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357 

Abstract. A stiff rod. held in a vertical position by an elastic hinge, is subjected to a load consisting of a 
deterministic and a small stochastic component, both acting in fixed directions. The rod is slightly damped and 
carries out small oscillations around an equilibrium position. Above a critical energy level, the mechanical system of 
which the rod forms a part, may get damaged. At some time, an accumulation of stochastic effects can lead to an 
excess of this critical energy level. In this paper we derive various statistical expressions related to the time needed 
to reach the critical energy level. These expressions can be adopted as a measure of the reliability of the mechanical 
system. 

1. Introduction 

In their paper [7], Katz and Schuss considered the reliability of elastic structures with 
random loads. The reliability of such structures was treated as an exit problem in the theory 
of stochastic dynamical systems. Starting with the simple pendulum, a sequence of models 
has been considered with increasing complexity, viz. the double pendulum, the n-fold 
pendulum and the elastic continuous column. It has been shown that the exit behaviour of 
these more complex pendula is essentially the same as that of the simple pendulum. In this 
paper we will study the simple pendulum (or stiff rod) into more detail than was done by 
Katz and Schuss. In contrast to their approach, in which both the deterministic and 
stochastic loads to the simple pendulum were applied vertically, we will allow these loads to 
act independently from each other, in arbitrary fixed directions. 

In Section 2 we will give a description of the stiff rod model and derive the stochastic 
equation in dimensionless form. The deterministic load is of order O(s0 ), the stochastic load 
has intensity of order O(c:). and the damping is of order O(s), where 0<e~1 is a small 
parameter. In Section 3 we will derive the backward equation, valid on the time scale of 
order O(e- 1), which is needed in the study of the problem of exit from an energy interval. 
This interval, bounded below by zero and above by a critical energy, is scaled to the unit 
interval. In the Sections 4, 5 and 6 we will distinguish three cases, according to the 
magnitude of the angles under which the deterministic and the stochastic loads act. The 
regular case is treated in Section 4, while Sections 5 and 6 treat two special cases. For each of 
these cases, we will derive expressions for the expected exit time from the unit interval. For 
some special cases the exit-time density, the corresponding cumulants and some other 
related expressions will be derived as well. In Section 7 we give some of the results in 
dimensional form. The discussion in Section 8 is directed towards some practical aspects of 
the results obtained. 
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2. The model 

An unloaded stiff rod of length I, with mass m at a distance I' from the hinge 0, and spring 
constant µ at 0. carries out small oscillations around the equilihrium position cp = 0. Next a 
deterministic load P" is applied to the rod, acting under the fixed angle cpd, as indicated in 
Fig. l. The potential energy due to P" is given by 

-P/[1-cos("'-"')]=-Pl(l-cosm -1nsincp +cp" cos,n) d ' T" "l"d d T"d ..,.. d 2 "l"d • (2.1) 

where we assumed that I cp I is small so that 

sin cp = cp , (2.2) 

The potential energy due to the spring property of the hinge equals 

(2.3) 

Differentiating the total potential energy, which is obtained by adding (2.1) and (2.3), with 
respect to cp and equating this to zero we obtain the new equilibrium position cp,: 

- P,, sin 'P.i 
'Pe = I p . µ, - d cos cpd 
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Fig. I. The loaded stiff rod. 

(2.4) 
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It is assumed that µ,/ ~ I P,J so that !<;, I is small. in agreement with ( 2 .2). The arbitrar:, 
constant that may be added to the potential L'rH:rgy is chosen such that the total potemial 
energy equals zero at tp,.. The kinetic enngy nf the rod is given by 

l ' d . _: 
1·- /'2( '-P) --m -

2 ·. dt. 
(2.5) 

The Lagrange equation of motion reads 

l'2d27 (.7 . 
1n"" ~ + /1 z - ~1 . cos 'P· -- sin q:,) P,. = 0. 

1- dr ,.,., " · · ~ = li.r . \2.6) 

To describe a more realistic system. we extend the model with a damping term and a 
stochastic load component: 

/' 2 d 2z dz (.z ) (: ) 
m 7 dt 2 +a: dt-+ µz -- . /cos 'f" -- sin 'f,t P, 1 = .. /cos q;1 - sin f 1 t;( yt)P1 • (2.7) 

Here t;(.) is a Gaussian white noise prncess and y Jcnotcs a constant frequency (an 
appropriate choice is the unit frequency). so that yt is a dimcnsionkss quantity. P, has the 
dimension of a load. Note that the stochastic load component is zero for q:: = 'f.1 (which is 
possible only if <f!.1 is small). Here <f, is the fixed angle under which the stochastic load acts. 
The damping constant is denoted by a. With the abbreviations 

- p" . 
µ, = µ - I cos 'fi1 • (2.8) 

and the change of variable from z to 17 given by 

(2. 9) 

where 7) is the deviation from the equilibrium position (2.4), we have 

- cl 27) d71 - (cos <P1 m -o + a -· + µ Y/ = .. -- r7 
dr dt I 

(2.10) 

Suppose the rod is part of a mechanical structure. that functions well as long as the energy of 
the rod is below a critical value R 2 (recall that the energy of the rod takes its minimum value 
zero when it is at rest at the equilibrium position cp,. determined by the deterministic load). 
With the transformations 

r* = rv/l!/n . 
(2.lla) 

P'.·' = P. I R' !:": I I yµ' y * = yymr;;_ ' 

and the white-noise scaling property 

. . ) I ) <:(.yt) = i;(y"·('' = -- ~(t* ' s . w- (2.1 lb) 
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we obtain the equation of motion in dimensionless variables (denoted by*): 

d 211 * a d71* * _ P; (R cos cp,. ( * P* . ) . ) 1:.( *) 
--o + , ~ -d * + 1/ - , C* , r::: 11 - d sm cpd - sm cp,. ~ t . 
dt*- ymµ, t VY lyµ 

(2.12) 

We make the following assumptions on the magnitude of the various terms: 

p~ --=ve 
R 

R cos <p, 
,yµ =kl, 

a ymµ =Ek, (2.13) 

in which O<E~l and k,k0 ,k1 are 0(E0 ) constants. Equation (2.12) becomes 

(2.14) 

where we suppressed the * of 11* and the dot denotes differentiation with respect to t*. 
Equation (2.14) describes an O(E) damped oscillation of the stiff rod from a load consisting 
of a deterministic part of 0(E0 ) and a stochastic part with intensity of O(E). We note that cpd 

and 'Ps are arbitrary fixed angles. Equation (2.14) can be written as the system: 

(2.15) 

3. The backward equation 

The undisturbed ( E = 0) system (2.15) is an undamped oscillator, whose dynamics are 
described by closed trajectories around the origin in the (71, Tj)-phase plane. Each trajectory 
corresponds to an energy level. The energy is larger for orbits farther away from the origin. 
The effect of a nonzero e is that the trajectories tend to spiral inwards to approach the origin 
(as a consequence of damping) and exhibit stochastic fluctuations in the Ti-direction. The 
backward Kolmogorov equation corresponding to (2.15) reads [10, Ch. 5] or [4, Ch. 4]: 

(3.1) 

We will use this equation with the function u( 71, Tj, t*) and with various other functions 
instead of u, which will be defined later on. The remainder of this section applies to all these 
functions. Equation (3.1) is studied asymptotically for small e on a time scale of order e - i. 

With 

t*=tlt:, U = Uo + EU 1 + · · ·, (3.2a, b) 

and the transformation ( 1j, Ti)~ (r, e) defined by 

71 = V2.r cos (} , Ti = V2.r sin (} , (3.3) 
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we obtain to leading order in E: 

:i () 
(J ll 

08 = 0 , (3.4) 

implying z/ = u0(r, t). Note that r2 is the dimensionless energy of the undisturbed (E = 0) 

system, r E [O, 1] and r2 = l corresponds to the critical energy. 
To the next order in E an equation is obtained in terms of u 0 and u 1• Terms with u 1 vanish 

by integration of this equation with respect to e from 0 to 2rr and the additional assumption 
that u 1 is periodic in e with period 2rr. The resulting equation for u0 reads 

(3.5a) 

3 0 1 
a2 = 16 k! - 2 k . (3.5b) 

Thus, the description to this order in c: includes damping and stochastic effects. If, as a 

consequence of the latter effect, the critical energy r2 = 1 is reached in finite time with 

probability one, starting from r E [O, 1], the rod is stochastically unstable [ 10]. In that case, 

the mean exit time from the unit interval at 1 is a measure for the stability (reliability) of the 

rod (and thus an index of reliability). Below we will discuss this problem of exit from the unit 
interval. Several cases are distinguished, according to whether k 11 , k 1 are equal or unequal to 

zero. 

4. The regular case 

Let the regular case be defined by k 0 =? 0, k 1 =? 0. This case occurs, in general, when k11 and 

k 1 are chosen arbitrarily. In this case a 0 >0,a 1 > 0. The boundary r = 0 of the unit interval is 

classified as an entrance boundary, see Feller [3], meaning that r = 0 cannot be reached in 
finite time from the interior of the interval, and the interior can be reached in finite time 

from r = 0. At r == 1 an absorbing boundary [4] is adopted. It can be reached in finite time 

from the interior of the interval. On reaching this boundary, absorption occurs, so that the 

interval cannot be entered again. Thus, exit from the unit interval can take place only at 

r=l. Let uJr) be the probability of exit at r==l, starting from a point rE[O,l]. Its 

leading-order part u1
1
1(r) in an expansion in powers of c: satisfies the stationary backward 

equation (3.5a) with the boundary condition u~(l) = 1. We find u 1.(r)- u~(r) = 1 as the only 

relevant (i.e. finite) solution. There is no freedom to specify an arbitrary boundary condition 
at r = 0. We conclude that if we start somewhere on the interval [O, 1], exit at r = 1 will occur 

with probability one, so that the oscillator is stochastically unstable. Next we consider the 

expected exit time T(r), starting from a point r. Similar to the time scaling (3.2a) we put 
- - -11 -1 

T= TIE and similar to the expansion (3.2b) of u we put T= T + c:T + · · ·, so that 

T = T11/c: + f 1 + · · · . An approximation for T is found by solving the Dynkin equation [Hl, 
p. 118] 

( ) 
"T-11 .:i"y-o a 0 o 2 u 

-1= -+a0 r -_-+(a11 +a 1r)--o-, 
r - a r a,~ 

(4.la) 
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with the conditions 

f 0(0) is finite , T0(1)=0. (4.lb,c) 

We find 

(4.2) 

Only if the exponent in the integrand is a simple rational number, the integral reduces to a 
simple expression. If the exponent is equal to a positive integer, the binomial expansion can 
be used to evaluate the integral. If a 2 = a 1' this is substituted into equation ( 4. la). Solving 
the corresponding boundary value problem we arrive at 

ft ( ) 
1 1 a 1 , 

T(r)- -- - log - s- + 1 ds. 
2ea 1 r s all 

5. The first special case: angles of deterministic and stochastic load are related 
in a particular way 

(4.3) 

We assume k 0 = 0 while k 1 =ft 0. In this case a 0 = 0, a1>0. The angles cpd, 'Ps are related by 

(5.1) 

An important case is the vertically loaded pendulum (cpd= cps= 0). Since a0 = 0, the 
behaviour is qualitatively different from that in Section 4. At r = 0 we now have a natural 
boundary, meaning that r = 0 cannot be reached from the interior of the unit interval, and 
the interior of the unit interval cannot be reached from r = 0, in finite time. Let u,(r) now be 
defined as the probability of exit at r = 1, starting from a point r of the half open interval 
(0, 1 ]. This probability is obtained by solving the stationary backward equation (3.5a) on the 
interval 8 ~ r ~ 1 with 0 < 8 ~ 1, where the boundary conditions are u~(B) = 0, u~( 1) = 1. In 
the limit 8 - 0 we obtain 

{ 1, a 2 > a1 , (damping below level a 2 = a 1), 

u .. (r) - r l -a21 a1 , a2 <a 1 , (damping beyond level a 2 = a i) . (5.2) 

In the first case of (5.2), exit at r = 1 occurs with probability one, as in Section 4 the rod is 
stochastically unstable. In the second case of (5.2), the probability of exit at r = 1 can be 
made arbitrarily small by starting close enough to r = 0, the rod is stochastically stable. We 
will continue with the stochastically unstable case here; the treatment of the stochastically 
stable case is postponed until Subsection 5.4. The expected exit time is obtained by solving 
equation ( 4. la) with a0 = 0 under the conditions f 0 ( 1) = 0, f 0 ( o) = 0, 0 < o ~ 1. In the limit 
a-o: 

1 1 
T(r)- ( ) log - , (a 2 > a1) • 

E a2 - a 1 r 
(5.3) 
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Because a 11 = 0, the differential equations describing the exit problem have a simple form, so 

that a variety of interesting expressions can be derived. 

5.1. The probability of exit before a certain time (a 2 >a 1) 

Henceforth, the dimensionless time t* will be denoted by t, for convenience. Let u(r, t) be 

the probability that exit through r = 1 takes place on the time interval [O, t], starting in 

r E (0, 1] on t = 0. With a 0 = 0 the backward equation (3.5a) reads 

(5 .4a) 

This equation has to be solved with the conditions 

() ) u (r,O =0, (5.4b) 

u 0 (8, t) = 0, 8 ~ 0, (5 .4c) 

u 0(1, t) = 1. (5.4d) 

Taking the Laplace transform with respect to t, 

Jx 

-ll ···st 0 - -u(r,s)= c u(r,t)dt, 
) 

(5.5) 

the following boundary value problem is obtained: 

2 iJ 2 UIJ dU() -0 11 -0 
a 1r --, +a,r-.-=su -u(r,O)=su, 

iJ r- - iJ r 
(5.6a) 

-ll( ) u 8, s = 0, a~o, (5.6b) 

-()( 1 u l,s)=-. 
s 

(5.6c) 

The equation (5.6a) is an equidimensional or Euler equation [1], that by the change of 

variable 

r = e", (5.7) 

transforms into 

l -0 -0 a u au -() 
a 1 --, +(a, - a 1 ) -- - su = 0, 

aµ- - ap 
(5.8) 

where the coefficients of the derivatives have become constants. The characteristic equation 

(5.9) 
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corresponding to this equation is solved by 

(5.lOa) 

(5.lOb) 

The solution of (5.8) is 

(5.11) 

and that of (5.6a): 

(5.12) 

The unknown functions C1 and C2 follow from the boundary conditions (5.6b, c), 

- 1 
Jim C,(s) = lim ( k,-k ) = 0, 
a~11 - a~o s 8 - 1 - 1 

(5.13a) 

in which we used the positivity of a 1, and, in the same limit: 

(5.13b) 

The solution of ( 5 .6) is 

-II( ) k (s)j u r, s = r 1 s. (5.14) 

Using some elementary properties of Laplace transforms and the inverse transform formula 
5.129 [8, p. 264], we obtain as solution of problem (5.4): 

- [Jog ! J [log ! J 11 t 1 r - 1 _ 'c r -u (r, ~) = 2 erfc 2Vt - cYt + 2 r - erfc 2Vt + cYt , 

where 

a2 - ai 
c = -- , (0< c:::;; 1, c = 1: no damping). 

2a 1 

(5.15a) 

(5.15b) 

With u(r, t)- u0(r, t) we obtain an approximation of u(r, t). It is easily verified that this 
result is in agreement with 

lim u(r, t) = u,.(r), 
1~x 

(5.16) 

with u,(r) = 1, as in the first case of (5.2), where us(r) was the probability that exit at r = 1 
will occur, starting at r E (0, 1]. The function u has been depicted in Fig. 2a. The result 
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u(r,t) 

0 1000 

Fig. 2a. The probability u(r, t) for the undamped rod with E = (J.01 and a, = 1I16. For r = 0.2 the probability of 
failure exit p1 corresponding to an operating time i has been indicated. 

derived in this subsection differs from formula (3.28) in Katz and Schuss [7], since we took 
into account the right-hand boundary condition. 

As an application, we consider the following problem. What is the probability of failure of 
the mechanical system during an operating time t? Let u0 (r) be the probability density 
function of the initial r (recall that r is the square root of the dimensionless energy). The 
probability of failure p1 is determined by 

pf = f u0 (r)u(r, i) dr. (5.17) 

In Fig. 2a, the probability of failure for u0 (r) = o(r - 0.2) has been indicated. 

5.2. The exit-time density, its moments and cumulants ( a2 >a 1) 

We define r(r, t) dt as the probability that the time of exit through r = 1 is in the time 
interval (t, t + dt), given that we started at r E (0, 1] on t = 0. The function r(r, t) is a 
probability density with respect to t. In this subsection, we will derive expressions for r(r, t) 
and its n-th moment f-ln(r) and cumulant K,,(r). The function 

1 -11 

r(r, t') dt' , 
() 

(5.18) 

is known to satisfy the backward equation [4]. By differentiation with respect tot, it follows 
that r satisfies the backward equation as well, so that for its leading-order term r 0 we have 

(5.19) 

Taking the Laplace transform of r 0 with respect to l, 

1
~ 

-o _,., o - -
T (r, s) = e · T (r, t) dt, 

I 
(5.20) 
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equation ( 5 .19) becomes 

" 2-fl ~ -ll 
2 d T dT -II o -II 

a 1r --. + a,r -_- =ST - T (r, 0) =ST 
rlr- - dr 

(5.21) 

in which the initial condition 

T 11(r, 0) = () (5.22) 

has been used, valid for o < r < I, where again 0 < o «: I. For r = o and r = 1 the probability 
density function T(r, t) equals the delta function o(t - 0), or 

µ1~1 (r) = 0 , m > 0 . (5.23a, b) 

where µ1~1 (r) is the m-th moment about the origin t = 0 of e - 1T 0(r, t). Expression (5.23a) 
results from the normalisation of the density T(r, t) and the expansion 

T(r, t) ~ r 0(r, t). (5.24) 

By the relation [6, p. 6], 

"' ( )Ill 
- I -0( ) G () . "" - s II e r r, s = (r, zs) = Li --,- µ,,,(r), 

m=O m. 
(5.25) 

in which G 0 is the characteristic or moment-generating function of e - 1T 11, the conditions 
(5.23) translate into boundary conditions for (5.21): 

7°(1. s) = 711(0. s) = e, (o~O). (5.26) 

The boundary-value problem (5.21, 5.26) is solved in a way similar to that in the previous 
section. We find 

o -k1 - I 
lim C,(s) = lim e k,-k = 0 
li~o - li~o o - 1 - 1 

(5.27a) 

because a 1 > 0, and, in this limit, 

(5.27b) 

so that 

-II( ) k (s) T r, s = er 1 - • (5.28) 

Using the inverse Laplace transform formula 5.85 [8, p. 258], the following result is 
obtained: 

1 o( 'i) ,.-c (1 1)---~/2 -c'i-(logr)'/(4i) 
- T r, - = -- og - t e . 
ea 1 a1 2v'1T r 

(5.29) 

With (5.24), an approximation to r(r, t) follows, see Fig. 2b. 
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T (r, t) I c: 

.5 

r"'. 6 

0 
t 

1000 

Fig. 2b. The probability density function of the exit time, depending on the starting point r, for the undamped rod 
with t:=!l.01 anda,=l/16. 

Next we will derive expressions for the moments and cumulants of the density r(r. t). The 
moments µ."(r) about t = 0 of T(r, t) are found starting from the definition 

J.Ln(r) = r t11T(r, t) dt. Jo (5.30) 

Using the obtained approximation of T(r, t), and formulas 3.471:9 [5, p. 340] and 8.468 [5. p. 
967], it is found after some calculation that 

(5.31) 

With (5.28) the moment generating function G of T(r, t) yields 

G( . ) -c ) 1 -fl( I ) k (I' IF) r, is = T r, s - - T r, s £ = r 1 • • 
£ 

(5.32) 

Taylor expanding the logarithm of G(r, is) around s = 0 we find 

. ~ (-s)" 
log G(r, is)- ~ - 1- K"(r), 

11~1 n. 
(5.33) 

with the cumulants K 11 (r) given by 

(2n - 3)!! 1 
K,,(r) - (2 )" 2n- I log; , a1 £ c 

n;:;:, I , (5.34) 

the double exclamation mark being defined as in [5, p. xliii]. 
In this subsection we have obtained expressions for the lifetime density of a mechanical 

system, as well as its moments and cumulants, as functions of the initial r. When the initial r 
is not known, but its density u0 (r) is, these expressions should be integrated with respect tor 



368 H. Roozen 

from 0 to 1 with the weight function u0 (r), as at the end of the previous subsection. This 
remark applies also to other results in this paper, in particular to the expressions of the 
expectation of the exit time. 

5.3. Solution of the forward equation (a 2 >a 1 ) 

Let us define v(r, t) dr as the probability of being in the interval (r, r + dr) at time t, given 
the probability u11 (r') dr' of being in the interval (r', r' + dr') at time t = 0, where r, 
r' E (0, l]. In this subsection, an expression for v(r, t) will be derived. The Fokker-Planck or 
forward Kolmogorov equation associated with (5.4a) reads 

0 ' au a o a- 2 u 
-- = - a2 -a (ru ) + a 1 -, (r u ) , at r ar-

(5.35) 

which has to be solved with the conditions 

v0(r, 0) = v0 (r) , (5.36a) 

v 0(o,t)=O, o~o, (5.36b) 

v0(1,l) = 0. (5.36c) 

The last two conditions result from erecting absorbing boundaries at r = o and r = 1, and u0 

in (5.36a) is the initial density. Equation (5.35) is rewritten as 

a 0 a1 0 a 0 v 2 u v 0 ---= = a 1r --, + (4a 1 - a,)r -a + (2a 1 - a,)u . at ar- - r -

Taking the Laplace transform of u with respect to i, 

v0(r, s) = ("' e-sr v0(r, t) dt' Jo 

(5.36, 5.37) changes into the boundary-value problem 

a1 -o a -o 
2 u u -0 

a 1r --2 + (4a 1 - a,)r - + (2a 1 - a, - s)v = -v0(r), ar - ar -

v0(o, s) = 0' s~o; v0(1,s)=O. 

The change of variable (5.7) turns equation (5.39a) into the equation 

(5.37) 

(5.38) 

(5.39a) 

(5.39b, c) 

(5.40) 

By solving its characteristic equation, the homogeneous equation associated with (5.40) is 
found to have the independent solutions 

e<-I-k 1 ~l~ e<-1-kz~l~ 

' ' (5.41) 
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with k 1 and k 2 defined in (5.10), and Wronskian 

(5.42) 

The inhomogeneous equation ( 5 .40) is solved by the method of variation of parameters [ l]. 
In the original variable r its solution reads 

(5.43) 

in which it is assumed that the initial density v0 is sufficiently regular so that the integrands 
remain finite in the integration domain (note that k I > 0, k2 < 0). The functions cl and Cz 
are determined by the boundary conditions (5.39b, c). For C2 we find 

;s-·ki f v0 (r')(r')k 1 dr' - 15-k, f v 0 (r')(r'/ 2 dr' 
Co(s) = --------8--..,--k2-_-8-_.....,k-1 -------- (5.44) 

The second term in the nominator is bounded by v0 (8 ). This bound is finite if v0 is bounded. 
Then, consequently, in the limit for 8---;. 0, 

Co(s) = - (
1 

v (r')(r')k 1 dr', " Jo o (5.45a) 

(5.45b) 

The solution of (5.39) can be written in the following form: 

I 11 ( ') ( I )(k1+k2)f2 
-!) . Vo r r [ -·llogrlr'l(k1-k,)12 -(log llr'r)(k1-k,)12] d I v (r, s) = (k _ k ) -- - e " - e - r . 

a1 i 2 o r r 
(5.46) 

The solution of problem (5.35, 5.36) is obtained using the inverse Laplace transform 5.87 [8, 
p. 258]: 

11( f) lJ 1 ( r )'. e-c't [ -(Jog f. //(4t) -(Jog r'r)2/4tl d I 

v r - = v 0 (r') -r -,., , ~ e - e r , 
'a1 u 2V7rt 

(5.47) 

and with v(r, t) - v0(r, t) we have an approximation of v(r, t), see Fig. 2c. The results (5.15, 
5.29, 5.47) are related by 

a o( t) 1 o( t) -u r- =-7 r-at 'a 1 Ea 1 'a 1 ' 
(5.48a) 

11 o( t) o( t) 1 - v r, - dr = u r*, - , 
J a1 a1 

for v0 (r) = o(r - r*). (5.48b) 
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v(r,t) 

2 t=SOO 

r 
0 

Fig. 2c. The function v(r. I) corresponding to the initial density u0 (r) = 8(r - 0.2), for the undamped rod with 
E=0.01 anda 1 =lil6. 

The example in Fig. 2c shows the decay of v with time due to exit at r = 1. For small r we sec 

an increase of v with time because of systems that are driven to r = 0, but cannot exit there 

since r = 0 is a natural boundary. 
As an application of the result derived here, we discuss the construction of confidence 

intervals. Suppose we are interested in the confidence interval of probability p at time i, for 

systems not yet exited (the probability that the system has not yet exited is given by the 

integral of u(r, i) with respect to r from 0 to 1). Let r 1 and r2 be the lower and upper 

boundary of the confidence interval, respectively, so that 0 < r 1 < r 2 < 1. The values of r 1 

and r 2 are determined by the conditions 

u(r 1, i) = u(r2 , i), (5.49a) 

f 2 u(r. i) dr / f u(r, i) dr = p , (5.49b) 

from which they can be computed numerically. 

5. 4. The stochastically stable case (a 2 < a 1 ) 

As we have seen at the beginning of Section 5, for stochastically stable systems the 

probability of exit at r = 1 is given by 

[)( ) _ 1 lJ·y_la 1 u_, r - r . (5.50) 

Let T(r) be defined here as the expected time of exit through r = 1, where it is given that exit 

through r = 1 will occur. An expression for T is found by solving the boundary value 

problem [4, p. 142]: 

(5.51a) 
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u~(o)T0(o)=O, B-o; u~(l)T 11(l)=O. (5.51b,c) 

We find 

1 1 
T(r) - ( ) log - . s a 1 - a 2 r 

(5.52) 

Starting at a given position r, with increasing damping (decreasing a 2 ) the probability of exit 
at r = 1 decreases according to (5.50), and the mean time of exit at r = 1, given that exit 
occurs, decreases as well, according to (5.52). Thus, in systems with damping far beyond the 
level a 2 = a 1 (i.e. a 2 <if a 1), starting away from r = 1, exit is not likely to occur, and if it 
occurs, it probably is relatively shortly after starting. In such systems, failure mechanisms of 
a type, different from that discussed in this paper, are of importance. See the remark in 
Section 8. 

6. The second special case: horizontal stochastic load 

We assume k 1 = 0. It follows that a 1 = 0. This case corresponds to a horizontal stochastic 
loading. Using (2.13) we find that k~ = 1. The backward equation similar to (3.5) reads 

au0 (an ) au0 a2u0 

--= = - + a,r -a + a<, --, , 
at r - r ar-

(6. la) 

with 

(6.lb) 

This is the backward equation of a Rayleigh process [4, 12]. As in Section 4, r = 0 is an 
entrance boundary, r = 1 is an absorbing boundary, and it can be verified that the probability 
of exit at r = 1, starting at any point of the closed unit interval, equals one. For the mean exit 
time we find 

T(r) - _1_ f I [1 - e -(az12au)sz] ~ ds ' (a,,., 0) . 
sa2 r s 

(6.2) 

6.1. The subcase of no damping 

In the special case that there is no damping, i.e. k = 0 and thus a 2 = 0, equation (6.la) 
becomes 

(6.3a) 

For the leading-order term u0 in the expansion of u(r, t), defined as m Section 5, this 
equation is supplemented with the conditions 

u0(r, 0) = 0, 0(0 -) . fi . u , t is mte , u 0(1, t) = 1. (6.3b, c, d) 
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The initial-boundary value problem ( 6.3) is the same as for axisymmetric heat conduction in 
a cylinder, which has the solution [11, p. 175] 

( 6.4) 

where the summation extends over the positive roots of 

(6.5) 

1; being the Bessel function of the first kind of order i. The exit-time density yields 

,_ 
• C j ( c ) , -a11<7l 

- I II - d II - '\""' S; II s;I' e 
E T(r,t)=-;..u(r,t)=2a0 ~ J(t) at i I Si 

(6.6) 

Next we compute the characteristic function and the first few cumulants corresponding to 
this density. The differential equation for T 11 yields 

(6.7) 

Taking the Laplace transform of T 0 with respect to i we obtain 

(6.8) 

where we used the initial condition 

(6.9) 

The general solution of (6.8) is 

(6.10) 

where 10 , K 0 are modified Bessel functions of the first and second kind, respectively. Using 
the boundary conditions 

i 0(1,s)=t:, 711(0, s) is finite, (6.lla, b) 

we find 

(6.12) 

The characteristic function of T(r, t) is given by 

G(r, is)- E- 1i 11(r, sic). (6.13) 

The cumulants K"(r) of T(r, t) are generated by 
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"' ( - s)" 
log G(r, is) - 2:--1- K 11 (r). (6.14) 

n=I n. 

Using the Taylor expansion [5, p. 961] 

the cumulants are obtained as 

where the {3 11 are found from the recurrent relations 

± /3;(-4Y(i!)i(~) 2 
=-n, (n=l,2,3 ... ). 

i= 1 l 

The first few {3's are given by 

1 
!31 = 4' 

7. Examples in dimensional variables 

(6.15) 

(6.16) 

( 6.17) 

(6.18) 

Below we give some of the results in dimensional form. Exclusively for the present section, 
let T denote the dimensional exit time and r, R the dimensional energy and dimensional 
critical energy, respectively. Using (2.11), (2.13) we find in the case of the undamped rod 
(a2 = 3a 1 ), according to formulas (4.2), (5.3) and (6.16) respectively, that for the regular 
case: 

T(r) - 8'Y;f 12 log 
s 

-R' 2 2(P . l- . )' J-l - COS lf!.1 + d S!Il 'Pd COS lf!s + J-l Sill 'Ps -

- 2 2 (P . 1- . )2 • µ,r COS lf!s + 2 d S!Il <pd COS 'Ps + µ., Sill 'Ps 
(7.1) 

for the vertically loaded rod: 

T( ) 8ym[i,/ 2 l R 
r - og-p2 r ' 

s 

(7.2) 

and for a horizontal stochastic loading: 

(7.3) 

with m, [i defined in (2.8). Recall that in order for these formulas to be applicable, the 
dimensionless parameter combinations in (2.13) must have the required order of magnitude. 
This is especially important for the last parameter group in (2.13). If the damping constant is 
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large, so that this group is larger than indicated, for example of order l, then the exit time is 
exponentially large, sec [Hl, Ch. 7.4] or [4. p. 362], and the model presently described 
clearly docs not apply. 

8. Discussion 

In this paper we have studied the exit problem on the time scale of order O(E - i ). We have 
distinguished three cases, depending on the values of k 11 and k 1 • The case treated in Section 4 
has been called regular, in the sense that an arbitrary choice of k 11 and k 1 (or cp" and ip,) will 
almost always lead to this case. In Sections 5 and 6 the special cases k 0 = 0 and k 1 = 0 have 
been treated, respectively. Confining ourselves to the first special case (a similar remark 
applies to the second special case) it can be remarked that in practice k0 will never be equal 
to zero exactly. For example, due to practical imperfections, an exactly vertically loaded rod 
does not exist. In view of the asymptotics that we have used, the left side of (5.1) may be 
replaced by O(e 1 2 ) in order for the first special case to remain applicable. As an example, 
consider a nearly vertically loaded rod with a 2 > a 1 • If relation ( 5 .1) is satisfied within 
0(E 1 2 ), the mean exit time is given by (5.3), otherwise it is given by (4.2) with small a 11 

measuring the deviation from exactly vertical. For the undamped rod (a 2 = 3a 1) these exit 
times yield respectively: 

I I 
T(r)- - log - , 

2Ea 1 r 
( 8.1 a) 

( 8. 1 b) 

which have been depicted in Fig. 3 for a 11 = 0.01 and a 1 = 1, r being the square root of the 
dimensionless energy. Moreover, we see that (8.la) is a good approximation to (8.lb) away 
from r = 0. 

ET(r) 

2 

r 
0 

Fig. 3. The expected exit time for the nearly vertically loaded undamped rod according to the formulas (8. la) and 
(8. lb). 
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The expressions ( 4.2), ( 4.3 ), (5.3), (6.2). and (6.16) with n = 1, give the expected time 

T(r) needed in the various cases considered to reach a critical energy level (which, in these 

cases, will happen with probability one). This critical energy was chosen as the upper bound 

of the normal operating energy range of a system. Given a probability density function u11 (r) 
of the initial r. we can adopt the constant 

(8.2) 

as the expected failure time for that system. 
The formulas (5.34), (6.16) with n = 2 (higher cumulants are often of less practical 

interest) can be used to indicate the variance in failure time. It was not possible to obtain 

similar simple expressions for all cases considered. In such cases the variance is easily 

obtained numerically by solving a recurrent system of elliptic boundary-value problems [4. 

p. 138 and p. 171]. 
Due to the simplicity of the equations in some special cases, we were able to find 

expressions for the probability density of the exit time, see (5.29) and (6.6). In practice the 

failure density is obtained by fitting experimental data with some statistical density (exponen

tial, gamma, Weibull or lognormal), see for example [9]. In the present paper we showed 

how to derive such a density by employing the dynamics of the system. 

A stock or investment policy can be based on the expression for u obtained in Section 5 .1. 
Given an operating time i and a probability density of initial energies, the probability of 

failure is determined by ( 5 .17). The expression for u in Section 5 .3 can be used for the 

construction of confidence intervals. 
The stochastic stability of oscillators with a different type of damping (as cubic damping) 

or noise (red, dichotomic, etc.), and with a forcing that can be described by a potential 

function, has been treated by Dygas, Matkowsky and Schuss [2]. 

Finally, it may be remarked that in practice failure mechanisms, different from the type 

considered here, may be present. One such a mechanism, to mention, is wear out, which 

becomes important, especially in systems with damping beyond the level a2 = a1 • An 

approach to wear out could be as follows. Assume that wear out depends on the state 

rE[0,1] and the time tE(O,x), expressed for some application by a penalty function 

P(r, t). Let S(r, t) dr be the expected time spent in (r, r + dr) during the time interval (0, t), 

S(r, t) = r u(r, t') dt', Jo (8.3) 

where u(r, t) dr is the probability of being in (r, r + dr) on time t (i.e. the solution of the 

forward equation). A wear-out function can be defined by 

W(t) = ( 1 
P(r, t)S(r, t) dr. Jo (8.4) 

The failure time t1 follows from 

W(t1) = W,, (8.5) 

where W, is a critical value, so that excess of this value leads to failure of the system. In 
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general, the computations involved become very complicated, so that in practice this scheme 
has to be simplified somewhere. 

Acknowledgements 

I am grateful to Johan Grasman for the discussions concerning the subject treated in this 
paper and to Nico Temme for some remarks. 

References 

I. C. M. Bender and S.A. Orszag, Advanced mathematical methods for scientists and engineers, McGraw-Hill Book 
Company ( 1978). 

2. M.M. Dygas, B.J. Matkowsky and z. Schuss, Stochastic stability of nonlinear oscillators, Technical Report No. 
8615, Appl. Math. Northwestern University, Evanston. Illinois (1987). 

3. W. Feller, The parabolic differential equations and the associated semigroups of transformations, Ann. of Math. 
55 (1952) 468-519. 

4. C.W. Gardiner, Handbook of stochastic methods, for physics, chemistry and the natural sciences, Springer-Verlag 
(1983). 

5. I.S. Gradshteyn and J.M. Ryzhik, Table of integrals, series, and products; corrected and enlarged edition, 
Academic Press ( 1980). 

6. N.G. van Kampen. Stochastic processes in physics and chemistry, North-Holland Publishing Company (1981). 
7. A. Katz and Z. Schuss, Reliability of elastic structures driven by random loads, SIAM J. Appl. Math. 45 ( 1985) 

383-402. 
8. F. Oberhettinger and L. Badii, Tables of Laplace transforms, Springer-Verlag ( 1973). 
9. C.P. Quesenberry and J. Kent, Selecting among probability distributions used in reliability, Technometrics 24 

(1982) 59-65. 
10. Z. Schuss. Theory and applications of stochastic differential equarions, Wiley ( 1980). 
11. l.N. Sneddon, Fourier transforms, McGraw-Hill Book Company (1951). 
12. R.L. Stratonovich, Topics in the theory of random noise, Vol. I, Gordon and Breach (1963). 


