a probability measure. This result is

well known in the context of wireless networks, see e.g. [11, 17, 20, 98]. Chapter 4

describes how this result can be extended to general back-off times and transmission

durations.

We are interested in the long-term behavior of the network, characterized by the

throughput vector θ. As active nodes finish their transmissions at rate µi , and all

transmissions are successful, we have that

θi = µi
∑

ω∈Ω
π(ω)ωi . (1.10)
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This closed-form expression for the throughput allows for a detailed analysis of

the network behavior; this was first done in the 1980s in the context of packet-radio

networks [11, 12, 42, 71]. CSMA-type models with arbitrary conflict graphs were first

pursued in the context of IEEE 802.11 systems in [98], and further studied in that

setting in [19, 21, 22], with several extensions and refinements in [20, 27, 60, 79].

In [98] three nodes on a line that only block their direct neighbors are considered.

It is shown that the middle node is starved when the back-off rates of all three nodes

increase. Such unfairness has been studied for more general networks in [17, 20, 22],

and is the subject of Chapter 5 of the present thesis.

Although the representation of the IEEE 802.11 back-off mechanism in the CSMA

model is far less detailed than in the landmark work [7], the general conflict graph

offers greater versatility and covers a broad range of topologies. Experimental results

in [49] demonstrate that these models, while idealized, provide throughput estimates

that match remarkably well with measurements in actual IEEE 802.11 systems.

1.3.3 Unsaturated CSMA model

The CSMA model described in Section 1.3.2 focuses on a saturated scenario where

nodes always have packets pending for transmission. Alternatively we may consider

a network using CSMA in unsaturated traffic conditions, giving rise to queueing dy-

namics. In particular, the buffers may empty from time to time, and nodes will refrain

from competition for the medium during these periods. The resulting interaction be-

tween the activity states and the buffer contents of the various nodes gives rise to

quite intricate behavior. In particular, the queueing dynamics entail high-dimensional

stochastic processes with infinite state spaces, which generally do not admit closed-

form expressions for the stationary distribution. Even just establishing the existence

of a stationary distribution, i.e., obtaining the stability conditions, is generally a chal-

lenging problem, and may often be about as hard as determining the entire joint

distribution of the buffer contents.

Unsaturated CSMA models have received little attention in the research literature

due to their complexity. In [17, 31] a linear multi-hop wireless network is considered.

The end-to-end throughput of a three-node network is computed in [17], and [31]

focuses on how to improve the performance of the network by altering the back-off

process.

In this thesis we discuss unsaturated CSMA in Chapters 4 and 8. Since a closed-

form expression for the throughput similar to (1.10) is not available for unsaturated

CSMA networks, we instead aim for stability and throughput bounds. Chapter 4 is

concerned with the stability region of single-hop CSMA models, in particular in the

case of the full conflict graph. In Chapter 8 we study stability and end-to-end through-

put of a linear multi-hop network.

1.3.4 Related models

The CMSA model can be interpreted as a special instance of a loss network [38, 40,

41, 84, 105]. Such loss networks were first introduced to study telephone networks,

and can be seen as an extension of the classical Erlang loss system [14].
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A loss network consists of J links (not be be confused with links in the wireless

network), where link j has Cj circuits j = 1,2, . . . , J. There is a set R = {1,2, . . . , n}
of routes, and calls on route r ∈ R each use Ajr ∈ Z+ circuits from link j, with Z+ the

non-negative integers. Calls of type r ∈ R arrive according to a Poisson process with

rate νr and have exponentially distributed holding times with mean 1/µr . If upon

arrival of a type-r call fewer than Ajr circuits are available for any link j = 1,2, . . . , J,

the call is rejected.

Denote by Nr (t) the number of calls in progress on route r at time t , and define

N(t) = (Nr (t), r ∈ R) and C = (C1, C2, . . . , CJ). It is well known (see, e.g., [41]) that

the Markov process {N(t)}t≥0 has a unique stationary distribution

π(n) = lim
t→∞

P(N(t) = n) = Z−1
∏

r∈R

σ
nr
r

nr !
, n ∈ Ω,

where

Ω = {n ∈ ZR+ : An ≤ C}

with component-wise inequality and Z =∑n∈Ω
∏

r∈R
σ
nr
r

nr !
the normalization constant.

It is readily seen that the CSMA model is in fact a special instance of a loss network,

where the call types correspond to the nodes, and the arrival rate νr is equivalent

to the back-off rate. The mean call holding times 1/µr are equivalent to the mean

packet transmission times. Any CSMA model can be represented as a loss network in

multiple ways. For example, consider a CSMA model on some conflict graph (V, E),

let J = |R| = n and choose Cj = ∆, the maximum node degree of the conflict graph.

If we then choose

Ajr =











∆, if j = r ,
1, if {j, r} ∈ E,
0, otherwise,

we see that the resulting loss network is equivalent to the CSMA model. Alternatively,

let Cj = 1, |R| = n and J = |E|. Then for

Ajr =
{

1, if j is an edge to r ,

0, otherwise,

the resulting loss network is again equivalent to the CSMA model.

Despite the extensive literature on loss networks, the application to CSMA models

poses new and challenging questions. Traditionally the main focus in loss networks

has been on the loss probability, i.e., the probability that a call arriving into the system

cannot be accepted due to insufficient capacity at one or more of its required links.

This loss probability may be written as

Lr =
∑

ω∈Ω
ω+er 6∈Ω

π(ω). (1.11)

Evaluating (1.11) is computationally expensive since it requires summing over all pos-

sible system states. Thus much effort has gone into designing approximations and

establishing asymptotics for the loss probability. The inverse question of choosing

the link capacities to attain sufficiently low loss probabilities has also received con-

siderable attention.
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The main performance measure of CSMA models is the throughput (1.10). Al-

though this is related to the loss probability as

θr = νr (1− Lr ), (1.12)

results on loss networks provide little help in the study of CSMA models. For instance,

most approximations for the loss probability are designed for the high-capacity regime,

so (1.12) cannot be used to obtain easy approximations for the throughput. Moreover,

the design questions are different for both models since in loss networks one typically

manipulates the link capacities, which is not possible for the CSMA model.

From the connection with loss networks, it is readily seen that the stationary dis-

tribution of the joint activity process of the CSMA model is in fact insensitive to the

distribution of the transmission times, i.e., the stationary distribution only depends

on the mean transmission time. Although loss networks are not insensitive to the

interarrival time distribution, we show in Chapter 4 that CSMA models are insensi-

tive to both back-off times and transmission durations. The reason is that the strict

equivalence between the CSMA model and loss networks relies on the back-off periods

being exponentially distributed. In order to see that, observe that in loss networks

the arrival process is not affected by the occupancy state, whereas in the CSMA model

the back-off process of a node is suspended when that node is active, and is possibly

frozen by the activity of neighboring nodes. In case the back-off periods are exponen-

tially distributed, back-off freezing does not affect the activity process, so the CSMA

model is equivalent to a loss network. For generally distributed back-off periods this

distinction does become relevant, and no direct analogy with loss networks applies.

Another interesting connection appears when we look at the Markov chain ob-

tained by embedding the Markov process of the CSMA model on transition instants.

This Markov chain in fact is equivalent to the Glauber dynamics of the hard-core

model [47] from statistical physics. In Section 1.3.5 we describe how the connection

is used to design adaptive CSMA algorithms.

1.3.5 Adaptive CSMA

Traditional CSMA assumes that the mean back-off times and transmission durations

remain fixed over time. Recently, several clever adaptive CSMA-type algorithms have

appeared which achieve throughput-optimality by adjusting the back-off rates over

time. In [32, 34], a class of distributed algorithms is proposed, where nodes ad-

just their back-off rates based on current backlog, which is defined as the difference

between arrived traffic and transmitted packets, while [72] suggests to choose the

back-off rate to be a certain increasing function of the backlog. In [34] it is shown

that these protocols can achieve any throughput vector in the interior of the capacity

region (1.3).

The key idea of the algorithm in [34] is to adapt the back-off rates of the nodes

according to the difference between arrival rate and throughput. This difference is

exactly the gradient associated with a specific convex optimization problem, the so-

lution of which provides stability, if possible to do so at all. In [33, 36, 53] it is shown

that the back-off rates prescribed by this algorithm converge. This approach can be

used to optimize a utility function of the throughputs, providing for example max-min

fairness or maximization of the aggregate throughput.
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The approach of [72] is roughly to choose the back-off rates as log(q + 1), where

q is the current backlog. This choice responds very slowly to queue-length increases,

and is known to cause long delays. Recently these requirements were relaxed, see [29].

Here it is shown that it is sufficient for maximum stability if the logarithms of the back-

off rates behave as log(q+1)/g(q), with g(q) strictly increasing and chosen such that

log(q+1)/g(q) is strictly concave and increasing. It is shown by means of simulation

that this choice for the weights leads to lower average delay. In [9] it is shown that

even linear weights provide maximum stability, but this was proven under a time-

scale separation assumption. A similar approach was taken for the multi-channel

case in [10].

The above adaptive algorithms show remarkable performance in terms of through-

put, but are reported to cause very long delays. In [56, 75], the specific structure of

the conflict graph that arises in wireless networks is exploited to devise CSMA algo-

rithms where the delay does scale well with the network size. In [75] this is done by

temporarily freezing some nodes, whereas [56] suggests to occasionally shut down

and then restart the entire network.

The above references assume an idealized setting without collisions. In [35, 70, 76]

different adaptive CSMA algorithms are described, that are throughput-optimal even

in a setting with a certain type of collisions. This is done in [70, 76] by considering a

discrete-time protocol where each time slot is divided into a control phase and a data

phase. The control phase is used to determine a collision-free schedule for the data

phase, and the resulting adaptive algorithm is such that no collisions occur during

the data phase. The solution proposed in [35] constitutes a continuous-time version.

In [43], an algorithm designed to deal with collisions caused by false-negatives of the

carrier-sensing mechanism is presented.

While adaptive CSMA achieves throughput-optimality, the case of fixed back-off

rates is nevertheless relevant since in practice the adaptation of back-off parame-

ters involves a wide range of non-trivial implementation issues (finite-range precision,

communication overhead, information exchange), and hence it is important to gain

insight in the achievable performance of non-adaptive algorithms. This is also demon-

strated by [45, 65], that implement a version of the adaptive algorithm from [34]. The

experiments there show that while adaptive CSMA performs well in certain scenarios,

its effectiveness is strongly reduced by various phenomena encountered in practice,

such as capture effects and the presence of hidden nodes. For example, hidden-node

collisions cause the nodes to become overly aggressive, which may lead to complete

starvation of certain other nodes.

1.4 Overview of the thesis

In this thesis we examine various mathematical models in order to improve our un-

derstanding of the role of medium access control algorithms in wireless networks.

These models exhibit similar qualitative behavior as real-life wireless networks, and

can be used to gain insight into various known performance issues, as well as uncover

new problems. We focus on the MaxWeight scheduling and CSMA algorithms, both

of which are popular mechanisms for regulating node activity and sharing resources

in wireless networks. As described earlier, the goal of such algorithms is to allow for
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simultaneous activity of many links, while restricting the set of active links to certain

collision-free subsets. It turns out that MaxWeight scheduling and CSMA, although

markedly different, both suffer from performance issues that have the same underly-

ing cause: The algorithms under consideration may consistently schedule unfavorable

states, as is illustrated below.

For example, consider a saturated linear CSMA network of three nodes, with near-

est neighbor blocking, so only nodes 1 and 3 can be active simultaneously. Assume

that all nodes activate with rate νi = σ so that the mean back-off time equals 1/σ . For

this small network, the saturation throughputs can be easily computed using (1.10):

θ1 =
σ(1+ σ)

1+ 3σ + σ 2
, θ2 =

σ

1+ 3σ + σ 2
, θ3 =

σ(1+ σ)
1+ 3σ + σ 2

. (1.13)

As was reported in [98], the throughput is highly unfair, and nodes 1 and 3 receive

much better service than the node in the middle. Node 2 can only activate when

both outer nodes are silent. As σ increases, this event occurs less frequently, and

from (1.13) it is readily seen that node 2 will be completely starved as σ → ∞. In

terms of scheduling feasible subsets of nodes, we see that the CSMA algorithm favors

the state (1,0,1) over (0,1,0), leading to unfair throughputs.

A similar phenomenon occurs in MaxWeight scheduling, when applied in a setting

with flow-level dynamics. Consider the same interference structure as before, only

with the nodes replaced by regions. New flows of deterministic size arrive into one

of the three regions, and at most one flow per region can be scheduled at any point

in time. So the scheduler can choose to select either a flow each from regions 1 and 3

(schedule (1,0,1)), or one flow from region 2 (schedule (0,1,0)). We assume a fixed

transmission rate Ri(t) ≡ 1, so that MaxWeight scheduling selects

ω =
{

(1,0,1), if N∗1 (t)+N∗3 (t) ≥ N∗2 (t),
(0,1,0), otherwise,

with N∗i (t) the size of the largest flow in region i at time t . If new flows in region

2 have unit size, and new flows in regions 1 and 3 have size greater than one, then

the MaxWeight scheduling algorithm selects (1,0,1) whenever a new flow arrives in

either region 1 or 3, irrespective of the number of flows already present in region 2.

This causes the number of flows in region 2 to explode. This behavior is key to the

instability of MaxWeight scheduling discussed in Chapter 3.

1.4.1 Instability of MaxWeight scheduling

As already hinted at in the above example, MaxWeight may run into difficulties when

confronted with flow-level dynamics. In Chapters 2 and 3 we demonstrate that in the

presence of flow-level dynamics the algorithm may no longer be throughput-optimal,

and we identify two causes for the instability: (i) failure to fully exploit rate variations;

and (ii) spatial inefficiency.

In Chapter 2 we consider the inability of MaxWeight scheduling to exploit rate

variations, which can be demonstrated in a single-downlink scenario with varying

transmission rates. We identify a simple necessary and sufficient condition for sta-

bility, and show that MaxWeight policies may fail to provide maximum stability. The
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intuitive explanation is that these policies tend to favor flows with large backlogs, so

that the rate variations of flows with smaller backlogs are not fully utilized.

The second cause for instability is studied in Chapter 3, where we consider a

spatial setting in which flows arrive at random in some finite space, and multiple

flows may be scheduled simultaneously, subject to certain interference constraints.

The MaxWeight scheduler tends to serve flows with large backlogs, even when the

resulting spatial reuse is not particularly efficient. We show that MaxWeight policies

consistently choose inefficient schedules, which may lead to instability.

1.4.2 Insensitivity of the CSMA model

In Section 1.3.4 we explained the connection between CSMA models and loss networks,

and argued that CSMA models can be seen as a special instance of loss networks. Loss

networks are well known to be insensitive to the distribution of the call holding times,

in the sense that the stationary distribution only depends on the mean of the holding

time rather than on the entire holding-time distribution, see [41]. It is easily seen

that this implies insensitivity of CSMA models to the distribution of the transmission

times. Moreover, despite the fact that the insensitivity for loss networks does not

extend to interarrival times, we show in Chapter 4 that CSMA models are in fact

insensitive to the back-off times. The reason for this is that in CSMA models the back-

off process of an active node is suspended, while the arrival process of a blocked

route in a loss network continues while blocked.

1.4.3 Stability of random-access networks

In Chapter 4 we also consider the unsaturated model, where packets arrive at each

node i according to some renewal process with rate λi , and buffers may occasionally

empty. We are interested in the stability region of the CSMA algorithm.

First we use the corresponding saturation throughput to give a simple sufficient

condition for instability:

λi > θi, i = 1,2, . . . , n,

and we show that the converse condition is not sufficient for stability. We then ex-

plicitly identify the stability region for the complete conflict graph, and illustrate the

difficulties that arise when trying to describe the stability region for partial conflict

graphs.

1.4.4 Throughputs and fairness of CSMA

As has been mentioned a few times already, CSMA networks may exhibit severe un-

fairness, in the sense that some nodes receive consistently higher throughput than

others. In Chapter 5 we study this phenomenon in linear networks, and realize strict

fairness by choosing certain node-specific back-off rates. We obtain closed-form ex-

pressions for the fair back-off rates and the resulting throughputs.

The more general problem of finding the back-off rates that yield a certain through-

put vector is addressed in Chapter 6. Let γ = (γ1, . . . , γn)
T ∈ Rn+ belong to the range

Γ of the mapping θ : Rn+ → Γ . In [34] it is shown that Γ is equal to the interior of the

capacity region C of the network. The throughput vector is a highly non-trivial and
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non-linear function of the back-off rates, and the problem of finding back-off rates

that achieve a certain throughput vector can be formalized as finding νθ = νθ(γ) that

solves

θ(νθ) = γ,

and hence, we need to study in detail the mapping θ. We show that the throughput

function is globally invertible, meaning that for any γ ∈ Γ (fair or otherwise) there

exists exactly one νθ that yields γ. In contrast to fairness on a line, we can no longer

determine the inverse explicitly. Instead, we present several numerical procedures

for calculating the inverse, based on fixed-point iteration and Newton’s method.

1.4.5 Carrier-sensing tradeoff

As explained in Section 1.3, the carrier-sensing mechanism of CSMA may not com-

pletely preclude collisions. The reason is that whether or not transmissions are suc-

cessful depends on the noise perceived by the transmitting node, while the carrier-

sensing mechanism is triggered at the transmitting node. We can reduce interference

by increasing the carrier-sensing range β, although this also reduces spatial reuse. In

Chapter 7 we study this tradeoff in a linear wireless network, for a given interference

range η, a conflict graph that arises from the carrier-sensing range β, and uniform

back-off rate σ . We express the throughput as a function of various instances of the

normalization constant of a linear CSMA model with i nodes, as defined in (1.9), and

use this to solve for the throughput-optimal value of β. We show that the value of the

optimal sensing range depends on the mean back-off times of the nodes.

1.4.6 Time-slotted CSMA

In Chapter 8 we study a time-slotted CSMA algorithm, where all nodes are synchro-

nized and transmissions last exactly one time slot. We consider a linear network and

determine the network-aggregate throughput and per-node throughputs under satu-

ration conditions. These are compared to the results obtained for continuous-time

CSMA in Chapter 5. We then provide bounds on the end-to-end throughput for both

slotted and continuous-time CSMA.

1.4.7 Literature summary

This thesis is largely based on results that have already appeared in the literature,

and we proceed to give an overview of the relevant papers. Chapter 2 is based on [90]

and Chapter 3 on [94]. In Chapter 4 we present the results from [92] while Chapter 5

follows [91, 96]. The results presented in Chapter 6 were first derived in [95], and

Chapters 7 and 8 are based on [93] and [80], respectively.
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2
Instability of MaxWeight

scheduling

In Section 1.2 we discussed the celebrated MaxWeight scheduling algorithm, a ver-

satile centralized medium access control mechanism. The popularity of MaxWeight

scheduling is due to its ability to provide maximum stability, which is shown to hold

in a wide variety of scenarios, but only in case that the system consists of a fixed

set of queues with stationary ergodic traffic processes. In reality, the collection of

active queues dynamically varies, as flows eventually depart while new flows occa-

sionally start. In the present chapter and in Chapter 3 we will demonstrate that the

maximum-stability guarantees of MaxWeight scheduling are no longer valid under

flow-level dynamics. In this chapter we focus on a point-to-point shared wireless

downlink channel with rate variations.

This chapter is organized as follows. In Section 2.1 we present a detailed model

description and in Section 2.2 we derive a simple necessary and sufficient condition

for stability in the presence of flow-level dynamics. Section 2.3 establishes that the

MaxWeight policy may fail to provide maximum stability by treating specific model

instances where the stability conditions are satisfied, yet MaxWeight scheduling does

not keep the system stable. In Section 2.4 simulation results are provided that support

the analytical findings and in Section 2.5 we make some concluding remarks.
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2.1 Model description

We consider a single wireless link shared byK classes of flows. The system operates in

a time-slotted fashion, and in each time slot at most one of the flows can be scheduled

for transmission. Denote by Ak(t) the number of class-k flows starting in time slot t .

We assume that Ak(1),Ak(2), . . . are i.i.d. copies of some random variable Ak with

mean αk <∞. The arrivals are independent both over time and between classes.

Each of the flows generates some finite random amount of traffic. We distinguish

between two scenarios for the traffic influx of the various flows: (i) instantaneous

traffic bursts; and (ii) gradual traffic streams. In case (i) each flow generates an in-

stantaneous amount of traffic upon arrival to the system. Denote by Bki the size of

the i-th class-k flow upon arrival (in bits). We assume that Bk1, Bk2, . . . are i.i.d. copies

of some integer random variable Bk with E[Bk] < ∞. The flow sizes upon arrival are

independent both over time and between classes.

In case (ii), each flow starts a random finite activity period upon arrival to the sys-

tem, during which it produces a gradual stream of traffic. Denote by Dki the duration

of the activity period of the i-th class-k flow (in slots). We assume that Dk1,Dk2, . . .

are i.i.d. copies of some integer random variableDk with E[Dk] <∞. Denote by Fki(t)

the amount of traffic in bits generated by the i-th class-k flow in time slot t . For

notational convenience, we define Fki(t) for all t , but its value is only relevant if the

i-th class-k flow is active. We assume that Fki(1), Fki(2), . . . are i.i.d. copies of some

integer random variable Fk with E[Fk] < ∞, the Fki(1) are independent from the Dki ,

and that the traffic processes are independent among the various flows. Denote by

Bki =
∑Ski+Dki−1
t=Ski Fki(t) the total amount of traffic generated by the i-th class-k flow,

with Ski denoting its arrival time. By the above assumptions, Bk1, Bk2, . . . are i.i.d.

copies of an integer random variable Bk with mean E[Bk] = E[Dk]E[Fk] <∞.

Note that scenario (i) may be interpreted as a special case of scenario (ii) with Dk ≡
1 and Fk ≡ Bk. For economy of notation, however, it is useful to classify scenario (i) as

a separate case. In both scenarios, traffic may only start to be served in the next slot

after it arrives. Flows leave the system as soon as all their bits have been transmitted

(and no further bits are due to arrive in the case of gradual traffic streams). During

the period between its arrival and departure, a flow is said to be present.

The feasible transmission rates of the various flows vary over time as a result of

fading. Denote by Rki(t) the feasible transmission rate (in bits) of the i-th class-k flow

if selected for transmission in time slot t . For notational convenience, we define Rki(t)

for all t , but its value is only relevant if the i-th class-k flow is actually present in the

system. We assume that Rki(1), Rki(2), . . . are i.i.d. copies of some integer, positive

random variable Rk, and that the feasible transmission rates are independent among

the various flows. Define Rmax
k = sup{r : P(Rk = r) > 0} as the maximum possible

value of the transmission rate of class-k flows (possibly Rmax
k = ∞).

The flow arrivals, sizes and feasible transmissions rates are extraneous, while we

can choose which flow to schedule in each time slot. Let us say that in time slot t

a flow of class k(t) with a residual size of l(t) bits is served at rate r(t), with the

convention that k(t) = l(t) = r(t) = 0 in case no flow gets scheduled in time slot t at

all.

The evolution of the system over time in case of instantaneous traffic can be de-

scribed by a vector N(t) = (N1(t), . . . ,NK(t)), with Nk(t) = (Nk1(t),N
k
2(t), . . . ) and



2.2 Necessary and sufficient stability condition 23

Nkl (t) representing the number of class-k flows in the system with a residual size of

l bits at the beginning of slot t . Observe that

Nkl (t + 1) = Nkl (t)+Akl (t)− 1{k(t)=k,l(t)=l} + 1{k(t)=k,l(t)=l+r(t)},

withAkl (t) denoting the number of class-k flows arriving at time t with a size of exactly

l bits. It is easily verified that the processN(t) is a Markov chain. A similar description

of the system evolution for gradual traffic is provided in the proof of Theorem 2.2.

Define ρk = αkτk, and ρ = ∑K
k=1 ρk, with τk = E[⌈Bk/Rmax

k ⌉] when Rmax
k < ∞ and

τk = 1 when Rmax
k = ∞. Thus τk represents the expected number of slots required

for the service of a class-k flow when served at rate Rmax
k .

2.2 Necessary and sufficient stability condition

In this section we first establish a simple necessary condition for stability to be achiev-

able, and then proceed to show that this is in fact also (nearly) sufficient. The system

is said to be stable if the Markov chain that describes the state of all present flows is

positive recurrent.

Proposition 2.1. The condition ρ ≤ 1 is necessary for stability.

Proof. The expected number of slots required for the service of an arbitrary class-k

flow is bounded from below by τk. Thus the rate at which class-k work enters the

system is bounded from below by ρk = αkτk, and the total rate at which work arrives

is bounded from below by ρ = ∑K
k=1 ρk. The latter quantity may not exceed one in

order for stability to be achievable.

We proceed to show that the above condition is also (nearly) sufficient for stability

to be achievable. This may be intuitively explained as follows. With a dynamic popu-

lation of flows, there will always be a flow that has the maximum possible feasible rate

with high probability when there are sufficiently many flows present in the system.

In other words, whenever a flow gets selected for transmission, it can be served at

the maximum possible rate with high probability. Thus the expected number of slots

required for the service of an arbitrary class-k flow can be brought arbitrarily close

to τk, so that the system can be stabilized for values of ρ arbitrarily close to 1.

Evidently, the above explanation only provides heuristic arguments and does not

account for several subtle yet critical issues. However, the intuitive insight offers

useful guidance for the construction of a Lyapunov function that serves as the basis

of a rigorous proof of the propositions presented below.

We distinguish between the two traffic scenarios described in the previous sec-

tion. As mentioned earlier, the scenario with instantaneous traffic bursts may be

interpreted as a special case of that with gradual traffic streams. For transparency,

however, we provide a separate treatment which introduces the key concepts while

avoiding some of the additional complexity that arises in the general case.

Theorem 2.1. For any ρ < 1, there exists a scheduling strategy that achieves stability

in case of instantaneous traffic.
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Proof. We first introduce several constants that will be used. Let ǫ = 1
2
(1− ρ)/(K +

1) > 0 and defineZk = min{Rmax
k , αkE[Bk]/ǫ}, ηk := P(Rk ≥ Zk) > 0, η := mink=1,...,K ηK

and Nǫ,η := min{m : (1 − η)m ≤ ǫ}. Denote θk = [P(Rk > 0)]−1 < ∞, let Lk = min{l :
∑∞
i=l+1 iP(Bk = i) ≤ ǫ/(αkθk)}, and observe that Lk <∞ since E[Bk] <∞.

We consider a scheduling strategy with the following property: it serves a class-k

flow that either (i) has a feasible transmission rate Zk or higher or (ii) has a residual

size Lk or larger and a positive feasible transmission rate, whenever possible. Ties

are broken arbitrarily. In order to prove stability, we have to show that the Markov

chain N(t) is positive recurrent.

Define the Lyapunov function:

V(n) =
K
∑

k=1

(

Lk
∑

i=1

nki

⌈

i

Zk

⌉

+ θk
∞
∑

i=Lk+1

inki

)

,

with n = (n1, . . . , nK) and nk = (nk1, nk2, . . . ).
The function V(n) provides a measure for the total amount of work in the system

in terms of the total number of slots required for the service of all currently present

flows, assuming that class-k flows of residual size no larger than Lk are always served

at rate Zk, while class-k flows of residual size of at most Lk are served at rate θ−1
k =

P(Rk > 0).

We can write the drift as

V(N(t + 1))− V(N(t)) =
K
∑

k=1

Ik(t)−D(t),

with

Ik(t) =
Lk
∑

i=1

⌈

i

Zk

⌉

Aki (t)+ θk
∞
∑

i=Lk+1

iAki (t), (2.1)

reflecting the increase in the workload due to the arrival of class-k flows, and

D(t) =
⌈

l(t)

Zk(t)

⌉

1{1≤l(t)≤Lk(t)} + θk(t)l(t)1{l(t)>Lk(t)} −
⌈

l(t)− r(t)
Zk(t)

⌉

1{1≤l(t)−r(t)≤Lk(t)}

− θk(t)(l(t)− r(t))1{l(t)−r(t)>Lk(t)} (2.2)

representing the decrease in the workload due to the service of flows. The conditional

drift may then be written as:

E[V(N(t + 1))− V(N(t)) | N(t) = n] =
K
∑

k=1

E[Ik(t)]− E[D(t) | N(t) = n]. (2.3)

Define

C = {n|
K
∑

k=1

nk < Nǫ,η and

K
∑

k=1

sk = 0
}

.

It may be shown that

E[Ik(t)] ≤ ρk + 2ǫ, (2.4)

E[D(t) | N(t) = n] ≥ 1− ǫ, n 6∈ C. (2.5)
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Both (2.4) and (2.5) are derived in Lemma 2.1, which is presented and proven in Ap-

pendix 2.A.

Combining Equations (2.3)-(2.5) we get

E[V(N(t + 1))− V(N(t)) | N(t) = n] ≤ −ǫ,

for any n ∉ C. In addition, it is easily verified that E[V(N(t + 1))|N(t) = n] < ∞ for

any n ∈ C.

Inspection of the Foster-Lyapunov drift criteria [62] then shows that the Markov

chain N(t) is positive recurrent, so the system is stable.

Remark 2.1. If Bk has finite support, i.e., Bmax
k = sup{b : P(Bk = b) > 0} < ∞, then

the above proof may be considerably simplified by taking Lk = Bmax
k and dropping all

the terms involving Nkl , l ≥ Bmax
k + 1.

Theorem 2.2. For any ρ < 1, there exists a scheduling strategy that achieves stability

in case of gradual traffic.

Proof. We introduce several constants that will be used. Let ǫ = 1
2
(1−ρ)/(K+2) > 0

and define θk, Lk and Zk as in the proof of Theorem 2.1. In addition, define ϕk =
αkE[Dk], ϕ = ∑K

k=1ϕk, δ = ǫ/ϕ, and ς = (1 − ǫ)/δ. Finally, let Mk = min{m :
∑∞
j=m+1 jP(Dk = j) ≤ϕk/(αkς)}, and observe that Mk < ∞ since E[Dk] < ∞.

We consider a scheduling strategy with the following property: it serves an inactive

class-k flow that either (i) has a feasible transmission rate Zk or higher; or (ii) has

a residual size greater than Lk and a positive feasible transmission rate, whenever

possible. Recall that in time slot t a flow of class k(t) with a residual size of l(t) bits

is served at rate r(t), with the convention that k(t) = l(t) = r(t) = 0 in case no flow

gets scheduled in time slot t at all.

In order to describe the evolution of the system over time, we denote Nkl (t) rep-

resenting the number of inactive class-k flows in the system at the beginning of slot t

with a residual size of l bits, and Qklm(t) the number of class-k flows in the system

at time t with a residual activity period of length m and a total size of l bits. The

system state is then captured by the vectors of flows N(t) = (N1(t), . . . ,NK(t)), with

Nk(t) = (Nk1(t),Qk1(t),Nk2(t),Qk2(t), . . . ) and Qkl (t) = (Qkl1(t),Qkl2(t), . . . ).
Observe that

Nkl (t + 1) = Nkl (t)+Qkl1(t)− 1{k(t)=k,l(t)=l} + 1{k(t)=k,l(t)=l+r(t)},

and

Qklm(t + 1) = Qklm+1(t)+Aklm(t),

with Aklm(t) denoting the number of class-k flows arriving at time t with an activity

period of length m and a size of exactly l bits. It is easily verified that the process

N(t) is a Markov chain.

Define the Lyapunov function:

V(n) =
K
∑

k=1

(

δ

Mk
∑

j=1

jqk∗j + δς
∞
∑

j=Mk+1

jqk∗j +
Lk
∑

i=1

(qki∗ + nki )
⌈

i

Zk

⌉

+ θk
∞
∑

i=Lk+1

i(qki∗ + nki )
)

,
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with n = (n1, . . . , nK), nk = (nk1, q
k
1 , n

k
2, q

k
2 , . . . ), q

k
l = (qkl1, q

k
l2, . . . ), q

k
l∗ = ∑∞

j=1 q
k
lj ,

qk∗m =
∑∞
i=1 q

k
im. The above function provides a measure for the total workload and

weighted aggregate residual lifetime of all the flows present in the system.

Note that

V(N(t + 1))− V(N(t)) =
K
∑

k=1

Ik(t)+ δ
K
∑

k=1

Jk(t)− δ
K
∑

k=1

Ek(t)−D(t), (2.6)

with

Ik(t) =
(

Lk
∑

i=1

Aki∗(t)
⌈

i

Zk

⌉

+ θk
∞
∑

i=Lk+1

iAki∗(t)
)

,

reflecting the increase in the workload due to the arrival of class-k flows,

Jk(t) =
Mk
∑

j=1

jAk∗j(t)+ ς
∞
∑

j=Mk+1

jAk∗j(t),

with Aki∗(t) =
∑∞
j=1A

k
ij(t), A

k
∗j(t) =

∑∞
i=1A

k
ij(t), representing the increase in the

aggregate residual lifetime due to the arrival of class-k flows. Moreover,

D(t) =
⌈

l(t)

Zk(t)

⌉

1{1≤l(t)≤Lk(t)} + θk(t)l(t)1{l(t)>Lk(t)}

−
⌈

l(t)− r(t)
Zk(t)

⌉

1{1≤l(t)−r(t)≤Lk(t)} − θk(t)(l(t)− r(t))1{l(t)−r(t)>Lk(t)}

captures the decrease in the workload due to the service of inactive flows, and

Ek(t) =
Mk
∑

j=1

Qk∗j(t)+ ς
∞
∑

j=Mk+1

Qk∗j(t)

corresponds to the decrease in the aggregate residual lifetime due to the aging of

active class-k flows.

Conditioning the drift (2.6) on the number of flows present,

E[V(N(t + 1))− V(N(t)) | N(t) = n]

=
K
∑

k=1

E[Ik(t)]+ δ
K
∑

k=1

E[Jk(t)]− δ
K
∑

k=1

E[Ek(t) | N(t) = n]− E[D(t) | N(t) = n]. (2.7)

Define

C = {n|
K
∑

k=1

nk < Nǫ,η and

K
∑

k=1

sk = 0
}

.

It may be shown that

E[Ik(t)] ≤ ρk + 2ǫ, (2.8)

E[Jk(t)] ≤ 2ϕk, (2.9)

E[Ek(t)|N(t) = n] ≥ ς, n 6∈ C, (2.10)

E[D(t) | N(t) = n] ≥ 1− ǫ n 6∈ C. (2.11)
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Equations (2.8)-(2.11) are derived in Lemma 2.2, which is presented and proven in

Appendix 2.A.

Define the set

Ĉ = {n|
K
∑

k=1

nk ≤ Nǫ,η and

K
∑

k=1

sk = 0 and

K
∑

k=1

qk ≤ ς and

K
∑

k=1

s′k = 0
}

.

Suppose n ∉ Ĉ. Then either
∑K
k=1 qk > ς or

∑K
k=1 s

′
k ≥ 1 or n ∉ C. If n ∉ C, then

the conditional drift is bounded from above by

ρ + 2Kǫ+ 2δϕ − 1+ ǫ = ρ + (2K + 3)ǫ− 1 = −ǫ.

If
∑K
k=1 qk > ς or

∑K
k=1 s

′
k ≥ 1, then the conditional drift is bounded from above by

ρ + 2Kǫ+ 2δϕ − δς = ρ + (2K + 3)ǫ− 1 = −ǫ.

Combining Equations (2.7)-(2.11) we obtain

E[V(N(t + 1))− V(N(t)) | N(t) = n] ≤ −ǫ,

for any n ∉ Ĉ. In addition, it is easily verified that E[V(N(t + 1))|N(t) = n] < ∞ for

any n ∈ Ĉ.

Inspection of the Foster-Lyapunov drift criteria [62] then shows that the Markov

chain N(t) is positive recurrent, so the system is stable.

2.3 Instability of MaxWeight scheduling

In this section we establish that MaxWeight scheduling may fail to provide maximum

stability. Specifically, we analyze two model instances where the sufficient condition

stated in the previous section is satisfied, yet the MaxWeight strategy does not keep

the system stable. For the sake of tractability, we focus on relatively simple models

with instantaneous traffic and just a single class of flows. In the next section we

present extensive simulation results to demonstrate that the instability may also occur

in more complex scenarios with gradual traffic that do not lend themselves easily to

an analytical treatment.

Example 2.1. In this example we consider a single class of flows, and for convenience

of notation we omit the subscript indicating the class. Otherwise the notation is

identical to that used in Section 2.2. Flows start according to a Bernoulli process,

i.e., in each time slot either a flow starts with probability α or no flow starts with

probability 1−α, independent from slot to slot. The service requirement of each flow

is a constant B = 2D + 1 for some integer D ≥ 1. The feasible transmission rate of

a flow is either D + 1 with probability p or 2D + 1 with probability 1 − p, 0 < p < 1,

so Rmax = 2D + 1. The feasible transmission rates are independent across time and

among different flows.

It is readily seen that τ = 1 and so ρ = α. Theorem 2.1 states that ρ = α < 1 is a

sufficient condition for stability to be achievable. We now show that the MaxWeight

scheduling strategy fails to achieve stability for ρ = α > 1/(1+p). The reason for the
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potential instability may be explained as follows. When a flow starts, the MaxWeight

strategy will immediately serve it in the next slot, regardless of whether it has feasible

rate D + 1 or 2D + 1. To see that, observe that older flows present in the system will

necessarily be of size D, and have no chance to be selected in competition with a new

flow of size 2D + 1. In case the new flow has feasible rate D + 1, it will require an

additional slot at some later point for the service to be completed. In other words, the

MaxWeight strategy ‘wastes’ a second slot on the service of flows whose initial feasible

rate isD+1, whereas a single slot would suffice under a more cautious strategy. More

specifically, since the expected number of slots required per flow is 1 + p, it follows

that α > 1/(1+ p) precludes stability.

Remark 2.2. We can extend the example of instability to a slightly more general set-

ting. Consider, as in the situation described above, a system with a single class of

flows. Flows start according to a Bernoulli process, i.e., in each time slot either a flow

starts with probability α or no flow starts with probability 1 − α, independent from

slot to slot. The service requirement of each flow is a constant B. In addition to Rmax,

we also introduce Rmin = min{i : P(R = i) > 0}. Assume now that feasible service

rates are such that

(B − Rmin) · Rmax < B · Rmin.

It is easy to see that this condition implies that a flow entering the system will im-

mediately get scheduled. Hence, the average number of slots required for the service

of an arbitrary flow is bounded from below by

1+
Rmax
∑

i=1

⌈

B − i
Rmax

⌉

P(R = i). (2.12)

Thus, stability is precluded if

α



1+
Rmax
∑

i=1

⌈

B − i
Rmax

⌉

P(R = i)


 > 1.

Note that the quantity in (2.12) is strictly smaller than ⌈B/Rmax⌉, provided that

Rmin < Rmax.

Example 2.2. We discuss a second scenario where the MaxWeight strategy fails to

achieve maximum stability. As before, flows start according to a Bernoulli process,

i.e., in each time slot either a flow starts with probability α or no flow starts with

probability 1−α, independent from slot to slot. The service requirement of each flow

is a constant B. For convenience, we assume B = 8D for some integer D ≥ 1. The

feasible transmission rate of a flow is either 1 with probability p or 2 with probability

1 − p, 0 < p < 1. The feasible transmission rates are independent across time and

among different flows. In this case, Theorem 2.1 states that stability can be achieved

as long as ρ = 4αD < 1.

Let Ni(t) denote the number of flows of size i at time t . It may be shown that for

ρ ≤ 1, the process (N3D+1(t),N3D+2(t), . . . ,NB(t)) of flows of size 3D+1 or greater is

stable. This makes sense since large flows receive priority, and the onset of instability

manifests itself in the growth of the number of small flows. It then follows that the

system spends a non-negligible fraction of time in states where all flows of size 3D+1
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or greater have rate 1 and there is at least one flow of size greater than 6D + 1. In

these states, the MaxWeight strategy will serve a flow at rate 1. Similar to the previous

scenario, this means that the fraction of time that transmission rate 1 is used, does

not approach 0 as ρ ↑ 1, and instability follows.

2.4 Numerical experiments

In this section we present simulation results that confirm the instability of MaxWeight

scheduling, as well as clarify the nature of the instability. All simulations consist of

a single run of 105 time slots. In each slot, a new flow starts with probability α.

The first scenario we consider is Scenario II from Section 2.3, withD = 2. Figure 2.1

shows the number of bits in the system, plotted for various values of α. Although the

condition α < 1 ensures the existence of a stable scheduling strategy in this scenario,

it is easily seen that this is not sufficient for the MaxWeight policy to achieve stability.
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Figure 2.1: The number of bits in the system plotted against time under MaxWeight

scheduling, for various values of α.

From this point on, we consider gradual traffic. For the duration of the activity pe-

riod of a flow, a single bit enters in each slot. The length of this period is geometrically

distributed with parameter p. In Figure 2.2, three two-class scenarios are presented.

Flows belong to either of the classes with equal probability, and the transmission rates

are geometrically distributed with parameter q. Hence, Rmax = ∞, and the necessary

stability condition found in Proposition 2.1 simplifies to α < 1. Besides the sample

path for MaxWeight scheduling, we also plot the behavior of MaxRate scheduling, a

somewhat simpler version of the algorithm used in Theorem 2.1 and 2.2, in which the

flow with the highest rate is scheduled. In each of these figures, MaxRate scheduling

provides stability, whereas MaxWeight scheduling fails to do so. Note that although

the MaxWeight scheduling policy is unstable in the cases presented, it is still possible

for particular classes of flows to be stable. This is in contrast to MaxWeight scheduling

in the static scenario.

Figure 2.3 displays the number of bits over time in a single-class scenario when

the transmission rates can assume only two possible values.
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(a) p1 = p2 = 1/4, q1 = 1/2, q2 = 1/4, α = 0.93
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(b) p1 = 1/4, p2 = 1/2, q1 = q2 = 1/2, α = 0.95
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(c) p1 = 1/4, p2 = 1/2, q1 = 1/4, q2 = 1/2, α =
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Figure 2.2: The number of bits in the system of both classes plotted against time for

various parameters.

Figure 2.4 contains a similar scenario, but with the transmission rates geometri-

cally distributed with parameter q, so Rmax = ∞. This figure again demonstrates that

MaxWeight fails to provide maximum stability.

2.5 Concluding remarks

We studied the performance of MaxWeight scheduling in a setting where flow dynam-

ics are taken into consideration. We determined an explicit necessary condition for

stability, and devised a simple policy to show that this condition in fact is also (nearly)

sufficient for stability. Two illustrative examples were provided of scenarios where

MaxWeight scheduling fails to attain stability under this condition. The analytical re-

sults are supported and complemented by simulation experiments for more involved

scenarios. The simulations compare the MaxWeight scheduling algorithm to MaxRate

scheduling, and confirm the instability of MaxWeight scheduling.

It is crucial to observe that the rate variations play a critical role in the instability
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(a) p = 0.25, R = 1,2 w.p. 1/2, α = 0.43
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(b) p = 0.05, R = 5,10 w.p. 1/2, α = 0.4
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(c) p = 0.25, R = 1,4 w.p. 9/10, 1/10, α = 0.65

0 2 4 6 8 10

x 10
4

0

0.5

1

1.5

2

2.5

3
x 10

4

time

#
 b

it
s

 

 

MaxWeight

MaxRate

(d) p = 0.05, R = 5,20 w.p. 9/10, 1/10, α = 0.64

Figure 2.3: The number of bits in the system plotted against time for various param-

eters.

results of this chapter. Intuitively speaking, MaxWeight policies tend to favor flows

with large backlogs, even when their service rates are not particularly favorable, and

thus fail to maximally exploit the rate variations of flows with smaller backlogs. This

raises the question whether the rate variations are essential for the instability to occur.

In the case of a shared downlink, where only a single flow can be scheduled at a time,

the instability cannot occur in the absence of any rate variations, since this system is

work-conserving, and any non-idling scheduling strategy will in fact achieve maximum

stability. In the next chapter however, we will demonstrate that in a spatial setting,

the instability can occur even without rate variations.

It is worth emphasizing that the scheduling strategies considered in the proofs of

Theorems 2.1 and 2.2 mainly serve to prove that ρ < 1 is sufficient for the existence

of a stable strategy, and are therefore specifically designed for that purpose. The

strategies may not be ideal for practical purposes as they may not provide particularly

good performance, especially at lower loads. They also involve knowledge of various

parameter values, which may be hard to obtain and is not used by the MaxWeight

policy. (While the latter may be considered ‘unfair’, observe that in the standard case

with a fixed set of flows no amount of additional information can help to achieve
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(b) p = 0.05, q = 0.2, α = 0.9
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(c) p = 0.25, q = 0.05, α = 0.99
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Figure 2.4: The number of bits in the system plotted against time for various param-

eters.

better stability performance than the MaxWeight policy provides.) The fact that for

gradual traffic the scheduling strategy assumes prior knowledge of the duration of

the activity period further adds to this.

Recently various throughput-optimal schedulers have been proposed that require

less information on the network parameters [54, 55, 74]. The schedulers considered

in [54, 55] do this by learning over time the distribution of the feasible transmission

rate of each flow. Although this does eliminate the need for explicit information

on this distribution, the process of learning the rate distributions takes time, which

has an adverse effect on the flow delay. In [74] delay-based MaxWeight scheduling is

proposed, i.e., replace the queue length in (1.4) by the waiting time of the head of line

packet. It has been shown to hold that this policy is throughput-optimal, but only in

the regime with a single class of flows.
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Appendix

2.A Auxiliary results

Lemma 2.1. In the case of instantaneous traffic, and under the policy defined in the

proof of Theorem 2.1

E[Ik(t)] ≤ ρk + 2ǫ,

E[D(t) | N(t) = n] ≥ 1− ǫ, n 6∈ C.

Proof. Note that

αkE[⌈Bk/Zk⌉] ≤ αkmax{E[⌈Bk/Rmax
k ⌉,E[⌈ǫBk/(αkE[Bk])]]}

≤ αkmax{max{E[⌈Bk/Rmax
k ⌉],1}},1+ ǫ/αk} ≤ max{ρk, αk + ǫ}

≤ ρk + ǫ.

We first derive an upper bound for E[Ik(t)]. By rewriting (2.1) we obtain

E[Ik(t)] =
Lk
∑

i=1

⌈

i

Zk

⌉

E[Aki (t)]+ θk
∞
∑

i=Lk+1

iE[Aki (t)]

=αk
(

Lk
∑

i=1

⌈

i

Zk

⌉

P(Bk = i)+ θk
∞
∑

i=Lk+1

iP(Bk = i)
)

=αk
(

E[

⌈

Bk

Zk

⌉

]+ θk
∞
∑

i=Lk+1

(i −
⌈

i

Zk

⌉

/θk)P(Bk = i)
)

≤ ρk + 2ǫ. (2.13)

From (2.2) it can be seen that

D(t) ≥1{1≤l(t)≤Lk(t) ,r(t)≥Zk(t)} + θk(t)1{l(t)>Lk(t),r(t)>0}

=1{1≤l(t)≤Lk(t) ,r(t)≥Zk(t)} + [P(Rk(t) > 0)]−1
1{l(t)>Lk(t),r(t)>0}. (2.14)

Now, let Esmall(t) be the event that there is at least one class-k flow in time slot t

of residual size no larger than Lk with feasible transmission rate Zk or higher. Let

Elarge(t) be the event that there is at least one class-k flow in time slot t of residual

size Lk + 1 or larger with a non-zero feasible transmission rate.

Note that

1{l(t)>Lk(t),r(t)>0} =1{l(t)≥Lk(t)+1,r(t)>0,Esmall(t)} + 1{l(t)>Lk(t),r(t)>0,Ēsmall(t)}

=1{l(t)>Lk(t),r(t)>0,Esmall(t)} + 1{Elarge(t),Ēsmall(t)}. (2.15)

Further observe

1{l(t)≤Lk(t),r(t)≥Zk(t)} + 1{l(t)>Lk(t),Esmall(t)} = 1{Esmall(t)} = 1− 1{Ēsmall(t)}. (2.16)

Combining (2.14)-(2.16) we deduce that

D(t) ≥ 1− 1{Ēsmall(t)} + [P(Rk(t) > 0)]−1
1{Elarge(t),Ēsmall(t)}.
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Thus,

E[D(t)|N(t) = n]
= 1− P(Ēsmall(t)|N(t) = n)+ [P(Rk(t) > 0)]−1P(Elarge(t), Ēsmall(t)|N(t) = n)
= 1− P(Ēsmall(t)|N(t) = n)(1− [P(Rk(t) > 0)]−1

P(Elarge(t)|N(t) = n)). (2.17)

Let sk =
∑∞
i=Lk n

k
i . If

∑K
k=1 sk > 0, then P(Elarge(t)|N(t) = n) ≥ mink=1,...,K P(Rk >

0), so that [P(Rk(t) > 0)]−1P(Elarge(t)|N(t) = n) ≥ 1. If
∑K
k=1 nk ≥ Nǫ,η, then

P(Ēsmall(t)|N(t) = n) ≤ (1− η)Nǫ,η ≤ ǫ. Then we obtain from (2.17) that

E[D(t) | N(t) = n] ≥ 1− ǫ (2.18)

for any n ∉ C.

Lemma 2.2. In the case of gradual traffic, and under the policy defined in the proof of

Theorem 2.2

E[Ik(t)] ≤ ρk + 2ǫ,

E[Jk(t)] ≤ 2ϕk,

E[Ek(t)|N(t) = n] ≥ ς, n 6∈ C,
E[D(t) | N(t) = n] ≥ 1− ǫ n 6∈ C.

Proof. As the arrival process of new flows is the same for both instantaneous traffic

and gradual traffic, we conclude from (2.4) that

E[Ik(t)] ≤ ρk + 2ǫ.

Next we establish an upper bound for E[Jk(t)]:

E[Jk(t)] =
Mk
∑

j=1

jE[Ak∗j (t)]+ ς
∞
∑

j=Mk+1

jE[Ak∗j (t)]

=αk
(

Mk
∑

j=1

jP(Dk = j)+ ς
∞
∑

j=Mk+1

jP(Dk = j)
)

=αk
(

E[Dk]+ ς
∞
∑

j=Mk+1

j(1− 1/ς)P(Dk = j)
)

≤ 2ϕk.

We proceed with a lower bound for E[Ek(t)|N(t) = n]:

E[Ek(t)|N(t) = n] =
Mk
∑

j=1

qk∗j + ς
∞
∑

j=Mk+1

qk∗j .

Thus E[Ek(t)|N(t) = n] ≥ ς whenever qk =
∑Mk
j=1 q

k
∗j ≥ ς or s′k =

∑∞
j=Mk+1 q

k
∗j ≥ 1.

We turn to a lower bound for E[D(t) | N(t) = n]. Recall

C = {n|
K
∑

k=1

nk < Nǫ,η and

K
∑

k=1

sk = 0}.
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Note that

D(t) ≥1{1≤l(t)≤Lk(t) ,r(t)≥Zk(t)} + θk(t)1{l(t)>Lk(t),r(t)≥1}

=1{1≤l(t)≤Lk(t) ,r(t)≥Zk(t)} + [P(Rk(t) > 0)]−1
1{l(t)>Lk(t),r(t)>0}.

Now, let Esmall(t) be the event that there is at least one class-k flow in time slot t

of size no larger than Lk with feasible transmission rate Zk or larger. Let Elarge(t) be

the event that there is at least one class-k flow in time slot t of size Lk + 1 or larger

with positive feasible transmission rate.

Note that

1{l(t)>Lk(t),r(t)>0} = 1{l(t)>Lk(t),r(t)>0,Esmall(t)} + 1{l(t)>Lk(t),r(t)>0,Ēsmall(t)}

= 1{l(t)>Lk(t),r(t)>0,Esmall(t)} + 1{Elarge(t),Ēsmall(t)}.

Further observe

1{l(t)≤Lk(t),r(t)≥Zk(t)} + 1{l(t)>Lk(t),Esmall(t)} = 1{Esmall(t)} = 1− 1{Ēsmall(t)}.

We deduce that

D(t) ≥ 1− 1{Ēsmall(t)} + [P(Rk(t) > 0)]−1
1{Elarge(t),Ēsmall(t)}.

Thus,

E[D(t)|N(t) = n] =1− P(Ēsmall(t)|N(t) = n)
+ [P(Rk(t) > 0)]−1P(Elarge(t), Ēsmall(t)|N(t) = n)

=1− P(Ēsmall(t)|N(t) = n)
· (1− [P(Rk(t) > 0)]−1P(Elarge(t)|N(t) = n)).

If
∑K
k=1 sk > 0, thenP(Elarge(t)|N(t) = n) ≥ mink=1,...,K P(Rk > 0), so that [P(Rk(t) >

0)]−1P(Elarge(t)|N(t) = n) ≥ 1.

If
∑K
k=1 nk ≥ Nǫ,η, then P(Ēsmall(t)|N(t) = n) ≤ (1− η)Nǫ,η ≤ ǫ.

We then obtain

E[D(t) | N(t) = n] ≥ 1− ǫ
for any n ∉ C.
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3
Spatial inefficiency of MaxWeight

scheduling

In the previous chapter we have seen that the MaxWeight scheduling algorithm may

fail to achieve maximum stability in a setting with flow-level dynamics. The insta-

bility examples in that chapter all consider a single-downlink wireless channel with

time-varying transmission rates. The more challenging problem, however, arises in

networks where certain subsets of the links can be activated simultaneously subject

to interference constraints. In the present chapter we show that MaxWeight schedul-

ing policies may fail to provide maximum stability in such scenarios as well, even in

the absence of any rate variations. We show that the potential instability effects can

be countered by implementing a region-based version of MaxWeight scheduling.

This chapter is organized as follows. In Section 3.1 we provide a detailed model

description, and in Section 3.2 we demonstrate the potential instability of MaxWeight

scheduling through several examples. In Section 3.3 we examine the performance of

region-based scheduling in two-dimensional networks with an arbitrary spatial traffic

density. Section 3.4 offers some concluding remarks.
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3.1 Model description

We consider a time-slotted wireless system on some space S. Traffic consists of finite-

sized flows that enter the system at random, and leave once fully served. Each arriving

flow is associated with a certain location in S and a finite size, as will be further

described for specific model instances later. In each time slot, a centralized scheduler

selects a subset of flows for transmission. In the present chapter we assume for

simplicity that the total size of a flow is known upon arrival, and no further traffic

of that flow will arrive. Most of the results can be extended to a setting with gradual

traffic, where traffic of a flow arrives over time.

A subset of points in S is said to be feasible if flows in these locations can be sched-

uled simultaneously. The function F(·) indicates whether or not a subset of points

is feasible, i.e., given n flows with distinct locations X1, . . . , Xn ∈ S, F({X1, . . . , Xn})
equals 1 if these flows can be scheduled simultaneously and is 0 otherwise. Flows

in the same location can never be scheduled simultaneously. A prototypical scenario

would be that F({X1, . . . , Xn}) = 1 if and only if ‖Xi−Xj‖ ≥ d for all i ≠ j, which corre-

sponds to a reuse distance d, and is similar in spirit as the protocol model. However,

the feasibility function could also be based on the physical model for example.

In each time slot a certain subset of flows gets selected for service, as governed

by the applicable scheduling strategy, subject to the feasibility constraints. Each time

a flow gets scheduled, its residual size is reduced by 1, and a flow leaves the system

once it has been served to completion i.e., its size reaches 0. The subset of flows

selected by the scheduling strategy may depend on the locations Xi(t) and residual

sizes Qi(t), i ∈ I(t), with I(t) indexing the flows present in time slot t . In particular,

the MaxWeight scheduling strategy selects a feasible subset of flows J∗(t) ⊆ I(t),

F(J∗(t)) = 1, of maximum aggregate residual size, i.e.,

∑

j∈J∗(t)
Qj(t) = max

J⊆I(t),F(J)=1

∑

j∈J
Qj(t). (3.1)

The main reason for assuming unit transmission rates is to stress the fact that

the instability phenomena demonstrated in later sections result from persistent spa-

tial inefficiency rather than rate heterogeneity. Possible rate heterogeneity induces

priorities among flows, which may exacerbate the spatial inefficiency and render the

system even more prone to potential instability effects.

3.2 Instability of MaxWeight Scheduling

In this section we present several illustrative examples where the MaxWeight schedul-

ing strategy fails to achieve maximum stability.

Example 3.1. We first consider a network with three regions as shown in Figure 3.1.

Transmissions in region 2 interfere with transmissions in both region 1 and region 3,

and transmissions in regions 1 and 3 do not interfere with each other. Flows arrive

at region i at a rate λi (per time slot) and have initial size Bi . Denote by ρi = λiE[Bi]
the traffic intensity at region i. We assume that

ρ1 + ρ2 < 1 and ρ3 + ρ2 < 1,
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or equivalently,

ρ2 < 1−max{ρ1, ρ3}. (3.2)

It is easily seen that the latter condition is necessary for stability to be achievable, and

in fact also sufficient under mild independence assumptions. A scheduling strategy

that can stabilize the network when (3.2) holds is as follows. At each time slot, sched-

ule a flow in region 2 with probability ρ2 + ǫ, or schedule a flow in both regions 1

and 3, with probability max{ρ1, ρ3} + ǫ, where ǫ = 1−ρ2−max{ρ1,ρ3}
2

.

Now suppose B2 ≡ 1, and recall that the MaxWeight scheduling strategy as defined

in the general network model of the previous section selects a set of flows with max-

imum aggregate residual size. Thus the MaxWeight strategy never schedules a flow

in region 2 as long as a flow with a residual size of 2 or larger is present in region 1

or region 3. Hence the scheduling of flows of residual size 2 or larger in region 1

and region 3 is independent from each other. Also, the fraction of time that a flow

of residual size 2 or larger gets scheduled in region i, is λi(E[Bi] − 1) = ρi − λi . It

follows that the fraction of time that a flow in region 2 gets scheduled, is bounded

from above by

(1− ρ1 + λ1)(1− ρ3 + λ3).

Thus a necessary condition for MaxWeight scheduling to achieve stability is ρ2 ≤
(1− ρ1 + λ1)(1− ρ3 + λ3). When the λi ’s (i = 1,3) are small and the E[Bi]’s (i = 1,3)

are large, the latter condition ‘approaches’ ρ2 ≤ (1 − ρ1)(1 − ρ3), which is a more

stringent inequality than the sufficient condition (3.2).

region 1

region 2

region 3

Figure 3.1: An example of a spatial wireless network where MaxWeight scheduling is

not throughput-optimal.

In Example 3.1, the stabilizing strategy either schedules both region 1 and region 3,

or schedules region 2. The MaxWeight policy, however, tends to serve flows with large

backlogs, so flows in regions 1 and 3 are served with priority when their residual sizes

are greater than or equal to 2. Consequently, the MaxWeight policy schedules a flow
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in region 1 (region 3) even when region 3 (region 1) is empty, which leads to inefficient

spatial reuse. Thus, the MaxWeight policy fails to achieve maximum stability.

Example 3.1 illustrates the spatial inefficiency of MaxWeight scheduling by care-

fully constructing the regions where flows arrive. Next we present a further example

where we consider a one-dimensional space (a ring) with uniformly distributed arrival

locations. We assume that all flows are of the same size, and show that even in this

uniform traffic scenario, MaxWeight scheduling fails to achieve throughput optimality.

Example 3.2. Let N ≥ 1 and consider a ring with unit circumference and reuse dis-

tance d = 2(N + 1)/((2N + 3)(3N + 2)), partitioned into (2N + 3)(3N + 2) intervals

of equal size, see Figure 3.2. In each time slot, either exactly (2N + 3) flows arrive

with probability a, each of size B = 2, at locations uniformly distributed in the in-

tervals M + j(3N + 2), j = 1,2, . . . , (2N + 3), where M is uniformly distributed on

1,2, . . . ,3N + 2, or no flows arrive at all with probability 1− a.

d = 4/25

Figure 3.2: A ring with unit circumference, reuse distance d = 4/25, partitioned into

25 intervals of equal size (N = 1).

Consider a strategy that generates a random variable L uniformly distributed on

1,2, . . . ,2N+3, and then selects an arbitrary flow for service from each of the intervals

L + i(2N + 3), i = 0,1, . . . ,3N + 1, if available. Note that the strategy respects the

reuse distance, and achieves stability as long as the aggregate traffic intensity in each

interval, 2a/(3N + 2), is less than the fraction of time slots that each interval gets

selected for service, 1/(2N + 3), or equivalently, if a < a(N) = (3N + 2)/(4N + 6).

Note that a(N) → 3/4 as N → ∞. Also, the maximum size of a feasible subset of

points isM(N) = ⌊ (2N+3)(3N+2)
2(N+1)

⌋

, and the total traffic intensity equals ρ = 2a(2N+3),

so the necessary condition ρ < M for stability takes the form

a < b(N) = 1

2(2N + 3)

⌊

(2N + 3)(3N + 2)

2(N + 1)

⌋

.

Observe that b(N) → 3/4 as N → ∞, and thus the above-described strategy in fact

achieves maximum stability for large values of N.

It is easily verified that in each time slot with arriving flows, the MaxWeight strategy

selects all 2N + 3 of them for service, while in a time slot without any arrivals, it can
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serve at most 3N+2 traffic units, so the expected total number of traffic units served

per time slot is bounded from above by a(2N + 3)+ (1− a)(3N + 2). As a necessary

condition in order for the MaxWeight strategy to be stable, the latter number must

be larger than the total traffic intensity 2a(2N + 3), which entails a < aMW (N) =
(3N+2)/(5N+5). Note that aMW (N) ≤ a(N), with strict inequality for all N ≥ 2, and

that aMW (N)→ 3/5 as N →∞.

We conclude that for a ∈ (aMW (N), a(N)), the MaxWeight strategy fails to achieve

stability, although there exists a strategy that does provide stability. For large values

of N, the MaxWeight strategy is only able to sustain at most a fraction 4/5 of the

maximum throughput. �

In the above example MaxWeight scheduling always selected newly arrived flows

for transmission, even when it could have chosen a subset that allowed for better

spatial reuse. This persistent inefficiency then leads to instability. As we see below,

this behavior occurs for more general traffic patterns as well.

The locations of arriving flows in Example 3.2 are uniformly distributed, but highly

correlated. When the flow locations are independent, the behavior is more complex,

and (in)stability is more difficult to establish. We therefore proceed with a simulation

experiment where we assume that the locations of arriving flows are independent. As

we show in the next example, the MaxWeight strategy again fails to achieve throughput

optimality.

Example 3.3. Consider a ring network where the total number of arriving flows is

geometrically distributed with parameter p = 0.45 and mean α = (1− p)/p ≈ 11/9,

so ρ = αE[B] ≈ 22/9. We assume that the locations of the flows are independent and

uniformly distributed along the ring. The reuse distance is d = 0.3, and hence the

maximal number of flows that can be scheduled simultaneously equals M = 3.

We compare the performance of MaxWeight scheduling with that of a randomized

interval-based scheduling strategy. We divide the ring into 42 intervals of length 1/42.

We consider 42 schedules ωk = {k, k + 14, k + 28} (modulo 42), and choose in each

time slot one of these schedules uniformly at random.

We simulate the network 1000 slots, for both MaxWeight scheduling and the ran-

domized strategy. Figure 3.3 shows the total number of flows present over time for

MaxWeight scheduling (gray) and the randomized strategy (black). Under MaxWeight

scheduling the number of flows grows without bound, suggesting instability. In con-

trast, the number of flows settles around a relatively low level for the randomized

strategy. �

3.3 Stability of region-based scheduling

In the previous section we demonstrated the spatial inefficiency of MaxWeight schedul-

ing. This raises the question of finding scheduling algorithms that can be used to sta-

bilize spatial networks with flow-level dynamics. For the single-channel case with

flow-level dynamics a (impractical) stabilizing policy was presented in Chapter 2.

Moreover, it was recently shown that maximum stability can be achieved by schedul-

ing according to the feasible transmission rate [54, 55] or according to the product

of feasible transmission rate and the delay [74]. It is not clear whether these poli-

cies are throughput-optimal in the spatial setting, or how they may need be modified
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flows

time

Figure 3.3: Evolution of the total number of flows for MaxWeight scheduling (gray)

and an interval-based randomized scheduler (black), respectively.

to provide maximum stability. Both schedulers have to find a maximum (weighted)

independent set over all flows in each time slot, and since the number of flows is

unbounded, so is the scheduling complexity. In this section we present a class of

policies that do have bounded complexity.

Consider a two-dimensional network with an arbitrary spatial traffic density. We

assume that the space S is bounded, and without loss of generality we may sup-

pose that location coordinates are scaled such that S is contained in the unit square

[0,1]2. The number of arriving flows, their locations, and their sizes are indepen-

dent and identically distributed across time slots. The location of an arbitrary arriv-

ing flow is governed by some spatial measure λ on [0,1]2, with λ(x, y) = 0 for all

(x, y) 6∈ S, i.e., the expected number of arriving flows per time slot in a region R ⊆ S
is
∫

(x,y)∈R λ(x, y)dxdy . Let the positive random variable B represent the size of an

arbitrary flow.

3.3.1 Two special cases

The above general network setting includes the three-region network and the ring

topology with uniform traffic density discussed in Section 3.2. Before presenting

results on the stability of general spatial networks with flow-level dynamics, let us

first consider maximal stable policies for these two special cases. For the three-region

network, an alternative view of the network is to consider each region as a single

node. The three-region network can then be seen as a classic three-node network,

where packets belonging to various flows are continuously injected into each node. It

is easily verified that in this case the MaxWeight strategy that schedules according to

the aggregate backlog at each node is throughput-optimal, see [89].

Now consider the ring network with uniform spatial traffic density α. Taking a

similar approach as for the three-region network, instead of scheduling flows, we
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divide the ring into intervals and schedule these intervals instead. As we show in

the following proposition, for the right choice of intervals the ring network can be

stabilized using such interval-based scheduling.

Proposition 3.1. Consider a ring with unit circumference, uniform spatial traffic

density, and a translation-invariant feasibility function, and denote by M the max-

imum number of flows that can be scheduled simultaneously. Then for any load

ρ = αE[B] < M there exists an interval-based scheduling strategy that achieves stabil-

ity.

Proof. LetP = {X1, . . . , XM} ⊆ [0,1] denote a feasible maximum-size set and assume

that there exist some ǫ > 0 such that for any X̂i ∈ [Xi , Xi+ǫ), the set P̂ = {X̂1, . . . , X̂M}
is feasible as well. We choose integers Ki , i = 1,2, . . . ,M and K such that each interval

[Xi , Xi + ǫ) contains the points Ki/K and (Ki + 1)/K, i = 1,2, . . . ,M . We partition the

ring intoK intervals, each of size 1/K. Now consider a cyclic scheduling strategy which

in time slot tK + u, u = 1, . . . , K, t = 0,1, . . . , serves the intervals [(Ki + u)/K, (Ki +
1 + u)/K], i = 1, . . . ,M , by selecting an arbitrary flow from each of these intervals,

if available. Note that any set of flows thus selected is allowed since the feasibility

function is translation-invariant. Also, each interval is allowed to be served a fraction

of the timeM/K and has aggregate traffic intensity ρ/K. Hence, the strategy achieves

stability for any ρ < M .

Note that Proposition 3.1 assumes a general interference model, so it includes

the model with reuse distance discussed in Examples 3.2 and 3.3 as a special case.

Consider the case where the reuse distance is d, and assume 1/d is not an integer.

Then M = ⌊1/d⌋ and ǫ = 1/M − d. It can be readily verified that given the reuse

distance d, the necessary condition for ρ to be supportable is ρ ≤ ⌊1/d⌋ and that the

scheduling algorithm presented in the proof can stabilize any ρ < ⌊1/d⌋.

3.3.2 General networks

The examples in Section 3.3.1 indicate that in the presence of flow-level dynamics we

should aggregate over several nearby flows, rather than schedule based on individual

flows. This suggests a region-based scheduling algorithm where the space is parti-

tioned into a finite number of regions. In each time slot, the algorithm selects a subset

of non-interfering regions and then schedules a flow in each selected region, if any.

Naturally, such a partitioning would reduce the flexibility of the scheduler since the

region-based feasibility constraints are more stringent than the original constraints.

Region-based scheduling is nevertheless useful because, in contrast to the partition-

free system, throughput-optimal schedulers are available in this case. For example,

since the partitioned system behaves as a network with a finite number of persistent

queues, it is well-known that region-based MaxWeight scheduling (i.e., MaxWeight

scheduling based on the aggregate backlog of all flows in a region) is throughput-

optimal within the class of schedulers that satisfy the more stringent feasibility con-

straints of the partitioned system. We are interested in how the capacity region of

the partitioned system relates to the capacity region under the original reuse con-

straints. As we will see, this depends on the granularity of the partitioning. Note that

region-based MaxWeight scheduling limits the scheduling complexity, as the number

of regions is fixed.
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We continue to consider a specific form of region-based scheduling referred to as

K-partition, where the area [0,1]2 is partitioned into K2 square cells of size 1/K2,

for some K ∈ N. The cells are denoted Rk,l = [(k − 1)/K, k/K] × [(l − 1)/K, l/K],

k, l = 1, . . . , K. The 4-partition is illustrated in Figure 3.4.

R1,1

R1,4

R4,1

R4,4

Figure 3.4: The 4-partition, where the unit square is divided into 16 cells.

Under K-partition, a set of cells Rk1,l1 ,Rk2,l2 , . . . ,Rkn,ln is said to be feasible if

for any Xi ∈ Rki ,li , i = 1, . . . , n, the set of points C = {X1, X2, . . . , Xn} is feasible. For

convenience, we henceforth assume that the feasibility function is governed by a reuse

distance d constraint. Denote by Ω(d) all feasible sets of points, and let Ω(K, d) ⊆
{0,1}K2

represent the collection of all feasible subsets of cells. So for ω ∈ Ω(K, d)
we have that ωk,l = 1 if Rk,l is contained in the schedule ω, and ωk,l = 0 otherwise.

We focus on square regions for convenience, but we expect that similar qualitative

results hold for other types of regions.

Under K-partition, scheduling is confined to subsets of flows that belong to a

feasible subset of cells, which restricts beyond the original reuse constraint and guar-

antees feasibility. The aggregate arrival rate of flows into the cell Rk,l is given by

λk,l =
∫

(x,y)∈Rk,l
λ(x, y)dxdy . The capacity region for such a system is well-known:

C(K, d) = {λ : λk,lE[B] ∈ conv.hull(Ω(K, d))
}

.

LetC(d) denote the capacity region under the original reuse constraint, then C(K, d) ⊆
C(d) for any K ≥ 1. As K increases, the granularity of the partitioning becomes

finer, and it is intuitive that C(K, d) converges to C(d) in a certain sense. This is

formalized in Theorem 3.1, which states our main result, showing that for any arrival

density function λ ∈ C(d) (under certain assumptions) there exists a K such that λ is

contained in C(K, d).
Before stating Theorem 3.1, we first present the following lemmas.

Lemma 3.1. Let d > 0 and K ∈ N, K ≥ 2
√

2/d, then

C(d) ⊆ C(K, d − 2
√

2/K).

The proof of Lemma 3.1 is presented in Appendix 3.A.1.

Let ω ∈ Ω(K, d), L ≤ K, and denote by ω(L) the vector ω restricted to the entries

ωk,l , k, l = 1,2, . . . , L. Then the following lemma holds.
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Lemma 3.2. Let d > 0, K ∈ N and set

h = K
⌊K(d − 2

√
2/K)

d

⌋−1
. (3.3)

Then ω ∈ Ω(K, d) ⇒ω(K/h) ∈ Ω(K/h, d).
Lemma 3.2 states that if ω is a feasible set of cells under K-partition and reuse

distance d − 2
√

2/K, then it is a feasible set of cells under (K/h)-partition and reuse

distance d as well. The proof of the lemma is presented in Appendix 3.A.2.

We are now in a position to state and prove Theorem 3.1. An arrival density

function λ is said to be smooth if it is

• uniformly lower bounded, i.e., there exists a κ(0) > 0 such that λ(x, y) ≥ κ(0)
for all (x, y) ∈ S;

• differentiable, with a uniformly upper bounded first-order partial derivative, i.e.,

there exists a κ(1) <∞ such that
∂λ(x,y)
∂x ≤ κ(1) and

∂λ(x,y)
∂y ≤ κ(1) for all (x, y) ∈ S.

Theorem 3.1. Let λ be a smooth arrival density function such that (1+ǫ)λ ∈ C(d) for

some ǫ > 0. Then there exists a K = K(λ) such that λ ∈ C(K, d).
The proof of Theorem 3.1 is presented in Appendix 3.A.3. The idea behind the

proof of Theorem 3.1 is as follows. By Lemma 3.1 we know that for any given arrival

density function within the capacity region C(d), the system can be stabilized by a

randomized region-based algorithm under K-partition and reduced reuse distance

d − 2
√

2/K that selects schedule ω ∈ Ω(K, d − 2
√

2/K) with a certain probability

π(ω). In order to turn this mechanism into a scheduler that is feasible for reuse

distance d, we scale the entire system by a factor h−1, and by Lemma 3.2 we know

that our randomized scheduler is now valid for reuse distance d. This is illustrated

in Figure 3.5 for the 8-partition. Certain cells in the scaled system are located outside

the unit square, and scheduling them does not result in flows being served. However,

by choosing K sufficiently large we can make this throughput loss arbitrarily small,

thus stabilizing the system.

6-partition8-partition

Figure 3.5: Constructing a 6-partition from the original 8-partition.

While we have demonstrated in Theorem 3.1 that the capacity region C(K, d) of

the partitioned system approaches C(d) in a certain sense as K increases, it can be
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shown that they never coincide. In particular, we next establish a negative result which

states that for any given K-partition, one can construct an arrival density function λ̃

such that λ̃ ∈ C(d), but
(

1
2
+ ǫ
)

λ̃ 6∈ C(K, d) for any ǫ > 0. In other words, any given

K-partition may result in a 50% throughput loss for certain arrival density functions.

Given a fixed K-partition, the idea behind this result is to find a set of points that can

be scheduled simultaneously, but the related cells can not.

Proposition 3.2. Let K ∈ N, then there exists an arrival density function λ̂ such that

λ̂ ∈ C(d), but
(

1
2
+ ǫ
)

λ̂ 6∈ C(K, d) for any ǫ > 0.

Proof. Assume that Kd is not an integer, and consider the set of points

P̂ = {(kG, lG) : k, l = 1,2, . . . , ⌊1/G⌋},

with G = (d + ⌈Kd⌉/K)/2. We further define an arrival density function

λ̂(x, y) =
∑

(x̂,ŷ)∈P̂
δ((x− x̂, y − ŷ)) .

It is readily seen that P̂ is a feasible set of points under the original reuse con-

straint d, so λ̂ ∈ C(d). On the other hand, under K-partition, the point (kG, lG)

belongs to cellRk⌈Kd⌉,l⌈Kd⌉. Thus the cell containing the point (kG, lG) interferes with

the cell containing the point (k′G, l′G) if |k − k′| + |l − l′| ≤ 1, which implies that
(

1
2
+ ǫ
)

λ̂ 6∈ C(K, d) for any ǫ > 0.

To illustrate Proposition 3.2, consider the 9-partition shown in Figure 3.6 and

assume the reuse distance is d = 0.35. It is easy to verify that the set of all points

shown in the figure is a feasible subset according to the original reuse constraints, but

the related cells are not interference-free. For example, cell R1,1 interferes with cell

R5,1. Consequently, under region-based scheduling either all black points or all gray

points can be scheduled at any time, but not both. Now assume flows of size B ≡ 1

uniformly arrive at the nine locations only at rate α (flows per location per time slot).

A region-based scheduling strategy can only support any α ≤ 1/2, while any α < 1 is

within the network capacity region, by scheduling all locations simultaneously.

3.4 Concluding remarks

In this chapter we demonstrated that MaxWeight policies may fail to provide maxi-

mum stability in the presence of flow-level dynamics due to persistent spatial inef-

ficiency. Loosely stated, MaxWeight policies tend to serve flows with large backlogs,

even when the resulting spatial reuse is not particularly efficient, and fail to take

advantage of maximum spatial reuse patterns involving flows with smaller backlogs.

While the root cause for instability observed in this chapter (flow-level dynamics)

is the same as in Chapter 2, the way the presence of transient flows unhinges the

MaxWeight scheduling algorithm is fundamentally different. Consequently, the reme-

dies for instability discussed in [54, 55, 74] cannot be directly applied in the current

setting, and the spatial inefficiency identified in this chapter calls for novel methods

for stabilizing the system.
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d

Figure 3.6: The 9-partition with reuse distance d = 0.35.

We showed that the potential instability issues can be countered by traffic aggre-

gation with sufficiently fine spatial granularity and adopting a region-based version of

MaxWeight scheduling. A surprising fact is that the region-based approach involves a

discretization with arrivals at a finite set of queues, which closely ‘approximates’ the

arrivals in a continuum of locations as the spatial granularity increases, and yet the

stability condition is markedly different. Even more remarkably, the set of admissi-

ble scheduling decisions is limited by the discretization, but the stability region for

the MaxWeight strategy can be larger, i.e., constraining the set of feasible scheduling

options can in fact expand the stability region of a specific scheduler. The complexity

of region-based scheduling does not depend on the number of flows, in contrast to

direct implementations of the algorithms in [54, 55, 74].

Finding the right granularity of the regions is non-trivial since the degree of traffic

aggregation involves a trade-off between scheduling complexity, spatial efficiency,

and network capacity. In particular, the suitable level of aggregation depends on the

spatial load profile, and seems difficult to determine without explicit knowledge of

the traffic parameters, thus detracting from one of the most appealing features of

MaxWeight scheduling.

Proposition 3.2 establishes a negative result, in that no given region-based strat-

egy can be expected to perform well for arbitrary spatial arrival densities. Note that

the traffic pattern used in this counterexample is a discrete distribution which only

injects traffic into the system at a finite number of locations. The question whether a

universally stabilizing partitioning does exist when we restrict ourselves to a certain

class of continuous arrival densities (e.g., smooth density functions) remains open,

as well as the question whether the smoothness condition required for Theorem 3.1

can be removed.
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Appendix

3.A Remaining proofs

3.A.1 Proof of Lemma 3.1

Let λ ∈ C(d), P = {X1, X2, . . . , Xn} ∈ Ω(d) and K ≥ 2
√

2/d. We show that, with ki , li
such that Xi ∈ Rki ,li , i = 1, . . . , n,

{(k1, l1), (k2, l2), . . . , (kn, ln)} ∈ Ω(K, d − 2
√

2/K). (3.4)

That is, the points inP belong to a feasible set of cells underK-partition with a reduced

reuse distance d − 2
√

2/K. Consequently, any set of flows simultaneously scheduled

under this strategy are located in a feasible set of cells under K-partition and reuse

distance d − 2
√

2/K. Therefore this strategy is a legitimate region-based scheduling

under K-partition with reuse distance d−2
√

2/K, which means λ ∈ C(K, d−2
√

2/K).

We now prove (3.4). Let i, j ∈ {1,2, . . . , n}, i ≠ j, and consider any two points

Yi ∈ Rki ,li and Yj ∈ Rkj ,lj . Then

‖Yi − Yj‖ =‖Yi −Xi +Xi −Xj +Xj − Yj‖
≥‖Xi −Xj‖ − ‖Xi − Yi‖ − ‖Xj − Yj‖
≥d − 2

√
2/K.

As a result no two points Yi ∈ Rki ,li and Yj ∈ Rkj ,lj are within distance d − 2
√

2/K,

i ≠ j, and thus the subset of cells {(k1, l1), (k2, l2), . . . , (kn, ln)} belongs to Ω(K, d −
2
√

2/K).

3.A.2 Proof of Lemma 3.2

Let ω ∈ Ω(K, d − 2
√

2/K), and for k, l = 1,2, . . . , K/h denote,

R̃k,l =
{

(x, y) ∈ [0,1]2 : (x/h, y/h) ∈ Rk,l

}

,

the cells of size (h/K)2 under (K/h)-partition. Consider two points (x1, y1) ∈ R̃k1,l1

and (x2, y2) ∈ R̃k2,l2 , with (k1, l1), (k2, l2) ∈ ω. It follows from the definition of

Ω(K, d−2
√
K) that ‖(x1/h, y1/h)−(x2/h, y2/h)‖ ≥ d−2

√
2/K, which implies ‖(x1, y1)−

(x2, y2)‖ ≥ h(d − 2
√

2/K) ≥ d, completing the proof.

3.A.3 Proof of Theorem 3.1

Let λ be a smooth arrival density function such that (1+ ǫ)λ ∈ C(d) for some ǫ > 0.

Lemma 3.1 then implies that for any K > 2
√

2/d, (1 + ǫ)λ ∈ C(K, d − 2
√

2/K), i.e.,

there exists π(ω) > 0, ω ∈ Ω(K, d − 2
√

2/K) with
∑

ω∈Ω(K,d−2
√

2/K)π(ω) = 1, such

that

(1+ ǫ)λk,lE[B] ≤ σk,l =
∑

ω∈Ω(K,d−2
√

2/K)

π(ω)ωkl (3.5)

for all k, l = 1,2, . . . , K.
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Now consider a randomized scheduling strategy which serves the set of cells

in ω ∈ Ω(K, d − 2
√

2/K) with probability π(ω). Let h be as in (3.3), and denote

by R̃k,l the cells under K/h partition. By Lemma 3.2 we know that any set ω ∈
Ω(K, d−2

√
2/K) is valid under K/h partition and reuse distance d, and R̃k,l is served

a fraction of time σk,l.

Since the arrival density function λ is smooth, λ(hx, hy) should be close to λ(x, y)

when h is close to 1. Specifically, it may be shown by the mean value theorem that

λ(hx, hy) ≤ λ(x, y)+ 2κ(1)(h− 1),

The arrival intensity λ̃k,l of cell R̃k,l can be bounded as

λ̃k,l =
∫

R̃k,l

λ(x, y)dxdy = h2

∫

Rk,l

λ(hx, hy)dxdy.

≤ h2

∫

Rk,l

(

λ(x, y)+ 2κ(1)(h− 1)
)

dxdy. (3.6)

Now choose K large enough (and hence h small enough) such that 2κ(1)(h− 1) ≤
ǫκ(0)/2 and h2 ≤ 1+ǫ

1+ǫ/2 , then

h2

∫

Rk,l

(

λ(x, y)+ 2κ(1)(h− 1)
)

dxdy

≤ (1+ ǫ)
∫

Rk,l

λ(x, y)dxdy = (1+ ǫ)λk,l. (3.7)

Combining (3.5)-(3.7) yields λ̃klE[B] ≤ σk,l for all k, l = 1, . . . , K/h, i.e., λ ∈ C(K/h, d).
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4
Stability and insensitivity

In this chapter we divert our attention to the CSMA model, introduced in Section 1.3.2.

This model is popular for its ability to provide accurate numerical [49] and qualita-

tive [98] predictions, while retaining tractability; it will be used in Chapters 5-7 for a

detailed study of the CSMA algorithm.

The CSMA model typically assumes that both the transmission durations and the

back-off periods are exponentially distributed. In the first part of this chapter we

show that the stationary distribution of the joint activity process in the CSMA net-

work is insensitive with respect to the distribution of the back-off periods and the

transmission durations. More precisely, the stationary distribution only depends on

the mean back-off time and mean transmission duration. In the second part of this

chapter we study the stability region of the unsaturated CSMA model discussed in

Section 1.3.3, where packets are generated over time and buffers may occasionally

empty. We consider a single-hop network in which packets immediately leave the

network after transmission, and investigate the stability region of such networks. We

will identify necessary and sufficient conditions for stability in the case of a complete

conflict graph, and illustrate the difficulties that arise for general conflict graphs.

This chapter is organized as follows. In Section 4.1 we present a detailed model

description and establish the insensitivity result for the stationary distribution of the

model under saturated conditions. We then turn to an unsaturated scenario, and in

Section 4.2 we present a necessary stability condition for general conflict graphs. In

Section 4.3 the stability region is obtained for full conflict graphs, while Section 4.4

illustrates the difficulties that arise for partial conflict graphs. In Section 4.5 we make

some concluding remarks.
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4.1 Insensitivity of the saturated model

In this section we consider the saturated CSMA model on a general conflict graph

(V, E). We follow the description of this model in Section 1.3.2, with two exceptions:

The transmission times of node i are independent and phase-type distributed with

mean 1/µi , and the back-off periods of node i are independent and phase-type dis-

tributed with mean 1/νi . Recall that we denote σi = νi/µi .
We distinguish two scenarios, depending on whether or not the back-off period of

a blocked node is frozen. In case the back-off period is frozen, it is resumed as soon

as the node becomes unblocked again. When the back-off period of a node ends, it

must be unblocked and will start a transmission. In case the back-off does not get

frozen, the back-off period may end while the node is blocked, in which case the node

simply starts a new back-off period. Under the distributional assumptions below, the

probability of the back-off periods of two nodes ending simultaneously is equal to

zero. Note that in case the back-off periods are exponentially distributed, it does not

matter whether or not the back-off periods are frozen when a node becomes blocked,

nor does it matter whether they are resumed or resampled when a node becomes

unblocked again. However, for non-exponential back-off times and transmission du-

rations these two scenarios are no longer equivalent.

As before we denote by Ω ⊆ {0,1}n the set of all feasible joint activity states of

the network. Let X(t) ∈ Ω represent the activity state of the network at time t , with

Xi(t) indicating whether node i is active (Xi(t) = 1) at time t or not (Xi(t) = 0). Since

we consider generally distributed back-off times and transmission durations, Xi(t)

is no longer a Markov process. Denote by π(x) = limt→∞ P{X(t) = x} the limiting

probability that the joint activity state is x ∈ Ω, assuming it exists.

We assume all back-off times and transmission durations to have phase-type dis-

tributions, and are interested in the stationary distribution of the Markov process

that keeps track of the phase of each node. Using this stationary distribution, and the

fact that phase-type distribution are dense in the space of all probability distributions

with positive support (see [69, Chapter 2]), we will show that π is insensitive to the

distributions of the back-off times and the transmission durations, and only depends

on these distributions through the σi .

Let the back-off process of node i have a phase-type distribution withmi+1 phases,

where states 1, . . . ,mi are transient, and state mi + 1 is absorbing. The correspond-

ing starting probabilities are α1, . . . , αmi+1, and the transition rates are given by qkl .

Similarly, the transmission times of node i have a phase-type distribution with ni + 1

phases (with state ni + 1 absorbing), starting probabilities γ1, . . . , γni+1 and transi-

tion rates rkl . Note that αmi+1 (γni+1) represents the probability of a back-off period

(transmission) of zero length.

Let βk, k = 1, . . . ,mi , represent the fraction of time that the back-off process of

a node is in phase k, and let ηk, k = 1, . . . , ni , represent the fraction of time that

the transmission process of a node is in phase k. The fractions βk and ηk follow

from Equations (4.8) and (4.9) in Appendix 4.A. We study the Markov process that

keeps track of the activity of all nodes. Let ω = (ω1, . . . ,ωn) denote the state of

the system. We use the convention that ωi = −k when node i is in back-off phase

k, and ωi = k when node i is in the k-th transmission phase. So ωi assumes values

in Ωi = {−mi , . . . ,−1} ∪ {1, . . . , ni}, and the state space of the Markov process of the
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joint activity state is ΩPH ⊆ Ω1 × ·· · × Ωn. The stationary distribution πPH of this

Markov process has the following product-form solution:

Lemma 4.1. Let the back-off times and transmission durations have a phase-type dis-

tribution. Then, regardless of back-off freezing,

πPH(ω) = Z−1
∏

i:ωi≤−1

β−ωi

∏

i:ωi≥1

σiηωi , ω ∈ ΩPH, (4.1)

where Z is the normalization constant.

The proof of Lemma 4.1 is presented in Appendix 4.A.2. In this proof we treat

the freezing and non-freezing systems in parallel, and we demonstrate that freezing

indeed has no impact on the stationary distribution.

Using Lemma 4.1 we can now show that the node activity is insensitive to the

distributions of the back-off times and transmission durations.

Theorem 4.1. Let the back-off times and transmission durations have a phase-type

distribution. Then, regardless of back-off freezing,

π(x) = Z−1
n
∏

i=1

σ
xi
i , x ∈ Ω, (4.2)

where Z is the normalization constant.

Proof. Denote by ΩPH(x) the set of all statesω ∈ ΩPH that correspond to x ∈ Ω, i.e.,

ΩPH(x) = {ω ∈ ΩPH | ∀i : ωi ≤ −1 if xi = 0, ωi ≥ 1 if xi = 1}.

Then

π(x) =
∑

ω∈ΩPH(x)

πPH(ω) = Z−1
∑

ω∈ΩPH(x)

∏

i:ωi≤−1

βωi

∏

i:ωi≥1

σiηωi = Z−1
n
∏

i=1

σ
xi
i ,

as
∑

k βk = 1 and
∑

k ηk = 1.

In Theorem 4.1 we have shown that the limiting distribution of the activity pro-

cess under generally distributed back-off times and transmission durations (4.2) is

the same as the distribution for exponential distributions (1.8). This result was first

shown in [97], and for generally distributed back-off periods and back-off freezing,

partial proof arguments are presented in [49]. In the case without back-off freezing,

the insensitivity result may be directly proven by representing the dynamics as those

observed in an Engset network as considered in [8], Section 5.3. This model is essen-

tially a variation of a Loss network (see Section 1.3.4) with a fixed and finite number

of customers that are alternatively active and idle. So the number of idle customers

decreases when more customers are in service, as does the rate of idle customers

trying to become active. The Engset network is constructed from the conflict graph

(V, E): The links in the Engset network are of unit capacity and correspond to the

undirected edges in the graph. Each node i ∈ V is then represented as a customer

in the Engset network which, when active, simultaneously uses links {i, j} for all j
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such that {i, j} ∈ E. Each customer alternates between active and inactive phases. Fi-

nally, without back-off freezing, a customer who wishes to become active, is blocked

if one of the required links is occupied (i.e., the corresponding node has an active

neighbor), in which case the customer starts a new inactivity period (back-off). This

corresponds to the so-called jump-over retrial behavior considered in [8], and insen-

sitivity follows. In the case of back-off freezing, it does not seem possible to apply

such a representation.

4.2 A necessary stability condition

In the previous section, we considered a scenario with saturated nodes that always

have packets to transmit. We now turn to the unsaturated CSMA model from Sec-

tion 1.3.3 where packets are generated over time and buffers may occasionally be

empty. Recall that packets arrive at node i according to a renewal process with mean

interarrival time 1/λi . Nodes compete for access to the medium as before, with the

modification that when unblocked nodes have no packets to transmit at the time a

back-off period ends, they simply start a new back-off period. Once a packet has been

transmitted, it leaves the system. The results in this section are valid irrespective of

whether or not the back-off process is frozen.

Denote the traffic intensity at node i by ρi = λi/µi , so that ρi is the fraction of

time that this node has to be active in order to sustain the arrival rate λi . Define θ∗i
as the throughput of node i, i.e., the expected number of transmissions per unit of

time, and denote the fraction of time that node i is active by τ∗i , so that θ∗i = µiτ∗i .

Denote by τi =
∑

x∈Ω:xi=1π(x) and θi = µiτi the fraction of time node i is active and

throughput of node i, respectively, in the regime where all nodes are saturated. We

have θ∗i ≤ λi by definition, with equality when node i is stable.

The next proposition provides a simple necessary condition for stability.

Proposition 4.1. If λi > θi for all i = 1, . . . , n, then all the nodes are unstable.

Proof. We will show that all the nodes are unstable in the sense that each of the

associated queues only empties finitely often, but it can in fact be established that

the queue of node i grows in a linear manner at rate λi − θi in the long run. For

convenience, we restrict the proof to a Poisson arrival process, but the arguments

extend to general renewal arrival processes.

The idea behind the proof is as follows. The key observation is that once a queue

empties, with non-zero probability the system may enter a state with all queues non-

empty. Since all queues have positive drift in saturated conditions, all queues remain

non-empty with non-zero probability. Thus, every time a queue empties, it may never

do so again with probability bounded away from zero, and hence the queue only

empties finitely often.

In order to formalize the above observation, let Qj(t) be the number of packets

pending for transmission or in the process of being transmitted at node j at time t . Let

Ti,n be the time that the queue of node i empties for the n-th time. Let Ui,n = inf{t ≥
Ti,n : Qj(t) ≥ 1 for all j = 1, . . . , n} be the first time after Ti,n when all queues are

non-empty. It is easily verified that there exists b1 > 0 such that P(Ui,n < Ti,n+1) > b1

for all n.
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LetAj(s, t) be the number of packet arrivals at node j during the time interval [s, t]

and B∗j (s, t) the number of packet transmissions at node j during the time interval

[s, t], so that

Qj(t) = Qj(s)+Aj(s, t)− B∗j (s, t). (4.3)

Moreover, denote by Bj(Ui,n, t) the number of packet transmissions at node j during

the time interval [Ui,n, t] in a modified version of the network where the various nodes

are in the exact same state at time Ui,n and are all assumed to be saturated from that

time onward. Define

Vi,j,n = sup{t : Qj(s) ≥ 1 ∀s ∈ [Ui,n, t]},
Wi,j,n = sup{t : Aj(Ui,n, s)− Bj(Ui,n, s) ≥ 0 ∀s ∈ [Ui,n, t]},

and denote Vi,n = minj=1,...,n Vi,j,n and Wi,n = minj=1,...,nWi,j,n.

By definition, Qj(t) ≥ 1 for all t ∈ [Ui,n, Vi,n], j = 1, . . . , n. Thus for all nodes j we

have B∗j (Ui,n, t) = Bj(Ui,n, t) for all t ∈ [Ui,n, Vi,n]. From (4.3) with s = Ui,n we see

Qj(t) ≥ 1+Aj(Ui,n, t)− B∗j (Ui,n, t) = 1+Aj(Ui,n, t)− Bj(Ui,n, t), t ∈ [Ui,n, Vi,n],

so Vi,n ≥ Wi,n. Since
1
t E[Aj(Ui,n, Ui,n + t)] = λj > θj = limt→∞

1
t E[Bj(Ui,n, Ui,n + t)], it

follows that there exists b2 > 0 such that P(Vi,n = ∞) ≥ P(Wi,n = ∞) > b2 for all n.

In conclusion, the probability that the queue of node i never empties again after

it has emptied for the n-th time, is bounded from below by b = b1b2 > 0. Thus, the

total expected number of times that the queue of node i empties is bounded from

above by
∑∞
n=0(1 − b)n = 1/b, which means that it only empties finitely often with

probability 1.

Proposition 4.1 establishes a connection between the throughput in the saturated

model and stability in the unsaturated model. Recall that the saturation throughput

follows directly from θi = µi
∑

x∈Ω:xi=1π(x), with π(·) the limiting distribution in

Theorem 4.1.

It might seem natural that a dual property to Proposition 4.1 holds as well, i.e.,

all the nodes are stable if λi < θi for all i = 1, . . . , n. It is indeed the case that then

at least one of the nodes must be stable, as otherwise the network behaves as in the

saturated regime, and each node i would have a throughput θ∗i = θi . This contradicts

the fact that θ∗i ≤ λi < θi for all nodes. However, it is not the case in general that

all the nodes are stable if λi < θi for all i = 1, . . . , n. In order to see that, we next

consider an illustrative example.

4.2.1 Example: ring topology

Consider a 4-node ring topology, i.e., n = 4 and E = {{1,2}, {2,3}, {3,4}, {4,1}}.
Suppose that νi ≡ ν and µi ≡ 1, so that θi ≡ θ = ν(1 + ν)/(1 + 4ν + 2ν2). Also, let

λ1 = λ2 = λ3 ≡ λ < θ, and λ4 = 0. Assume that the arrival processes are Poisson and

that the back-off periods and transmission durations are exponentially distributed.

First observe that both nodes 1 and 3 must be stable. In case either of these nodes

were unstable, the fraction of time it would be active is bounded from below by

(1− τ∗2 )
ν

1+ ν ≥ (1− λ)
ν

1+ ν ≥
(

1− ν(1+ ν)
1+ 4ν + 2ν2

) ν

1+ ν >
ν(1+ ν)

1+ 4ν + 2ν2
= θ > λ,
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which yields a contradiction.

A ‘busy period’ of node 2 is said to begin when node 2 starts a transmission after

at least one transmission of nodes 1 and/or 3 and to end when node 2 completes a

transmission which is followed by at least one transmission of nodes 1 and/or 3. The

time period U between two successive busy periods of node 2 is referred to as an ‘idle

period’ of node 2. Denote by V the amount of time from the start of a busy period of

node 2 until the first packet arrival at node 1 or 3 and by W the possible remaining

transmission time of node 2 after V . The number of further transmissions of node 2

afterW during that busy period is bounded from above by a geometrically distributed

random variable with parameter 1/2. Thus the total amount of time T that node 2

is active during the busy period satisfies E[T] ≤ E[V] + E[W] + 1 ≤ 1
2λ + 2. Now

distinguish two cases: (i) E[U] ≥ E[T]+ 1; and (ii) E[U] < E[T]+ 1, and denote by S

the amount of time that node 2 is idle during the busy period. In case (i), we have

τ∗2 =
E[T]− E[S]

E[T]+ E[U]+ E[S] ≤
E[T]

E[T]+ E[U] ≤
1

2λ + 2
1
λ + 5

= 1+ 4λ

2+ 10λ
.

It is easily verified that the latter upper bound is less than λ when λ > (1+√11)/10,

and thus node 2 must be unstable when λ > (1+√11)/10.

In case (ii), note that by the time the last transmission of either node 1 or node 3

during an idle period of node 2 ends, one of these two has been inactive for at least

an expected amount of time 1. Thus the fraction of time υ that either nodes 1 and 2

or nodes 2 and 3 are inactive, is bounded from below as

υ ≥ 1+ E[S]
E[T]+ E[U]+ E[S] ≥

1

E[T]+ E[U] ≥
1

1
λ + 5

= λ

1+ 5λ
,

where the second inequality follows from the fact that E[T] + E[U] ≥ 1. Denote by

υ12 and υ23 the fraction of time that nodes 1 and 2 are inactive, and the fraction of

time that nodes 2 and 3 are inactive, respectively. Then

min{τ∗1 + τ∗2 , τ∗2 + τ∗3 } = min{1− υ12,1− υ23} = 1−max{υ12, υ23}

≤ 1− 1

2
(υ12 + υ23) ≤ 1− 1

2
υ ≤ 2+ 9λ

2+ 10λ
.

It is easily verified that the latter upper bound is less than 2λwhen λ > (5+√185)/40.

Since nodes 1 and 3 are stable, it follows that node 2 must be unstable when λ >

(5+√185)/40.

We conclude that in either case node 2 is unstable when λ > (5+√185)/40 < 0.47,

regardless of the value of ν. However, θ approaches 1/2 for ν sufficiently large, and

hence the condition λ < θ is not sufficient for stability.

Figure 4.1 shows the stability region (obtained by simulation) of the 4-node ring

network as a function of λ2 and λ4, for µ = 1 and ν = 10. For arrival rates outside of

the area demarcated by the solid line, at least one node is unstable. The area enclosed

by the dashed line represents all rate vectors such that max{λ2, λ4} < θ = 110/241 ≈
0.456. We compare λ1 = λ3 = 0.3 (Figure 4.1(a)) and λ1 = λ3 = 0.45 (Figure 4.1(b)), so

in both cases we have max{λ1, λ3} < θ. In Figure 4.1(a) we see that max{λ2, λ4} < θ
is sufficient for stability. However, from Figure 4.1(b) it is clear that as λ1 and λ3
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increase, the stability region decreases in size and no longer includes all rate vectors

such that max{λ2, λ4} < θ.

Observe that the range of values of λ2 that stabilize the system grows with λ4,

so nodes 2 and 4 benefit from each other’s activity. This was already hinted at in

the above instability example, where it was shown that node 2 may become unstable

when node 4 is removed from the network. Indeed, increasing activity from nodes 2

and 4 forces nodes 1 and 3 to operate in a more efficient fashion, i.e., simultaneous

activity, thus increasing spatial reuse.

l2

l4

(a) λ1 = λ3 = 0.3

l2

l4

(b) λ1 = λ3 = 0.45

Figure 4.1: The stability region of a 4-node ring network.

4.3 Stability for full conflict graphs

In Section 4.2 we have seen that although necessary stability conditions can be ob-

tained by considering the saturated model, the case of a ring network already gives

rise to intricate stability conditions. The case of a full conflict graph is considerably

simpler, and the stability conditions can be explicitly derived, as is shown next. In

the remainder, we restrict ourselves to the case of back-off freezing.

We assume that all nodes mutually interfere, so at most one node can be active at

any time. Without loss of generality assume that the nodes are ordered such that

λ1

ν1
≤ λ2

ν2
≤ ·· · ≤ λn

νn
.

Recall that ρi = λi/µi , and denote

τ̂i = σi

1+∑n
j=i σj

(

1−
i−1
∑

j=1

ρj
)

.

These τ̂i may be interpreted as the fraction of time that node i is active, assuming

that nodes 1, . . . , i−1 are all stable, while nodes i, . . . , n are all saturated. Also, define
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imax = max{i ∈ {1, . . . , n} : ρi < τ̂i}, with the convention that imax = 0 when ρi > τ̂i
for all i = 1, . . . , n, and assume ρimax+1 > τ̂imax+1 in case imax < n. The interpretation of

τ̂i suggests that node imax is the stable node with the highest index, as will be shown

in the following theorem.

Theorem 4.2. Nodes 1, . . . , imax are stable, while nodes imax + 1, . . . , n are unstable.

Proof. For compactness, denote by τ∗0 the fraction of time that all nodes are inactive.

As noted in Section 4.2, we have that θ∗i ≤ λi , with equality when node i is stable, and

thus τ∗i ≤ ρi , with equality when node i is stable. In view of the back-off freezing,

the back-off process of node i is only running when all nodes are inactive, and hence

we have τ∗i = γi/νi , with γi the expected number of back-offs of node i per unit of

time. (Without back-off freezing, this relationship still holds for exponential back-off

time distributions, but for general back-off time distributions there does not seem to

be a simple connection between γi and τ∗0 in that case.) By definition, the probability

that node i has a packet to transmit when a back-off period ends, equals pi = θ∗i /γi .
Combining these two relationships, we obtain the identity θ∗i = piνiτ

∗
0 and thus

τ∗i = piσiτ∗0 . In particular, τ∗i = σiτ∗0 when node i is unstable. Hence ρi ≤ σiτ∗0 ,

i.e., λi ≤ νiτ∗0 , when node i is stable, while ρi ≥ σiτ∗0 , i.e., λi ≥ νiτ∗0 when node i is

unstable. It follows that the set of stable nodes is of the form {1, . . . , i∗} for some

i∗ ∈ {0, . . . , n}. It remains to be shown that i∗ = imax.

First observe that
∑n
i=0 τ

∗
i = 1, τ∗i = ρi for all i = 1, . . . , i∗, and τ∗i = σiτ∗0 for all

i = i∗ + 1, . . . , n. This yields

τ∗0 =
1

1+∑n
j=i∗+1 σj

(

1−
i∗
∑

i=1

ρi
)

.

Further observe the equivalence relation

ρi >
σi

1+∑n
j=i σj

(

1−
i−1
∑

j=1

ρj
)

⇐⇒ ρi + ρi
n
∑

j=i
σj > σi − σi

i−1
∑

j=1

ρj

⇐⇒ ρi + ρi
n
∑

j=i+1

σj > σi − σi
i
∑

j=1

ρj ⇐⇒ ρi >
σi

1+∑n
j=i+1 σj

(

1−
i
∑

j=1

ρj
)

.

Since the nodes are indexed such that ρi/σi = λi/νi ≤ ρi+1/σi+1 = λi+1/νi+1, we

obtain the property

ρi > τ̂
∗
i =⇒ ρi+1 > τ̂i+1. (4.4)

Now suppose that 0 ≤ i∗ < imax. The fact that node i∗ + 1 ≤ n is unstable means

that

ρi∗+1 > τ
∗
i∗+1 = σi∗+1τ

∗
0 =

σi∗+1

1+∑n
j=i∗+1 σj

(

1−
i∗
∑

i=1

ρi
)

= τ̂i∗+1.

Property (4.4) then implies that ρi > τ̂i for all i = i∗ + 1, . . . , n, which contradicts

imax ≥ i∗ + 1, and hence we must have i∗ ≥ imax.

The fact that node i∗ is stable means that

ρi∗ = τ∗i∗ ≤ σi∗τ∗0 =
σi∗

1+∑n
j=i∗+1 σj

(

1−
i∗
∑

i=1

ρi
)

.
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Property (4.4) then implies that

ρi∗ ≤ σi∗

1+∑n
j=i∗ σj

(

1−
i∗−1
∑

i=1

ρi
)

= τ̂i∗ ,

and hence we must have imax ≥ i∗.

The result in Theorem 4.2 in fact holds for any stationary traffic process as long

as the service is infinitely divisible, with the ρi values representing the mean amount

of traffic generated per time unit as measured in units of transmission time. The

form of the stability conditions is rather reminiscent of those for polling systems

with ki-limited or Weighted Fair Queueing (WFQ) service disciplines [25] and General-

ized Processor Sharing (GPS) queues [13, 46].

Noting that imax = n if and only if ρi < τ̂i for all i = 1, . . . , n, Theorem 4.2 in

particular gives the following necessary and sufficient condition for all nodes to be

stable.

Corollary 4.1. All nodes are stable if and only if ρi < τ̂i for all i = 1, . . . , n.

The explicit and relatively simple form of the stability condition established in

Corollary 4.1 is highly remarkable as it starkly contrasts with those for slotted Aloha

systems, which even for a complete conflict graph with three or more nodes have

remained largely elusive, see for instance [3, 85, 86] for bounds and partial results.

The next result shows that for full conflict graphs, the dual property of Proposition

4.1 does hold (which in general is not the case; see Section 4.2.1).

Corollary 4.2. All nodes are stable if λi < θi for all i = 1, . . . , n.

Proof. For full conflict graphs we have that τi = σi/(1 +
∑n
i=1σi). Note that λi < θi

for all i = 1, . . . , n implies ρn < τn and τn = (1 − τ1 − ·· · − τn−1)
σn

1+σn < (1 − ρ1 −
·· · − ρn−1)

σn
1+σn = τ̂n. This yields imax = n, which completes the proof.

We conclude this section by two further consequences of Theorem 4.2 that are

helpful when only the total load
∑n
i=1 ρi is known. Denote σmin = mini=1,...,n σi and

σmax = maxi=1,...,n σi .

Corollary 4.3. All nodes are stable if
∑n
i=1 ρi <

σmin

1+σmin
. This condition is sharp in the

sense that if ρ1 = ·· · = ρn−1 = 0 and σn = σmin, then ρn <
σmin

1+σmin
is necessary for

node n to be stable.

Corollary 4.4. At least one node is unstable if
∑n
i=1 ρi >

σmax

1/n+σmax
. This condition is

sharp in the sense that if ρ1 = ·· · = ρn = ρ and σ1 = ·· · = σn = σ , then ρ < σ
1+nσ is

sufficient for all nodes to be stable.
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4.4 Stability for partial conflict graphs

In Section 4.3 we focused on the case of a full conflict graph, and derived explicit

necessary and sufficient conditions for stability. In this section we allow for partial

conflict graphs, and will show that in general the stability conditions cannot be rep-

resented in such an explicit form. In particular, we illustrate the difficulties that arise

in star topologies, and then argue that all (non-complete) graphs contain such a star

topology as an induced subgraph.

4.4.1 Star topologies

Consider a star topology, where the leaf nodes 1, . . . , n− 1 all interfere with the root

node n, but not with each other, i.e., E = {1, . . . , n−1}×{n}. The stability region may

then be characterized by:

ρi < (1− ρn) σi

1+ σi
, i = 1, . . . , n− 1, (4.5)

and

ρn < τ̂n, (4.6)

with τ̂n representing the fraction of time that node n would be active if it were satu-

rated.

By definition, inequality (4.6) is necessary and sufficient for the root node n to

be stable, and given that node n is stable, the inequalities (4.5) are necessary and

sufficient for all the leaf nodes 1, . . . , n − 1 to be stable as well. The boundary of the

stability region consists of a total of n segments, with n− 1 linear segments defined

by the inequalities (4.5), where the corresponding leaf node is critically loaded, and

1 segment which is not likely to be linear in general, described by the inequality (4.6),

where the root node is critically loaded.

There does not seem to be a closed-form expression available for τ̂n in general, in

fact not even for n = 3, so that the inequality (4.6) is not so explicit. The next lemma

however provides a useful closed-form lower bound for τ̂n.

Corollary 4.5. Assuming exponential back-off times and transmission durations, we

have τ̂n ≥ τn, with

τn = σn

σn +
∏n−1
i=1 (1+ σi)

.

Proof. Noting that the star topology is a bipartite graph, the statement of the corol-

lary follows directly from Proposition 4.2 (presented in Appendix 4.A), with V1 = {n}
and V2 = {1, . . . , n− 1}.

Corollary 4.5 implies that as long as ρn < τn, the root node n is guaranteed to be

stable, and thus the conditions (4.5) are necessary and sufficient for all the leaf nodes

1, . . . , n − 1 to be stable as well. Noting that τi = (1 − τn) σi
1+σi , the inequalities (4.5)

may be expressed as
ρi

τi
<

1− ρn
1− τn

, i = 1, . . . , n− 1,
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or

max
i=1,...,n−1

ρi

τi
<

1− ρn
1− τn

,

or

max
i=1,...,n−1

ρi(1+ σi)
σi

< 1− ρn.

Thus simple necessary and sufficient conditions for stability arise when the traffic

load of the root node n is sufficiently low, in particular when the ratio of the traffic

load ρn to the saturated throughput τn is relatively low compared to that of the leaf

nodes 1, . . . , n− 1. Specifically, suppose that

ρn

τn
≤ max
i=1,...,n−1

ρi

τi

and let jmax = arg maxj=1,...,n−1
ρj
τj

. Then

ρjmax

τjmax

< 1− ρn

is a simple necessary and sufficient condition for stability of all nodes. In order to

prove that, it suffices to show that the latter condition implies that ρn < τn. Suppose

that is not the case, then maxi=1,...,n−1
ρi
τi
≥ 1, so

max
i=1,...,n−1

ρi

τi
<

1− ρn
1− τn

⇒ 1− ρn
1− τn

> 1.

In particular, if
ρn
τn
= maxi=1,...,n−1

ρi
τi

, then ρn < τn is a simple necessary and sufficient

condition for the stability of all nodes.

A further observation is that ρi < τi , i = 1, . . . , n, is a sufficient condition for

all nodes 1, . . . , n to be stable. It might seem that this is a trivial fact, which in fact

should hold for any conflict graph, but that is not the case as was illustrated in the

counterexample in Section 4.2.1. However, an explicit formulation of the necessary

and sufficient stability condition for star networks stays beyond our reach, as τ̂n in

(4.6) remains elusive.

4.4.2 Stability conditions for general graphs

The fact that an explicit condition for stability in the star network appears elusive,

illustrates the difficulty of obtaining the stability condition for general networks. In-

deed, an explicit characterization of the stability region is difficult for any network

that is not a complete graph, for which the stability condition was explicitly obtained

in Theorem 4.2.

One way to argue this is to show that any network is either a complete graph or

contains a 3-node star network as a subgraph. In order to see that, we may focus on

a connected graph. Consider an arbitrary node in the graph, say node 1, as well as

the set C1 of all of its neighbors. If one of the nodes in the set C1 has a neighbor that

is not node 1 or in the set C1, then this induces a 3-node star network. Otherwise,

node 1 along with the nodes in the set C1 make up the entire graph (since the graph

is connected). If the nodes in the set C1 are not fully connected, then this induces a
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Figure 4.2: A complete graph and a 3-node star subgraph.

3-node star network again. Otherwise, node 1 along with the nodes in the set C1 are

fully connected, and the graph is complete. This argument is illustrated in Figure 4.2.

Hence, the fact that the 3-node star network (for which the stability condition does

not seem to admit an explicit characterization) is contained in every non-complete

network, provides strong indication of the hardness of the problem of determining

the stability region for general networks. That is, characterizing the set of traffic

vectors (ρ1, . . . , ρn) for which the system is stable is challenging for given back-off

rates ν1, . . . , νn.

In contrast, determining whether there exist back-off rates ν1, . . . , νn for which the

system is stable for a given traffic vector (ρ1, . . . , ρn) is relatively easy. Specifically, in

case of a star topology, such back-off rates exist if and only if ρn+maxi=1,...,n−1 ρi < 1.

In general, such back-off rates exist if and only if the traffic vector (ρ1, . . . , ρn) < ρ̂

for some ρ̂ ∈ conv(Ω), see [32]. The latter property in fact serves as the basis for the

adaptive CSMA algorithms discussed in Section 1.3.5.

4.5 Concluding remarks

In this chapter we examined the insensitivity and stability of CSMA networks. We

proved that when all nodes are saturated, the limiting behavior of these networks

is insensitive to the distribution of both the transmission durations and the back-off

times. More precisely, the stationary distribution of the activity process only depends

on the distributions of the back-off times and transmission durations through their

means. The insensitivity holds irrespective of whether or not an active node freezes

the back-off process of neighboring nodes. The CSMA model considered in Chapters 5-

7 assumes exponential distributions, but since the analysis in these chapters take the

stationary distribution of the activity process as a starting point, insensitivity implies

that all results obtained in Chapters 5-7 hold for generally distributed back-off times

and transmission durations.

We then turned to a situation where nodes are subject to packet dynamics, and

established a simple necessary condition for stability for general conflict graphs. Ex-

plicit necessary and sufficient stability conditions were derived for the case of com-

plete conflict graphs. Moreover, we illustrated the difficulty of deriving similar con-

ditions for partial conflict graphs.
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In the above analysis, we used a continuous-time model to capture CSMA dynam-

ics. Alternatively we may consider a model where time is slotted and neighboring

nodes occasionally start transmitting in the same slot, leading to a collision. Extend-

ing our results to the case where collisions may occur is difficult. If we assume that

when two nodes involved in a collision start and end the corresponding transmissions

at the same epochs, then insensitivity can be shown using the Engset network rep-

resentation (see the discussion following Theorem 4.1), but only in the case without

back-off freezing. It remains unclear whether insensitivity holds when time is slotted

in the case with back-off freezing. Regarding stability issues, adding collisions greatly

complicates the analysis even in the case of networks with full interference (similar to

the classical problem of deriving network stability conditions under Aloha protocols).

In Section 4.3, the absence of collisions simplifies the stability analysis, because in

this case, packets are successfully transmitted whenever the medium is busy.
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Appendix

4.A Auxiliary results and remaining proofs

4.A.1 A stochastic comparison result

Consider a bipartite graph such that V = V1 ∪ V2, with V1 ∩ V2 = ∅ and E ⊆ V1 × V2.

We will show that in the situation where all the nodes are saturated, the throughputs

of the nodes in V1 and V2 are lower and higher respectively, than in case only the

nodes in V1 are saturated. Let V1 ⊆ {1, . . . , n} and define θ∗i (V1) as the throughput of

node i in the situation where the nodes in V1 are saturated.

Proposition 4.2. Assuming exponential back-off times and transmission durations,

we have θ∗i (V1) ≥ θi for all i ∈ V1 and θ∗i (V1) ≤ θi for all i ∈ V2.

Proof. The proof relies on stochastic coupling [64]. Let Nλi (t), i ∈ V2, N
µ
i (t), i =

1, . . . , n, and Nνi (t), i = 1, . . . , n, be independent Poisson processes of rates λi , µi ,

and νi , respectively. We will use these Poisson processes to construct processes

X∗(t) = (X∗1 (t), . . . , X∗n (t)) and Y(t) = (Yi(t))i∈V2 , representing the activity process

and the queue length process in the scenario where the nodes i ∈ V1 are saturated,

and X(t) = (X1(t), . . . , Xn(t)) representing the activity process in case all the nodes

are saturated. It is easily verified that viewed in isolation, the processes X∗(t) and

Y(t) as constructed above obey the same statistical laws as the activity process and

the queue length process in the scenario where the nodes i ∈ V1 are saturated, while

the process X(t) is governed by the same statistical laws as the activity process in

case all the nodes are saturated.

We assume that X∗i (0) ≥ Xi(0) for all i ∈ V1 and X∗i (0) ≤ Xi(0) for all i ∈ V2, and

allow Yi(0), i ∈ V2, to be arbitrary. We will prove that X∗i (t) ≥ Xi(t) for all i ∈ V1 and

X∗i (t) ≤ Xi(t) for all i ∈ V2. Since the stationary distribution of the processes X∗(t)
and X(t) does not depend on the initial state, and θ∗i (V1) = µiE[X∗i ] = µiP(X∗i = 1)

and θi = µiE[Xi] = µiP(Xi = 1), the statement of the proposition then follows.

We prove the above inequalities by induction. Let t be a time epoch at which an

event occurs in one of the Poisson processes. We will show that if the inequalities

hold at time t−, that they then continue to hold at time t+. We distinguish three

cases, depending on in which of the various Poisson processes the event occurs.

We first consider an event in the process Nλi (t), reflecting a packet arrival at one

of the unsaturated nodes i ∈ V2. In that case, we set Yi(t
+) = Yi(t−)+1. Note that the

values ofX∗i (t) andXi(t) are not affected, and hence the inequalities trivially continue

to be valid. Second, we consider an event in the process N
µ
i (t), corresponding to a

potential transmission completion at node i. In that case, we set X∗i (t
+) = Xi(t+) = 0,

and in case i ∈ V2,

Yi(t
+) = Yi(t−)−X∗i (t−), (4.7)

reflecting a potential packet departure. Since X∗i (t
+) = Xi(t+) = 0, the inequalities re-

main trivially satisfied. Third, we consider an event in the process Nνi (t), correspond-

ing to a potential activation at node i. In that case we set Xi(t
+) = 1 if Xj(t

−) = 0

for all j ∈ Ci , with Ci representing the set of neighbors of node i. Moreover, in case

i ∈ V1, we set X∗i (t
+) = 1 if X∗j (t

−) = 0 for all j ∈ Ci , while in case i ∈ V2, we set

X∗i (t
+) = 1 if Yi(t

−) ≥ 1 and X∗j (t
−) = 0 for all j ∈ Ci .
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The fact that for i ∈ V1, Ci ⊆ V2, and X∗j (t
−) ≤ Xj(t

−) for all j ∈ V2 implies

that Xi(t
+) = 1 forces X∗i (t

+) = 1. Likewise, the fact that for i ∈ V2, Ci ⊆ V1, and

X∗j (t
−) ≥ Xj(t

−) for all j ∈ V1 implies that X∗i (t
+) = 1 forces Xi(t

+) = 1. Hence,

the inequalities continue to hold. Also, note that X∗i (t) = 0 whenever Yi(t) = 0, or

equivalently, X∗i (t) = 1 can only occur when Yi(t) ≥ 1, so that (4.7) leaves Yi(t) ≥ 0

for all t ≥ 0.

4.A.2 Proof of Lemma 4.1

We have that

βu

(

qu,mi+1

(

1− αu

1−αmi+1

)

+
mi
∑

l=1
l≠u

qu,l

)

=
mi
∑

l=1
l≠u

βl
(

ql,u + ql,mi+1
αu

1−αmi+1

)

, (4.8)

with
∑mi

u=1 βu = 1, and

ηu

(

ru,ni+1

(

1− γu

1− γni+1

)

+
ni
∑

l=1
l≠u

ru,l

)

=
ni
∑

l=1
l≠u

ηl
(

rl,u + rl,ni+1
γu

1− γni+1

)

, (4.9)

with
∑ni
u=1 ηu = 1. It is readily seen that

νi = (1−αmi+1)
−1

mi
∑

u=1

βuqu,mi+1, (4.10)

µi = (1− γni+1)
−1

ni
∑

u=1

ηuru,ni+1. (4.11)

In order to show that the πPH in (4.1) is indeed the limiting distribution of the Markov

process of interest, it suffices to show that πPH satisfies the global balance equations

of this process. However, rather than doing this directly, we study for each node i

the partial balance equations that equate the rate into and out of a state by changes

to this node only. As the global balance equations can be obtained by summing these

partial balance equations over all nodes, it is sufficient to show that πPH satisfies all

partial balance equations.

Let Ci denote the set of neighbors of node i, and define C+i = Ci ∪ {i}. Let T ik(ω)

denote the operator that changes the i-th component of ω to k, while leaving the

other components intact. When node i is inactive and unblocked we see the following

transitions to node i (irrespective of freezing) ∀ω s.t. ωj ≤ −1 ∀j ∈ C+i

πPH(ω)

(

qωi ,mi+1

(

1− αωiγni+1

1−αmi+1γni+1

)

+
mi
∑

k=1
k≠ωi

qωi ,k

)

=
ni
∑

k=1

πPH(T
i
k(ω))rk,ni+1

αωi

1−αmi+1γni+1

+
mi
∑

k=1
k≠ωi

πPH(T
i
−k(ω))

(

qk,ωi + qk,mi+1
αωiγni+1

1−αmi+1γni+1

)

. (4.12)
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If node i is active then we have (irrespective of freezing) ∀ω s.t. ωi ≥ 1

πPH(ω)

(

rωi ,ni+1

(

1− αmi+1γωi

1−αmi+1γni+1

)

+
ni
∑

k=1
k≠ωi

rωi ,k

)

=
mi
∑

k=1

πPH(T
i
−k(ω))qk,mi+1

γωi

1−αmi+1γni+1

+
ni
∑

k=1
k≠ωi

πPH(T
i
k(ω))

(

rk,ωi + rk,ni+1
αmi+1γωi

1−αmi+1γni+1

)

. (4.13)

The final balance equation concerns all states where node i is inactive, but at least one

of its neighbors is active, so node i is blocked. The case of back-off freezing yields a

trivial partial balance equation, as in this case no such state can be entered or exited

due to changes in the state of node i. On the other hand, when the back-off process

of blocked nodes is not frozen, the state can change due to a transition within the

back-off process of node i:

πPH(ω)

(

qωi ,mi+1

(

1− αωi

1−αmi+1

)

+
mi
∑

k=1
k≠ωi

qωi ,k

)

=
mi
∑

k=1
k≠ωi

πPH(T
i
−k(ω))

(

qk,ωi + qk,mi+1
αωi

1−αmi+1

)

, ∀ω s.t. ωi ≤ −1, ∃j ∈ Ci : ωj ≥ 1.

(4.14)

We now proceed to show that πPH from (4.1) indeed satisfies (4.12)-(4.14). Substi-

tuting πPH into (4.12), and canceling common terms yields

βωi

(

qωi ,mi+1

(

1− αωiγni+1

1−αmi+1γni+1

)

+
mi
∑

k=1
k≠ωi

qωi ,k

)

=
mi
∑

k=1
k≠ωi

βk
(

qk,ωi + qk,mi+1
αωiγni+1

1−αmi+1γni+1

)

+ σi
ni
∑

k=1

ηkrk,ni+1
αωi

1−αmi+1γni+1
.

By (4.11), and adding βωiqωi ,mi+1

(

αωiγni+1

1−αmi+1γni+1
− αωi

1−αmi+1

)

on both sides

βωi

(

qωi ,mi+1

(

1− αωi

1−αmi+1

)

+
mi
∑

k=1
k≠ωi

qωi ,k

)

=
mi
∑

k=1
k≠ωi

βkqk,ωi

+
mi
∑

k=1

βkqk,mi+1
αωiγni+1

1−αmi+1γni+1
+ νi

αωi (1− γni+1)

1−αmi+1γni+1
− βωiqωi ,mi+1

αωi

1−αmi+1
.
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By (4.10) and rearranging on both sides we get

βωi

(

qωi ,mi+1

(

1− αωi

1−αmi+1

)

+
mi
∑

k=1
k≠ωi

qωi ,k

)

=
mi
∑

k=1
k≠ωi

βk
(

qk,ωi + qk,mi+1
αωi

1−αmi+1

)

+ νi
αωiγni+1(1−αmi+1)

1−αmi+1γni+1
+ νi

αωi (1− γni+1)

1−αmi+1γni+1
− νi

αωi

1−αmi+1
(1−αmi+1).

Canceling the remaining terms we get (4.8), so πPH indeed satisfies (4.12).

Substituting πPH into (4.13), and canceling common terms yields

σiηωi

(

rωi ,ni+1

(

1− αmi+1γωi

1−αmi+1γni+1

)

+
ni
∑

k=1
k≠ωi

rωi ,k

)

=
mi
∑

k=1

βkqk,mi+1
γωi

1−αmi+1γni+1
+ σi

ni
∑

k=1
k≠ωi

ηk
(

rk,ωi + rk,ni+1
αmi+1γωi

1−αmi+1γni+1

)

.

By (4.10), and adding σiηωi rωi ,ni+1

(

αmi+1γωi
1−αmi+1γni+1

− γωi
1−γni+1

)

on both sides

σiηωi

(

rωi ,ni+1

(

1− γωi

1− γni+1

)

+
ni
∑

k=1
k≠ωi

rωi ,k

)

= νi
γωi(1−αmi+1)

1−αmi+1γni+1
+ σi

ni
∑

k=1
k≠ωi

ηkrk,ωi + σi
αmi+1γωi

1−αmi+1γni+1

ni
∑

k=1

ηkrk,ni+1

− σiηωi rk,ni+1
γωi

1− γni+1
.

By (4.11) and rearranging both sides we get

σiηωi

(

rωi ,ni+1

(

1− γωi

1− γni+1

)

+
ni
∑

k=1
k≠ωi

rωi ,k

)

= σi
ni
∑

k=1
k≠ωi

ηk
(

rk,ωi + rk,ni+1
γωi

1− γni+1

)

+ νi
γωi(1−αmi+1)

1−αmi+1γni+1
+ νi

αmi+1γωi (1− γni+1)

1−αmi+1γni+1
− νi

γωi

1− γni+1
(1− γni+1).

Canceling the remaining terms we get (4.9), so πPH indeed satisfies (4.13).

Thirdly, πPH trivially satisfies (4.14), as substitution of πPH into this equation im-

mediately gives (4.8).
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5
Fairness in linear networks

As mentioned in Section 1.3.2, a major drawback of CSMA-like protocols is unfairness,

in the sense that some of the nodes get starved, while others receive high throughput.

In the present chapter we study this unfairness in a linear network in which an active

node blocks its neighbors on both sides. By choosing the back-off rate of each node as

a particular function of the number of its neighbors, we can guarantee that all nodes in

the network have the same throughput, completely removing the unfairness. We then

investigate the consequences of this choice of activation rates on the network-average

saturated throughput, and we show that these rates perform well in non-saturated

settings.

Although we assume that back-off times and transmission durations are expo-

nentially distributed, we know by Theorem 4.1 that all results hold for generally dis-

tributed back-off times and transmission durations as well. In Chapter 6 we provide

an alternative proof for the main result in this chapter, using Markov random fields.

This chapter is structured as follows. In Section 5.1 we introduce the linear net-

work in more detail. In Section 5.2 we study some of the key features of the unfairness

that arises when all nodes have equal back-off rates. In Section 5.3 we determine the

fair back-off rates that yield equal throughputs. In Section 5.4 we investigate the im-

pact of the fair back-off rates on the network-average throughput and in Section 5.5

we discuss the performance of the fair back-off rates in an unsaturated network. Sec-

tion 5.6 presents some conclusions.
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5.1 Model description

We model the unfairness using the CSMA model introduced in Chapter 1. We consider

a linear network of n nodes on a line, where a transmitting node blocks the first

β nodes on both sides. So the conflict graph is such that all vertices |i − j| ≤ β are

connected, and the set of feasible states Ω is given by all ω such that no two 1’s in ω

are β positions or less apart, i.e., ωiωj = 0 if 1 ≤ |i − j| ≤ β.

Alternatively, we can express the set of feasible states as all states that satisfy a

certain system of linear equations. Let A be an (n − β) × n matrix where each row

contains β+ 1 consecutive 1’s, in the following way:

A =



















1 1 . . . 1 0 . . . 0 0

0 1 1 . . . 1 0 . . . 0

. . .
. . .

...

0 . . . 0 1 1 . . . 1 0

0 0 . . . 0 1 1 . . . 1



















. (5.1)

Now we can write the state space as Ω = {ω ∈ {0,1}n | Aω ≤ 1}, where 1 is the

all-1 vector (of size n−β). This characterization has a natural interpretation as a set of

capacity constraints, and nodes can activate only when enough capacity is available.

We allocate unit capacity to each node, and use the convention that whenever a node

is active it uses its own capacity, as well as the capacity of all its neighbors to the left.

The ith row of A thus represents the capacity required when node i is active. The

constraints that arise from the first β nodes on the line are redundant, and ignoring

these leads to the matrix A in (5.1).

We assume that all nodes are saturated and that unblocked nodes activate after

an exponentially distributed (back-off) time with mean 1/νi . Without loss of gener-

ality, we assume that transmissions last for an exponentially distributed time with

unit mean. Under these assumptions, the n-dimensional process that describes the

node activity is a continuous-time Markov process. We have seen that the stationary

distribution of this process is given by (see (1.8))

π(ω) =
{

Z−1
n

∏n
i=1 ν

ωi
i , if ω ∈ Ω,

0, otherwise,
(5.2)

where Zn is the normalization constant of an n-node linear network. Note that we

made the dependence of the normalization constant on the network length explicit,

which we will use elsewhere in this chapter. From Chapter 4 we know that the dis-

tribution (5.2) also holds for generally distributed back-off times and transmission

durations. Since all results in this chapter are based on (5.2), they remain valid for

general distributions.

Our main concern is with the long-term behavior of nodes, characterized by their

throughputs. We study the throughput vector θ = (θ1, . . . , θn), where θi represents

the fraction of time node i is active. Recall that

θ =
∑

ω∈Ω
π(ω)ω. (5.3)

By exploiting the structure of the network, we can construct alternative expres-

sions for the throughput in (5.3). More specifically, we make use of the observation
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that if node i is active, nodes to the left of i behave independently from nodes to the

right of i. This leads to the following theorem.

Theorem 5.1. Define the sequence (Zi)
∞
i=−∞ such that Zi = 1 for i ≤ 0, and

Zi = 1+ ν1 + ·· · + νi , i = 1,2, . . . , β+ 1, (5.4)

Zi = Zi−1 + νiZi−β−1, i = β+ 2, β+ 3, . . . . (5.5)

Let the vector of back-off rates ν = (ν1, . . . , νn) be such that νi = νn+1−i , i = 1, . . . , n.

Then

θi = νi
Zi−β−1Zn−i−β

Zn
, i = 1, . . . , n. (5.6)

Proof. By conditioning on whether or not node i is active, we can decompose the

activity of the network into two parts, separated by this active node (see [11, Equa-

tion (15)]),

θi = νi
Z1:i−β−1Zi+β+1:n

Z1:n
, (5.7)

where Zi:j is the normalization constant of a network consisting only of nodes i, . . . , j.

For simplicity we denote Zi = Z1:i , and the symmetry of ν implies

Zi:n = Z1:n−i+1. (5.8)

Substituting (5.8) into (5.7) yields the expression for θi in (5.6). By conditioning on

the activity of node i, we immediately get the recursion relation (5.5).

5.2 Unfairness

We now venture deeper into the problem of unfairness, and assume for now that all

nodes have equal back-off rates νi = σ . As observed in Section 1.4 the throughput

distribution in this case is highly unfair, in the sense that some nodes have a larger

throughput than others. In this section we evaluate the throughput in order to study

the unfairness in more detail.

In order to compute the throughput in (5.6), we need to compute the Zi from (5.4)

and (5.5). A detailed analysis of the Zi is performed in Chapter 7, where it is shown

that

Zi =
β
∑

j=0

cjλ
i
j , i = 0,1, . . . , (5.9)

with

cj =
λ
β+1
j

(β+ 1)λj − β
, (5.10)

and λ0, . . . , λβ the β+ 1 roots of

λβ+1 − λβ − σ = 0. (5.11)

Moreover, with λ0 representing the root with the largest modulus of (5.11), it follows

from (5.9) that

Zi = c0λ
i
0 (1+ o(1)) , i →∞, (5.12)
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θi
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(b) n = 9
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σ = 0.1
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(c) n = 12
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σ = 5

(d) n = 15

Figure 5.1: The per-node throughput for β = 1 and various values of n and σ .

and we will use this asymptotic relation at several places, see (5.13) and (5.45).

For ease of presentation, we restrict ourselves to β = 1 in the remainder of this

section. Figures 5.1(a)-5.1(d) show the per-node throughput for various values of n

and σ . All figures display a similar pattern, with the outer nodes having the highest

throughput. Moreover, all figures are symmetric, and exhibit some form of oscillatory

behavior. These observations are formalized in the following result.

Proposition 5.1. For νi = σ > 0, i = 1, . . . , n and β = 1, the throughput has the

following properties:

(i) Symmetric: θi = θn−i+1, i = 1,2, . . . , n.

(ii) Alternating and converging: (−1)i(θi+1 − θi) is positive and decreasing for i =
1,2, . . . , ⌊n/2⌋.

Proposition 5.1 is proved in Appendix 5.A.

In Figure 5.1 we see that for β = 1, the largest difference in throughput is between

nodes 1 and 2. Proposition 5.1(ii) confirms that this is the most unfair situation, and it

persists even in larger networks where the node-in-the-middle problem is mitigated by

the activity of the remaining nodes. In fact, for large networks we have the following

result.

Proposition 5.2. For νi = σ > 0, i = 1, . . . , n and β = 1,

θ1

θ2
∼ λ0 = 1+√1+ 4σ

2
, n →∞.
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Proof. We have from (5.6) that θ1 = Zn−2/Zn and θ2 = Zn−3/Zn. Using (5.12) we

obtain
θ1

θ2
∼ λ0, n →∞. (5.13)

For β = 1 we can explicitly solve (5.11) to obtain θ1/θ2 ∼ λ0 = 1
2
(1+√1+ 4σ).

We note that for β = 1, the Zi satisfy a three-term recursion reminiscent of that

satisfied by the Chebyshev polynomials Un of the second kind. Accordingly, we have

Zi = (−σ)
1
2 (i+1)Ui+1(

√

−1/4σ) =
⌊ i+1

2 ⌋
∑

j=0

(

i + 1− j
j

)

σ j .

The latter expression can be interpreted as the summation over all possible combina-

tions of nodes that can be active simultaneously.

Results similar to those presented in this section can be obtained for β ≥ 2. As an

example, Figures 5.2(a)-5.2(b) show the per-node throughput for n = 9 and β = 2,3.

Both figures exhibit similar oscillatory behavior as observed for β = 1, although the

oscillation period increases with β.

θi

σ = 0.1

σ = 0.5

σ = 1

σ = 5

(a) β = 2

θi

σ = 0.1

σ = 0.5

σ = 1

σ = 5

(b) β = 3

Figure 5.2: The per-node throughput for n = 9 and various values of β and σ .

5.3 Achieving fairness

In this section we present a way to completely remove the unfairness that was dis-

cussed in Section 5.2. In order to do so, we choose node-dependent back-off rates νi
such that all nodes have equal throughputs (θ1 = θ2 = ·· · = θn). From (5.2) and (5.3)

we see that in order to meet this objective we have to solve a system of n nonlinear

equations. It seems that in general this system cannot be solved directly. We there-

fore choose a more indirect approach, and we first consider two special cases that can

be solved explicitly. The insight obtained from these exact solutions is then used to

guess the general solution to the system of nonlinear equations.

The first case is when β = n− 2, so that all but the two outer nodes will block the

entire network.
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Proposition 5.3. For linear networks with three or more nodes, and β = n−2, setting

ν1 = νn = α, νi = α(1+α) for all other nodes and α > 0, yields equal throughputs

θi =
α

1+ (β+ 1)α
, i = 1, . . . , n. (5.14)

Proof. From (5.6) we see that

θ1 = Z−1
n ν1(1+ νn), (5.15)

θi = Z−1
n νi , i = 2,3, . . . , n− 1, (5.16)

θn = Z−1
n νn(1+ ν1). (5.17)

The inherent symmetry of the model allows us to set ν1 = νn. Moreover, for the

throughput of the other nodes to be equal, we require ν2 = ·· · = νn−1 = ν1(1+ ν1).

If we set ν1 = α, and substitute this into (5.15)-(5.17), we get a throughput of

θi = Z−1
n α(1+α). (5.18)

The normalization constant Zn can be determined by summing over all feasible states:

Zn = 1+
n
∑

i=1

νi + ν1νn = 1+ (n− 2)α(1+α)+ 2α+α2

= (1+α)(1+ (β+ 1)α). (5.19)

Substituting (5.19) into (5.18) yields (5.14).

The case n = 5, β = 3 of Proposition 5.3 was considered in [17]. The second special

case corresponds to n = 2(β+ 1), so that a node blocks at least half of the network.

Proposition 5.4. For linear networks with n = 2m nodes, m ∈ N, and β = m − 1,

setting νi = α(1+α)i−1 for α > 0 and i = 1, . . . ,m yields equal throughputs

θi = α

1+ (β+ 1)α
, i = 1, . . . , n. (5.20)

Proof. To achieve equal throughputs, we see from (5.2) and (5.3) that for the case at

hand we should solve the system of equations

ν1 + ν1(νm+1 + ·· · + νn) = ν2 + ν2(νm+2 + ·· · + νn) = ·· · = νm + νmνn. (5.21)

Indeed, the throughput of node i can be written as a sum over all states in which

node i is active. Using symmetry, (5.21) can be written as

ν1 + ν1(ν1 + ·· · + νm) = ν2 + ν2(ν1 + ·· · + νm−1) = ·· · = νm + νmν1. (5.22)

Let ν1 = α > 0. The solution of (5.22) is easily seen to be νi = α(1+α)i−1, i = 1, . . . ,m,

and hence

θi = Z−1
n α(1+α)m. (5.23)

Summing over all possible states yields

Zn = 1+
n
∑

i=1

νi +
m
∑

i=1

νi

n
∑

j=i+m
νj = (1+ (β+ 1)α)(1+α)m. (5.24)

Substituting (5.24) into (5.23) gives (5.20).
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It is clear that the complexity of the system of equations governed by (5.3) reduces

considerably for the choices of β discussed in Propositions 5.3 and 5.4. For general β

this system remains rather complicated. However, we can use Propositions 5.3 and 5.4

to make an educated guess for the general solution. First observe that the fair back-

off rates in Propositions 5.3 and 5.4 only depend on the number of neighbors (nodes

within β hops). Denote by γ(i) the number of neighbors of node i, let α > 0 be some

positive constant, and choose back-off rates ν∗i as

ν∗i = α(1+α)γ(i)−γ(1). (5.25)

We see that this choice is consistent with the fair back-off rates in Propositions 5.3

and 5.4. We now show that ν∗i indeed achieves fairness for all β.

Theorem 5.2. Let α > 0, β ≤ n− 1 and choose ν∗i as in (5.25). Then

θi = α

1+ (1+ β)α, i = 1, . . . , n. (5.26)

We first show that when the back-off rates are chosen according to (5.25), the

recursive relations (5.4) and (5.5) for the normalization constant Zi have a closed-

form solution.

Lemma 5.1. Let α > 0 and choose ν∗i as in (5.25). Then

Zi = (1+α)i , i = 1,2, . . . , n− β. (5.27)

Proof. Substituting (5.27) into (5.4) gives,

Zi = 1+α+α(1+α)+ ·· · +α(1+α)i−1 = (1+α)i ,

for i ≤ β+ 1. Substituting (5.27) into (5.5) gives,

Zi = (1+α)i−1 +α(1+α)β(1+α)i−β−1 = (1+α)i ,

for i ≥ β+ 2.

With Lemma 5.1 we are now in position to prove our main result.

Proof of Theorem 5.2. Recall from (5.6) that

θi = νi
Zi−β−1Zn−i−β

Zn
, i = 1, . . . , n. (5.28)

To prove Theorem 5.2 we substitute (5.27) into (5.28). We distinguish between differ-

ent values of i.

For i ≥ β+ 1 and i ≤ n− β we see that ν∗i = α(1+α)β and

Zi−β−1 = (1+α)i−β−1, Zn−i−β = (1+α)n−i−β. (5.29)

Similarly, for i ≥ β+ 1 and i ≥ n− β+ 1 we have ν∗i = α(1+α)n−i and

Zi−β−1 = (1+α)i−β−1, Zn−i−β = 1. (5.30)



76 Fairness in linear networks

For i ≤ β and i ≤ n− β we have ν∗i = α(1+α)i−1 and

Zi−β−1 = 1, Zn−i−β = (1+α)n−i−β. (5.31)

Finally, for i ≤ β and i ≥ n− β+ 1 we have ν∗i = α(1+α)n−β−1 and

Zi−β−1 = 1, Zn−i−β = 1. (5.32)

Substituting (5.29)-(5.32) into (5.28) yields

θi = Z−1
n α(1+α)n−β−1. (5.33)

We next consider the normalization constant. Withm such that n = β+m, by (5.5),

Zn = Zn−1 + ν∗n Zn−β−1,

which gives upon iteration

Zn = Zn−β +
β
∑

i=1

ν∗n+1−iZn−β−i. (5.34)

Substituting (5.27) into (5.34) yields

Zn = (1+α)n−β +
min{m,β}
∑

i=1

α(1+α)i−1(1+α)n−β−i +
β
∑

i=m+1

α(1+α)n−β−i

= (1+α)n−β−1(1+ (β+ 1)α). (5.35)

Combining (5.35) and (5.33) leads to (5.26).

In Chapter 6 we provide an alternative proof of Theorem 5.2, using Markov random

fields.

To understand better why the rates (5.25) only depend on the number of neighbors

of each node, we study the rates in the limiting regimes of light traffic (α ↓ 0) and heavy

traffic (α →∞). First write (5.25) as

ν∗i = α
γ(i)−γ(1)
∑

j=0

(

γ(i)− γ(1)
j

)

αj , i = 1, . . . , n. (5.36)

When α is small, nodes activate slowly, and few nodes will be active simultane-

ously. In fact, the Markov process spends most of its time in states with at most

one active node, and node interaction (blocking) is negligible. This is reflected in the

light-traffic back-off rates that follow immediately from (5.36):

ν∗i = α+ (γ(i)− γ(1))α2 +O(α3), α ↓ 0.

Hence, for small α, ν∗i ≈ α, which is the same for all nodes. Indeed, if at most

one node is active (as is the case for α small), there is no blocking, and therefore no

need to discriminate between nodes. As α increases, states with two active nodes

are increasingly likely, and nodes may now block their neighbors (all nodes within

distance β). This is accounted for in the back-off rate by the term (γ(i) − γ(1))α2,
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which is linear in the number of neighbors. Thus in light traffic, only the number

of neighbors is of importance, rather than the structure of the entire network. This

reasoning extends to more general networks.

Next, we consider large back-off rates, and we compare the equal rates (all nodes

activate with rate σ → ∞) with the fair rates (5.25) (with α → ∞). In both cases,

nodes activate almost instantaneously when they get the chance to do so, i.e., when

all neighbors are inactive. Consequently, the only states that have positive probability

in the limit are those consisting of maximal independent sets of active nodes. The

distribution according to which these maximal states occur depends on the choice of

back-off rates.

First consider the case of equal back-off rates νi = σ , i = 1, . . . , n. We have seen

in Section 5.2 that this creates unfairness, and that the unfairness increases with σ .

In particular, we see from (5.2) that the only states that have positive probability for

σ → ∞ are those of maximum size, i.e., states with ⌈n/(β + 1)⌉ active nodes. Thus,

for σ →∞,

π(ω) =
{

1/|M|, if ω ∈M,
0, otherwise,

with M ⊂ Ω the set of states of maximum size and |M| the cardinality of this set.

The throughput of each node is thus determined by the number of maximum states

it is contained in, which is not necessarily the same for all nodes.

For the fair back-off rates (5.36), we see that

ν∗i = αγ(i)−γ(1)+1 +O(αγ(i)−γ(1)), α →∞. (5.37)

Thus the back-off rate of a node is characterized by the leading exponent γ(i)−γ(1)+
1, and the limiting probability of a state is determined by the sum of these exponents

over all active nodes. In fact, the only states that give a contribution for α → ∞ are

those that maximize the sum of the exponents of α over all active nodes. It turns out

that there are β + 1 such states, with active nodes {i, i + (β + 1), . . . , i + (β + 1)κi},
i = 1, . . . , β+ 1, with κi = ⌈n+1−i

β+1
⌉ − 1. Each such state has limiting probability

π(ω) = Z−1
n

κi
∏

j=0

νi+(β+1)j = Z−1
n (αn−β +O(αn−β−1)) = 1

β+ 1
, α→∞,

because Zn = (β+1)αn−β+O(αn−β−1), as α →∞. Contrary to the case of equal rates,

we see that each node appears in exactly one state with positive limiting probability.

This explains the equal throughputs in heavy traffic.

This result strongly depends on the structure of the network, as the maximal inde-

pendent sets may change drastically with the addition or the removal of even a single

node. As a result, the simple, locally determined heavy-traffic back-off rates (5.37)

may only hold for linear networks.

5.4 Network-average throughput

The fair rates ν∗i in (5.25) are designed to remove the unfairness that arises when all

nodes have equal back-off rates σ . In order to compare the two schemes, we want to
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set their respective parameters α and σ such that the average per-node throughputs

are equal. In a network with νi = σ > 0, i = 1, . . . , n, write Zi(σ) and θi(σ) for

the normalization constant of a network with i nodes, and the throughput of node i,

respectively. Let θ̄n(σ) = n−1
∑n
i=1 θi(σ) denote the average per-node throughput in

a network with n nodes.

In Section 5.3 we showed that all nodes have equal throughputs α/(1+α(β+ 1))

when using the fair back-off rates in (5.25). When all nodes have equal back-off rates,

a closed-form expression for the throughput does not seem available. However, we

can express the average per-node throughput in terms of the normalization constant

Zn.

Proposition 5.5. Let νi = σ , i = 1, . . . , n. The average per-node throughput is given

by

θ̄n(σ) = σ

nZn(σ)

dZn(σ)

dσ
. (5.38)

Proof. We have from (5.6) with νi = σ that

θ̄n(σ) = σ

nZn

n
∑

i=1

Zi−β−1Zn−i−β.

We compute, using the definition of Zi in Theorem 5.1,

∞
∑

n=1

(

n
∑

i=1

Zi−β−1Zn−i−β
)

xn = x
(xβ − 1

x− 1
+ xβGZ(x)

)2
,

with GZ(x) the generating function of the Zi given by

GZ(x) =
∞
∑

i=0

Zix
i = x− 1+ σxβ+1 − σx

(x− 1)(1− x− σxβ+1)
,

see (7.2). Some rewriting then gives

∞
∑

n=1

(

n
∑

i=1

Zi−β−1Zn−i−β
)

xn = x

(1− x− σxβ+1)2
.

On the other hand, we compute that

d

dσ

[

GZ(x)
] = x

(1− x− σxβ+1)2

and the result follows.

By Proposition 5.5 and the expression (5.9) for Zi , we can express the average

per-node throughput in terms of the roots λ0, . . . , λβ of (5.11).

Proposition 5.6. Let νi = σ , i = 1, . . . , n. The average per-node throughput is given

by

θ̄n(σ) = σ

n

P

Q
, (5.39)
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where

P =
β
∑

j=0

λn+1
j

(β+ 1)λj − β
(

n+ β+ 1

(β+ 1)λj − β
− (β+ 1)λj

((β+ 1)λj − β)2
)

,

Q =
β
∑

j=0

λ
n+β+1
j

(β+ 1)λj − β
. (5.40)

Proof. By (5.9) and (5.10) we have

Zn(σ) =
β
∑

j=0

λ
n+β+1
j

(β+ 1)λj − β
, (5.41)

where λj are the (β + 1) roots λ of (5.11). By implicit differentiation of (5.11) with

respect to σ we find
dλj

dσ
= 1

λ
β−1
j

1

(β+ 1)λj − β
. (5.42)

Then from (5.41) and (5.42) we get

dZn(σ)

dσ
=

β
∑

j=0

( (n+ β+ 1)λ
n+β
j

(β+ 1)λj − β
−

(β+ 1)λ
n+β+1
j

((β+ 1)λj − β)2
)

dλj

dσ

=
β
∑

j=0

λn+1
j

(β+ 1)λj − β
(

n+ β+ 1

(β+ 1)λj − β
− (β+ 1)λj

((β+ 1)λj − β)2
)

. (5.43)

The result follows from substituting (5.41) and (5.43) into (5.38).

When the network grows large (n → ∞) the root of largest modulus, λ0, becomes

dominant, and (5.39)-(5.40) simplifies.

Corollary 5.1. Let νi = σ , i = 1, . . . , n. The limiting average per-node throughput

θ̄(σ) = limn→∞ θ̄n(σ) is given by

θ̄(σ) = λ0 − 1

(β+ 1)λ0 − β
. (5.44)

Proof. We have, as n →∞,

P = λn+1
0

(β+ 1)λ0 − β
n

(β+ 1)λ0 − β
(1+ o(1)), Q = λ

n+β+1
0

(β+ 1)λ0 − β
(1+ o(1)). (5.45)

Hence

θ̄n(σ) = σ

n

P

Q
= σλ

−β
0

(β+ 1)λ0 − β
(1+ o(1)),

and the result follows as σλ
−β
0 = λ0 − 1 by (5.11).

The limiting expression (5.44) occurs in a variety of contexts in [6, 22, 71, 93, 106].

When βσ →∞, the throughput (5.44) simplifies even further.
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Corollary 5.2. Let νi = σ , i = 1, . . . , n and let n →∞. The limiting average through-

put satisfies

θ̄(σ) = 1

β+ 1
(1+ o(1)), βσ →∞.

Proof. By rewriting (5.44) we have

θ̄(σ) = 1

β+ 1

1

1+ 1
(β+1)(λ0−1)

.

Consequently, for θ̄(σ) = 1
β+1

(1 + o(1)) to hold, it is necessary and sufficient that

(β+ 1)(λ0 − 1) →∞. Recall from (5.11) that λ0 is such that

λ
β
0(λ0 − 1) = σ. (5.46)

Let M > 0 be some positive constant, and assume that βσ ≤M . Then

βλ
β
0(λ0 − 1) = βσ ≤M,

and so β(λ0 − 1) ≤ M . Conversely, assume that β(λ0 − 1) ≤ K for some positive

constant K > 0. Then

βσ = β(λ0 − 1)λ
β
0 ≤ β(λ0 − 1)exp(β(λ0 − 1)) ≤ KeK .

Hence

β(λ0 − 1) bounded ⇔ βσ bounded.

It follows that a sufficient condition for (β+ 1)(λ0 − 1)→∞ is that βσ →∞.

Corollary 5.2 implies that θ̄(σ) → 1
β+1

for β fixed and σ → ∞. Thus for n → ∞,

both the equal and fair back-off rates can achieve the maximum throughput by letting

σ →∞ and α →∞, respectively.

Next, we fix σ > 0 and search for α = αn(σ) such that

θ̄n(σ) = α

1+α(β+ 1)
, (5.47)

so the network-average throughput is identical for the fair rates and equal rates.

For α(σ) = limn→∞αn(σ) we can make this comparison explicit. By equating (5.26)

and (5.44) and solving for α, we have α(σ) = λ0 − 1.

It is intuitively clear that imposing fairness may compromise the throughput.

From (5.26) it is seen that the fair per-node throughputs are bounded from above

by
1
β+1

, and that this upper bound can be approached arbitrarily closely by letting

α → ∞. Corollary 5.1 shows that, as n → ∞, the average throughputs in the fair case

and unfair case are equal when α is taken to be λ0 − 1. The maximum back-off rate

in this limiting case equals

ν∗max = α(1+α)β = νi , β+ 1 ≤ i ≤ n− β

as is seen from (5.25). This maximum equals σ by (5.46) since 1+ α = λ0. Hence, as

n → ∞, the fair case achieves the same average throughput with back-off rates that

are less than or equal to those in the unfair case.
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5.5 Fair back-off rates in unsaturated networks

Throughout this chapter we have assumed all nodes to be saturated, and we derived

fair back-off rates that give equal throughputs to all nodes. Alternatively, we may

consider a model where packets arrive over time, and nodes may not always have

packets to transmit. An active node transmits one packet, which takes an exponential

time with mean 1. After finishing this transmission, the node has to compete for

access again. The dynamics are the same as in the saturated scenario, except that

when a node has no packets for transmission, it will remain inactive until it receives a

new packet. We argue that the fair back-off rates also perform well in such unsaturated

settings.

λλλ

(a) single-hop

λ

(b) multi-hop

Figure 5.3: Two types of unsaturated networks.

First consider the situation in Figure 5.3(a), where packets arrive at each node

according to an independent Poisson process with rate λ, and leave the system once

transmitted. Nodes activate according to the fair back-off rates (5.25) with parameter

α > 0. This model reduces to the saturated model when λ→ ∞. Simulations suggest

that the system is stable whenever λ < α/(1+α(β+ 1)), the saturation throughput.

Next, consider the situation in Figure 5.3(b), where packets arrive at node 1 accord-

ing to a Poisson process with rate λ, and are routed along nodes 2, . . . , n. When node n

finishes a transmission, the corresponding packet exits the system. The throughput

of node n is of special interest, as it represents the end-to-end throughput of the

network, that is, the rate at which packets leave the network. If θn = λ, the system

will eventually empty. If θn < λ, packets arrive at a higher rate than the network can

sustain, and packets will accumulate at certain bottleneck nodes. Figure 5.4 shows

simulation results for the end-to-end throughput of this network, plotted against the

arrival rate λ for n = 5, β = 1. The thick, gray line corresponds to the network where

all nodes have equal back-off rate σ = 6, and the black line shows the throughput of

a network with fair back-off rates (5.25) and α = 11.68. The values of σ and α are

chosen such that the average per-node throughput is equal for both back-off schemes,

as prescribed by (5.47). The network with equal back-off rates performs poorly. When

the arrival rate grows beyond a certain threshold, node 2 saturates and the throughput

drops [18, 102]. The network with fair rates, on the other hand, can sustain higher

arrival rates and experiences no decrease in throughput when in overload. In fact,

the end-to-end throughput approaches the per-node throughput in the correspond-

ing saturated network (indicated by the dashed horizontal line). So the network again

appears to be stable when λ < α/(1+α(β+ 1)).
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λ

θ5

Figure 5.4: The end-to-end throughput of a network with equal back-off rates (thick,

gray) and fair back-off rates (black), plotted against the arrival rate at node 1.

5.6 Concluding remarks

In this chapter we studied unfairness and fairness in linear CSMA networks. We pro-

posed node-specific fair back-off rates (5.25) as a function of the number of neighbors,

and showed that these rates provide equal throughput for all nodes. The fair back-off

rates increase with the number of neighbors. Intuitively, this can be explained by

the observation that highly contended nodes require higher back-off rates to remain

competitive. Consequently, the rates (5.25), which are exact in linear networks, might

serve as a heuristic in more complex networks.

These node-dependent back-off rates are still in line with the distributed nature

of CSMA protocol, as calculating the fair back-off rates only requires the number of

neighbors, which a node can observe locally by sensing its direct environment. Find-

ing exact expressions for the back-off rates that provide strict fairness for networks

beyond the linear network is challenging. In [39] results were obtained for trees with

β = 1, and it was shown that rates such as in (5.25), where nodes on the leaves of

the tree have lower rates than those in the stem of the tree, provide strict fairness.

For such trees, it seems possible to extend this result to the β-hop blocking situation.

Other regular topologies such as certain grids appear to admit a similar analysis as

well.

The results obtained in this chapter rely heavily on the decomposition (5.6), which

only applies for certain well-structured networks. For more general networks, the ob-

jective of equal throughputs boils down to solving the system of nonlinear equations

that follows from (5.3). This problem is addressed in Chapter 6 for general conflict

graphs. There we will show that the throughput function that maps the back-off rates

to the throughput is in fact globally invertible, meaning that for any feasible through-

put vector (fair or otherwise) there exists a unique vector of back-off rates that yields

this throughput vector. We then propose various numerical algorithms to determine

the appropriate back-off rates.
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Appendix

5.A Proof of Proposition 5.1

We first establish an auxiliary result. Define a(i, l, n) as the number of states in which

exactly l nodes are active, including node i. For successive nodes, the following rela-

tions hold.

Lemma 5.2. For n ∈ N, i ≤
⌈

n
2

⌉

− 1,

a(i, l, n) = a(i + 1, l, n), l ≤ i, (5.48)

a(i, l, n) > a(i + 1, l, n), i odd, i < l ≤ ⌈n/2⌉ , (5.49)

a(i, l, n) < a(i + 1, l, n), i even, i < l ≤ ⌈n/2⌉ . (5.50)

Proof. The proof is by induction on i. Separating the states based on activity of

node 1 and node n yields the relations

a(i, l, n) = a(i − 2, l − 1, n− 2)+ a(i − 1, l, n− 1), (5.51)

a(i, l, n) = a(i, l − 1, n− 2)+ a(i, l, n− 1), (5.52)

with boundary conditions a(0, l, n) = 0 for all n and l, a(1, l, n) = 1 for l > 0 and all n

and a(1, l, n) = 0 for l ≤ 0 and all n. Hence, the initialization step of the induction is

a(0, l, n) < a(1, l, n), 0 < l < ⌈n/2⌉ ,
a(0, l, n) = a(1, l, n), l ≤ 0.

Consider odd i ≤ ⌈n/2⌉ − 2, let i + 1 < l < ⌈n/2⌉, and assume a(i, l, n) > a(i + 1, l, n).

Using (5.51) and (5.52) we get

a(i + 1, l, n) = a(i + 1, l − 1, n− 2)+ a(i + 1, l, n− 1)

< a(i, l − 1, n− 2)+ a(i + 1, l, n− 1) = a(i + 2, l, n).

This proves assertion (5.49). Assertions (5.48) and (5.50) can be proved in a similar

manner.

We now use Lemma 5.2 to prove Proposition 5.1.

Proof. (Proposition 5.1) By relabeling the nodes in reverse order, we have that a(i, l, n) =
a(n + i − 1, l, n). Using this, Assertion (i) can be shown by rewriting the throughput

as follows:

θi = Z−1
n

∑

l

a(i, l, n)σ l = Z−1
n

∑

l

a(n− i + 1, l, n)σ l = θn−i+1.

To prove assertion (ii) we first show that (−1)i(θi+1 − θi) is positive. That is,

(−1)i(θi+1 − θi) = (−1)iZ−1
n

∑

l

(a(i + 1, l, n)− a(i, l, n))σ l

= 2(−1)iZ−1
n

⌊n/2⌋
∑

l=i+1

(a(i + 1, l, n)− a(i, l, n))σ l > 0, (5.53)
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where the inequality follows from Lemma 5.2. Proposition 5.1(ii) then follows from

(−1)i(θi+1 − θi) = (−1)i
(

θi+1 − Z−1
n

∑

l

a(i, l, n)σ l
)

= (−1)i
(

θi+1 − Z−1
n

∑

l

(a(i, l − 1, n− 2)+ a(i, l, n− 1))σ l
)

> (−1)i
(

θi+1 − Z−1
n

∑

l

(a(i, l − 1, n− 2)+ a(i + 1, l, n− 1))σ l
)

= (−1)i
(

θi+1 − Z−1
n

∑

l

a(i + 2, l, n)σ l
)

= (−1)i+1(θi+2 − θi+1),

where the second equality follows from (5.51), and the inequality from (5.53).



6
Achieving target throughputs

In this chapter we consider the CSMA model introduced in Section 1.3.2, and discuss

the problem of determining the back-off rates that yield an arbitrary target throughput

vector for general conflict graphs. To this end we study the throughput function that

maps the back-off rates to the throughputs, and show that it is globally invertible.

That is, every throughput vector inside the capacity region of the network can be

achieved by a unique vector of back-off rates.

The present setting can be seen as a generalization of the problem considered

in Chapter 5, where we focused on linear networks and equal throughputs. Explicit

solutions for the inverse as obtained in Chapter 5 remain elusive for general conflict

graphs and target throughputs. Instead we present three numerical methods to de-

termine the inverse: fixed-point iteration, basic Newton iteration, and a continuation

method (consisting of a sequence of Newton iteration steps).

This chapter is organized as follows. In Section 6.1 we introduce the model and de-

scribe the throughput function. Our main results on global invertibility are presented

in Section 6.2. In Section 6.3 we describe several numerical methods for determining

the inverse throughput function. Section 6.4 is concerned with results for special

conflict graphs, including an alternative proof of Theorem 5.2 using Markov random

fields. Finally, Section 6.5 presents some conclusions and a discussion.
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6.1 Model description

Consider the CSMA model from Section 1.3.2 on a general conflict graph. The back-

off times and transmission durations are exponentially distributed. Since all results

pertain to the stationary behavior of the CSMA model, we know by Theorem 4.1 that

these remain valid for generally distributed back-off times and transmissions dura-

tions. The stationary distribution of the activity process (1.8) only depends on the

ratio between transmission rates and back-off rates, so without loss of generality we

can set µi ≡ 1.

Denote the number of feasible states by K+1, and writeΩ = {ω0,ω1, . . . ,ωK}. The

states are ordered such that ω0 = 0 (the empty state) and ωk = ek, the kth unit vector

of Rn, k = 1,2 . . . , n. Note that the case K = n corresponds to the complete conflict

graph, for which at most one node can be active at any time.

Recall that the stationary distribution of the activity process is denoted by π ,

with probability π(y) as in (1.8). For the purpose of this chapter it is convenient to

explicitly reflect the ordering of the states and the dependence on the back-off rate

vector ν = (ν1, ν2, . . . , νn)
T in the notation, and introduce

πk(ν) = π(ωk) =
Λk(ν)

Z(ν)
, k = 0,1, . . . , K,

with ωk = (ωk,1, . . . ,ωk,n)
T ,

Λk(ν) =
n
∏

i=1

ν
ωk,i
i , (6.1)

and Z(ν) =∑K
k=0Λk(ν) the normalization constant.

We write the throughput of node i as θi(ν), in order to explicitly reflect the de-

pendence of the throughput on the back-off rates. The throughput vector θ(ν) =
(θ1(ν), θ2(ν), . . . , θn(ν))

T may be written as

θ(ν) =
K
∑

k=0

πk(ν)ωk.

Recall from Section 1.3.5 that the range Γ of the mapping θ : Rn+ → Γ is the interior of

the convex hull formed by all states ω0,ω1, . . . ,ωK , i.e.,

Γ = int
{

K
∑

k=0

αkωk

∣

∣

∣

K
∑

k=0

αk = 1, αk ≥ 0, k = 0, . . . , K
}

.

The problem of finding back-off rates that achieve a certain throughput vector can be

formulated as finding νθ = νθ(γ) that solves

θ(νθ) = γ, (6.2)

with γ = (γ1, . . . , γn)
T ∈ Γ . We thus need to study the mapping θ in detail.
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6.2 Global invertibility

We first consider the non-normalized throughput

η(ν) = Z(ν)θ(ν) =
K
∑

k=0

Λk(ν)ωk.

This function is monotone in ν and hence easier to handle than the normalized

throughput:

Theorem 6.1. The mapping η : Rn+ → Rn+ is globally invertible on its range Rn+.

The proof of Theorem 6.1 is presented in Appendix 6.A.1. Theorem 6.1 says that

the range of η is Rn+, and that for any γ ∈ Rn+ we can find a unique νη = νη(γ) that

solves

η(νη) = γ. (6.3)

In some cases, it might be beneficial from a computational point of view to invert η

rather than θ. Although η only represents the non-normalized throughput, this is

sufficient when interested solely in the throughput ratios (for instance, when aiming

for strict fairness).

The difference between η and θ is embodied by the normalization constant Z(ν),

for which we have the following result.

Lemma 6.1. Let c ∈ Rn+, s > 0 and write νη(sc) for the unique ν ∈ Rn+ such that

η(νη(sc)) = sc. Then, the function fc(s) = s/Z(νη(sc)) is injective.

The proof of Lemma 6.1 is presented in Appendix 6.A.2. Lemma 6.1 suggests that

we can control the throughput θ via the non-normalized throughput η, and indeed,

it turns out to be a crucial ingredient in the proof of the following result.

Theorem 6.2. The mapping θ : Rn+ → Γ is globally invertible on Γ .

Proof. It suffices to show that θ is injective. Let ν1,ν2 ∈ Rn+ be such that θ(ν1) =
θ(ν2). Then we have

η(ν1) = Z(ν1)θ(ν1), η(ν2) = Z(ν2)θ(ν2). (6.4)

With c = θ(ν1) = θ(ν2) ∈ Rn+, we consider the trajectory νη(sc), s > 0, for which we

have

η(νη(sc)) = sc = Z(νη(sc))θ(νη(sc)). (6.5)

With s1 = Z(ν1), s2 = Z(ν2), it follows from Theorem 6.1 and (6.4), (6.5) that νη(s1c) =
ν1, νη(s2c) = ν2, and that

1

s1
Z(νη(s1c)) = 1

s2
Z(νη(s2c)).

Hence, by injectivity of fc(s) in Lemma 6.1, it follows that s1 = s2, so that ν1 = ν2.
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Theorem 6.2 says that for any γ ∈ Γ , there is a unique vector νθ = νθ(γ) that

solves (6.2). The proofs of Theorems 6.1 and 6.2 require the description of the entire

network structure, which appears at odds with the distributed nature of CSMA. How-

ever, in actual implementations, the back-off rates only have to be determined once,

after which the nodes can operate fully autonomously. Thus, if the network structure

is fixed, or if the time scale on which it changes is slower than that of the network

operations, we retain a fully distributed CSMA protocol, while achieving the target

throughputs.

6.3 Inversion methods

In Section 6.2 we established that both the non-normalized throughput η and the nor-

malized throughput θ are globally invertible on their respective ranges. In this section

we present several numerical procedures to compute the inverse of a given (normal-

ized) throughput vector, as well as a light-traffic approximation of the throughput

inverse.

6.3.1 Fixed-point iteration

A first numerical procedure to determine the inverse is fixed-point iteration. This

procedure follows naturally from rewriting the system of non-linear equations (6.2)

as a fixed-point equation. We distinguish between normalized throughput and non-

normalized throughput.

Non-normalized throughput

Write

θi(ν) =
n
∑

k=0

πk(ν)ωk,i +
K
∑

k=n+1

πk(ν)ωk,i = νi 1+Gi(ν)
Z(ν)

, (6.6)

with

Gi(ν) = 1

νi

K
∑

k=n+1

Λk(ν)ωk,i. (6.7)

We can thus write (6.3) as

νη = H(νη),

where

H(ν) =
( γi

1+Gi(ν)
)

i=1,...,n
,

and Gi as in (6.7). Note that H : [0,γ] → [0,γ], where we denote [0,γ] = [0, γ1] ×
·· · × [0, γn]. By global invertibility of η, we know that νη is the unique fixed point

that solves νη = H(νη). Alternatively, since H is continuous, the existence of a fixed

point also follows directly from Brouwer’s fixed-point theorem.

The fixed-point iteration is defined as

ν(0)η = 0, ν(l+1)
η = H(ν(l)η ), l = 0,1, . . . . (6.8)

We next show that the iterands obtained through (6.8) approach the fixed point in a

monotone fashion.
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Proposition 6.1. Assume that the conflict graph has no fully connected nodes (nodes

that are connected to all the other nodes). Then, for i = 1,2, . . . , n and l = 1,2, . . . ,

0 = ν(0)η,i < ν(2)η,i < · · · < ν(2l−2)
η,i < νη,i < ν

(2l−1)
η,i < ν

(2l−3)
η,i < · · · < ν(3)η,i < ν(1)η,i = γi .

(6.9)

Proof. We have ν(0)η = 0 by definition, ν(1)η = γ since Gi(0) = 0, i = 1, . . . , n, and

0 < νη,i < γi , i = 1, . . . , n. Now let l be such that (6.9) holds for all i = 1, . . . , n. Then

νη,i < ν
(2l−1)
η,i , i = 1, . . . , n, and by the exclusion of fully connected nodes we have that

Gi(νη) < Gi(ν
(2l−1)
η ), i = 1, . . . , n,

and so

Hi(νη) > Hi(ν
(2l−1)
η ) = ν(2l)η,i , i = 1, . . . , n,

i.e.,

νη,i > ν
(2l)
η,i , i = 1, . . . , n. (6.10)

In a similar fashion it follows from (6.10) that

νη,i < ν
(2l+1)
η,i , i = 1, . . . , n.

The proof follows by induction.

Proposition 6.1 shows that the iteration scheme in (6.8) approaches the fixed point

ever more closely, although it does not necessarily imply convergence.

Normalized throughput

We now present a similar fixed-point iteration scheme for νθ(γ). Setting θ(νθ) = γ

and rewriting (6.6) yields νθ = K(νθ) with

K(ν) =
(

γiZ(ν)

1+Gi(ν)
)

i=1,...,n
. (6.11)

We have thus established that νθ(γ) is the unique solution to the fixed-point equa-

tion (6.11), and we can again try to find νθ(γ) by iteration. That is, we let ν
(0)
θ = 0

and recursively define

ν
(l+1)
θ = K(ν

(l)
θ ), l = 0,1, . . . . (6.12)

To gain some insight into this fixed-point iteration, below we give two special cases

for which we can prove convergence to the fixed point.

Example 6.1. (Complete conflict graph) Assume that only one node may be active at

any time. Let γ = (γ, . . . , γ)T , γ ∈ R+. By symmetry, both the solution νθ(γ) as well

as the iterands ν
(l)
θ , l = 0,1, . . . have identical components. Thus Z(νθ) = 1 + nνθ,1

and Gi(νθ) = 0. Iterating according to (6.12), gives for all i = 1,2, . . . , n,

ν
(l)
θ,i = γ(1+ nγ + ·· · + (nγ)l−1), l = 0,1, . . . ,

and νθ,i(γ) = liml→∞ ν
(l)
θ,i = γ

1−nγ for γ <
1
n . The requirement for convergence γ <

1
n

is equivalent to γ ∈ Γ .
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In this particular example, νθ(γ) can also be determined analytically. Noting that

at most one node can be active at a time, and assuming all nodes to have the same back-

off rate, it was shown in [92] that the throughput of node i equals θi = νθ,1/(1+nνθ,1).
Solving γ = θi for νθ then gives the same result as the fixed-point iteration.

Example 6.2. (Isolated nodes) Assume that all nodes are isolated (E = ∅). As nodes

do not interact, the throughput of node i equals νθ,i/(1 + νθ,i), and thus the choice

νθ,i = γ/(1− γ), yields per-node throughputs γ, γ < 1.

The same result can be obtained by fixed-point iteration. Let γ = (γ, . . . , γ)T ,

γ ∈ R+, so the target vector, solution and iterands have identical components. We

have

Z(νθ) =
(

n

0

)

+
(

n

1

)

νθ,1 +
(

n

2

)

ν2
θ,1 + ·· · +

(

n

n

)

νnθ,1 = (1+ νθ,1)n

and

Gi(νθ) =
(

n− 1

1

)

νθ,1 +
(

n− 1

2

)

ν2
θ,1 + ·· · +

(

n− 1

n− 1

)

νn−1
θ,1

= (1+ νθ,1)n−1 − 1,

so that

Ki(νθ) = γ(1+ νθ,1). (6.13)

By iterating (6.13), we get for all i = 1,2, . . . , n,

ν
(l)
θ,i = γ + γ2 + ·· · + γ l , l = 0,1, . . . .

Thus νθ,i(γ) = liml→∞ ν
(l)
θ,i = γ/(1− γ), as expected.

Due to the inclusion of the normalization constant, the fixed-point iteration for

the normalized throughput becomes theoretically less tractable than for the non-

normalized throughput, and the counterpart of Proposition 6.1 remains elusive. In

applying the iteration (6.12), though, we have encountered no convergence issues. See

Section 6.3.3 for an example of a successful application of fixed-point iteration. In fact,

for both the non-normalized and normalized throughputs the fixed-point iterations

seems to work well.

6.3.2 Newton-based methods

A second numerical method for inverting the throughput function is Newton iteration.

We present two versions: classical Newton iteration, and a continuation method. The

latter method consists of a sequence of Newton iteration steps. Since there is no

essential difference in these methods between the non-normalized and normalized

case, we present the numerical procedures only for the normalized throughput θ.

Classical Newton iteration

Recall from basic Newton iteration that one selects an initial vector ν
(0)
θ ∈ Γ , and

iterates according to

ν
(l+1)
θ = ν

(l)
θ −

(∂θ

∂ν
(ν

(l)
θ )
)−1

(γ − θ(ν
(l)
θ )), l = 0,1, . . . ,
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where
∂θ

∂ν
=
( ∂θi

∂νj

)

i,j=1,...,n

is the functional matrix, which also plays a crucial role in the proof of Theorem 6.1

(see (6.27) and further).

Continuation method

Let γ = sc, with c ∈ Rn+ and s > 0. The general idea behind the continuation method

is to compute a sequence of back-off rates νθ(γ
(l)), with γ(l) = lδc, and δ the step

size such that s/δ is integer. Successive iterands are computed by performing a single

Newton iteration step:

ν
(l+1)
θ = ν

(l)
θ −

(∂θ

∂ν
(ν

(l)
θ )
)−1

(lδc− θ(ν
(l)
θ )), l = 0, . . . , s/δ.

The step size affects the accuracy of the resulting approximation, as well as the

computation time. In addition to finding νθ(γ), the continuation method approxi-

mates the entire path νθ(γ
(l)), l = 0,1, . . . , s/δ. Similar to the fixed-point iteration,

both Newton-based methods can be modified to work for η as well. This is done in

both cases by replacing the functional matrix
∂θ
∂ν by

∂η
∂ν (see (6.19) and further).

6.3.3 Comparison of inversion methods

To illustrate the inversion methods we consider a linear network with n = 15 nodes in

which an active node blocks all nodes within two hops. Note that for this particular

network, we have a closed-form expression for the target back-off rates, see Theo-

rem 5.2 and Proposition 6.3. We set as target throughput γ = (1/5, . . . ,1/5) ∈ Γ . We

apply each of the three inversions methods (fixed-point iteration, Newton iteration

and continuation method) for 30 iterations, and compare in each step the back-off

rates and throughputs to their respective target values. We measure the error of the

iterands by the Euclidean norm. The results are shown in Figure 6.1. Figure 6.1(a)

plots the error in the back-off rates, and Figure 6.1(b) shows the error in the corre-

sponding throughputs. Both figures show convergence of all three methods.

In general, it is difficult to compare these methods, since the fixed-point method

and the Newton-based methods have different computational bottlenecks. For the

Newton-based methods, the initialization stage is the most cumbersome, in particular

the computation of the matrix
∂θ
∂ν (or

∂η
∂ν ). The iteration itself has a relatively low

complexity. In contrast, the fixed-point method barely requires any initialization,

but its iteration stage typically takes longer than that of the Newton-based methods

(when aiming for equal accuracy). Thus, either method may be best, depending on

the conflict graph, target throughput and required accuracy.

6.3.4 Light-traffic approximation

Starting from the fixed-point equation (6.11) we derive an approximation for the in-

verse νθ(γ) which is accurate when the elements of the normalized throughput vec-

tor γ are relatively small (a similar result can be obtained for the non-normalized

throughput).
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(a) Back-off rates

5 10 15 20 25 30

0.2

0.4

0.6

0.8

‖θ(ν(l)θ )− γ‖2

(b) Throughputs

Figure 6.1: The relative errors of the target back-off rates and throughputs for fixed-

point iteration (black), Newton iteration (gray) and continuation method (dashed),

plotted against the iteration step.

Proposition 6.2. Let γ ∈ Γ and denote the set of neighbors of node i by Ni = {j :

{i, j} ∈ E}. Then, as ‖γ‖ ↓ 0,

νθ,i(γ) = γi(1+ γi +
∑

j∈Ni

γj)+O
(‖γ‖3

)

, i = 1,2, . . . , n.

Proof. For ‖ν‖ ↓ 0, we know that Gi(νθ) = O
(‖νθ‖

)

, and Z(νθ) = 1+O(‖νθ‖
)

. Thus

we obtain from (6.11)

νθ,i = γi +O
(‖γ‖2

)

,

and hence νθ = γ+O(‖γ‖2
)

. Substituting this into (6.11) once more, and noting that

Gi(γ) =
∑

j≠i,j 6∈Ni
γj +O

(‖γ‖2
)

, we deduce

νθ,i =
γi
(

1+∑n
j=1 γj +O

(‖γ‖2
))

1+Gi(γ)+O
(‖γ‖2

) = γi(1+
n
∑

j=1

γj)− γiGi(γ)+O
(‖γ‖3

)

= γi(1+ γi +
∑

j∈Ni

γj)+O
(‖γ‖3

)

, ‖γ‖ ↓ 0,

as required.

The approximation in Proposition 6.2 may be understood by observing that a frac-

tion of the time γi +
∑

j∈Ni
γj +O

(‖γ‖2
)

node i is prevented from activating due to

either its own activity or the activity of one of its neighbors.

6.4 Special conflict graphs

For certain specific conflict graphs, we can either find an exact expression for the

fixed point νθ(γ), or we can decompose the graph into several components in order

to reduce the complexity of the inversion methods. We will exploit the fact that our

model is a Markov random field. The crucial property of Markov random fields that

we will use is that for any subset S ⊆ V , the distribution of S is determined by the
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state of its boundary, and is independent of all other nodes. That is, for a general

conflict graph G, for any y ∈ Ω and nonempty strict subset S ⊂ V , we have

P(Y S = yS|YV\S = yV\S) = P(Y S = yS|Y ∂S = y∂S), (6.14)

with Y S = (Yi)i∈S the components of the vector Y indexed by S, and ∂S = {j ∈ V \ S :

{i, j} ∈ E for some i ∈ S}, the boundary of S.

The next proposition identifies the ‘fair’ back-off rates that render equal through-

puts for all nodes in a linear topology. In particular, we consider n nodes on a line

with a β-hop interference range, i.e., each node interferes with up to β adjacent nodes

to the left and to the right, n ≥ β. Note that this proposition is a reformulation of

Theorem 5.2.

Proposition 6.3. Consider the conflict graph that arises from the linear network de-

scribed above, and let γ = (γ, . . . , γ) with γ < 1/(β+ 1). Then

νθ,i(γ) =
γ(1− βγ)hi−1

(1− (β+ 1)γ)hi
,

with

hi =











i, i = 1, . . . , β,

β+ 1, i = β+ 1, . . . , n− β,
n− i + 1, i = n− β+ 1, . . . , n,

the number of interferers of node i minus β− 1.

Note that γ → 1/(β + 1) as νθ,i(γ) → ∞, so that the throughput approaches the

maximum achievable fair throughput as the back-off rates tend to infinity. The proof

of Proposition 6.3 can be found in Appendix 6.A.3. It is based on the Markov random

field representation of the stationary distribution of the joint activity state, extending

the approach in [39].

Before proceeding, we first introduce some additional notation. For any subset S ⊆
V , we may consider a modified version of the system with the nodes in V \S removed,

or equivalently, a system associated with a conflict graph that is the subgraph of G

induced by the nodes in S and the same back-off rates. For brevity, we will call such

a modified version the system induced by S. Denote by Y(S) a random variable with

the stationary distribution of the activity process in the system induced by S and

by θ(S) = (θv(S))v∈S the associated throughput vector. Moreover, for any S ⊆ V ,

W ⊆ V \ S, let

∆(S; yW ) = S \
⋃

i∈W :yi=1

Ni

be the set of those nodes in S that are not blocked by nodes active under yW . By the

definition of ∂S, we have that ∆(S; yV\S) = ∆(S; y∂S). Finally, let us denote by ΩS the

state space restricted to S.

Recall that Ni = {j : {i, j} ∈ E} is the set of neighbors of node i in the conflict

graph G. We will now apply the property in (6.14) to show that the problem of finding

the stationary distribution of S can be reduced to finding the stationary distribution

of several smaller systems, by conditioning on the state of ∂S.
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V1 V2

v

Figure 6.2: A decomposable graph

Proposition 6.4. For any conflict graph G = (V, E), S ⊆ V , and yS ∈ {0,1}|S|,

P(Y S = yS) =
∑

y∂S∈Ω∂S
P(Y(∆(S; y∂S)) = y∆(S;y∂S))

· 1{∑i∈∂S ∑j∈Ni yiyj=0}P(Y ∂S = y∂S). (6.15)

The proof of Proposition 6.4 is given in Appendix 6.A.4.

Proposition 6.4 may seem convoluted, but can be very useful in certain conflict

graphs for reducing the complexity of solving inversion problems, by choosing the

set S in a judicious way. For example, consider the conflict graph in Figure 6.2. In this

case, the node set can be partitioned into two subsets V1 and V2 and a single node v ,

so V = V1 ∪ V2 ∪ {v}. The sets V1 and V2 are not connected, and v shares edges with

nodes in both subgraphs. We can decompose the graphs V1 and V2 as follows.

Corollary 6.1. For any yV1 ∈ {0,1}|V1|,

P(YV1 = yV1) = P(Y(V1) = yV1)(1− θv(V))
+ P(Y(V1 \Nv) = yV1\Nv )1{yNv=0}θv(V).

In particular, for any i ∈ V1 ∪Nv ,

θi(V) = θi(V1)(1− θv(V)), (6.16)

and for any i ∈ V1 \Nv ,

θi(V) = θi(V1)(1− θv(V))+ θi(V1 \Nv)θv(V). (6.17)

The proof of Corollary 6.1 is presented in Appendix 6.A.5.

If we now substitute θv(V) = γv into (6.16) and (6.17), then we see that the result-

ing inverse problem for finding νθ,i only depends on the nodes in V1, and no longer

requires knowledge about any node in V2. This allows us to solve the inversion prob-

lems for V1 and V2 separately. Doing so considerably reduces the complexity, as the

number of feasible states of the induced subgraph on V1 is much smaller than that

of the entire graph. The result in Corollary 6.1 can also be applied when v is replaced

by a clique of nodes. Naturally, when the conflict graph is disconnected, each of the

components can also be handled separately.
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6.5 Concluding remarks

In this chapter we have established global invertibility of both the non-normalized and

normalized throughput function for CSMA networks on general conflict graphs. This

fundamental result, presented in Section 6.2, states that for any throughput vector

inside the network capacity region there exists a unique vector of back-off rates that

will lead to that throughput vector. This result allows us, for example, to compute

the back-off rates that give equal throughputs among all nodes, or instead to create

various user classes by designing the back-off rates so as to give certain nodes higher

throughput than others. From Theorem 6.2 it immediately follows that the fair back-

off rates obtained in Chapter 5 (for linear networks) are in fact unique.

In Section 6.3 we presented several algorithms for determining the back-off rates.

The implementation of these algorithms involves the computation of the normaliza-

tion constant Z(ν), the (inverse of) the functional matrix ∂θ/∂ν , and the functions Gi
in (6.7). These require the enumeration of the entire state space Ω, which essentially

boils down to counting all independent sets of the conflict graph, a problem which is

known to be computationally cumbersome for large graphs. An important task for

future research is to find ways of dealing with this curse of dimensionality. One pos-

sible approach is to exploit the structure of the conflict graphs and using the theory

of Markov random fields, as was done in Section 6.4. Another approach is to use the

distributed algorithms in [34, 36].

Appendix

6.A Remaining proofs

6.A.1 Proof of Theorem 6.1

Rather than showing invertibility of η itself, we consider the mapping

f(x) = lnη(ex), x = (x1, x2, . . . , xn)
T ∈ Rn,

with ex = (ex1 , ex2 , . . . , exn)T and ln y = (ln y1, . . . , lnyn)
T for y = (y1, y2, . . . , yn)

T ∈
Rn . Because ln and exp are invertible, global invertibility of f and η is equivalent.

By the main result in [99] we have that f is globally invertible if and only if (i) f is

locally invertible and (ii) maxi |fi(x)| → ∞ as maxi |xi| → ∞.

To show that condition (i) holds, it suffices to show that the functional matrix

∂f

∂x
=
( ∂fi

∂xj

)

i,j=1,...,n
,

is non-singular at any point x ∈ Rn. Observe that

∂fi

∂xj
= 1

ηi(ex)

∂ηi(e
x)

∂exj
∂x

∂xj
= 1

ηi(ν)

∂ηi(ν)

∂νj
νj .

Thus
∂f

∂x
= diag

( 1

η1(ν)
, . . . ,

1

ηn(ν)

)∂η

∂ν
diag(ν1, . . . νn), (6.18)
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with
∂η

∂ν
= ( ∂ηi

∂νj

)

i,j=1,...,n.

Because ν1, . . . , νn > 0, both diagonal matrices in (6.18) are non-singular, and we only

have to verify that ∂η/∂ν is non-singular as well.

By taking the derivative of Λk(ν), see (6.1), with respect to νj , we get

∂Λk(ν)

∂νj
= 1

νj
Λk(ν)1{ωk,j=1}, k = 0,1, . . . , K, j = 1, . . . , n.

Consequently,

∂ηi

∂νj
= 1

νj

K
∑

k=0

ωk,iωk,jΛk(ν), i, j = 1,2, . . . , n. (6.19)

Thus the functional matrix
∂η
∂ν may be written as

∂η

∂ν
= P(ν)D(ν),

with

P(ν) =
K
∑

k=0

Λk(ν)ωkω
T
k ,

and

D(ν) = diag(ν−1
1 , . . . , ν−1

n ). (6.20)

The matrix P is positive definite since Λk(ν) > 0, ωk = ek, k = 1,2, . . . , n. Therefore,
∂η
∂ν is non-singular, as required.

In order to verify condition (ii), we write η(ex) as

ηi(e
x) = exi

(

1+ e−xi
K
∑

k=n+1

Λk(e
x)ωk,i

)

. (6.21)

Let

m = min
i

exi , M = max
i

exi ,

a = −min
i
xi , b = max

i
xi .

It is seen from (6.1) and (6.21) that

max
i
ηi(e

x) ≥ M = eb, (6.22)

min
i
ηi(e

x) ≤m(1+ (K − n)Mn−1) = e−a(1+ (K − n)e(n−1)b). (6.23)

Assume that maxi |xi| = max{a, b} → ∞. We need to show that maxi |fi(x)| → ∞ as

well.

When b ≥ a we have

max
i
|fi(ex)| ≥ b = max{a, b}. (6.24)
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When b ≤ a, we see from (6.22) and (6.23) that

max
i
|fi(x)| ≥ max{b, a− ln(1+ (K − n)e(n−1)b)} ≥ max{b, a−A− Bb},

for some A,B > 0 only depending on K,n. Now

min
0≤b∗≤a

max{b∗, a −A− Bb∗} ≥ b(a),

with b(a) the solution of b = a −A− Bb, i.e., b(a) = a−A
B+1

. Hence, when a ≥ b

max
i
|fi(ex)| ≥ a−A

B + 1
= max{a.b} −A

B + 1
. (6.25)

From (6.24) and (6.25) we see that

max
i
|fi(ex)| → ∞

as max{a, b} → ∞, and the proof is complete.

6.A.2 Proof of Lemma 6.1

In order to prove this lemma, we compute some derivatives. We have, see (6.19),

∂Z(ν)

∂νj
=

K
∑

k=0

ωk,j
1

νj
Λk(ν) = 1

νj
ηj(ν), j = 1, . . . , n.

Recall from (6.19) that

∂ηi

∂νj
= 1

νj

K
∑

k=0

ωk,iωk,jΛk(ν), i, j = 1,2, . . . , n.

Differentiating η(νη(sc)) = sc with respect to s, we see that

∂η

∂ν
(νη(sc)) · ν′η(sc) = c,

i.e.,

ν′η(sc) =
(d(νη(sc))1

ds
, . . . ,

d(νη(sc))n

ds

)T =
(∂η

∂ν
(νη(sc))

)−1
c. (6.26)

Moreover, we have

∂θi

∂νj
= ∂

∂νj

(ηi(ν)

Z(ν)

)

= 1

Z2(ν)

(∂ηi(ν)

∂νj
Z(ν)− ηi(ν)∂Z(ν)

∂νj

)

= 1

νj

(

K
∑

k=0

πk(ν)ωk,iωk,j −
K
∑

k=0

πk(ν)ωk,i

K
∑

k=0

πk(ν)ωk,j

)

.

Note that
∑K
k=0πk(ν) = 1 and that θ(ν) = ∑K

k=0πk(ν)ωk. Hence we have

∂θi

∂νj
=

K
∑

k=0

πk(ν)
(

ωk − θ(ν)
)

i

(

ωk − θ(ν)
)T
j

1

νj
. (6.27)
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So
∂θ

∂ν
= Q(ν)D(ν), (6.28)

with D the diagonal matrix in (6.20) and

Q(ν) =
K
∑

k=0

πk(ν)
(

ωk − θ(ν)
)(

ωk − θ(ν)
)T
. (6.29)

From this characterization it is clear that Q(ν) is positive semidefinite, and we will

show below that this matrix is in fact positive definite. Assuming this, we compute

from θ(νη(sc)) = s
Z(νη(sc))

c, for any s > 0

∂θ

∂ν
(νη(sc))ν

′
η(sc) = f ′c(s)c. (6.30)

By (6.26) we have that ν′η(sc) ≠ 0 and by the fact that Q(ν) is positive definite

and (6.28) we have that
∂θ
∂ν is non-singular at ν = νη(sc). Hence, the left-hand side

of (6.30) is a non-zero vector and so f ′c(s)c ≠ 0. Hence f ′c(s) ≠ 0 for any s > 0. Since

fc(0) = 0, fc(s) > 0 for s > 0, the claim follows.

It remains to show that Q(ν) is positive definite. Assume y ∈ Rn is such that

Q(ν)y = 0. Then

0 = yTQ(ν)y =
K
∑

k=0

πk(ν)
∣

∣(ωk − θ(ν))Ty
∣

∣

2
,

and so, as πk(ν) > 0, k = 0,1, . . . , K, we have

(ωk − θ(ν))Ty = 0, k = 0,1, . . . , K,

i.e.,

ωTk y = θ(ν)Ty, k = 0,1, . . . , K. (6.31)

Since ω0 = 0, we get θ(ν)Ty = 0 from (6.31) with k = 0. Then, for k = 1, . . . , n, it

follows from ωk = ek and (6.31) that

yk = ωTk y = θ(ν)Ty = 0.

Hence y = 0. We conclude that Q(ν) is non-singular, and then from (6.29) it is seen

that Q(ν) is positive definite.

6.A.3 Proof of Proposition 6.3

For conciseness, denote

ψi = P(Yi−β, . . . , Yi−1 = 0), i = β+ 1, . . . , n+ 1,

and

ai = P(Yi = 0|Yi−β, . . . , Yi−1 = 0), i = β+ 1, . . . , n.
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By definition,

θi = P(Yi = 1) = P(Yi = 1, Yi−β, . . . , Yi−1 = 0)

= P(Yi = 1|Yi−β, . . . , Yi−1 = 0)P(Yi−β, . . . , Yi−1 = 0) = (1− ai)ψi , (6.32)

for all i = β+ 1, . . . , n.

The idea of the proof is to consider probabilities of the form P(Yi = 1, Yj = 0, j ∈
Ni) and P(Yi = 0, Yj = 0, j ∈ Ni) and use two different relationships between these

in order to obtain a set of equations for the coefficients ai .

First of all, it follows from the product form of the stationary distribution (or the

local balance property) that

P(Yi = 1, Yj = 0, j ∈Ni) = νiP(Yi = 0, Yj = 0, j ∈Ni),

for all i = 1, . . . , n.

The second relationship between these two probabilities follows from the Markov

random field representation of the stationary distribution.

Specifically, for all i = 1, . . . , β, we may write

P(Yi = 0, Yj = 0, j ∈Ni) =P(Y1, . . . , Yβ = 0)

i
∏

l=β+1

P(Yi = 0|Y1, . . . , Yi−1 = 0)

= ψβ+1

i
∏

l=β+1

P(Yi = 0|Yi−β, . . . , Yi−1 = 0) = ψβ+1

i
∏

l=β+1

ai.

For all i = β+ 1, . . . , n, we may write

P(Yi = 0, Yj = 0, j ∈Ni)

= P(Yi−β, . . . , Yi−1 = 0)

min{i+β,n}
∏

l=i
P(Yl = 0|Yi−β, . . . , Yl−1 = 0)

= ψi
min{i+β,n}
∏

l=i
P(Yl = 0|Yl−β, . . . , Yl−1 = 0) = ψi

min{i+β,n}
∏

l=i
ai,

and

P(Yi = 1, Yj = 0, j ∈Ni)

= P(Yi−β, . . . , Yi−1 = 0)P(Yi = 1|Yj = 0, j ∈N −
i )

min{i+β,n}
∏

l=i+1

P(Yl = 0|Yi = 1, Yi−β, . . . , Yi−1, Yi+1, . . . , Yl−1 = 0) = ψi(1− ai),

yielding
P(Yi = 1, Yj = 0, j ∈Ni)

1− ai
= P(Yi = 0, Yj = 0, j ∈Ni)

ai
∏min{i+β,n}
j=i+1 aj

.

Now observe that ψi +
∑i−1
j=i−β θj = 1 for all i = β+ 1, . . . , n, and in particular ψβ+1 +

∑β
j=1 θj = 1. Combining the above two sets of equations, we obtain

θi = νi(1−
β
∑

j=1

θj)

i+β
∏

j=β+1

aj , (6.33)
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for i = 1, . . . , β, while

1− ai = νiai
min{i+β,n}
∏

j=i+1

aj , (6.34)

for all i = β+ 1, . . . , n.

A solution to (6.34) is provided by ai = a and νi = (1 − a)a−hi , or equivalently

νi = α(1 + α)hi−1, with α = 1/a − 1 > 0. Taking νi = (1 − a)a−hi , i = 1, . . . , β, we

obtain from (6.33)

θ1 = ·· · = θβ = θ = (1− a)(1− βθ),

i.e.,

θ1 = ·· · = θβ = θ =
1− a

1+ β(1− a) =
α

1+ (β+ 1)α
,

and (6.32) then yields

θ = 1− a
1+ β(1− a) =

α

1+ (β+ 1)α
for all i = β+ 1, . . . , n.

Noting that

a = 1− (β+ 1)θ

1− βθ or α = θ

1− (β+ 1)θ

then completes the proof.

6.A.4 Proof of Proposition 6.4

The product form of the stationary distribution implies

P(Y S = yS | YV\S = yV\S)

= P(Y S = yS , YV\S = yV\S)
P(YV\S = yV\S)

= P(Y = y)
∑

(xS ,yV\S )∈Ω P(Y S = xS , YV\S = yV\S)

=
Z−1

n
∏

j=1
ν
yj
j

Z−1
∑

(xS ,yV\S )∈Ω
∏

i∈S
ν
xi
i

∏

i 6∈S
ν
yj
j

= K−1(S; yV\S)
∏

j∈S
ν
yj
j ,

for any y ∈ Ω, with

K(S; yV\S) =
∑

xS :(xS ,yV\S)∈Ω

∏

i∈S
ν
xi
i .

Note that
∏

j∈S
ν
yj
j =

∏

j∈∆(S;y∂S)

ν
yj
j

for any y ∈ Ω. Likewise,
∏

i∈S
ν
xi
i =

∏

i∈∆(S;y∂S)

ν
xi
i

for any (xS ,yV\S) ∈ Ω.
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Let Ω(S; yV\S) be the collection of independent sets in the subgraph of G induced

by ∆(S; y∂S). It is easily verified that (xS ,yV\S) ∈ Ω if and only if it holds that

x∆(S;y∂S ) ∈ Ω(S; y∂S). It follows that

K(S; yV\S) =
∑

x∆(S ;y∂S )∈Ω(S;y∂S )

∏

i∈∆(S;y∂S)

ν
xi
i ,

and thus corresponds to the normalization constant of the system induced by∆(S; y∂S).

We conclude that

P(Y S = yS|YV\S = yV\S) =

∏

j∈∆(S;y∂S)

ν
yj
j

∑

x∆(S ;y∂S )∈Ω(S;y∂S)

∏

i∈∆(S;y∂S)

ν
xi
i

= P(Y(∆(S; y∂S)) = y∆(S;y∂S)),

for any y ∈ Ω. Informally speaking, the distribution of the activity state of the nodes

in S in the original system, conditional on the activity states of the remaining nodes,

equals the stationary distribution of the system induced by ∆(S; y∂S). Since ∆(S; y∂S)

only depends on yV\S through y∂S , it further follows that P(Y S = yS|YV\S = yV\S) =
P(Y S = yS|Y ∂S = y∂S). This corroborates the fact that the stationary distribution is a

Markov random field with a neighborhood structure defined by the conflict graph G.

Now observe that

P(Y S = yS|YV\S = yV\S) = P(Y S = yS|Y ∂S = y∂S) = 0

unless
∑

i∈∂S

∑

j∈Ni

yiyj = 0.

Thus we may write

P(Y S = yS|Y ∂S = y∂S) = P(Y(∆(S; y∂S)) = y∆(S;y∂S))1{∑i∈∂S
∑

j∈Ni yiyj=0},

for all y ∈ {0,1}V , rather than just y ∈ Ω.

We deduce that

P(Y S = yS) =
∑

y∂S∈Ω∂S
P(Y S = yS|Y ∂S = y∂S)P(Y ∂S = y∂S)

=
∑

y∂S∈Ω∂S
P(Y(∆(S; y∂S)) = y∆(S;y∂S))1{∑i∈∂S

∑

j∈Ni yiyj=0}P(Y ∂S = y∂S). (6.35)

6.A.5 Proof of Corollary 6.1

For the specific graph under consideration, apply Proposition 6.4 with S = V1 so that

∂S = {v}. We have

P(YV1 = yV1|YV\V1 = yV\V1) = P(YV1 = yV1|Yv = yv)1{yv ∑j∈Nv yj=0}

=
{

P(Y(V1) = yV1), yv = 0,

P(Y(V1 \Nv) = yV1\Nv )1{yNv=0}, yv = 1,
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with P(Yv = 1) = 1− P(Yv = 0) = θv(V), so that (6.35) reduces to

P(YV1 = yV1) = P(Y(V1) = yV1)(1− θv(V))+ P(Y(V1 \Nv) = yV1\Nv )1{yNv=0}θv(V).

In particular, we obtain

θi(V) =
∑

yV1 :yi=1

P(YV1 = yV1)

=
∑

yV1 :yi=1

[

P(Y(V1) = yV1)(1− θv(V))

+ P(Y(V1 \Nv) = yV1\Nv )1{yNv=0}θv(V)
]

=
{

θi(V1)(1− θv(V)), i ∈ Nv ,

θi(V1)(1− θv(V))+ θi(V1 \Nv)θv(V), i 6∈ Nv .



7
Optimal tradeoff between exposed

and hidden nodes

In this chapter we adapt the CSMA model introduced in Section 1.3.2 to incorporate

collisions, and we evaluate the impact of the carrier-sensing range on the network

performance. The effect of the sensing range can be understood as follows. A small

range allows for more simultaneous transmissions, but is less effective in reducing

collisions (hidden nodes). On the other hand, a large sensing range mitigates interfer-

ence, but also admits fewer transmissions (exposed nodes). The model considered in

the present chapter differs slightly from that in Chapters 4-6, where it was assumed

that the carrier-sensing mechanism precludes all collisions. In contrast to Chapters 4-

6, we assume that the back-off rates and transmission rates of all nodes are fixed and

equal.

The main contribution of this chapter is the examination of the impact of hidden

and exposed nodes on the throughput. We consider a linear network in the asymptotic

regime where the number of nodes in the network tends to infinity. For such networks

we are able to obtain structural results on the joint effect of hidden nodes and exposed

nodes. We determine analytically the throughput-optimal sensing range that achieves

the best tradeoff between reducing hidden nodes and preventing exposed nodes.

This chapter is structured as follows. In Section 7.1 we introduce the model, and

derive some auxiliary results. Section 7.2 discusses the main results on the carrier-

sensing tradeoff. In Section 7.3 we perform a detailed study of the normalization

constant. In Section 7.4 we validate the analytical results for the linear network by

simulation, and investigate networks with more general topologies, and in Section 7.5

we present some concluding remarks.
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7.1 Model description and preliminary results

We again consider the CSMA model introduced in Section 1.3.2. The network consists

of a linear array of 2n + 1 evenly spaced nodes with sensing range β, and we denote

the set of all nodes by N = {−n, . . . , n}. Since we aim to model collisions in this

chapter, we have to take the destination of each transmission into account. Whenever

a node activates, it transmits a single packet to a neighboring node. With probability

ψ, the packet is intended for its right neighbor, and with probability 1 − ψ for its

left neighbor. To accommodate this, we introduce (pure destination) nodes n+1 and

−(n + 1), which receive packets, but do not transmit packets themselves. As will be

shown in Proposition 7.2, the throughput is insensitive to the parameter ψ.

The length of the back-off period is assumed to be exponentially distributed with

mean 1/σ , while transmissions last for an exponentially distributed duration with

unit mean. As all results in this chapter are based on the stationary behavior of the

activity process, we know by Theorem 4.1 that these results in fact hold for generally

distributed back-off times and transmission durations.

Each state of the activity process is described by

ω = (ω−n, . . . ,ωn) ∈ {0,1}2n+1.

This process has stationary distribution (see (1.8))

π(ω) =
{

Z−1
2n+1

∏n
v=−n σ

ωv , if ω is feasible,

0, otherwise,
(7.1)

with Z2n+1 the normalization constant. The normalization constant can be defined

recursively as ([11, 71])

Zi =
{

1+ iσ , i = 0,1, . . . , β+ 1,

Zi−1 + σZi−β−1, i ≥ β+ 2.

The sequence (Zi)
∞
i=0 is well studied. In fact, for a network with i nodes, Zi represents

the normalization constant. Straightforward calculations show that the generating

function GZ(x) of Zi can be written as (see [71])

GZ(x) =
∞
∑

i=0

Zix
i = x− 1+ σxβ+1 − σx

(x− 1)(1− x− σxβ+1)
. (7.2)

Let λ0, . . . , λβ denote the β+ 1 distinct roots (see Proposition 7.8) of

λβ+1 − λβ − σ = 0. (7.3)

We denote by λ0 the unique positive real root for which λ0 > |λj|, j ≠ 0 (see [71]).

Applying partial fraction expansion to (7.2) yields the following result:

Proposition 7.1. The normalization constant Zi is given by

Zi =
β
∑

j=0

cjλ
i
j , i = 0,1, . . . , (7.4)
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where λj are the roots of (7.3), and

cj =
λ
β+1
j

(β+ 1)λj − β
.

The proof of Proposition 7.1 is provided in Appendix 7.A, along with the other

proofs not given in the main text. The representation (7.4) was also used in Chapter 5.

Note that Proposition 7.1 does not rely on previous results.

We use the protocol model discussed in Section 1.1.1 to describe interference.

Since all nodes are evenly spaced, this model gives rise to an interference range η. We

assume that a transmission succeeds if and only if at the start of this transmission

no nodes within distance η of the receiving node are already active. This type of

interference is referred to in the literature as the perfect capture collision model [11].

Note that (7.1) does not depend on η, as collisions have no impact on the dynamics

of the system. Using the sensing range β and interference range η we can formally

define hidden nodes and exposed nodes. Consider a transmission from node v to

node w . Hidden nodes are then defined as nodes that are outside the sensing range

of v , but within the interference range of w . Such nodes are not blocked by the

activity of node v , but their proximity to node w makes the hidden nodes harmful

to the transmission from v to w . Conversely, exposed nodes are those nodes that

are within the sensing range of v , but outside the interference range of w . Such

nodes are blocked by an ongoing transmission from v to w , despite the fact that they

will not cause this transmission to fail. Denote by Hr (Hl) the set of hidden nodes

of transmissions from node 0 to node 1 (node -1): all nodes outside the sensing

range of 0, but within the interference range of the receiving node 1 (node -1). By Er
(El) we denote the set of nodes to which this transmission is exposed, so all nodes

within the sensing range of 0, but outside the interference range of the receiving

node. For completeness we let Br (Bl) denote the set of all remaining nodes that

block transmissions from node 0 to node 1 (node -1). This yields:

Hr =
{

v ∈N
∣

∣ |v| ≥ β+ 1, |v − 1| ≤ η }, Hl =
{

v ∈N
∣

∣ |v| ≥ β+ 1, |v + 1| ≤ η },
Er =

{

v ∈N
∣

∣ |v| ≤ β, |v − 1| ≥ η+ 1
}

, El =
{

v ∈ N
∣

∣ |v| ≤ β, |v + 1| ≥ η+ 1
}

,

Br =
{

v ∈N
∣

∣ |v| ≤ β, |v − 1| ≤ η }, Bl =
{

v ∈N
∣

∣ |v| ≤ β, |v + 1| ≤ η }.

So Er∪Br = El∪Bl =
{

v ∈N
∣

∣ |v| ≤ β}. An example is given in Figure 7.1(a). Node 3

is a hidden node, as it interferes with the transmission from node 0 to node 1 (η = 2)

despite the carrier-sensing mechanism (β = 1). In Figure 7.1(b) node 0 is an exposed

node to the transmission from node 2 to node 3 because it would not interfere (η = 2)

with this transmission but is nevertheless silenced by the activity of node 2 (β = 2).

We focus on node 0 (the node in the middle of the network) and in particular its

throughput θn(β, η,σ) defined as the average number of successful transmissions

per unit of time.

Proposition 7.2. The throughput of node 0 is given by

θn(β, η,σ) = σ
Zn−max{β,η−1}Zn−max{β,η+1}

Z2n+1
. (7.5)
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-1 0 1 2 3 4

β

η

(a) Node 3 is a hidden node, and may
interfere with the transmission between
nodes 0 and 1.

-2 -1 0 1 2 3

βη

(b) Node 0 is an exposed node, unnecessarily
silenced by the transmission between nodes 2
and 3.

Figure 7.1: Examples of hidden and exposed nodes.

Proof. Denote by θr (θl) the rate of successful transmission of node 0 to node 1

(node -1), so θn(β, η,σ) = θr + θl . The activation attempts to node 1 (node -1) occur

according to a Poisson process with rate σψ (rate σ(1 −ψ)). We first consider acti-

vation attempts to node 1. Whether an activation attempt is successful depends on

the state of the system when this attempt occurs. Define

A1 =
{

ω ∈ Ω
∣

∣ ∃v ∈ Br ∪Er :ωv = 1
}

,

A2 =
{

ω ∈ Ω
∣

∣ ∀v ∈ Br ∪Er : ωv = 0, ∃v ∈Hr : ωv = 1
}

,

A3 =
{

ω ∈ Ω
∣

∣ ∀v ∈ Br ∪Er ∪Hr :ωv = 0
}

.

When the system is in state ω ∈ A1, the attempt is blocked and node 0 remains in

its current state. When the system is in a state ω ∈ A2, node 0 is not blocked so it

activates. However, at least one hidden node is active so the transmission fails and

does not contribute to the throughput. When the system is in stateω ∈ A3, the perfect

capture assumption guarantees a successful transmission. It follows from the PASTA

property (cf. [5]) that the probability of an arbitrary activation attempt resulting in

a successful transmission is equal to the limiting probability of the system being

in a state ω ∈ A3. So the rate of successful transmissions initiated (and thus the

throughput) is given by

θr = σψ
∑

ω∈A3

π(ω).

From the definitions of Br , Er and Hr we see that

A3 =
{

ω ∈ Ω
∣

∣ ∀v ∈ (D1 ∪D2)
c : ωv = 0

}

,

where

D1 = {−n, . . . ,−max{β,η− 1} − 1}, D2 = {max{β,η+ 1} + 1, . . . , n}.
Let ZD denote the normalization constant for a subset of nodes D ⊆ N defined

as

ZD =
∑

ω∈Ω, ∀v∈Dc :ωv=0

n
∏

v=−n
σωv .
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Then

θr = σψ
ZD1∪D2

ZN
.

The model on the line has the property that by conditioning on the activity of one

of the nodes, its state space can be decomposed, leading to two smaller instances of

the same model on the line. In particular, we know that ZD1∪D2 = ZD1ZD2 (see [11,

Equation (15)]), so that

θr = σψ
ZD1ZD2

ZN
= σψZn−max{β,η−1}Zn−max{β,η+1}

Z2n+1
,

where Zi denotes the normalization constant of a network with i consecutive nodes

on a line. Similarly,

θl = σ(1−ψ)
Zn−max{β,η−1}Zn−max{β,η+1}

Z2n+1
.

and (7.5) follows by adding θr and θl .

7.2 Main results

Our principal aim is to choose the sensing range β so that the throughput θn(β, η,σ)

is maximized for a given η and σ . Define

β∗n = arg max
β

θn(β, η,σ).

Determining β∗n corresponds to quantifying and optimizing the tradeoff between pre-

venting collisions through interference (preventing hidden nodes by setting β large)

and allowing harmless transmissions (preventing exposed nodes by setting β small).

We want to obtain structural insights in how to choose β∗n , and for this purpose the

expressions for Zi in (7.4) and θn(β, η,σ) in (7.5) are too cumbersome. Therefore, we

investigate the throughput in the regime where the network becomes large (n → ∞),

so that (7.5) simplifies considerably.

The analytic results that we obtain for the infinite network provide remarkably

sharp approximations for the finite network; see Section 7.4.1.

We start by presenting the limiting expression for θn(β, η,σ) as the size of the

network grows large:

Proposition 7.3. Let λ0 denote the unique positive real root of (7.3). Then

θ(β,η,σ) = lim
n→∞θn(β, η,σ) = σ

λ
β−f (β)
0

(β+ 1)λ0 − β
, (7.6)

where

f (β) =











2η, if 0 ≤ β ≤ η− 1,

η+ β+ 1, if η− 1 ≤ β ≤ η+ 1,

2β, if β ≥ η+ 1.

(7.7)
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Proof. From Rouché’s theorem (see [16]) it readily follows that λ0 > |λj| for j =
1, . . . , β, and so from (7.4) we get

Zi = c0λ
i
0 (1+ o(1)) , i →∞.

Hence

lim
n→∞θn(β, η,σ) = lim

n→∞σ
c0λ

n−max{β,η−1}
0 c0λ

n−max{β,η+1}
0

c0λ
2n+1
0

= σc0λ
−max{β,η−1}−max{β,η+1}−1
0 ,

which yields (7.7).

Now that we have the limiting expression for the throughput in (7.6), we opt for an

asymptotic analysis. That is, instead of searching for β∗n , we search for its asymptotic

counterpart

β∗ = arg max
β

θ(β,η,σ),

where we henceforth consider θ as a function of the real variable β ≥ 0. In Section

7.4.1 we show that the errors |θn−θ| and |β∗n−β∗| become small, already for moderate

values of n. Because we consider from here onwards the regime n →∞, all nodes have

the same number of nodes within their sensing range. This removes all boundary

effects, and all nodes have the same throughput, which is why just investigating node 0

is sufficient to investigate the entire network.

Proposition 7.4. β∗ ∈ [η− 1, η+ 1].

The result of Proposition 7.4 can be understood as follows. By increasing β beyond

η + 1, no additional collisions are prevented, but an increasing number of nodes is

silenced. On the other hand, the nodes that become unblocked when decreasing β

below η − 1, cause collisions when they activate. Note that for all values β ∈ [η −
1, η + 1], we can rewrite (7.6) as

θ(β,η,σ) = g(β) · (λ0(β))
β−η−1

β+ 1
,

with

g(β) = λ0(β)− 1

λ0(β)− β
β+1

→ 1, β →∞.

We are now in the position to present our main result. While we already know that

the optimal sensing range is contained in the interval [η− 1, η+ 1], the next result is

more specific.

Theorem 7.1. There exists a threshold interval [σmin, σmax] such that

β∗ =
{

η− 1, if σ ≤ σmin,

η+ 1, if σ ≥ σmax,

and β∗ increases from η− 1 to η+ 1 when σ increases from σmin to σmax.
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The proof of Theorem 7.1, see Appendix 7.A, follows from a detailed study of

θ(β,η,σ) which involves implicit differentiation with respect to β (since λ0(β) is

defined implicitly).

Theorem 7.1 can be interpreted as follows (see Figure 7.2). When σ is large, nodes

activate very quickly after finishing their previous transmissions. When the system is

in a maximal independent set, and if collisions are not ruled out, an activating node

suffers a collision almost surely. This explains why for σ large, the optimal sensing

range is β = η + 1, preventing collisions completely. On the other hand, when σ is

small, collisions become rare, as few nodes are active simultaneously. In this case,

the throughput is best served by increasing the spatial reuse, that is, decreasing the

sensing range (up to η− 1). This explains the result of Theorem 7.1 for σ small.

σσmin σmax

β∗

η− 1

η+ 1

Figure 7.2: The optimal sensing range β∗ as a function of σ .

Note that Theorem 7.1 does not give the exact values of σmin and σmax. Instead,

we give below an estimate of the location and width of the threshold interval.

Theorem 7.2. Let κ = τ
η+1

with τ = (√5− 1)/2.

(i) The threshold interval is bounded as

[σmin, σmax] ⊆ [κ(1+ κ)η−1, κ(1+ κ)η+1].

(ii) The width of the threshold interval is asymptotically given as

σmax − σmin ∼ 2eτ

7+ 4τ

(

1

η+ 1

)2

as η→∞.

Here we say that f (η) ∼ g(η) if f (η)/g(η) → 1 as η → ∞. From Theorem 7.2(ii)

we see that the width of the threshold interval is O(η−2). Therefore, the interval

width decreases rapidly as a function of η, and we can speak of an almost immediate

transition from one regime (β∗ = η− 1) to the other (β∗ = η+ 1). As a by-product of

the proof of Theorem 7.2(ii) we obtain sharp approximations for σmin and σmax, see

(7.31)-(7.32):

σ̂min = µ̂−(1+ µ̂−)η−1, σ̂max = µ̂+(1+ µ̂+)η+1, (7.8)

with µ̂± = τ/(η+α±) and α± given as α in (7.32) with γ = ±1.
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7.2.1 Throughput limiting behavior

We now consider some limiting regimes for which we can make more explicit state-

ments about the throughput. From Theorem 7.2 we can already see that the threshold

interval moves in the direction of zero asη becomes large which implies thatβ∗ = η+1

for small values of σ . The next result shows that in the regime where η becomes large,

the maximum throughput tends to zero.

Proposition 7.5. Let σ > 0 be fixed. As η→∞,

max
β
θ(β,η,σ) = 1

η+ 2

(

1+O
(

1

ln(η+ 1)

))

.

For β ≥ η+1 our model reduces to a model without collisions that was studied ex-

tensively in [6, 11, 22, 71, 106], as well as Chapters 4-6. In particular, one immediately

obtains from (7.6) the following result:

Corollary 7.1. Let β ≥ η+ 1. Then

θ(β,η,σ) = λ0 − 1

(β+ 1)λ0 − β
.

This result was also derived in [6, 22, 71, 106]. From Proposition 7.7 and the

proof of Proposition 7.5 it is seen that λ0 → ∞ as σ → ∞ and β is fixed, and that

β(λ0 − 1) → ∞ as β → ∞ and σ is fixed. Thus the throughput is approximately
1
β+1

when either σ or β is large. This can be understood as follows. For large σ , the high

activity rate allows for configurations close to the maximum-size independent set: A

configuration in which one out of every β+1 nodes in active. For β large, when a node

deactivates, a large number of neighboring nodes become eligible for activation. The

time until the first such node activates goes to 0 when β increases.

Corollary 7.2. Let β ≤ η. Then

lim
σ→∞θn(β, η,σ) = 0. (7.9)

Proof. From (7.17) it follows that

λ0(σ) = σ
1

1+β +O(1), σ →∞. (7.10)

Substituting (7.10) into (7.6), and using that f (β) > 2β when β ≤ η, yields

θn(β, η,σ) = σ(σ
1

1+β +O(1))β−f (β)

(β+ 1)(σ
1

1+β +O(1))− β
→ 0, σ →∞,

which gives (7.9).

Figure 7.3 shows the throughput plotted against the activity rate σ for η = 7 and

various values of β. When β ≤ η, the throughput gradually drops to 0, whereas for

β ≥ η+1, the throughput will eventually converge to the limit 1/(β+1). This confirms

Corollaries 7.1 and 7.2.
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Figure 7.3: The throughput θ(β,η,σ) plotted against σ for η = 7 and various values

of β.

7.3 Normalization constant roots

In this section we study the roots λ0, . . . , λβ of (7.3) in more detail. In particular, we

derive exact infinite-series expressions for the roots that are used in this chapter both

for numerical purposes (in Section 7.5) and to prove Corollary 7.2. These roots are

essential in Section 7.4.1, where the finite and infinite networks are compared. Our

main tool will be the Lagrange inversion theorem (see [16, p.22]), and depending on the

value of σ , this gives two different infinite-series expressions. Let (x)n = Γ(x+n)/Γ(x)
denote the Pochhammer symbol.

Proposition 7.6. For small σ > 0,

λ0(σ) = 1+
∞
∑

l=1

(−1)l−1(βl)l−1

l!
σ l , (7.11)

λj(σ) =
∞
∑

l=1

(l/β)l−1

l!
w lj , j = 1,2, . . . , β, (7.12)

where wj = σ 1/βe2πı(j−1/2)/β and ı = √−1. The series expansions in (7.11) and (7.12)

converge for

0 ≤ σ ≤ ββ

(β+ 1)β+1
=: ξ(β), (7.13)

and diverge otherwise.

Proof. We first consider the case j = 0. Set µ0 = λ0−1, so µ0 satisfiesµ0(1+µ0)
β = σ .

Hence for small values of |σ | we have by Lagrange’s inversion theorem

µ0 =
∞
∑

l=1

1

l!

(

d

dµ

)l−1




(

µ

µ(1+ µ)β
)l




µ=0

σ l =
∞
∑

l=1

(−1)l−1(βl)l−1

l!
σ l. (7.14)

Next we consider the case that j = 1, . . . , β. We now write (7.3) as

λβ(1− λ) = −σ, λ(1− λ)1/β = wj ,
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where

wj = σ 1/βe2πı(j−1/2)/β.

Then we get for |wj| sufficiently small

λj =
∞
∑

l=1

1

l!

(

d

dλ

)l−1
[

(

λ

λ(1− λ)1/β
)l
]

λ=0

w lj =
∞
∑

l=1

(l/β)l−1

l!
w lj . (7.15)

The radii of convergence of the series in (7.14) and (7.15) are easily obtained from

the asymptotics

Γ(x+ 1) = xx+1/2e−x
√

2π(1+O(x−1)), x→∞, (7.16)

of the Γ -function, used to examine the Pochhammer quantities (x)n = Γ(x + n)/Γ(x)
and the factorials l! = Γ(l + 1) that occur in both series. This yields the result that

both series converge when σ ≤ ξ(β) and diverge for σ > ξ(β). When σ = ξ(β) the

terms in either series are O(l−3/2).

Proposition 7.7. For large σ > 0,

λj(σ) =
( ∞
∑

l=1

( −l
β+1

)

l−1

l!
v−lj

)−1

, j = 0,1, . . . , β, (7.17)

where vj = σ 1/(β+1)e2πıj/(β+1). The series expansion in (7.17) converges for

σ ≥ ξ(β),

and diverges otherwise, where ξ(β) is given in (7.13).

Proof. We can treat the cases j = 0 and j = 1, . . . , β simultaneously now. We write

(7.3) in the form

1

λ

(

1− 1

λ

)
−1
β+1

=
(

1

σ

)
1
β+1

= v−1,

where we let

v−1 = v−1
j =

(

1

σ

)

1
β+1

e
−2πı

j
β+1 , j = 0,1, . . . , β (7.18)

with σ−
1
β+1 > 0 in (7.18). We get for sufficiently large σ from Lagrange’s inversion

theorem (with u = 1/λ) that

1

λj
=

∞
∑

l=1

1

l!

(

d

du

)l−1
[

(

u

u(1− u)−1/(β+1)

)l
]

u=0

v−lj =
∞
∑

l=1

(

−l
β+ 1

)

l−1

v−lj
l!
. (7.19)

The Pochhammer quantity (
−l
β+1

)l−1 vanishes if and only if l = 1,2, . . . is a multiple

of β+ 1. The radius of convergence of the series in (7.19) is again determined by the

asymptotics of the Γ -function in (7.16). Here it must also be used that

Γ(−J) = −1

Γ(J + 1)

π

sinπJ
, J > 0.

It follows that the series in (7.19) is convergent when σ ≥ ξ(β) and divergent when

σ < ξ(β). When σ = ξ(β) the terms in the series are O(l−3/2).
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Figure 7.4 shows the roots of (7.3) drawn in the complex λ-plane for β = 4. Each

heavy solid line corresponds to a root as a function of σ , and the dots represent

the threshold |σ | = ξ(β). The light solid straight line and the dashed straight line

illustrate the leading behavior of each root as σ ↓ 0 or σ → ∞ according to Proposi-

tions 7.6 and 7.7, respectively. The dashed curve encircling the origin 0 and the point

1 is the image of v ∈ C with |v| = σ 1/(β+1), σ = ξ(β), under the mapping given by

the reciprocal of the right-hand side of (7.17) with vj replaced by v .

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 7.4: The roots of λβ+1 − λβ = σ as functions of σ in (7.11), (7.12) and (7.17),

for β = 4.

7.4 Optimal sensing range for general networks

We now discuss two remaining issues. In Section 7.4.1 we investigate to what extent

the asymptotic results give accurate predictions for finite line networks. In Section

7.4.2 we investigate whether the notions of two regimes and a critical threshold carry

over to more general topologies.

7.4.1 Finite versus infinite line networks

We now look at the approximation error |θn−θ| and the resulting error in the optimal

sensing range. To investigate the error we plot θn and θ in Figure 7.5, represented by

the dashed line and the solid line, respectively. All results for θn were obtained by

using (7.4) and (7.5) in combination with the infinite-series expressions for the roots

in Section 7.3.
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We take n = 100 (201 nodes), η = 4, and we let β increase from 1 to 100. In

Figure 7.5(a) σ = 0.25, and in Figure 7.5(b) σ = 5. For β small the error |θn(β)−θ(β)|
is negligible, but the error increases as β increases. This can be explained by the

observation that for larger β, the number of roots of (7.3) increases, as does the

number of roots discarded by the approximation. This phenomenon becomes more

pronounced for larger values of σ . The non-monotone behavior of θn is caused by

the fact that for finite n, the system is directed to maximum-size independent sets

of active nodes, in particular for σ large, and these sets change dramatically with β.

The most important observation is that the error |θn −θ| is small for those values of

β that lead to a large throughput. Figure 7.6 is similar to Figure 7.5, but instead of

20 40 60 80 100
Β

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

(a) σ = 0.25.
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(b) σ = 5.

Figure 7.5: The throughput θn (dashed) and θ (solid) plotted against β (with n = 100).

fixing n and varying β, we set β = 16 and vary n. In Figure 7.6(a) we take σ = 0.25

and in Figure 7.6(b) we take σ = 5. The accuracy of the approximation increases with

n.
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(a) σ = 0.25.
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(b) σ = 5.

Figure 7.6: The throughput θn (dashed) and θ (solid) plotted against n (with β = 16).

Figure 7.7 shows the optimal sensing range plotted against σ , for η = 5. Each

of the Figures 7.7(a)-7.7(d) shows the optimal range β∗n (σ) for finite n. We take η =
5 for all figures, and let σ increase from 0.15 to 0.19. The vertical lines indicate

the approximations of the threshold interval from (7.8), and we see that these are

sharp. The optimal sensing range β∗ for n →∞ behaves as predicted by Theorem 7.1,
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jumping from η− 1 before the threshold interval, to η+ 1 after this interval, and β∗n
shows a similar pattern. We conclude that n →∞ provides a good approximation for

the behavior of finite-sized networks, already for small and moderate values of n.
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(a) n = 15.
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(b) n = 20.
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(d) n = 30.

Figure 7.7: The optimal sensing range β∗n (dashed) and β∗ (solid) plotted against σ

around the threshold interval for various values of n and η = 5.

7.4.2 General topologies

To investigate more general topologies, we first need a more elaborate description

of the model. In addition to nodes, we introduce directed links between nodes that

represent the possibility of transmissions taking place between these nodes. For two

nodes to be able to transmit data, we require them to be within (Euclidian) distancem

of each other. We assume links are formed between all nodes within distance m.

Each node has back-off rate σ , and the destination of a transmission is chosen uni-

formly from all links originating from the activating node. The sensing range β and

interference range η are also defined using the Euclidian distance.

First we consider 16 nodes placed on a 4 × 4 grid at unit distance from each

other. The grid is wrapped around (top and bottom nodes on any vertical line and

left and right nodes on any horizontal line are connected) so that the network is

fully symmetric and all nodes have the same environment (and the same throughput),

eliminating boundary effects. We set m = 1 and construct links between neighboring

nodes (see Figure 7.8(a)). We take η = 1 and β = 0,1,1.5,2. We run a discrete-event

simulation of the dynamics described above.



116 Optimal tradeoff between exposed and hidden nodes

Figure 7.8(b) shows the average per-node throughput plotted against σ . For σ

small we see that β = 0 (i.e. β = η−m) is throughput-optimal, and for σ large it turns

out β = 2 (β = η+m) is optimal. Moreover, when β is such that collisions can occur

(β < 2), we see that the throughput decreases when σ increases, while for β = 2 the

throughput approaches a non-zero limiting value for large σ .

σ

(a) 16 nodes on a 4×4 grid. (b) The throughput θ of an arbitrary node in a grid

plotted against σ .

Figure 7.8: A grid network and the corresponding per-node throughput.

We next show in Figure 7.9 a randomly generated network with 16 nodes. The

transmission ranges are indicated by the circles, and links are displayed as lines. We

assume a transmission range of m = 1 and interference range η = 1.6. Links are

formed between all nodes within distance m and when a node activates, it uniformly

chooses a node within distance m as the receiver.

Figure 7.9: Random network with 16 nodes.

The simulation results for the network in 7.9 are shown in Figure 7.10. The average

per-node throughput is plotted againstσ forβ = 0.2,0.3,1,1.3,1.5. Figure 7.10 shows

resemblance with Figure 7.3 for the infinite line. For β small the throughput drops

as σ increases, as a result of collisions. For large β collisions are precluded, and the
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Figure 7.10: The average per-node throughput plotted against σ .

average throughput stabilizes. Moreover, we see that the optimal sensing range β∗

again depends on σ . For σ < 0.1 we have β∗ = 0.3 (this is not visible in the picture),

whereas for σ > 0.1 the optimal sensing range is β∗ = 1.

The tradeoff for individual nodes in an irregular network is more complicated.

Although we see a similar threshold interval (σmin, σmax) that separates two sensing

regimes, the position of the threshold interval and the optimal sensing range may

differ between nodes. This depends on the direct surroundings of the node, as well

as on the entire network structure.

7.5 Concluding remarks

In this chapter we studied a linear CSMA network in the presence of collisions. We

considered the problem of determining the carrier-sensing range that maximizes the

throughput, which amounts to a tradeoff between hidden nodes and exposed nodes.

In order to get a handle on the throughput function we studied the wireless network

in the asymptotic regime of infinitely many nodes. This resulted in a tractable limiting

expression for the throughput of node zero (and hence of any other node) that allowed

us to prove the following two results:

(i) To optimize the throughput, one should always choose a sensing range β that

is close to the interference range η, and in fact the optimal sensing range is contained

in the interval [η− 1, η+ 1] (see Proposition 7.4).

(ii) The sensing range β∗ that optimizes the throughput equals η − 1 for less

aggressive nodes (small σ ) and η+ 1 for aggressive nodes (large σ ). In fact, we were

able to show the existence of a threshold interval for σ that separates these two

regimes (Theorem 7.1). This result provides (partial) justification for the frequently

made assumption that no collisions occur. Indeed, one key insight is that if σ is large

enough, ruling out all collisions by setting β = η+ 1 is optimal.

We have further shown that the threshold interval is in many cases small, which

implies that one can speak of an almost immediate transition from one regime (β∗ =
η− 1) to the other (β∗ = η+ 1). We have argued that, when the aggressiveness of the
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nodes is large enough, the system no longer gains from the potential benefits of more

flexibility (small β), and just settles for the situation with no collisions.
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Appendix

7.A Remaining proofs

7.A.1 Proof of Proposition 7.1

We write the generating function from (7.2) as

Z(x,σ) = P(x)

S(x)
,

where

P(x) = 1+ σ x
β+1 − x
x− 1

, S(x) = 1− x− σxβ+1.

It is shown in [71] that the equation S(x) = 0 has β + 1 roots xj , j = 0,1, . . . , β, and

exactly one of them, x0 is real and positive, while |xj| > x0, j = 1, . . . , β. To prove

Proposition 7.1 we first need to establish that these roots are distinct.

Proposition 7.8. The roots of S(x) = 0 are distinct.

Proof. When S(x) = S′(x) = 0, we have

1− x− σxβ+1 = 0 = −1− σ(β+ 1)xβ.

This implies that x = 1 + 1
β > 1 and so that σ = 1−x

xβ+1 < 0. However, σ is non-

negative.

Now we proceed with the proof of Proposition 7.1. Let λj = 1/xj so that λ = λj
satisfies (7.3). Using that all zeros of S are distinct, we have for Z(x,σ) the partial

fraction expansion

Z(x,σ) =
β
∑

j=0

P(xj)

S′(xj)
1

x− xj
.

Now

P(xj)

S′(xj)
=

1+ σ x
β+1
j −xj
xj−1

−1− (β+ 1)σx
β
j

=
−x−βj

1+ (β+ 1)σx
β
j

=
−x−βj

1+ (β+ 1)
1−xj
xj

=
−λβj

(β+ 1)λj − β
.

Here it has been used that

1

1− xj
= −1

σx
β+1
j

, σx
β
j =

1− xj
xj

.

Then for |x| < x0 we have

Z(x,σ) =
β
∑

j=0

P(xj)

S′(xj)

∞
∑

i=0

−xi
xi+1
j

=
∞
∑

i=0

xi





β
∑

j=0

λ
β+1
j

(β+ 1)λj − β
λij



 ,

as required.
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7.A.2 Proof of Proposition 7.4

As introduced earlier,

µ0 = λ0 − 1.

Then µ0 depends on β and σ , we have µ0 > 0, and

µ0(1+ µ0)
β = σ. (7.20)

By implicit differentiation with respect to β, we get from (7.20) that

∂µ0

∂β
= −µ0(1+ µ0) ln(1+ µ0)

1+ µ0 + βµ0
. (7.21)

In particular, both µ0 and λ0 decrease as a function of β > 0.

Consider the case that 0 ≤ β ≤ η− 1. Using λ
β
0 = σ

λ0−1 we get

θ(β,η,σ) = σ 2 λ
−2η
0

(λ0 − 1)((β + 1)λ0 − β)
= σ 2 λ

−2η
0

µ0(1+ µ0 + βµ0)
.

Now λ
−2η
0 increases as a function of β, and we will show that µ0(1+µ0+βµ0) decreases

in β > 0. We have from (7.21) that

∂

∂β
[µ0(1+ µ0 + βµ0)] =

∂

∂β
[βµ2

0 + µ0 + µ2
0]

= µ2
0 −

1+ 2(1+ β)µ0

1+ µ0 + βµ0
µ0(1+ µ0) ln(1+ µ0) ≤ µ0(µ0 − (1+ µ0) ln(1+ µ0)) < 0,

where the last inequality follows from x ln x > x − 1, x > 1. We conclude that θ

increases as a function of β ∈ (0, η− 1].

Next we consider the case that β ≥ η+ 1. From λ
β
0 = σ

λ0−1
we get

θ(β,η,σ) = σ λ
−β
0

(β+ 1)λ0 − β
= λ0 − 1

(β+ 1)λ0 − β
= µ0

1+ µ0 + βµ0
.

Now

∂

∂β

(

µ0

1+ µ0 + βµ0

)

=
∂µ0

∂β − µ2
0

(1+ µ0 + βµ0)2
< 0,

see (7.21), and so θ decreases as a function of β ≥ η+1. Since θ depends continuously

on β > 0, the result follows.
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7.A.3 Proof of Theorem 7.1

The proof of the result as stated in Theorem 7.1 requires expanding several other

results. We consider β ∈ [η− 1, η+ 1] so that

θ(β,η,σ) = σ λ
−η−1
0

(β+ 1)λ0 − β
= σ (1+ µ0)

−η−1

1+ µ0 + βµ0
.

From (7.21) it follows from a straightforward but somewhat lengthy computation that

∂

∂β
[θ(β,η,σ)] = −σµ0(1+ µ0)

−η−1

(1+ µ0 + βµ0)2

(

1− (η+ 2+ β

1+ µ0 + βµ0
) ln(1+ µ0)

)

. (7.22)

Let

F(β,σ) = (η+ 2+ β

1+ µ0 + βµ0
) ln(1+ µ0). (7.23)

Then we have for β ∈ [η− 1, η+ 1] that

F(β,σ) > 1 ⇒ θ increases strictly in β, (7.24)

F(β,σ) < 1 ⇒ θ decreases strictly in β. (7.25)

We analyze F(β,σ) in some detail, especially for values of β,σ such that F(β,σ) = 1.

We recall here that µ0 = µ0(β,σ) is a function of β and σ as well.

We fix β > 0, and we compute

∂

∂β
F(β,σ) =

[

η+ 1

µ0 + 1
+ 1+ β

1+ µ0 + βµ0
− β(1+ β) ln(1+ µ0)

(1+ µ0 + βµ0)2

]

∂µ0

∂σ
.

We get from (7.20) by implicit differentiation that

∂µ0

∂σ
= µ0(1+ µ0)

σ(1+ µ0 + βµ0)
> 0. (7.26)

Furthermore, it is seen from (7.20) that µ0(β,σ)→ 0 asσ ↓ 0 and that µ0(β,σ)→∞ as

σ →∞. Hence, µ0(β,σ) increases from 0 to∞ as σ increases from 0 to∞. Moreover,

η+ 1

µ0 + 1
> 0, 1 >

β ln(1+ µ0)

1+ µ0 + βµ0
. (7.27)

It follows from (7.26) and (7.27) that
∂
∂σ F(β,σ) > 0. Then, from (7.23) and from the

fact that µ0 increases from 0 to ∞ as σ increases from 0 to ∞, we have that F(β,σ)

increases from 0 to ∞ as σ increases from 0 to ∞. Therefore, for any β > 0, there is

a unique σ = σ(β) such that

F(β,σ) = F(β,σ(β)) = 1. (7.28)

We will next show that σ(β) increases in β ∈ [η− 1, η+ 1]. By implicit differenti-

ation in (7.28), we have for β ∈ [η− 1, η+ 1]

0 = d

dβ
[F(β,σ(β))] = Fβ(β,σ(β))+ σ ′(β)Fσ (β,σ(β)), (7.29)
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where Fβ and Fσ denote the respective partial derivatives (and σ ′(η ± 1) is the left

and right derivative for + and −, respectively). We already know that Fσ > 0, and we

will show now that Fβ(β,σ(β)) < 0. To that end, we compute, using definition (7.23)

of F and (7.21) that

∂

∂β
[F(β,σ)]

= − ln(1+ µ0)
[

(η+ 2+ β

1+ µ0 + βµ0
)

µ0

1+ µ0 + βµ0
−

1+ µ0 − β(1+ β) ∂µ0

∂β

(1+ µ0 + βµ0)2

]

.

Next, from (7.23) and (7.28) we have that

µ0 ≥ ln(1+ µ0) = 1

η+ 2+ β
1+µ0+βµ0

,

and so

∂F

∂β
(β,σ(β)) ≤ − ln(1+ µ0)





1

1+ µ0 + βµ0
−

1+ µ0 − β(1+ β) ∂µ0

∂β

(1+ µ0 + βµ0)2





σ=σ(β)

= −β ln(1+ µ0)

(1+ µ0 + βµ0)2

[

µ0 + (1+ β)∂µ0

∂β

]

σ=σ(β)

=−µ0β ln(1+ µ0)

(1+ µ0 + βµ0)2

[

1− (1+ β)(1+ µ0) ln(1+ µ0)

1+ µ0 + βµ0

]

σ=σ(β)
,

where (7.21) has been used once more. Finally, from (7.23) and (7.28),

(1+ β)(1+ µ0) ln(1+ µ0)

1+ µ0 + βµ0

∣

∣

∣

σ=σ(β) =
(1+ β)(1+ µ0)

(η+ 2)(1+ µ0 + βµ0)+ β
∣

∣

∣

σ=σ(β) < 1,

since 0 < β ≤ η + 1 and µ0 > 0. Hence, Fβ(β,σ(β)) < 0 as required. It now follows

from (7.29) and from Fσ (β,σ(β)) > 0 that σ ′(β) > 0 when β ∈ [η− 1, η+ 1].

We have now shown that σ(β) increases in β ∈ [η− 1, η+ 1]. Next we let

σmin = σ(η− 1) < σ(η+ 1) =: σmax.

For σ ∈ [σmin, σmax] the inverse function β(σ) ∈ [η − 1, η + 1] increases in σ . It

follows then from

F(β(σ),σ) = 1, Fβ(β(σ),σ) < 0

and (7.22)-(7.25) that θ(β,η,σ) is maximal at β = β(σ) when σ ∈ [σmin, σmax].

We will now complete the proof of Theorem 7.1. Let β ∈ [σmin, σmax], and assume

that σ ≤ σmin. Then σ < σ(β) and so F(β,σ) < F(β,σ(β)) = 1 since F increases in σ .

Hence, θ strictly decreases at β. Similarly, θ strictly increases at β ∈ (η−1, η+1) when

σ ≥ σmax. It follows that θ strictly decreases in β ∈ [η − 1, η + 1] when σ ≤ σmin

and that θ strictly increases in β ∈ [η − 1, η + 1] when σ ≥ σmax. Finally, when

σ ∈ (σmin, σmax), we have that

F(η − 1, σ) > F(η − 1, σmin) = 1 = F(η + 1, σmax) > F(η + 1, σ),

showing that θ strictly increases at β = η− 1 and strictly decreases at β = η+ 1, and

assumes its maximum at β = β(σ).
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7.A.4 Proof of Theorem 7.2

We shall show below that

(η+ 2+ η− 1

1+ ηκ ) ln(1+ κ) < 1 < (η+ 2+ η+ 1

1+ (η+ 2)κ
) ln(1+ κ) (7.30)

where κ = τ/(η + 1). Assuming this, we recall that (for fixed β > 0) µ0 strictly

increases in σ and vice versa. Set

σ− = κ(1+ κ)η−1,

then κ = µ0(β = η− 1, σ−) and we have that F(η − 1, σ−) < 1. So σ− < σmin since F

is increasing in σ . Similarly, when

σ+ = κ(1+ κ)η+1,

we have that κ = µ0(β = η+ 1, σ+) and then from (7.30) that F(η+ 1, σ+) > 1 and so

σ+ > σmax. Therefore,

σmax − σmin < σ+ − σ− = κ(1+ κ)η−1((1+ κ)2 − 1)

= 2

(

1+ τ

η+ 1

)η−1 (

τ

η+ 1

)(

1+ τ

η+ 1

)

≤ 2eτ
(

τ

η+ 1

)2

(1+ τ

η+ 1
).

This proves Theorem 7.2(i). It remains to show (7.30). As to the first inequality

in (7.30) we have

1− (η+ 2+ η− 1

1+ ηκ ) ln(1+ κ) > 1− (η+ 2+ η− 1

1+ ηκ )κ

>
1

1+ ηκ (1− (η+ 1)κ − ((η+ 1)κ)2) = 0

since 1− τ − τ2 = 0 and (η+ 1)κ = τ . As to the second inequality of (7.30) we have

1− (η+ 2+ η+ 1

1+ (η+ 2)κ
) ln(1+ κ) < 1− (η+ 2+ η+ 1

1+ (η+ 2)κ
)(κ − 1

2
κ2)

= 1

1+ (η+ 2)κ

(

1− (η+ 1)κ − ((η+ 1)κ)2 − κ2(η+ 3/2− 1

2
(η+ 2)2κ)

)

.

As before

1− (η+ 1)κ − ((η+ 1)κ)2 = 0

and

η+ 3

2
− 1

2
(η+ 2)2κ = η+ 3

2
− (η+ 2)2

2(η+ 1)
τ > 0, η ≥ 0

since τ = 1
2
(
√

5− 1) < 3
4

(which is the minimum value of 2(η + 3/2)(η + 1)(η + 2)−2

for η ≥ 0). This shows the second inequality in (7.30).

We next prove Theorem 7.2(ii), and for this we need the following result:



124 Optimal tradeoff between exposed and hidden nodes

Proposition 7.9. With β = η+ γ where −1 ≤ γ ≤ 1,

σ(β) = µ(1+ µ)η+γ , (7.31)

where

µ = τ

η+α+O(η−1)
, α = (5+ 2γ)τ + 1

2(2τ + 1)
, (7.32)

and the O holds uniformly in γ ∈ [−1,1].

Proof. We have σ(β) = µ(1+ µ)β where µ is the unique solution of the equation

(η+ 2+ β

1+ (1+ β)µ ) ln(1+ µ) = 1. (7.33)

We know from the proof of Theorem 7.2(i) that µ = O(η−1). Multiplying (7.33) by

1+ (1+ β)µ and expanding

ln(1+ µ) = µ − 1

2
µ2 +O(µ3),

we get

(ηβ+ 1

2
η+ 3

2
β+ 1)µ2 + (η+ 1)µ − 1 = 1

2
(η+ 2)(β+ 1)µ3 +O(η−2).

Next let α ∈ R be independent of η and use β = η+ γ to write

ηβ+ 1

2
η+ 3

2
β+ 1 = (η+α)2 + (2+ γ − 2α)η + 3

2
γ + 1−α2.

Together with η+ 1 = η+α+ 1−α, we obtain

(η+α)2µ2 + (η+α)µ − 1

= 1

2
(η+ 2)(η+ γ + 1)µ3 − ((2+ γ − 2α)η+ 3

2
γ + 1−α2)µ2 − (1−α)µ +O(η−2).

(7.34)

We now take α such that the whole second term in of (7.34) is O(η−2). Using that

µ = τ
η +O(η−2), this leads to

1

2
τ3 − (2+ γ − 2α)τ2 − (1−α)τ = 0,

and this yields the α in (7.32). The polynomial x2+ x−1 = 0 has a zero of first order

at x = τ . Hence with α as in (7.32) we see from (η + α)2µ2 + (η+ α)µ − 1 = O(η−2)

that (η+α)µ = τ +O(η−2). This gives the result.

Now we proceed to prove Theorem 7.2(ii). We use the result of Proposition 7.9.

Thus

σ(η+ γ) = µ(1+ µ)η+γ ,
µ = τ

η+α+O(η−1)
= τ

η+α(1+O(η
−2)).
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By elementary considerations

σ(η+ γ) = τ

η+α(1+
τ

η+α)
η+γ(1+O(η−2))

= τ

η+α exp[(η+ γ)( τ

η+α −
τ2

2(η +α))](1+O(η
−2))

= τeτ

η+α(1+
(γ −α)τ − 1

2τ
2

η
)(1+O(η−2)).

Then letting γ = ±1 and

α(1) = 7τ + 1

2(2τ + 1)
, α(−1) = 3τ + 1

2(2τ + 1)

in accordance with Proposition 7.9, it follows that

σ(η+ 1)− σ(η− 1) = τeτ

η2

(

α(−1)−α(1)+ (1−α(1))τ + (1+α(−1))τ
)

+O(η−3)

= τeτ

η2

2τ2

2τ + 1
+O(η−3).

Finally, it follows easily from τ2 + τ = 1 that τ3(7+ 4τ) = 2τ + 1.

7.A.5 Proof of Proposition 7.5

Since σ > 0 is fixed, it follows from (see the proof of Theorem 7.2)

σmax < σ+ = τ

η+ 1

(

1+ τ

η+ 1

)η+1

<
τeτ

η+ 1

that σmax < σ when η is large enough. Then by Theorem 7.1

maxθ = θ(η+ 1) = λ0 − 1

(η+ 2)λ0 − η− 1
= µ0

(η+ 2)µ0 + 1
= 1

η+ 2

1

1+ 1
(η+2)µ0

,

where µ0 is the unique positive real µ root of µ(1+ µ)η+1 = σ . We shall show that

(η+ 2)µ0 ≥ lnσ, (7.35)

(η+ 2)µ0 = ln(η+ 1)+O(ln ln(η+ 1)), η→∞, (7.36)

uniformly in σ ∈ [ǫ,M], where ǫ > 0 and M > ǫ are fixed. To show (7.35), we note

from µ0(1+ µ0)
η+1 = σ that

(η+ 1)µ0 ≥ (η+ 1) ln(1+ µ0) = lnσ − lnµ0. (7.37)

Next σ = µ0(1+ µ0)
η+1 ≥ µη+2

0 , and so lnµ0 ≤ 1
η+2

lnσ . Therefore

(η+ 1)µ0 ≥ lnσ − 1

η+ 2
lnσ = η+ 1

η+ 2
lnσ,

and (7.35) follows. As to (7.36), we first observe from (7.21) that µ0 decreases in η

when σ > 0 is fixed. Hence L = limη→∞ µ0 exists, and it follows from µ0(1+µ0)
η+1 = σ
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that L = 0. Thus, µ0 decreases to 0 as η→∞. Then, from (7.37) we get that (η+ 1)µ0

increases to ∞ as η → ∞. All this holds uniformly in σ ∈ [ǫ,M]: Since µ0 increases

in σ , the right-hand side of (7.37) is bounded below by ln ǫ − lnµ0(σ = M). Now

take η0 > 0 such that (η + 1)µ0 ≥ σ when η ≥ η0 and ǫ ≤ σ ≤ M . Then from

µ0(1+ µ0)
η+1 = σ we have

(η+ 1) ln(1+ µ0) = lnσ − lnµ0 ≤ ln(η+ 1)µ0 − lnµ0 ≤ ln(η+ 1)

when η ≥ η0 and ǫ ≤ σ ≤M . Hence, when η ≥ η0,

µ0 ≤ exp

[

ln(η+ 1)

η+ 1

]

− 1 = ln(η+ 1)

η+ 1
+O





(

ln(η+ 1)

η+ 1

)2


 , (7.38)

where the O holds uniformly in σ ∈ [ǫ,M]. Then, by (7.37),

(η+ 1)µ0

≥ lnσ − ln

(

exp

[

ln(η+ 1)

η+ 1

]

− 1

)

= lnσ − ln(
ln(η+ 1)

η+ 1

(

1+O
(

ln(η+ 1)

η+ 1

))

= ln(η+ 1)− ln ln(η+ 1)+ lnσ +O
(

ln(η+ 1)

η+ 1

)

, (7.39)

withO holding uniformly inσ ∈ [ǫ,M] andη ≥ η0. From (7.38) and (7.39) we get (7.35)

uniformly in σ ∈ [ǫ,M].



8
Time-slotted CSMA

In this chapter we study the performance of a time-slotted CSMA algorithm, where

nodes are completely synchronized and transmissions last one time slot. The per-

formance measures of interest are the same as for the continuous-time CSMA model:

throughput, fairness and stability. We first look at the throughput under saturation

assumptions, and compute the network-aggregate throughput as well as the per-node

throughputs. The latter can be used to study fairness, similar to Chapter 5 in the case

of continuous-time CSMA. We then relax the saturation assumption and consider a

multi-hop network, in which packets are forwarded through the network. We study

the stability of each node, and derive bounds on the end-to-end throughput.

The present model is different from the continuous-time CSMA model introduced

in Section 1.3.2 and studied in Chapters 4-7, as these chapters assume that nodes

operate asynchronously and in continuous time. As in Chapters 5 and 7, we consider

a linear network. The multi-hop network discussed in Sections 8.3 and 8.4 is similar

to the network presented in Section 5.5.

This chapter is structured as follows. In Section 8.1 we describe slotted CSMA and

introduce the model of interest. Section 8.2 is devoted to throughput and fairness in

the saturated case, while the unsaturated model is introduced and analyzed in Sec-

tion 8.3. In Section 8.4 we compare the performance of slotted CSMA and continuous-

time CSMA, and Section 8.5 offers some concluding remarks.
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8.1 Model description

We consider a linear network of n nodes which can be either active or inactive, depend-

ing on whether they are transmitting or not. Nodes within distance β are prevented

from simultaneous activity. Similar to the CSMA model discussed in Chapters 4-7, the

state of the network can be written as

ω = (ω1,ω2, . . . ,ωn) ∈ {0,1}n,

where ωi = 1 when node i is active. The set of feasible states Ω ⊆ {0,1}n is the same

as for the linear networks in Chapters 5 and 7, i.e., ω ∈ {0,1}n is feasible if and only if

ωiωj = 0 for all i, j such that 1 ≤ |i− j| ≤ β. We assume that each node is saturated,

i.e., it always has packets available for transmission. This assumption is relaxed in

Section 8.3.

Time is slotted, and at the beginning of each time slot a feasible subset of nodes

is activated for the duration of that slot. We denote the schedule of slot t by X(t) =
(X1(t),X2(t), . . . , Xn(t)) ∈ Ω, with Xi(t) = 1 if node i is active in slot t and Xi(t) = 0

otherwise. The states X(t) are i.i.d. across time, and are generated as follows. At the

beginning of each time slot a random permutation A(t) = (A1(t),A2(t), . . . , An(t)) is

chosen uniformly from the set of all n! permutations. Here Ai(t) denotes the index

of node i in the permutation A(t). Nodes then activate according to

Xi(t) =
{

1, if Xj(t) = 0 ∀j : Aj(t) < Ai(t) and |i − j| ≤ β,
0, otherwise,

(8.1)

starting from the node with the lowest index.

Thus nodes activate in the order prescribed by the permutation A, but only if

no other nodes within distance β are already active. This procedure yields for each

time slot a feasible state ω ∈ Ω. A closed-form expression for the distribution of the

activity processP(X(t) = ω) remains elusive, in contrast to the CSMA model (see (1.8)).

However, as we will see in this chapter, we do not require such distribution in order

to study the throughput.

The above procedure can be implemented in a distributed fashion by synchroniz-

ing all nodes and partitioning each time slot in a contention period and a data period.

At the beginning of a contention period all nodes draw a uniformly distributed back-

off time between 0 and the length of the contention period. A node activates when

its back-off timer runs out, but only if no nodes within distance β are already active.

Nodes then transmit for the entire duration of the data period. The duration of the

contention period has to be sufficiently large to allow the carrier-sensing mechanism

to function correctly. However, it can always be assumed to be much smaller than the

length of the data period by scaling up the transmission durations. In the remainder

of this chapter we assume the length of the contention period to be zero, and we

arrive at the algorithm in (8.1).

Synchronization has long been part of the IEEE 802.11 protocol in the case of

small networks where all nodes can communicate directly with each other. The recent

802.11s (mesh) amendment also provides synchronization for large networks.
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8.2 The saturated regime

Recall that the throughput of a node is defined as the rate at which successful trans-

missions are completed. For slotted CSMA, this is equivalent to the fraction of slots a

node is active. Let us denote by Ti(n) the throughput of node i in an n-node network,

and by En =
∑n
i=1 Ti(n) the network-aggregate throughput.

Throughout this section we will restrict ourselves to the case β = 1. The following

proposition presents the aggregate throughput in this case.

Proposition 8.1. The aggregate throughput in a network of n nodes is given by

En =
n
∑

k=1

(−1)k+1 2k−1

k!
(n− k+ 1).

Proof. Conditioning on the position of the first node to activate, we may write

En = 1+ 2

n
En−2 +

n−1
∑

k=2

1

n
(Ek−2 + En−k−1) = 1+

n
∑

k=1

1

n
(Ek−2 + En−k−1)

= 1+ 2

n
∑

k=1

1

n
Ek−2 = 1+ 2

n

n
∑

k=1

Ek−2, (8.2)

with the convention that E0 = E−1 = 0. The generating function

φ(ρ) =
∞
∑

n=1

Enρ
n, (8.3)

is well defined for any 0 ≤ ρ < 1, since 0 ≤ En ≤ n.

In order to determine φ(ρ), we compute

φ′(ρ) =
∞
∑

n=1

nEnρ
n−1 =

∞
∑

n=1

n



1+ 2

n

n
∑

k=1

Ek−2



ρn−1

= 1

(1− ρ)2 +
2

1− ρ
∞
∑

k=1

Ek−2ρ
k−1 = 1

(1− ρ)2 +
2ρ

1− ρφ(ρ). (8.4)

The system in (8.4) is a standard first-order differential equation, with initial condition

φ(0) = 0, so that

φ(ρ) = 1− e−2ρ

2(1− ρ)2 .

Now use

1− e−2ρ =
∞
∑

n=1

(−1)n+1 2n

n!
ρn and (1− ρ)−2 =

∞
∑

n=1

nρn−1 =
∞
∑

n=0

(n+ 1)ρn

to conclude that

φ(ρ) = 1

2

∞
∑

n=1





n
∑

k=1

(−1)k+1 2k

k!
(n− k+ 1)



ρn,

completing the proof.
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We now turn to the individual throughputs in order to gain a more detailed un-

derstanding of the network. The following theorem gives a closed-form expression

for the per-node throughputs Ti(n), i = 1,2, . . . , n.

Theorem 8.1. For n ≥ 1 and 1 ≤ i ≤ n,

Ti(n) =



























1+
n−i

2
∑

k=0

di,i+2k, if (n− i) is even,

n−i−1
2
∑

k=0

di,i+2k+1, if (n− i) is odd,

(8.5)

where

di,n = −ai (−1)n−i

(n− i)! + (−1)ibi,n, (8.6)

and

ai =
i−1
∑

k=0

(−1)k

k!
, bi,n =

i−1
∑

k=0

(−1)n−k

k!(n− k)! . (8.7)

Proof. Conditioning on the first node to activate yields the following recursive equa-

tion:

Ti(n) =
1

n
+ 1

n

i−2
∑

j=1

Ti−j−1(n− j − 1)+ 1

n

n−2
∑

j=i
Ti(j). (8.8)

With ψi(ρ) =
∑∞
n=i Ti(n)ρn, summing (8.8) over n gives the differential equation

ψ′i(ρ) =
i−2
∑

j=1

ρjψi−j−1(ρ)+ ρi−1

1− ρ +
ρ

1− ρψi(ρ), (8.9)

with initial condition ψi(0) = 0.

We shall show below that

ψi(ρ) = 1

1− ρ2

(

ρi + (−1)i+1 − e−ρρiai + (−1)ie−ρ
i−1
∑

k=0

ρk

k!

)

, (8.10)

which leaves (8.5) to prove. To this end we shall find the Taylor expansion for (8.10)

with respect to the powers of ρ. Let us start with the last term inside the brackets

in (8.10):

e−ρ
i−1
∑

k=0

ρk

k!
=

∞
∑

m=0

(−1)mρm

m!
·
i−1
∑

k=0

ρk

k!
=

∞
∑

m=0

cmρ
m

with

cm =































1, if m = 0,
n
∑

k=0

(−1)m−k
k!(m−k)! = 0, if 0 < m ≤ i − 1,

i−1
∑

k=0

(−1)m−k
k!(m−k)! = bi,m, if m ≥ i,
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and bi,m as in (8.7). Substituting this into (8.10) and using the Taylor expansion for

the exponential function

e−ρs =
∞
∑

m=0

(−1)m
ρm

m!
sm (8.11)

yields

ψi(ρ) = 1

1− ρ2

(

ρi + ai
∞
∑

m=i

(−1)m−i

(m − i)! ρ
m + (−1)i

∞
∑

m=i
bi,mρ

m
)

= 1

1− ρ2

(

ρi +
∞
∑

m=i
di,mρ

m
)

,

with di,m defined in (8.6). The Ti(n) then readily follow from ψi(ρ).

This proves Theorem 8.1. It remains to be shown that (8.10) holds. Introducing

ν(ρ, s) =
∞
∑

i=1

ψi(ρ)s
i ,

and using (8.9) gives

∂ν(ρ, s)

∂ρ
=

∞
∑

i=1

ψ′i(ρ)s
i =

∞
∑

i=1

i−2
∑

j=1

ρjψi−j−1(ρ)s
i +

∞
∑

i=1

ρi−1si

1− ρ +
∞
∑

i=1

ρ

1− ρψi(ρ)s
i

=
∞
∑

j=1

ρj
∞
∑

i=j+2

ψi−j−1(ρ)s
i + s

(1− ρ)(1− ρs) +
ρ

1− ρν(ρ, s)

=
(

ρs2

1− ρs +
ρ

1− ρ

)

ν(ρ, s)+ s

(1− ρ)(1− ρs) ,

and ν(0, s) = 0. Solving this standard differential equation we obtain

ν(ρ, s) = s(1− e−ρ(s+1)))

(s + 1)(1− ρ)(1− ρs) . (8.12)

We now need to write the Taylor expansion for the latter expression. Using

s

s + 1
=

∞
∑

m=1

(−1)m+1sm and
1

1− ρs =
∞
∑

k=0

ρksk

yields

s

s + 1

1

1− ρs =
∞
∑

l=1

(

l−1
∑

k=0

ρk(−1)l−k+1
)

s l =
∞
∑

l=1

(−1)l+1
(

l−1
∑

k=0

ρk(−1)−k
)

s l

=
∞
∑

l=1

(−1)l+1 1− (−ρ)l
1+ ρ s l =

∞
∑

l=1

ρl + (−1)l+1

1+ ρ s l . (8.13)

Substituting (8.13) and (8.11) into (8.12) gives

ν(ρ, s)

= s

s + 1

1

1− ρ
1

1− ρs
(

1− e−ρ(s+1)
)

= 1

1− ρ2

(

∞
∑

m=1

(

ρm + (−1)m+1
)

sm·
(

1− e−ρ(s+1)
))

= 1

1− ρ2

(

∞
∑

m=1

(ρm + (−1)m) sm − e−ρ
∞
∑

m=1

ρmsm
m−1
∑

k=0

(−1)k

k!
+ e−ρ

∞
∑

m=1

(−1)msm
m−1
∑

k=0

ρk

k!

)

,
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which yields (8.10).

Theorem 8.1 provides us with a closed-form but unwieldy expression for the indi-

vidual throughputs. In case the network size grows to infinity we can obtain a more

elegant expression for the throughputs of nodes 1 and 2.

Corollary 8.1. As n →∞,

T1(n) → 1− e−1 and T2(n)→ e−1.

8.3 Stability and end-to-end throughput

In this section we relax the assumption that all nodes are saturated and instead con-

sider a multi-hop network where certain buffers may occasionally empty. Specifically,

node 1 has an infinite supply of packets available which are forwarded through the

network along nodes 2,3, . . . , n. Once transmitted by node n, packets leave the net-

work. Let us denote by Qi(t) the backlog of node i at time t . Nodes compete for

access to the medium as before, with the modification that nodes can only activate

when they have packets available for transmission.

We consider a chain of n = 2β+1 nodes, β ≥ 1, and we denote by ξi the throughput

of node i. Note that

ξ1 ≥ ξ2 ≥ ·· · ≥ ξn, (8.14)

with equality if all nodes are stable. We are interested in the end-to-end throughput

ξn. In contrast to the saturated case discussed in Section 8.2, the queue lengths play

a crucial role, and no explicit expression for the throughputs is known. We shall

provide bounds on the end-to-end throughput. To do so we require the following

stability results.

Lemma 8.1. For slotted CSMA with n = 2β+ 1, β ≥ 1, we have

(i) Nodes 1,2, . . . , β+ 1 are unstable;

(ii) Nodes β+ 2, β+ 3, . . . , n are stable.

Proof. Node 1 is saturated by definition, and is thus unstable. Let i ∈ {2,3, . . . , β+1}
and assume that node i − 1 is unstable. We will show that

ξi−1 > ξi , i = 2,3, . . . , β+ 1, (8.15)

and conclude by induction that statement (i) holds. In order to demonstrate that (8.15)

holds, it is sufficient to show that

P(Xi−1(t) = 1) > P(Xi(t) = 1), (8.16)

and that the difference between these two probabilities is bounded away from zero.

To verify (8.16), note that for all t ≥ T for some T < ∞, node i always has a

packet for transmission since it is unstable. We let t sufficiently large and denote by

A∗(t) = arg mini:Qi(t)≥1Ai(t) the first node to activate in slot t , with the convention
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thatA∗(t) = 0 if all nodes are empty. At most two nodes can be active simultaneously,

and by conditioning on A∗(t) we obtain

P(Xi−1(t) = 1)

=P(A∗(t) = i − 1)+
2β+1
∑

j=β+i
P(A∗(t) = j) 1

j − (β+ i − 1)

=P(A∗(t) = i − 1)+
2β
∑

j=β+i
P(A∗(t) = j) 1

(j + 1)− (β+ i) + P(A
∗(t) = 2β+ 1)

1

β+ 2− i

>

(

P(A∗(t) = i)+
2β+1
∑

j=β+i+1

P(A∗(t) = j) 1

j − (β+ i)
)

1{Qi(t)≥1} = P(Xi(t) = 1),

completing the proof of (i).

In order to show statement (ii), let i ∈ {β+ 2, . . . ,2β+ 1} and assume that node i

is unstable. Then,

P(Xi(t) = 1) = P(A∗(t) = i)+
i−β−1
∑

j=1

P(A∗(t) = j) 1
∑2β+1
k=j+β+1 1{Qk(t)≥1}

>

(

P(A∗(t) = i − 1)+
i−β−2
∑

j=1

P(A∗(t) = j) 1
∑2β+1
k=j+β+1 1{Qk(t)≥1}

)

= P(Xi−1(t) = 1),

which is a contradiction, since the throughput of node i cannot be greater than that

of node i − 1 by (8.14).

Using Lemma 8.1 we can now provide a bound on the end-to-end throughput.

Theorem 8.2. The end-to-end throughput satisfies ξn >
1

2β+1
.

The proof of Theorem 8.2 is presented in Appendix 8.A.1. It is based on observing

that time may be divided into i.i.d. cycles between instances when nodes β+2, . . . ,2β+
1 empty. The throughput can then be expressed as the ratio of the average number

of packets transmitted by node n in a typical cycle to the average length of a typical

cycle.

8.4 Comparing slotted and continuous-time CSMA

In this section we compare the performance of slotted and continuous-time CSMA. In

Section 8.4.1 we inspect the throughput in saturated conditions and in Section 8.4.2

we compare the stability and end-to-end throughput of the multi-hop network.

8.4.1 Saturated networks

Continuous-time and slotted CSMA have been compared in [19], where it is shown

that the network-aggregate throughput under the slotted algorithm is lower than for



134 Time-slotted CSMA

continuous-time CSMA. The authors then concluded that the CSMA algorithm does

not benefit from synchronization. The aggregate throughput is not the only relevant

performance measure, however, and we shall now compare fairness under both algo-

rithms.

We consider the saturated CSMA model introduced in Chapter 1, and assume all

nodes have equal back-off parameter νi = σ , i = 1,2, . . . , n. The network-aggregate

throughput in this case is computed in Proposition 5.6. Using this we can plot the

aggregate throughput for both continuous-time and slotted CSMA against the number

of nodes, see Figure 8.1. This figure shows that for large values of σ , the network-

aggregate throughput for slotted CSMA is strictly smaller than for continuous-time

CSMA. The reason for this is that slotted CSMA in each slot chooses at random a

maximal independent set, while continuous-time CSMA with σ large is typically locked

in independent sets of maximum size. Thus continuous-time CSMA on average allows

more simultaneous activity, resulting in higher aggregate throughput. This reasoning

holds more generally, for example in linear networks with β ≥ 2.

n

σ = 0.1

σ = 0.5

σ = 1

σ = 50

slotted

Figure 8.1: The aggregate throughput for continuous-time CSMA (for various values

of σ ) and slotted CSMA plotted against n, for β = 1.

Thus continuous-time CSMA avoids small maximal independent sets yielding a

high aggregate throughput. However, this does not necessarily mean that continuous-

time CSMA is better than slotted CSMA: It turns out that the high throughput comes at

the cost of unfairness. Figure 8.2 shows the per-node throughputs under saturation

for both slotted CSMA (Theorem 8.1) and continuous-time CSMA (Theorem 5.1), for

various values of σ . We have seen in this thesis that continuous-time CSMA is unfair,

and from Figure 8.2 it is clear that the same holds for slotted CSMA. For small values

of σ nodes are active infrequently, and continuous-time CSMA is fairer than slotted

CSMA. However, for values of σ that give comparable aggregate throughput to slotted

medium access, the continuous-time system is much less fair.

8.4.2 Multi-hop networks

We consider the unsaturated multi-hop network, and compare the end-to-end through-

put of slotted CSMA derived in Theorem 8.2 to that of continuous-time CSMA. For
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σ = 0.1

σ = 0.5

σ = 1

σ = 50

slotted

(a) n = 8

σ = 0.1

σ = 0.5
σ = 1

σ = 50

slotted

(b) n = 15

Figure 8.2: The per-node throughput for continuous-time CSMA (for various values of

σ ) and slotted CSMA in a network with β = 1.

continuous-time CSMA we assume all nodes to have back-off rates σ → ∞ and we

denote by θ∗n the throughput of node n in the multi-hop network. We first show the

following stability result for the multi-hop continuous-time CSMA model.

Lemma 8.2. For continuous-time CSMA with n = 2β+ 1, β ≥ 1,

(i) Nodes 1,2, . . . , β+ 1 are unstable;

(ii) Nodes β+ 2, β+ 3, . . . ,2β+ 1 are stable.

The proof of Lemma 8.2 considers the Markov chain embedded at transition in-

stants, and is otherwise analogous to that of Lemma 8.1.

We can now provide upper and lower bounds on the end-to-end throughput for

continuous-time CSMA.

Theorem 8.3. The end-to-end throughput for continuous-time CSMA satisfies

1

2β+ 2
< θ∗n ≤

1

2β+ 1
.

The proof of Theorem 8.3 is presented in Appendix 8.A.2.

Combining Theorems 8.2 and 8.3 we see that the end-to-end throughput of slotted

CSMA is strictly higher than that of continuous-time CSMA. This is somewhat surpris-

ing, in view of the higher aggregate throughput in the continuous-time setting, but

can be explained by the better fairness properties of the slotted system.

8.5 Concluding remarks

In this chapter we considered a discrete-time CSMA algorithm, and computed the per-

node throughputs. We then studied a multi-hop network and provided a bound on

the end-to-end throughput. These results were compared with the performance of

continuous-time CSMA, and we observed that for the saturated case continuous-time

CSMA has higher aggregate throughput, while slotted CSMA performs better in terms
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of fairness. The latter is shown to lead to higher end-to-end throughput for slotted

CSMA.

These results suggest an interesting connection between the behavior of the sat-

urated network and the throughput in the unsaturated case. A similar phenomenon

was observed in Section 5.5, where it is argued that the back-off rates that provide

equal throughputs (for continuous-time CSMA) also perform remarkably well in a

multi-hop setting. We conjecture that the minimum and maximum throughput in

the saturated case provide lower and upper bounds for the end-to-end throughput in

the multi-hop case, respectively. Consequently, in case we have strict fairness (equal

throughputs) in the saturated regime, a multi-hop flow that crosses all nodes could

attain the saturation throughput.

Appendix

8.A Remaining proofs

8.A.1 Proof of Theorem 8.2

By Lemma 8.1 we have that nodes β+ 2, ...,2β+ 1 are stable, so time may be divided

into "cycles" that start and end with nodes β+2, . . . ,2β+1 being empty. Since nodes

1, ..., β+ 1 are unstable, the number of packets R leaving the network during a cycle

and the length of a cycle U are identically distributed across cycles. Thus, by renewal

reward theory [5] we can express the throughput of our system as the total expected

number of packets leaving the system during a cycle divided by the total expected

duration of a cycle:

ξn = E[R]

E[U]
. (8.17)

A typical cycle will be as follows:

1) nodes 1, . . . , β jointly finish T0 transmissions;

2) node β+ 1 transmits a single packet.

Let τ denote the number of times nodes β+ 2, . . . ,2β + 1 relinquish access, until all

these nodes are empty again, and the cycle ends. Each of these τ events initiates a

"sub-cycle" as follows:

for i = 1, . . . , τ :

3) nodes Li , . . . , β+ 1 jointly finish Ti transmissions, Ni of which by β+ 1;

4) nodes β+2, . . . ,2β+1 jointly finishMi transmissions. At the end of this activity

period, node 2β+ 1 is empty.

Here Li is such that β+Li is the rightmost non-empty node at the time when nodes

β+ 2, ...,2β+ 1 lost access to the channel.

By combining the different components of a cycle we obtain the cycle duration

and packet departures as follows

R = 1+N1 + ·· · +Nτ U = T0 + 1+ (T1 +M1)+ ·· · + (Tτ +Mτ), (8.18)
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Note that nodes β + 2, . . . ,2β + 1 experience a joint workload of β for each packet

transmitted by node β+ 1, so

M1 + . . . ,Mτ = β(1+N1 + . . .+Nτ). (8.19)

Now, by substituting (8.18) and (8.19) into (8.17) we obtain the following expression

for the throughput:

ξn = E[1+N1 + . . . ,Nτ]
E[T0 + 1+ (T1 +M1)+ . . .+ (Tτ +Mτ)]

= 1+ E[N1 + . . . ,Nτ]
2β+ 1+ E[T1 + . . .+ Tτ + β(N1 + . . .+Nτ)]

. (8.20)

The exact state of the system right before the first sub-cycle is known, we have

T0 + 1 ∼ geo

(

1

β+ 1

)

, E[T0] = β. (8.21)

We know that L1 = 2 and 2 ≤ Li ≤ β, i = 1, . . . , τ . We say there are a total of Hi
non-empty nodes to the right from β+ 1, 1 ≤ Hi ≤ β− 1. So only nodes Li, . . . , β+ 1

can win the next competition without a node on the right gaining access. From this

we know

Ti + 1 ∼ geo(
Hi + Li − 1

β− Li + 2
), Ni + 1 ∼ geo(

1

β− Li + 2
).

Using this, it can be seen that

E[Ti] = (β− Li + 2)E[Ni] = β+ Li + 2

Hi + Li − 1
. (8.22)

Equation (8.22) implies, in particular, that

(β+ 1)E[Ni]− E[Ti] =
Li − 1

Mi + Li − 1
≤ 1. (8.23)

From stability of nodes β+ 2, . . . ,2β+ 1 we know τ <∞. Moreover, it holds that

τ ≤ 1+N1 + . . .+Nτ . (8.24)

This is true because a sub-cycle always ends by a successful transmission of node

2β+1. This implies that the number of sub-cycles may not be larger than the number

of packets leaving the system during the entire cycle.

Substituting this into (8.20) yields the lower bound

ξn =
1+ E[N1 + . . .+Nτ]

2β+ 1+ E[T1 + . . .+ Tτ + β(N1 + . . .+Nτ)]
= 1+ E[N1 + . . .+Nτ]

2β+ 1+ E[(β− L1 + 2)N1 + . . .+ (β− Lτ + 2)Nτ]+ βE[N1 + . . .+Nτ]
≥ 1+ E[N1 + . . .+Nτ]

2β+ 1+ (2β+ 1)E[N1 + . . .+Nτ]
= 1

2β+ 1
,

completing the proof.
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8.A.2 Proof of Theorem 8.3

A proof of this theorem may be given following the steps of the proof of Theorem 8.2.

Indeed, similar to the slotted case, we see that nodes β + 2, ...,2β + 1 are stable and

nodes 1, ..., β + 1 are unstable, by Lemma 8.2. Thus, the time may be divided into

"cycles" that start and end with nodes β + 2, . . . ,2β + 1 being empty, and again the

throughput of our system is equal to the total expected number of packets leaving

the system during a cycle divided by the total expected duration of a cycle.

A typical cycle is constructed in exactly the same way as in the time-slotted case,

with the addition that a cycle is extended with a residual transmission time of node

2β+ 1. Now, instead of (8.20) in the proof of Theorem 8.2, we have

θ∗n =
1+ E[N1 + . . . ,Nτ]

2β+ 1+ E[T1 + . . .+ Tτ + β(N1 + . . .+Nτ)+ τ]
. (8.25)

Note that in the continuous-time case the lengths of the various parts of a typical

cycle are no longer geometrically distributed, but their expectations are exactly the

same as in the time-slotted case. Hence, (8.22)-(8.24) still hold. Taking this into

account, we substitute (8.22) and (8.24) into (8.25) to obtain a lower bound:

θ∗n =
1+ E[N1 + . . .+Nτ]

2β+ 1+ E[T1 + . . .+ Tτ + β(N1 + . . .+Nτ)+ τ]
≥ 1+ E[N1 + . . .+Nτ]

2β+ 2+ (2β+ 1)E[N1 + . . .+Nτ]
≥ lim
y→0

1+ y
2β+ 2+ (2β+ 1)y

= 1

2β+ 2
,

By (8.23) we have that

θ∗n =
1+ E[N1 + . . .+Nτ]

2β+ 1+ E[T1 + . . .+ Tτ + β(N1 + . . .+Nτ)+ τ]
= 1+ E[N1 + . . .+Nτ]

2β+ 1+ E[T1 − (β+ 1)N1 + . . .+ Tτ − (β+ 1)Nτ + (2β+ 1)(N1 + . . .+Nτ)+ τ]
≤ 1+ E[N1 + . . .+Nτ]
(2β+ 1)(1+ E[N1 + . . .+Nτ])

= 1

2β+ 1
,

which is the upper bound.
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Summary

Next-generation wireless networks will likely evolve from cellular and small-scale

home networks to large, inter-connected networks that form the backbone for low-

cost internet access. A defining characteristic of wireless networks is that all nodes

share the same medium for their transmissions, and consequently, simultaneous

transmissions from nearby nodes will interfere with each other. The resulting perfor-

mance issues can be mitigated by regulating node activity.

Various mechanisms exist for regulating node access to the wireless medium,

which can be categorized into scheduled-access and random-access algorithms. The

former involve a centralized entity that controls the behavior of all nodes, while

random-access constitutes a class of randomized, distributed algorithms. Random-

access algorithms are popular for their simplicity, and their distributed nature makes

them well-suited for large, dynamic wireless networks. Scheduled-access networks

generally have better performance since the presence of an omniscient controller al-

lows for coordination between nodes, but entail higher implementation complexity.

One well-known algorithm for centralized access is MaxWeight scheduling, which

is popular for its ability to achieve maximum stability and throughput optimality in a

wide variety of scenarios. The distinguishing characteristic of MaxWeight policies is

that these require solving the maximum weighted independent set problem of the un-

derlying interference graph. The maximum-stability guarantees however rely on the

premise that the system consists of a fixed set of flows, while in reality the collection

of active flows dynamically varies. In Chapters 2 and 3 we demonstrate that in the

presence of flow-level dynamics the algorithm may no longer be throughput-optimal,

and we identify two causes for the instability: (i) failure to fully exploit rate variations;

and (ii) spatial inefficiency.

In Chapter 2 we consider the MaxWeight scheduling algorithm in a single down-

link scenario with varying transmission rates. We identify a simple necessary and

sufficient condition for stability, and show that MaxWeight policies may fail to pro-

vide maximum stability. The intuitive explanation is that these policies tend to favor

flows with large backlogs, so that the rate variations of flows with smaller backlogs

are not fully exploited.

The second cause for instability is studied in Chapter 3, where we consider a spatial

setting in which flows arrive at random in some finite space, and multiple flows may be

scheduled simultaneously, subject to certain interference constraints. The MaxWeight

scheduler tends to serve flows with large backlogs, even when the resulting spatial

reuse is not particularly efficient. We show that the inability of MaxWeight policies to

exploit maximum spatial reuse patterns may lead to instability.



148 Summary

Random-access algorithms were originally designed for symmetric deployment

scenarios, under the assumption that all nodes interfere with each other. The re-

cent trend towards large-scale distributed networks has induced a shift from such

full interference scenarios to networks with partial interference graphs, which has

brought to light many performance issues that require more study and give rise to

major mathematical challenges. A particularly popular random-access algorithm is

carrier-sense multiple-access (CSMA), which is implemented for example in the widely

deployed IEEE 802.11 standard. This protocol reduces interference by introducing a

carrier-sensing mechanism that allows nodes to transmit only when nearby nodes are

inactive. In Chapters 4-8 we study the CSMA algorithm.

In recent years relatively parsimonious models have emerged that provide a use-

ful tool in evaluating the throughput characteristics of CSMA-like networks. These

models essentially assume that the interference constraints can be represented by a

general conflict graph, and that the various nodes activate asynchronously after an

exponential back-off time whenever none of their neighbors are active. It turns out

that the assumption of exponential transmission times and back-off durations can

be relaxed, as we show in Chapter 4. We also consider the unsaturated model, where

buffers may occasionally be empty as packets are randomly generated and transmitted

over time. We explicitly identify the stability conditions for the complete interference

graph, and illustrate the difficulties that arise for partial interference graphs.

In Chapters 5-7 we study the throughput of random-access networks using the

CSMA model. Such networks may exhibit severe unfairness, in the sense that some

nodes receive consistently higher throughput than others. In Chapter 5 we study this

phenomenon in linear networks, and remove the unfairness completely by choosing

node-specific mean back-off times. We obtain explicit expressions for the fair back-off

times and the resulting throughput.

The more general problem of finding the mean back-off times that yield a certain

throughput vector is addressed in Chapter 6. In order to compute the required back-

off times, we show that the throughput function is globally invertible, and we present

several numerical procedures for calculating this inverse, based on fixed-point iter-

ation and Newton’s method. The ability to determine the network parameters that

yield a certain throughput vector allows for much more flexible design of wireless

networks.

The carrier-sensing mechanism of CSMA blocks all nodes within a certain sensing

range of an active node from transmitting. This mechanism reduces collisions, but

also introduces a complex tradeoff for the choice of the sensing range. When the

sensing range increases, the interference is reduced, but so is spatial reuse. In Chap-

ter 7 we study this tradeoff in a linear network, and determine the throughput-optimal

sensing range. We show that the value of the optimal sensing range depends on the

mean back-off times of the nodes.

Finally, in Chapter 8 we consider a time-slotted version of the CSMA algorithm in

a linear network. We compute the aggregate throughput and per-node throughputs

under saturation conditions, as well as stability and end-to-end throughput for an

unsaturated multi-hop network. These results are compared to those obtained for

the continuous-time CSMA model.
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