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Abstract 

One of the most fundamental properties that single-server multi-class service systems may 
possess is the property of work conservation. Under certain restrictions, the work conserva­
tion property gives rise to a conservation Jaw for mean waiting times, i.e., a linear relation 
between the mean waiting times of the various classes of customers. This paper is devoted to 
single-server multi-class service systems in which work conservation is violated in the sense 
that the server's activities may be interrupted although work is still present. For a large class 
of such systems with interruptions, a decomposition of the amount of work into two 
independent components is obtained; one of these components is the amount of work in the 
corresponding system without interruptions. The work decomposition gives rise to a 
(pseudo)conservation law for mean waiting times, just as work conservation did for the 
system without interruptions. 

Keywords: Single-server multi-class service system, service interruptions, work decomposition, 
conservation law. 

1. Introduction 

One of the most fundamental properties that single-server multi-class service 
systems may possess is the property of work conservation. Suppose that the server 
serves at constant rate, and that he serves if and only if at least one customer is 
present. Also suppose that the scheduling discipline, the procedure for deciding 
which customer(s) should be in service at any time, has the following property: it 
does not affect the amount of service given to a customer, or the arrival time of 
any customer. Then a sample path consideration shows that the amount of work 
in the system is the same, whatever scheduling discipline with the above-men­
tioned property is chosen. A pleasant consequence is that the analysis of the 
workload process in some system with complex priority structure can be reduced 
to the analysis of the workload process in a system with a more convenient 
scheduling discipline, like FCFS or LCFS. 
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Heyman and Sobel [27, ~· 383.J u~e the term 'sys,te~ proper~ies' for s~ch 
properties as work conservation, Little s theorem, and Poisson arrivals see trme 
averages' (PASTA): they are global properties, shared by a large number of 
specific models. These system properties are mostly based ?n sample p~~h 
observations. They can be used in structured models to obtam more specific 
conclusions. For example, under certain assumptions the mean workload of a 
particular class of customers can be expressed in the mean number of those 
customers, and then, via Little's theorem, in their mean sojourn time. Thus the 
principle of work conservation may lead to the so-called conservation law, which 
states a certain linear relation between the mean waiting (or sojourn) times of 
customers of all classes in a single-server, multi-class service system: 

(1.1) 
n=I 

here Pn and EWn are the traffic load and mean waiting time of class n customers, 
and C is a function of the traffic characteristics of the system but not of the 
scheduling discipline. The implication of the conservation law is that, if a change 
in the scheduling discipline causes one of the mean waiting times to decrease, this 
must happen at the expense of other mean waiting times. 

It should be noted that Little's theorem L = A.W, PASTA and the conservation 
law have in common that they relate a time average and a customer average. For 
thorough discussions of these system properties and their interrelations we refer 
to Chapter 11 of Heyman and Sobel [27], and to the fundamental papers of 
Brumelle [10] and Wolff [49]. In particular, Heyman and Sobel [27, p. 432] 
present a proof of the conservation law that is based on a generalization of 
L = I\ W, viz. Brumelle's [10] formula H = A.G; here H and G are respectively time 
and customer averages of quantities which bear a certain relationship to each 
other but are otherwise unspecified. 

The present paper is mainly devoted to single-server multi-class service systems 
in which the principle of work conservation is violated in the sense that the 
service process may be interrupted although work is still present. A prime 
example is the 'polling' system in which the server visits the classes in cyclic 
order, requiring switchover times (interruptions) between classes. For such 
cyclic-service systems, it has recently been shown [3] that, under the additional 
assumption of Poisson arrivals, a simple work decomposition result is valid: the 
amount of work in the system is distributed as the sum of two independent 
quantities, viz. (i) the amount of work in the corresponding system with identical 
traffic characteristics but without switchover times (hence with work conserva­
tion), and (ii) the amount of work in the original system at some epoch covered 
by a switching interval. 

The m~~ purposes of the present paper are (i) to extend the validity of the 
decompos1t1on result beyond cyclic-service systems with switchover times, and (ii) 
to explore the possibilities to derive a conservation law for mean waiting times in 
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single-server multi-class systems with interruptions, hence without work conserva­
tion. Indeed, such a (pseudo)conservation law is shown to hold, under rather 
restrictive assumptions regarding the scheduling discipline and the interruption 
process (e.g., none of them should preempt a service in progress). We use the affix 
'pseudo', because the resulting expression for I:~=l PnEWn (cf. (1.1)) now gener­
ally does depend on the scheduling discipline. 

The paper is organized in the following way. Section 2 is devoted to the 
concept of work. After a brief discussion of work conservation (§ 2.1), the 
above-mentioned work decomposition result is shown to hold for a rather general 
single-server multi-class system with interruptions of the service process (§ 2.2). 
(Pseudo)conservation laws for mean waiting times form the main topic of section 
3. First the classical conservation laws for mean sojourn and waiting times are 
reviewed (§ 3.1). Subsequently the extension to systems with interruptions is 
made (§ 3.2), after which some special cases are considered for which the 
pseudoconservation law can be worked out in more detail: the cyclic-service 
system with switchover times (§ 3.3), a polling system with more general (not 
strictly cyclic) service order of the classes (§ 3.4), a polling system in which the 
server visits the classes according to a Markov routing chain (§ 3.5), and a 
network with a single server in which both server and customers move from 
queue to queue (§ 3.6). 

Conservation laws for mean waiting times serve several useful purposes. In 
many complex systems they are the only meaningful exact results that can be 
obtained. Thus they provide important qualitative insight into the behavior of 
such systems. They can also serve as a test for approximations, and be instrumen­
tal in constructing approximations for individual mean waiting times. Section 4 
illustrates the latter point. Section 5 presents some conclusions and a list of a few 
challenging open problems in this area of queueing theory. 

The paper partly has the character of a survey. Subsections 2.1 and 3.1, which 
respectively discuss the principle of work conservation and the conservation law 
for systems without interruptions, contain hardly any new material; for more 
fundamental discussions the reader is referred to the books of Gelenbe and 
Mitrani [22] and Heyman and Sobel [27]. These subsections mainly serve as 
introduction to the subsections 2.2 and 3.2, where the extension to systems with 
interruptions is made. Much of the material in the latter subsections is a 
generalization of results recently obtained for polling systems with cyclic service. 
A survey of the analysis of polling systems with cyclic service (without the 
particular emphasis on conservation laws) is given by Takagi [45]. We also refer 
to Takagi [44,45] for examples of polling systems from a wide range of computer-, 
communication- and production networks. 

Recently several decomposition results for queue lengths and for waiting times 
have been obtained for single-server queues with vacations of the server. A server 
vacation is also a form of interruption, and waiting time decomposition is clearly 
related to workload decomposition, in particular in the case of Poisson arrivals 
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-who see time averages. The paper of Doshi [11] is an extensive survey of 
decomposition results for queueing systems with vacations. 

2. Work 

This section is devoted to a discussion of the amount of work in a single-server 
service system with multiple classes of customers. The speed of the server is 
supposed to be constant. Assume, without loss of generality, that the speed of the 
server is 1. The amount of work in the system at time t is defined to be the sum 
of the remaining required service times of all customers who are present at that 
time. 

In subsection 2.1 we consider the case in which no work is created or destroyed 
in the system, i.e., the server works as long as there is work and customers do not 
leave the system before their service has been completed. Next we turn to the case 
where work may be created in the sense that the service process may be 
interrupted although work is still present. In subsection 2.2 it will be shown that, 
under mild assumptions, the work in system can be decomposed into the work in 
the corresponding system without such interruptions, plus an additional term. 

2.1. WORK CONSERVATION 

A scheduling discipline is a procedure for deciding which customer(s), if any, 
should be in service at any moment of time [22]. In single-server multi-class 
service systems there is a wide range of possible scheduling disciplines. The 
server, S, may serve all customers according to a global discipline like FCFS, 
LCFS, Processor Sharing or Shortest Remaining Processing Time First; or he 
may visit the classes in some order (fixed, or random, or following a static or 
dynamic priority rule) and serve customers within each class according to a global 
discipline-and this does not yet exhaust all possibilities. 

Following Heyman and Sobel [27, p. 418] we introduce, for multi-server 
multi-class service systems: 

DEFINITION 2.1 

A scheduling discipline is called work-conserving if 
(i) no server is free when at least one customer is waiting, and 
(ii) the discipline does not affect the amount of service time given to a 

customer or the arrival time of any customer. 

Definition 2.1 excludes the creation and destruction of work. In a single-server 
system, the work in the system obviously follows the same sample path for any 
work-conserving discipline. This is not true in multi-server systems, even if all 
servers have the same speed, unless assumption (i) in definition 2.1 is changed 



0.J. Boxma / Workloads and waiting times in single-server systems. 189 

into 'no server is free when at least one customer is present'. In the following we 
restrict ourself to single-server systems. 

Let V8D(t) denote the amount of work in a single-server multi-class system at 
time t for a scheduling discipline SD. Assume that the stochastic process 
{ V8D(t), t ~ O} has an equilibrium distribution and let ysD denote a s.v. with 
distribution this equilibrium distribution. The above observation, that all work­
conserving disciplines applied to a certain realization of the arrival and service 
demand processes lead to exactly the same realization of the work process, 
implies the following weaker statement which suffices for most purposes: 

D VSD = yFCFS 

' (2.1) 

D 
where = stands for equality in distribution. 

Gelenbe and Mitrani [22, p. 174] present the work-conserving principle in 
terms of means, using the following formulation: 
For any single-server queueing system in equilibrium there exists a constant EV, 
determined only by the parameters of the arrival and service demand processes, such 
that 

EV8D=EV, 

for all work-conserving scheduling disciplines SD. 

Rewrite (2.2) as 
N 

" EV.SD'= EV 
,(,_, n ' 

n=l 

(2.2) 

(2.3) 

where E v;D is the expected steady-state amount of work due to customers of 
class n (the sum of the expected remaining service times of all class n customers 
in the system at a random epoch in the steady state). The implication is [22] that 
the vector (EVfD, ... , EV~D) always varies with the scheduling discipline in such 
a way that the sum of its elements remains constant. 

Under certain assumptions concerning the scheduling discipline and the arrival 
and service demand processes, the mean amount of work due to class n can be 
expressed in the mean number of class n customers in the system and hence, via 
Little's theorem, in the mean sojourn time of class n customers. Therefore (2.3) 
might lead to a relation between the various sojourn times. We tum to this topic 
in Section 3. First we investigate, in subsection 2.2, the extent to which the 
fundamental property (2.1) can be generalized when the work-conserving prop­
erty is violated by allowing a specific form of work creation. 

2.2. WORK DECOMPOSITION 

Again consider the single-server multi-class service system, but extend the set 
of states in which server S can be from { free, serving} to { free, interrupted, 



190 O.J. Boxma /Workloads and waiting times in single-server systems. 

serving}. S is in the state 'interrupted' when he is not serving customers although 
at least one customer is in the queue; he is in the state 'free' iff there are no 
customers present. Generally, we shall lump the states 'free' and 'interrupted' 
into the state 'non-serving'. Interruptions may occur in various forms: 
- the server takes a vacation; 
- the server requires switchover times between classes, or between customers, or 

even between service intervals of one and the same customer; 
- the server experiences a breakdown. 
Accordingly, the process of service interruptions is a stochastic process which 
may be intricately interwoven with the arrival and service processes and the 
scheduling discipline. 

Interruptions destroy the work-conserving property of the system; in Klein­
rock's terminology (32], work is created when interruptions take place. To be still 
able to make general and useful statements about the work in the system, we 
restrict the generality of the arrival process: in the following we consider a batch 
Poisson arrival process with a correlation structure, as introduced in Levy and 
Sidi [36] in their recent study of cyclic polling systems. This arrival process is 
defined below. 

DEFINITION 2.2 

Arrival epochs occur according to a Poisson process with rate A.. At each 
arrival epoch, batches of size K = ( K1, ... ' KN) of customers of the classes 
1, ... , N arrive with some arbitrary joint batch size distribution. The elements of 
the vector K are assumed to have the same joint distribution at each arrival 
epoch, and this distribution is independent of previous or future arrival epochs. 
The arrival rate of customers of class n is denoted by A.n := f...EKn. Finally 

(2.4) 

Note that this arrival process offers the possibility to model the synchronization 
of several arrival streams. 

Let vsn,1 ( t) denote the amount of work in the system at time t for a 
scheduling discipline SD and interruption process I. We introduce the following 

ASSUMPTION 2.1 

1. The stochastic process { vsn,1(t), t ~ O} possesses an equilibrium distribu­
tion. 

2. The scheduling discipline SD is work-conserving. 
3. The interruption process does not affect the amount of service time given to 

a customer or the arrival time of any customer. 
4. The arrival process is the Poisson process introduced in definition 2.2. 

It should be noted that the third assumption does not exclude the possibility 
that lengths of service interruptions depend on the class of customer whose 
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service was interrupted, or the class of customer to be served next, or on numbers 
of customers being present. It is not accidental that the second and third 
assumptions put similar restrictions on the scheduling discipline and the interrup­
tion process: an interruption could also be viewed as the service of class N + 1 
customers, which at the start of such an interruption have higher priority than all 
other customer classes, but whose work is not counted in V50•1(t). 

From now on, we restrict ourself to the consideration of steady-state distribu­
tions (see also the first part of assumption 2.1). VSD.1 denotes a s.v. with 
distribution the equilibrium distribution of { V50 .I( t), t ~ O}. In the sequel, the 
'corresponding' M/G/1 system indicates a single-server multi-class system with 
exactly the same arrival and service demand process and scheduling discipline as 
the system under consideration, but without service interruptions. According to 
(2.1), the amount of work in that corresponding M/G/1 system is the same for 
all work-conserving scheduling disciplines. We denote the steady-state amount of 
work in that system by V. The main result of this section is the following work 
decomposition result: 

THEOREM 2.1 
Consider a single-server multi-class service system under assumpfion 2.1. The 

steady-state amount of work in the system, V50J, is distributed as the sum of the 
steady-state amount of work in the corresponding M/G/l system, V, and the 
steady-state amount of work, Y, present in the original system at a nonserving 
interval: 

D vsD,1 = v+ Y. (2.5) 

Furthermore, V and Y are independent. 

Proof 
In [3] we have formulated and proved the same decomposition result for the 

special case of a cyclic polling system with single Poisson arrivals and switchover 
times (i.e., interruptions) of the server in moving from one class (queue) to the 
next on the cycle. That proof can almost literally be used in the present more 
general setting. To make the paper self-contained, we repeat the main line of the 
argument below. 

In the proof we need the concepts of 'ancestral line' and 'offspring' of a 
customer ( cf. Fuhrmann and Cooper [20]). Let CA be a customer who arrives 
during a non-serving interval. The customers who arrive during the service of CA 
are called the first generation offspring of CA. The customers who arrive during 
the service of customers of the first generation offspring are called the second 
generation off spring of CA, etc. The set of all customers who belong to the 
offspring of CA, including CA, is called the ancestral line of Ch and CA is called 
the ancestor of all customers in this ancestral line. 
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Adapting an idea of Fuhrmann and Cooper [20], we consider an M/G /1 
system with a last-come first-served (LCFS) service discipline and with identically 
the same traffic process offered as the system with interruptions, in which the 
server takes vacations exactly during the non-serving periods of the system with 
interruptions. The LCFS discipline is assumed to be nonpreemptive, with one 
exception: if a service is interrupted by a vacation, forced upon the LCFS system 
by the system with interruptions, and if during this vacation new customers 
arrive, then the interrupted service is resumed when all new customers (and 
offspring of these customers) have left. 

Now consider the system with interruptions at the arrival epoch of an arbitrary 
customer, say C. Obviously, the amounts of work in the system with interruptions 
and in the corresponding LCFS system with vacations are identical at any time, 
so we can concentrate on the amount of work in the LCFS system at a batch 
arrival epoch. Because of the 'Poisson arrivals see time averages' property [50], 
this amount of work has the same distribution as the steady-state amount of 
work. 

C's ancestor is called CA" Note that C could be CA himself. By definition, CA 
has arrived during a non-serving period (or, in this LCFS case: a vacation). 
Another application of the PASTA property implies that the amount of work 
found by CA's batch upon arrival, YeA' is distributed like Y. Note that, because of 
the LCFS service discipline, YeA will still be present when C arrives. Also note 
that it is possible that other customers have arrived after CA 's batch, in the same 
non-serving period (vacation). They do not belong to his ancestral line, they are 
served before CA and so are their offspring - so they are of no interest to us. 

The rest of the work, present at C 's arrival epoch, is distributed as the amount 
of work in the corresponding M/G /1 system with batch arrivals, at an arrival (or 
arbitrary) epoch. Consider the epoch at which the service of CA's batch starts (see 
fig. 2.1). Apart from Ye no further work is present; and we ignore Ye. The 

A A 

residual amount of work now evolves just as in the corresponding M/G /1 

i 
work 

service 
request 

of CA's 
batch 

ignored intCIVal 
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Fig. 2.1. Amount of work in the LCFS system during service of the ancestral line of C/s batch. 
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system, with one exception: during the vacation periods, forced upon the LCFS 
system by the system with interruptions, the work remains constant or may 
increase because of new arrivals. But these new arrivals, and their offspring, are 
served first (and do not belong to the ancestral line of CA), and finally the work 
level is back again at the level immediately before the vacation started. Note that, 
due to the memoryless property, the arrival process also starts afresh and that, 
once more, only YcA and work required by the offspring of CA 's batch is present. 

This reasoning shows that, at the arrival epoch of C 's batch, the amount of 
work present is composed of two independent parts: an amount of work YcA that 
is distributed like Y, and an amount of work that is distributed like the amount of 
work in the corresponding M/G /1 queue with batch arrivals. As observed above, 
the PASTA property implies that the amount of work present at the arrival epoch 
of C 's batch has the same distribution as the steady-state amount of work. This 
proves the theorem. 

REMARK 2.1 
For the case of the cyclic polling system with single Poisson arrivals and 

switchover times [3], B.T. Doshi kindly showed us a different proof of the 
decomposition result. That proof is based on a level crossing argument. We 
present it below; its extension to the present model is straightforward. 

Let A. denote the rate of the Poisson arrival process. Let B(.) denote the service 
time distribution of an arbitrary customer (averaged over the classes), with mean 
f3 and Laplace-Stieltjes transform /3(.). The traffic intensity equals p == A./3. Let 
V(.) and Y(.) denote the distributions of vsn.I and Y in the cyclic system with 
switchover times. Assume for simplicity that their densities exist; denote them by 
v(.) and y(.), and denote the Laplace transforms of these densities by </>(.) and 
ri(.). Equating the downcrossing and upcrossing rates of level x > 0 yields: 

v(x) - (1- p)y(x) =A. fa~ (1- B(x -y))v(y) du. 

Combining this relation with 

v(O) = (1- p)y(O), 

and taking Laplace transforms leads to: 

<P(s) = (1- p)'IJ(s) +A.<t>(s) l-/3(s). 
s 

Hence 

(1- p )s 
<P(s)= s-A.+A./3(s)ri(s), 

which proves the decomposition into two independent components. The same 
argument has been used by Doshi in [11], p. 58, to give a new proof of another 
work decomposition result: a result of Ott [39] for a model with a single server 
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and two customer classes, with class 1 customers arriving according to a Poisson 
process and class 2 customers arriving according to a very general process. 

REMARK 2.2 
The paper of Doshi [11] mentioned above is a survey on queueing systems with 

vacations. It presents a beautiful methodological overview of decomposition 
results for queueing systems in which the server works on primary and secondary 
customers (vacations). The paper concentrates on (decompositions for) waiting 
time distributions. Doshi [12] considers the decomposition of the steady-state 
amount of work in a single-server single-class system with vacations. The arrival 
process is allowed to be a semi-Markov process. The form of the work decom­
position in [12] differs from ours in the sense that the vacations in [12] are 
considered as additional work. Another recent paper devoted to decompositions 
for the M/G /1 queue with vacations is Fuhrmann and Cooper [20]. Their study 
concentrates on queue length distributions (at departure epochs). The proof of 
Theorem 2.1 is based on an idea of [20]; but work decomposition appears to be 
more natural than queue length decomposition, and indeed our assumptions are 
less restrictive than those needed in [20]. In particular, when amounts of work are 
considered instead of queue lengths, Assumptions 3 and 4 of [20] may be replaced 
by the assumption that the service discipline is work-conserving. 

REMARK 2.3 

In [4] we have formulated and proved a decomposition result for a cyclic 
polling system with switchover times in a discrete-time setting. In this setting, 
time is divided into slots, and numbers of arrivals in successive slots are 
independent, identically distributed s.v. Letting the slot size tend to zero leads to 
continuous-time results, with batches arising in a natural way. One of the few 
subtleties required in proving Theorem 2.1 in discrete time is the replacement of 
the PASTA property by the BASTA property, 'Bernoulli Arrivals See Time 
Averages'; cf. [4] and [26]. 

3. Conservation laws for mean sojourn and waiting times 

As remarked at the end of§ 2.1, under certain restrictions the mean amount of 
work due to customers of class n can be related to the mean number of class n 
customers in the system, and hence also to the mean sojourn time of class n 
customers. Thus (2.3) leads to a relation between the various mean sojourn times, 
the prime performance measures in most service systems. Such a relation is 
sometimes referred to as a conservation law (Kleinrock [30-32]). In § 3.1 a 
conservation law is presented for various examples of the single-server multi-class 
system without interruptions. In § 3.2 the same is done for the case with 
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interruptions. In §§ 3.3-3.6 particular attention is paid to polling systems with 
either a fixed (e.g., cyclic) or random service order, and with switchover times. 

3.1. NO INTERRUPTIONS-A CONSERVATION LAW FOR MEAN SOJOURN AND WAIT­
ING TIMES 

Starting point is relation (2.3): 
N 

L EV,,SD = EV. 
n=l 

This relation for mean amounts of work is generally valid for single-server 
multi-class systems in equilibrium, with a work-conserving scheduling discipline. 
In order to go from here to mean sojourn times, and arrive at useful relations 
between them, one has to impose several restrictions. The discussion below is 
mainly based on Gelenbe and Mitrani [22]. Following [22, p. 175], we first 
introduce 

ASSUMPTION 3.1 

Only information about the current state and the past of the queueing process 
is used in making scheduling decisions; thus, it is possible to discriminate among 
customers on the basis of their expected remaining service times (since their 
classes and attained service are known), but not on the basis of exact remaining 
service times. 

The purpose of the restriction is to exclude scheduling disciplines, like Shortest 
Remaining Processing Time First, for which the mean service time of a customer, 
who is still present, differs from an arbitrary mean service time. Further we 
introduce the following 

ASSUMPTION 3.2 
1. Successive interarrival times of class n customers are independent, identi­

cally distributed s.v. with mean 1/;.\n· 
2. Successive required service times of class n customers are independent, 

identically distributed s.v. with distribution Bn(.), with mean fin and second 
moment f3~ 2l, n = 1, ... , N. 

3. The arrival processes and the service demand processes are independent 
stochastic processes. 

It will be seen later that this assumption is unnecessarily restrictive ( cf. [41]). 
Denote the traffic intensity of class n by Pn = ;.\nf1n, n = 1, ... , N, and the total 

traffic intensity by p = p1 + ... + PN < 1. Under the above assumptions, mean 
amount of work can be easily related to mean numbers of customers, in the 
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following two cases: (i) all required service times are exponentially distributed, 
and (ii) the scheduling discipline is nonpreemptive. In case (i), 

Ev;D = /3nEX!D, n = 1, ... , N, (3.1) 

with EX,!fD the mean number of class n customers in the system under scheduling 
discipline SD. In case (ii), 

Q(2) 

VSD /3 EX-SD /Jn E n = n n + Pn 2 (.J ' 
/Jn 

(3.2) 

with Ex;n the mean number of waiting class n customers in the system under 
scheduling discipline SD (because SD is nonpreemptive, service of those 
customers has not yet been started), and with /3~2) /2/3n the mean residual service 
time of a class n service in progress. 

In both cases, application of Little's formula leads to a conservation law. The 
results are formulated in the following theorem. In the sequel, ESn8D(EWn5D) 
denotes the mean sojourn (waiting) time of a class n customer, n = 1, ... , N, 
under scheduling discipline SD. 

THEOREM 3.1 
Consider a single-server multi-class service system with work-conserving sched­

uling discipline SD, under the assumptions 3.1 and 3.2. 
(i) When the required service times are exponentially distributed there exists a 

constant EV, determined only by the interarrival time distributions and the mean 
service times, such that 

N 

I: PnEs;D = EV. (3.3) 
n=l 

(ii) When SD is nonpreemptive there exists a constant EV, determined only by 
the interarrival and service time distributions, such that 

(3.4) 

and 

N N 

" p EW80 = EV - l " A Q(2) 1...., n n 2 1...., n /Jn • (3.5) 
n=1 n=1 

EV is generally unknown; in case (ii), it equals the - unknown - mean amount 
of work in the GI/G/1 queue. When all arrival processes are independent 
Poisson processes, EV can be determined by considering an M/G/1 queue with 
SD = FCFS, in which all customer classes are lumped together into one customer 
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class with arrival rate A = 11.1 + ... + ,\ N and service time distribution 
:L(ll.n/ A)Bn(.). The Pollaczek-Khintchine formula then yields in case (i): 

N 

EV = L Pn/3n/(l - P), 
n=l 

and in case (ii): 
N 

EV= L An/3~2)/(2(1- p)). 
n=l 

(3.3)-(3.5) now reduce to simple expressions for a weighted sum of mean sojourn 
(waiting) times. These expressions were first obtained by Kleinrock [30,31]. As 
observed by him, their implication is that, if a change in the scheduling discipline 
causes one of the mean sojourn (waiting) times to decrease, this must happen at 
the expense of other mean sojourn (waiting) times. This justifies the use of the 
word conservation. Formula (3.5) for a general arrival process is due to Schrage 
[41]; Schrage in fact made no assumptions about independence of the interarrival 
times and of the service times, see also [27, p. 432]. 

After having established that the mean sojourn times must satisfy a certain 
linear relation, Gelenbe and Mitrani [22] proceed to narrow the possibilities 
further by showing that a certain inequality constraint holds for Ln e gPnEs:D, for 
all subsets g of { 1, ... , N}. To illustrate the concept we state their theorem 6.5 
for case (ii): 

THEOREM 3.2 
In any N-class M/G/l system in equilibrium, for every non-empty subset g of 

customer class indices, and for any work-conserving nonpreemptive scheduling 
discipline SD for which assumption 3.1 holds, the mean sojourn times satisfy the 
inequality 

L PnESnSD ~ 1 ~ Ak/3i2) L Pn/( 1- L Pn) + L "A.JJ; · (3.6) 
neg k=l neg nEg nEg 

Moreover, (3.6) becomes an equality if SD gives nonpreemptive priority to 
g-customers. 

The proof is based on the following considerations. In order to minimize 
" p ESSD the customers from g should receive nonpreemptive priority over '-'n E g n n ' 
the non-g customers. Now the sojourn time of a customer from g can only be 
influenced by non-g customers if he finds one of those in service. With Poisson 
arrivals, the probability of this event is not influenced by the scheduling strategy. 
This reasoning implies that the minimal value of Ln e gPn ES!D can be obtained by 
lumping all customers from g into one class, all other customers into a second 
class, and giving head-of-the-line priority to the customers from g. The theorem 
now follows. 
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Subsequently Gelenbe and Mitrani [22] present so-called characterization 
results, which state that all mean sojourn time vectors which satisfy the con­
straints, can indeed be realized by choosing a specific scheduling discipline. We 
omit discussion of this topic, but refer the reader to chapter 6 of [22] for some 
interesting results and further references. 

REMARK 3.1 
Heyman and Sobel [27, p. 432] extend (3.5) to a multi-server multi-class queue. 

For this extension they require that all customer classes have the same service 
time distribution. See also lemma 1 of Federgruen and Groenevelt [16]. The latter 
authors subsequently extend theorem 3.2 above to a multi-server queue. They 
show that the performance space, the set of mean waiting time vectors which are 
achievable under some nonpreemptive work-conserving scheduling discipline, is a 
polyhedron described by 2N - 1 inequalities. The special structure of this poly­
hedron allows for efficient ( 0( N 2 log N)) procedures to minimize any convex 
(separable) function of the vector of mean waiting times. 

REMARK 3.2 

A minor but interesting extension of case (ii) of theorem 3.1 is the following. 
Consider a network of service stations Q1, ... , QN. Customers of class n arrive at 
Qn; after having been served in Qn they move to some queue Qm with transition 
probability Pnn•' n, m = 1, ... , N, becoming class m customers, etc. With prob­
ability 1 - I:~=lPnm• a class n customer leaves the system. There is one server in 
the network, who moves from queue to queue. For the moment, we assume that 
switchover times of the server between queues are negligible (and we assume the 
same for customer switchover times). Each service is assumed to be nonpreemp­
tive. The conditions given in case (ii) of theorem 3.1 are satisfied; the extension 
lies in the fact that customers may change class. Formula (3.2) must be replaced 
by: 

[ 
N oo l [ f3 (2) N oo l 

EV,,SD = Ex;n /3n + "~1 k~/~':J/3m + Pn 2/Jn + m~l k~/~':J/3m ' (3.7) 

with p~':J the k-step transition probability from Qn to Qm, and Pn the total traffic 
intensity of class n customers. 

Networks of queues with one single server arise in various models of 
computer-communication systems. Klimov [34] has studied the problem of mov­
ing the server in such a way as to minimize some objective function. Foss [18] 
relaxes Klimov's assumption of Poisson arrivals. Several papers have been de­
voted to an exact queue-length analysis for the special case of tandem configura­
tions with one moving server, cf. Nair [38], Taube-Netto [46] and the recent study 
of Katayama [28], to which we also refer for further references. 
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3.2. INTERRUPTIONS-A PSEUDOCONSERVATION LAW FOR MEAN WAITING TIMES 

In this subsection we try to extend the conservation law results of the 
preceding subsection to the case with interruptions. Consider a single-server 
multi-class system under the assumption 2.1. Theorem 2.1 implies that 

N 

L EV,,SD,I = EV + EY. 
n=l 

(3.8) 

EV is the mean amount of work in the corresponding M/G/1 system with batch 
arrival process as defined in definition 2.2; viewing the batches as super­
customers, EV is also the mean amount of work in an M/G/1 system with 
single arrivals (with arrival rate ;\.) and service time distribution the distribution 
of the total service time of a batch. In line with our earlier notation, individual 
service times of class n customers have distribution Bn(.) with mean /311 and 
second moment /3~2l; the arrival rate of class n customers is An= ;\.£K11 , with 
EKn the mean batch size of class n arrivals; and Pn = A11 /311 , p = p1 + ... + PN· 
Denoting the second moment of the service time of a supercustomer by b<2l, we 
can write [36]: 

and 

N N N 

b(2) = L L /3m/3nKm,n + L f3Pl£Kn, 
m=1 n=l 

A_b(2) 

EV= 2(1- p). 

n=l 

From (3.8) and (3.10), 

(3.9) 

(3.10) 

N Ab(2) 
'\"" EVSD,J = + EY. (3.11) 
L,, n 2(1 - ) 

n=l P 

We are left with two problems. We have to relate EV11sD,1 to ES11sD,I (EW~rn,i), 

the mean sojourn (waiting) time of a class n customer; and we have to determine 
EY, the mean amount of work present in some epoch covered by a non-serving 
interval. Solution of the first problem requires similar restrictive assumptions as 
were made in § 3.1 for the case without interruptions. In particular, along with 
assumption 3.1, we also impose: 

ASSUMPTION 3.3 

The interruption process uses only information about the current ~t~te and ~he 
past of the queueing process; thus, no information about exact remammg service 
times is used. 

Thus we exclude, e.g., the case that there is always an interruption when the 
residual service time of the customer in service equals d. 
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One can now prove the following pseudoconservation laws, which are the 
counterparts of the conservation laws in theorem 3.1 (note the differences in the 
arrival processes): 

THEOREM 3.3 

Consider a single-server multi-class M/G /1 service system with scheduling 
discipline SD and interruption process I under the assumptions 2.1, 3.1 and 3.3. 

(i) If the required service times are exponentially distributed, then 

N ')...b(2) 
~ p BSSD,l = + BY. (3 .12) 

11'-:1 n 11 2(1 - p) 

(ii) If the scheduling discipline and the interruption process are such that 
services are not preempted, then 

N Ab(2) N ( /3(2) ) 

L PnBSnSD,l = 2(l - ) + L Pn /3n - 2~ +BY, 
n= l P 11"'1 /Jn 

(3.13) 

and 

N A_b(2) N 
~ p BWSD,J = - 1 "" A a<2> + BY 

11'-:1 n 11 2(1 - p) 2 n-'-:1 n/Jn . 
(3.14) 

REMARK 3.3 

The reason for not allowing interruptions during a service time in case (ii) is 
the same as the one for not allowing preemptions by the scheduling discipline: we 
have to exclude that an arbitrary waiting customer already has received some 
service time. In case (i) the non-anticipating assumption 3.3 suffices. 

REMARK 3.4 

With similar modifications as above, case (ii) can be extended to the Klimov 
network with a single server that was discussed in remark 3.2. See also § 3.6 
below. 

We now turn to the second problem that eq. (3.11) gave rise to, viz., the 
determination of BY. Since BV is completely independent of the scheduling 
discipline and interruption process, their whole influence on Evsn,1 is con­
centrated in EY. Therefore we can hardly expect to make meaningful statements 
about EY without specifying the scheduling discipline and interruption process 
in detail. 

In the rest of this section we concentrate on case (ii) of theorem 3.3, while the 
only interruptions are switches of S between classes. § 3.3 is devoted to the case 
of cyclic service, i.e., S successively visits classes 1, 2, ... , N, 1, 2, ... , requiring 
switchover times between classes; in § 3.4 the cyclic order is generalized to an 
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arbitrary fixed class visit order, and in § 3.5 to a random (in fact, Markovian) 
polling order; finally in § 3.6 the Klimov network with a single server and 
switchover times of the server between classes (queues) is briefly considered. 

3.3. A PSEUDOCONSERVATION LAW FOR CYCLIC-SERVICE SYSTEMS 

Single-server multi-class service systems with cyclic service of the classes and 
switchover times frequently arise in the performance analysis of computer-com­
munication networks. An important example is provided by local area networks 
with a token ring protocol. This example, along with several others, is discussed 
in more detail by Takagi [44]; his study also contains a detailed analysis and 
extensive survey of cyclic-service models. 

In this subsection we are going to derive a pseudoconservation law for mean 
waiting times in a cyclic-service system, by working out an expression for EY in 
(3.14). The resulting pseudoconservation law is an extension of the one in [3]. For 
some of the service strategies to be considered below, exact expressions for 
individual mean waiting times have been derived in the literature, usually as the 
solution of a large set of linear equations; for further details and references the 
reader is referred to the surveys of Takagi [44,45]. 

We still have to specify. the switchover process. As we started from a very 
general model in section 2 and gradually restricted ourself more and more, it 
seems appropriate to give a concise 

Mode/ description 
A single server S serves N classes of customers, or rather N queues Q1, ... , QN 

with infinite waiting rooms, in cyclic order: Q1, Q2 , ••• , QN, Q1, Q2 , •••• The 
switchover times of S between the nth and (n + l)th queue are independent, 
identically distributed s.v. with first moment sn and second moment s~2>. The first 
moment of the total switchover time during a cycle of the server, s, is given by 
s = E~=lsn; its second moment is denoted by s<2>. When S finds a queue empty, 
he immediately begins to switch to the next queue. 

The arrival process of customers is the correlated Poisson process introduced in 
definition 2.2. The service times of class n customers are independent, identically 
distributed s.v. with distribution Bn(.), with mean /3n and second moment /3P>. As 
before, the traffic intensities are denoted by Pn, n = 1,. . ., N, and p = E~=iPn· 

The interarrival, service demand and switchover time processes are mutually 
independent, apart from the correlation between the sizes of simultaneously 
arriving batches (in fact, one might also relax the independence of successive 
switchover times). 

For the service strategies at the queues there are various possibilities, which 
differ in the numbers of customers who may be served in a queue during a visit of 
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S to that queue. Before specifying a number of such strategies, let us see how far 
we can get from theorem 3.3 with the above specification of the interruption 
(switchover) process. 

Assume that the queueing system under consideration is in equilibrium (the 
ergodicity conditions depend on the service strategies at the queues; obviously 
p < 1 is a necessary condition). The conditions of case (ii) of theorem 3.3 are 
fulfilled, so (3.14) holds. To determine BY, we follow the approach in [3]. Denote 
by E~ the mean amount of work in the cyclic-service system at some epoch 
covered by a switchover from Qn to Qn+l· So 

N S 
BY= L _!!.EYn. (3.15) 

n=l S 

E Yn is composed of three terms: 
1. EM~ll: the mean amount of work in Qn at a departure epoch of S from Qn; 
2. EM~2l: the mean amount of work in the rest of the system at a departure 

epoch of S from Qn; 
3. p(s~2l/2sn): the mean amount of work that arrived in the system during the 

past part of the switching interval under consideration. 
To calculate EMYl and EM~2l, we need the following two globally valid 

results for cyclic-service systems (cf. Takagi [44]): 
The mean cycle time, i.e., the mean time between two successive visits of S to, 
say, Qn, is independent of n; it is given by 

s 
EC= - . (3.16) 

1-p 

The mean visit time of S at Qn, i.e., the mean time between the arrival and 
subsequent departure of S at Qn, is given by 

s 
EVln=pnEC=pn-1-, n=l, ... ,N. (3.17) 

-p 

(3.16) and (3.17) follow from general traffic balance arguments. Repeated use of 
(3.17) yields: 

E (2) _ ( PnS ) ( Pn-1S PnS ) 
Mn - Pn-1 sn-1 + l _ p + Pn-2 sn-2 + l _ p + sn-1 + l _ p 

( Pn+2S Pn+3S PnS ) 
+ · · · +Pn+l Sn+l + -1-- + Sn+2 + -1-- + · · · +sn-1 + -1--- p -p -p 

+ '°' £M<1l· L.J J ' (3.18) 
j>Pn 

and we find 

N N S 

L Sn EM!;2l = p_ LLShSk + ~ LLPhPk + L _!!. L EM)1l. 
n=l S S h<k - p h<k n=1 S j>Pn 

(3.19) 
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From (3.15), (3.18) and (3.19), 

EY= £ EM<l) + p s<2
> + s [P2 _ £ P2] 

J=l J 2s 2(1 - P) n=1 n . 
(3.20) 

Finally, from (3.9), (3.14) and (3.20), suppressing the superscript SD,J: 
N N N 

N L Xn/3~2) L L /3m/3nKm,n 2 L Pn E Wn = p n =(1 ) + X-m-=_1 __ n=_1 ____ + p-s <_> 
n=l 2 1 - p 2(1 - p) 2s 

+ 2(1 ~ ) [p2- £ P~l + £ EMJ1>. 
P n=l ;=1 

(3.21) 

The last three terms, together constituting EY, reflect the influence of the 
presence of switchover times. The term ps<2> /2s represents the mean amount of 
work that arrived at all queues during the switching intervals after the last visit of 
S to those queues. Note that s <2> /2s equals the mean total past switching time 
from the departure of S from an arbitrary queue to the present random switching 
epoch. This interpretation explains why only s and s<2J occur, and no moments of 
individual switchover times. The next term reflects the interaction between 
queues; it represents the mean amount of work that arrived at queues, after the 
last visit of S, during the subsequent service periods of other queues. Finally 
E7= 1 EMJ1> represents the mean total amount of work left behind by S at the 
various queues· in one cycle. This is the only term that cannot be determined 
without specifying the service strategies at the various queues. A pleasing conse­
quence of the global validity - irrespective of the service strategies - of the 
expressions (3.16) and (3.17) for, respectively, mean cycle· time and mean visit 
times, is that EMJ1> only depends on the service strategy at Qi, and not on the 
service strategies at the other queues. Another consequence is that the correlation 
between batch sizes also has no effect on EMp>. 
We now tum to the 

Determination of EM(1J for various service strategies 
J. Exhaustive: S s~rves class j customers until Qi is empty. 

EM<1>=0. 
J 

(3.22) 

2. Gated: S serves exactly those class j customers that were present upon his 
arrival at Q 1. 

s 
EM<1> = p.EVJ. = p2--. 

J J J 11-p 
(3.23) 

3. Reserved gated (also called fully gated [2, section 3.5.2]): S serves exactly 
those class j customers that were present upon his departure from Q1-1· 
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Similarly as for gated service one obtains: 

EM (lJ _ EVI - 2_s_ + 
J -pi 1+P15J-1-Pfl-p P1 51-1· (3.24) 

4. Binomial-gated: when S finds f'1 customers present upon his arrival at QJ, 
he serves a number of customers that is binomially distributed with parameters ~ 
and p1, 0 < p1 ~ 1. Note that p1 =1 corresponds to gated service. The 
binomial-gated strategy, which has been introduced and analyzed by Levy [35], 
allows assigning priorities to the queues of a cyclic service system by choosing the 
probabilities h It is easily seen [35] that 

EMol = P ( P. + l - P; )-s -. 
J J J P; 1 - p 

(3.25) 

5. Binomial-exhaustive: when S finds f'1 customers present upon his arrival at 
Q1, he sets aside a number of customers that is binomially distributed with 
parameters f'1 and pJ, 0 ~ p1 < 1, and he serves the other customers and those 
arriving during their service, etc. Note that p1 = 0 corresponds to exhaustive 
service. This service strategy was suggested by W.P. Groenendijk [personal 
communication]. A simple calculation yields: 

(lJ _ P; ( ) s EM1. - -1--P; 1- P1· -1--. - P; . - P 
(3.26) 

6. I-limited: S serves exactly one customer at Q 1. 

(l) - A;S w 2 s AS Q 

EM; -P11-pE 1+P;l-p + 2(l-p)JJ1K1.1· (3.27) 

This formula can be derived from (4.15) and (5.8) of [4]. The latter study only 
considers uncorrelated batch arrivals; but as has been observed above, the 
correlation of batch sizes has no effect on EMpl. Formula (3.27) can be written 
in the following way: 

(ll _ ( A 1s ) A 1s [ { } K),) l EM; - 1 - 1 - P 0 + 1 - P P; Effj + f31 + f31 2EKJ , 

with as interpretation: A 1s /(l - p) equals the fraction of visits of S to Q 1 that 
result in a service; p1 { Effj + [3J} equals the mean amount of work that has 
arrived during the sojourn time of the departing customer; and [31KJ,J/(2EKJ) 
equals the mean amount of work of the customers who arrived in the same batch 
as the departing customer but are served after him. 

7. Bernoulli: after each service which does not leave QJ empty, S serves 
another customer with probability 1 - p1 and moves to the next queue with 
probability h This discipline has been introduced by Keilson and Servi [29]. The 
expression for EMJ1> is strongly related to its counterpart in the 1-limited case 
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(an explanation will be given at the end of§ 3.5): 

(l)_ [ A.is 2 _s_ A.s l 
EM1 - P1 P11 - PE~+ P1 1 - P + 2(1 - P) f31K1.1 . (3.28) 

Tedijanto [47] has derived (3.28) for the case of single arrivals. 
8. Semi-exhaustive: S continues serving class j customers until the number 

present is one less than the number present upon his arrival. From ( 4.25) and 
(5.8) of [4]: 

(1) - A.1s(l - P1) A.~s (2) A.s 
EMJ - P1 1- p E~ - 2(l _ p) P1f31 - 2(l _ p) f31P1K1.1· (3.29) 

It follows from (3.21) and the subsequent discussion that, in a cyclic-service 
system with a mixture of the above listed service strategies (e.g., exhaustive at one 
queue, 1-limited at the next, etc.) one can easily determine an exact expression for 
a weighted sum of mean waiting times. Note that for the 1-lirnited, Bernoulli and 
semi-exhaustive strategies the weight factor is not equal to the traffic intensity at 
the queue. 

If one of the queues has yet another service strategy, one only has to determine 
its corresponding EMJ1>. However, this may be a very difficult problem. Consider 
the G-limited and E-limited service strategies: S serves a queue according to the 
gated or the exhaustive service strategy, with the restriction that he serves at most, 
say, k customers. k = 1 reduces to 1-lirnited service, whereas k = oo reduces to 
gated respectively exhaustive service. Everitt [14,15] has derived a pseudo­
conservation law for G-limited respectively E-limited service, but his formulas 
still contain the unknown second factorial moment of the number of customers 
served in the queue at a visit of S. An exact expression for· this term is probably 
hard to come by. Replacing the second factorial moment by zero immediately 
yields Fuhrmann's bound [19] for the weighted sum of mean waiting times. 

REMARK 3.5 
In none of the above cases it is necessary to specify the order of service within 

a class. It suffices to make the restriction to work-conserving nonpreemptive 
service disciplines for which assumption 3.1 holds. 

REMARK 3.6 
For cyclic-service systems with switchover times and uncorrelated arrivals, a 

pseudoconservation law has first been obtained by Ferguson and Arninetzah [17] 
for the cases of exhaustive service at all queues and gated service at all queues, 
and by Watson [48] for the same two cases and also for 1-lirnited service at all 
queues. The last result is particularly noteworthy, because the mean waiting times 
at the individual queues are not known apart from the two-queue case [5], for 
which singular integral expressions are obtained. In [3] these pseudoconservation 
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laws have been unified and generalized for a mixture of exhaustive, gated, 
I-limited and semi-exhaustive strategies at the queues. The probabilistic proof in 
[3] explains the validity of the pseudoconservation law, and allows an interpreta­
tion of the various terms. A discrete-time version of this pseudoconservation law, 
and an extension to batch arrivals, are presented in [4]. A discrete-time version 
for the case of gated service at all queues has also been obtained in [40]. Levy and 
Sidi [36] have further generalized the results of [3] to the case of the correlated 
batch Poisson arrival process of definition 2.2. 

REMARK 3.7 
For N = 1 queue the above calculations yield some, mostly known, expressions 

for mean waiting times in M/G/1 queues with various kinds of vacations. 

REMARK 3.8 
For all listed strategies, apart from the reserved gated one, EMJ1l is linear in s; 

and so is EY, if s<2l/2s is linear in s. The pseudoconservation law thus gives an 
interesting insight into the influence of the total mean switchover time, s, on 
workload and - to some extent - on the (weighted sum of the) mean waiting 
times. 

3.4. POLLING SYSTEMS WITH A GENERAL SERVICE ORDER TABLE 

A generalization of single-server multi-class systems with cyclic service is 
obtained by allowing the server to visit the queues according to a fixed - but not 
necessarily cyclic - pattern, like the star pattern: Q1, Q2 , Q1, Q3, ... , Q 1, QN, Q1, 

Q2 , . . • • Polling systems with a general service order table arise naturally in 
many computer-communication networks; some examples are the token bus local 
area network, and a computer with multi-drop terminals in a star configuration. 
The possibility of using general service order tables is also interesting from the 
viewpoint of optimization; it gives one the opportunity to assign stations higher 
priority by listing them more often in the table. 

Baker and Rubin [1] have presented an exact analysis of waiting times for 
polling systems with a general service order table, with exhaustive service at all 
queues. In [6] a pseudoconservation law has been derived for such polling systems 
but with a mixture of various service disciplines (see also [23) for a related result). 
Following an idea of [1], the system with a service order table is reduced to a 
cyclic-service system by introducing pseudostations. We illustrate the concept 
using the star pattern example. The star pattern repeats itself after 2N - 2 queue 
visits. The introduction of 2N - 2 pseudostations PS1, ... , PS2N_ 2 leads to a 
cyclic-service system, with one complication: PS1, PS3 , ..• , PS2N_ 3 all refer to 
Q1, and arrivals at these pseudostations really are arrivals at Q1• Determination 
of the mean visit times of these pseudostations is not as trivial as before. 
However, the pseudoconservation law (3.14) holds, and evaluation of an expres-
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sion for EY is only slightly more complicated than for the strictly cyclic model. 
Formula (3.15) remains valid, with 2N - 2 switchover times; the decomposition 
of EY,, into three terms EM~l)' EM~2) and p(s~2)/2sn) also goes through, but the 
first two terms now ref er to pseudostations, and their determination requires a 
careful bookkeeping of earlier visits to other pseudostations that refer to the same 
queue. 

3.5. POLLING SYSTEMS WITH MARKOVIAN ROUTING OF THE SERVER 

Another generalization of single-server multi-class systems with cyclic service is 
obtained by allowing the server to visit the queues according to a probabilistic 
routing scheme. K.leinrock and Levy [33] have introduced the random polling 
scheme in which, after a server visit period to a queue, the next queue to be 
served is Qi with probability pi. In [8] the more general Markovian polling 
scheme is considered where a visit to Qi is with probability P;J followed by a visit 
to Qi: S visits the queues according to a Markov chain. 

Again a pseudoconservation law can be formulated. Determination of EMJ0 

proceeds as in § 3.3. Determination of EMJ2>, the mean amount of work in the 
rest of the system at a departure epoch of S from Qi, provides som~ difficulties; 
it requires a careful study of the mean time between a departure of S from Q 1 

and the last previous departure from, say, Qi. 
The flexibility of the Markovian polling scheme is illustrated by the following 

example. Consider the case of 1-lirnited service at all queues, with the following 
server routing probabilities: 

P1"J = 1 - p,. 

P;J = P; 

pi}= 0 

if j = i' 

if j = i + 1, 

else; 

and with the following mean switchover times: 

Sii= 0, 
si,i+l = si; 

it is easily seen that this leads to cyclic service with a Bernoulli service strategy at 
all queues. This observation has been exploited in [8] to derive the pseudo­
conservation law (3.28) for the case of single arrivals. In fact, for the Markovian 
polling scheme, it is seen that the probability that a server visit to Qi results in a 
service equals A..Jpis/(1 - p), after which the reasoning below (3.27) can again be 
applied to determine EMp>. 

3.6. A QUEUEING NETWORK WITH A SINGLE SERVER 

Let us return to the network of service stations Q1, ..• , QN with one single 
server, that was introduced in remark 3.2. Assume that the conditions of case (ii) 
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of theorem 3.3 are fulfilled. Then we have (cf. (3.11) and (3.7)): 

"~' ( p" + :\ 1~ 1 ,~/!~Pm]) E ~SDI 
f....b(2) N N [ N oo l 

2(1- p) -1 n~l An/3~2) - ,!:1 Pn m~l k~l p~~//3m + EY, (3.30) 

with p~':J the k-step transition probability from Qn to Qm, xn the total arrival 
rate at Qn, and Pn = Xn!3n the total traffic intensity of class n customers. 

EY still has to be determined. We consider a similar special case as in § 3.3. 
The interruption process is specified by assuming that the server, S, visits the 
queues in a cyclic order; the only interruptions are those caused by the switches 
of S between queues. The model description is identical to the model description 
in § 3.3, apart from the fact that customers may move from queue to queue 
(without switchover times), and change class accordingly. We claim that de­
termination of EY proceeds similarly as in § 3.3. In particular, (3.15)-(3.17) 
remain valid; (3.18) requires some adaptation because customers can reach a 
queue from another queue only during particular periods. As before, determina­
tion of EMj1>, the mean amount of work in Q1 at a departure epoch of S from 
Q1, depends on the service strategy at Qi. 

Independent of the present study, Sidi and Levy [42] have analysed a network 
with one cyclically moving server and either exhaustive or gated service at all 
queues; for this case they have also obtained (3.30). 

4. Conservation-law based mean waiting time approximations 

Exact expressions for mean waiting times in single-server multi-class service 
systems are known only in exceptional cases (see Takagi [44,45] for most of the 
references regarding cyclic-service models). In view of this, (pseudo)conservation 
laws for mean waiting times are extremely useful, if only as a tool to test 
approximations or to base approximations upon. As an illustration, we briefly 
discuss conservation-law based mean waiting time approximations for cyclic­
service systems with switchover times (the model of§ 3.3). We restrict ourself to 
single Poisson arrivals, and to FCFS service at all queues. 

Recently, several mean waiting time approximations for cyclic-service systems 
have been suggested in literature. Most of these approximations are based on the 
following idea, that has independently been developed in [13], for the two cases of 
exhaustive service and gated service at all queues, and in [7] for I-limited service 
at all queues. First obtain a linear relation between the mean waiting time EWn at 
queue Qn and the mean residual cycle time Ercn for a cycle starting with the 
arrival of server S at Qn. The first cycle time moment is the same for all queues; 
the residual cycle time moments generally differ, but these differences are usually 
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quite small (cf. the exact analysis of a special case in [5]). Now assume that the N 
mean residual cycle time moments are exactly the same: Ere,,= Ere. Finally 
substitute the obtained N linear relations between E W,, and Ere in the pseudo­
conservation law and solve for the one unknown, Ere. Groenendijk [24] has 
shown that this approach can be applied to cyclic-service systems with a mixture 
of exhaustive, gated and 1-limited service strategies. We briefly indicate the main 
steps of his approximation. 

(i) Q,, has gated service. Then 

EW,, = (1 + p11 )Ere11 • (4.1) 

Indeed (Groenendijk [personal communication]), the mean waiting time of a 
tagged class n customer consists of two components. Firstly a mean residual cycle 
time Ere,,, because with gated service a customer is never served in the cycle in 
which he arrives. Secondly, the mean time from the instant the server arrives at 
Q,, until the service completion of all class n customers who arrived before the 
tagged customer, in the same cycle: (A.,,Ere,,)/311 • 

(ii) Q,, has exhaustive service. Then one can prove [24] that 

EW,, = (1- p11 )Erc11 , (4.2) 

where Ere,, is the mean residual cycle time at Q,, with a cycle starting at a 
departure epoch of S from Qn- The following simple argument of Doshi [personal 
communication] immediately leads to (4.2): Ere,, consists of two components; 
firstly EW,,, the mean waiting time of the hypothetical customer whose arrival 
marks the beginning of the residual cycle, and secondly p11 Erc11 , the mean work 
that arrives at Q,, during the residual cycle. A minor variant of this argument is to 
write 

Ere,,= EW,, + (t..,,EW,,)(/3,,/(1- p,,)), 

the last term in the righthand side denoting the mean number of arrivals at Q,, 
during EW,, times the mean length of the busy period at Q,, generated by such an 
arrival (note that the hypothetical customer himself should not contribute to 
Ere,,!). Formula ( 4.2) gives rise to the approximation 

EW,, = (1 - p,,)Erc,,. (4.3) 

(iii) Q,, has 1-limited service. No exact relation between EW,, and Ere11 is 
known in this case. Groenendijk [24] applies the following idea of [7]. Denoting 
the number of waiting customers at Q,, found by an arriving class n customer by 
X,,, and the length of a cycle at Q,, which contains a class n service by Cb,n' one 
has: 

EW,, =Ere,,+ EX,,ECb,n =Ere,,+ A.,,EW,,ECb,n' 

leading to 

Ere,, 
EW,, = 1- A. EC . 

n b,n 
(4.4) 
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ECb,n is not exactly known, but for this term an accurate and simple approxima­
tion can be obtained. Finally, substitution of ( 4.1), ( 4.3) and ( 4.4), with Bren = Ere, 
into the pseudoconservation law (3.14) yields an expression for Ere, and hence an 
approximation for the individual mean waiting times. The resulting approxima­
tion has the following features. 
- It is an explicit formula for EWn, which gives much qualitative insight into the 

behavior of cyclic-service systems; 
- it is exact in the completely symmetric case (same traffic characteristics, 

switchover time distributions and service strategies at all queues); 
- it is an excellent approximation for low and medium traffic; 
- it is not very accurate when traffic is high and asymmetric, in particular when 

the system contains 1-limited service queues. 

The main source of the just mentioned inaccuracy is approximation ( 4.4) for 
queues with 1-limited service. A more detailed study of cycle times, taking into 
account information about previous cycles, led Groenendijk [25] to replace ( 4.4) 
by 

(4.5) 

Here Hn is a correction term that must be calculated iteratively. The resulting 
approximation is more accurate but less transparent than the one using ( 4.4). 

The ideas in [25] are partly based on those of Srinivasan [43]. For the case of 
1-limited service at all queues, Srinivasan had also improved upon [7] by taking a 
closer look at (conditional) cycle times before eventually applying the pseudocon­
servation law. 

Finally we mention two more studies which present mean waiting time 
approximations based on a pseudoconservation law. Fuhrmann and Wang [21] 
consider the difficult and important cases of G-limited and £-limited service, 
discussed below (3.29). They derive heuristic mean waiting time approximations, 
based on tight bounds [19] for the pseudoconservation law. These bounds reduce 
to the exact pseudoconservation law for exhaustive, gated and 1-limited service in 
the corresponding limiting cases. 

Pang and Donaldson [40] suggest a very accurate mean waiting time approxi­
mation for discrete-time cyclic-service systems with gated service at all queues. 
They express the mean waiting time at Qn in the second moment vn n of the sum 
of Q/s visit time and the subsequent switchover time; next they obtain a linear 
relation between Vn+I,n+I and vn,n for all n; and finally they solve for the vn,n by 
deriving an extra linear relation between v1,1, •.. , vN,N· At this last stage the 
conservation law is elegantly brought into the picture. 
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5. Conclusions 

This paper has been devoted to single-server multi-class service systems with 
interruptions. The main results are: 
- Under rather weak restrictions, the steady-state amount of work in the system, 

vsn,1, is distributed as the sum of two independent quantities, viz. (i) V, the 
steady-state amount of work in the corresponding system with identical 
characteristics but without interruptions, and (ii) Y, the steady-state amount of 
work in the original system at an epoch at which the server is not serving. V 
does not depend on the scheduling discipline, nor on the interruption process; 
all the information provided by those two system entities is contained in Y. 
Under stronger restrictions, a pseudoconservation law holds for the mean 
waiting times of the classes of customers. 

The pseudoconservation law has already proved its usefulness in cyclic-service 
systems. In section 4 it has been shown how one can employ the pseudoconserva­
tion law to derive approximations for individual mean waiting times. 

The righthand side of the pseudoconservation law contains EY. Evaluation of 
EY has been discussed in many special cases, mainly derived from polling 
systems. In view of the importance of such systems in computer-communication 
networks, a further study of EY for various service strategies at the queues is of 
interest. However, in relation to conservation principles in service systems there 
are several more challenging and fundamental problems to be solved. We end this 
paper with a list of some of those problems. 

I. Relaxation of the Poisson assumption 
The assumption of Poisson arrival processes is not always realistic. Extension 

of the work decomposition in theorem 2.1, and of the pseudoconservation law in 
theorem 3.3, to more general arrival processes would be of considerable interest. 
It should be noted that some of the waiting time decompositions for queues with 
vacations hold for general interarrival time distributions (cf. Doshi [11,12]). Of 
course, when a work decomposition for such a case is obtained, there is still the 
problem that the mean amount of work in a G /G /1 queue is not known. 

2. Multi-server queues 
As observed in remark 3.1, extension of the conservation law to multi-server 

queues without interruptions has only been accomplished under the severe 
restriction of equal service time distributions for all classes. It would be interest­
ing to study the concepts of work conservation, work decomposition and 
(pseudo)conservation law for multi-server multi-class systems. Thus new insight 
might be obtained into the behavior of cyclic-service systems with multiple 
servers, a subject which has received relatively little attention but for which 
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several applications exist. Takagi [45] contains the references to the few papers 

that have appeared on this subject. 

3. Optimization 
Although the extensive research on cyclic-service system has been useful for 

performance evaluation, it has not yet led to a clear ability to control the systems 
under consideration and to affect their design. Modern developments in com­
puter and communication technology enable the use of more sophisticated 
scheduling disciplines, while the need to control complex networks makes the use 
of such disciplines imperative. Recently a few studies have appeared which open 
up possibilities for optimization; much more research is needed here. Levy's [35] 
binomial-gated strategy ( cf. § 3.3) leads to a tractable mathematical model in 
which the choice of binomial probabilities of numbers of customers served at the 
queues allows prioritization. Levy et al. (37] compare several service disciplines 
w.r.t. the total amount of work in the system. Using a sample path analysis they 
show that some policies dominate other policies in the sense that, at any time, the 
total amount of unfinished work in the system under one policy is at most as 
large as under another policy. The analysis can be used to construct a hierarchy 
of several common service disciplines. 

Browne and Yechiali [9] present a semi-dynamic polling policy in which the 
server, at the beginning of a cycle, determines a visiting order of the queues for 
this cycle so as to minimize some objective function. Finally, the use of a fixed 
service order table (cf. (1,6) and § 3.4) enables the assignment of priorities by 
listing a queue more often in the table, and a similar remark holds for polling 
systems in which the server visits the classes according to a Markov routing chain 
( cf. (33,8] and § 3.5). 
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