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0. Introduction 

Let X be a complex Banach space and A the generator of a C0-semigroup T(t). 
There exist real M~1 and co such that llT(t)ll ~Mero1• It is well-known that 
{.A.:ReA.>co}ce(A), the resolvent set of A. For such A., we write R(A.,A) for 
(A.I-A)- 1• 

It follows from the Hille-Yosida theorem that 

llR(J.,A)ll ~ R 7 , (Rd>co). 
e -w 

In this paper, we will use the symbol A exclusively for real A., J. >co. 
The adjoint semigroup T*(t)=(T(t))* is weak*-continuous; its weak*­

generator is A*, the adjoint of A. T*(t) need not be strongly continuous however, 
and therefore it makes sense to define the semigroup dual space x 0 as the subspace 
of X* on which T*(t) is strongly continuous: 

x0 = { x* EX*: II T*(t)x* - x* 11-+0' (t!O)}. 

x 0 is the norm-closure of D(A *)and is a weak*-dense linear subspace of X*, which 
is invariant under T*(t), 'v't~O. The restrictions T 0 (t) of T*(t) to x 0 form a 
C0-semigroup on x 0 , generated by A0, the part of A* in x 0 . These facts are 
standard, see e.g. [1]. 

By applying the same construction to the semigroup T 0 (t), the second 
semigroup dual space x 0 0 can be defined. 

The map j: x-..x0 *, 
(j(x),x0 )= (x0 , x) 

is an embedding which maps X into x00 and hence we may regard X as a 
subspace of x 00. X is called ()-reflexive [with respect to T(t)] if X =X00. X is 
()-reflexive if and only if x 0 is; moreover, X is ()-reflexive if and only if R(A., A) is 
CT(X, x0)-compact [5]. Recently, de Pagter proved that X is ()-reflexive if and 
only if R(A., A) is weakly compact [4]. 
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Consider the trivial semigroup T(t) =I. It is easily seen that with respect to this 
semigroup the theorems above reduce to classical theorems about reflexivity. This 
observation suggests an analogy between the theories of X* and x 0 . One might 
ask if other theorems about duals have an analogon for x0 too. 

In this paper, it will be shown that for most of the Hahn-Banach theorems (see, 
for instance, [7]) this is indeed the case. Invariance under the semigroup turns out 
to be the relevant extra hypothesis to be imposed. 

In the second part of this paper, the theory of the first part will be applied to 
study 0-reflexivity. We will give a new proof of de Pagter's characterization of 
0-reflexivity. 

1. Extension and separation theorems 

In this section some extension- and separation theorems for x0 will be deduced. 
Let F be a closed subspace of X. On F* define a norm as usual: 

11!*11= sup l(f*,f)I (f*eF*). 
feF, 11!11 =1 

Denote by AF the part of A in F; let Ap :F*-+F* be its adjoint. 

Theorem 1.1. Let T(t) be a C0-semigroup, II T(t) II ~ M ewr. Suppose F is a closed 
subspace of X, invariant under T(t), Vt ~ 0. Let f 0 E F0 . Then for each e > 0 there is 
an element x8 E X 0 such that 

and 
x0 1F=f0 · 

Moreover, if f 0 eD(Ap) then we may choose x 0 eD(A*). 

Proof From the conditions on Fit follows that F 0 is well-defined and is the closure 
of D(Ap). Fix f 0 eD(A;) and e>O. Since 

limsup llA.R(A.,A*)ll ~M and (J-A1/J..)f 8 -+f 8 (J..-+oo) 
l>c.o,A-co 

in the norm topology of F*, we can choose A.=J..(j 0 ) such that 

llR(J..,A*)ll ll(J..l-Ap)f 0 II= llA.R(J..,A*)ll ll(J-A1/J..)f0 II <Mllf8 II +e. 

Put f* =(AI -At)f0 . Then f* E F* and f* can be extended to some x* e X* such 
that 

l(x*,x)I~ llf*ll llxll VxeX. 

Put x 0 =R(J..,A*)x*. Then x 0 eD(A*) extends / 8 , and 

l<x0,x)l=l<x*,R(A.,A)x)I~ llf*ll llR(J..,A*)ll llxll 

<(Mllf8 ll+e)llxll VxeX. 

So 
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Now Jetf0 EF8 . Without loss of generality assume that 11!8 11=1. Fix some k>2 
+4M/e and choose a sequence 

Un8 )n?c_l--'>f 8 , fn8 ED(Ap), llJ,,8 11=1, Vn, 

such that II fn8+ 1 - f,,8 11 ~ 1 /kn 2, which is always possible since F 8 is the closure of 
D(Ap). Choose (y;p)n;;,;oCD(A*), such that y~ extends f 18 , y;> extends J.8+ 1 -J,,0 

(n;;;;1), -

llY~ll<M+~, lly;>ll<(M+~)/kn2 (n~1). 
From this construction it follows that I y;( converges to some x0 , which is in x 0 , 

n-1 
by the closedness of x0 . Since I yr;f: is an extension of fn°, it follows that x 0 is an 

m=O 
extension off 0 , which furthermore satisfies 

llx 8 II< ( M + ~) ( 1 + J1 k~2 ) < ( M + ~) ( 1 + D < M +e. D 

The following example shows that the inequality in Theorem 1.1 cannot be 
sharpened to llx 0 11 ~Mllf8 11. 

Example 1.2. Let X = C0[0, oo), the space of continuous complex-valued functions 
vanishing at infinity, provided with the supnorm. It is well-known [1] that 

T(t)f(x) = l(x + t) 
defines a C0 -contraction semigroup, whose semigroup dual space x0 is L1 [O, oo ), 
the action of g E x0 on C0 [0, oo) being given by 

00 

(g, /) = S l(x)g(x)drn(x). 
0 

(m(x) denotes the Lebesgue measure on [O, oo )). Put F = F 1 ffiF 2 ; 

F 1 ={fEX:f(x)=0, Vx ~ 1 }, F 2 =the one-dimensional subspace spanned by the 
function e-x. Fis closed and invariant under T(t), Vt;;;;O. Put 

(f8 ,f)=f(1) (fEF) 

then it is easily verified that / 8 EF8 and 11/8 11=1. Let gEL1[0,co) be any 
extension off 0 . Since g vanishes on F 1> it has support in [1, oo ). Pick J > 1 such 
that 

l+b 

J lg(x)ldm(x)< llgll -
1 

Since g extends 18 , we have 
ro ro l+b 

e- 1=<f0 ,e-x)= J g(x)e-xdm(x)= J g(x)e-xdm(x)+ J g(x)e-xdm(x) 
o 1 +a o 

1+6 ro 
~e- 1 J lg(x)jdm(x)+e-(l+o) J lg(x)ldm(x)<e- 1 llgll. 

1 1+6 

Hence llgll > 1=111°11. D 
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Lemma 1.3. Let A be the generator of a C0-semigroup T(t) on a Banach space X. Let 
GcX be a convex set. Then A.R(.A.,A)GcG if and only if T(t)GcG 'v't;;;;O. 

Proof Suppose T(t)GcG 'v't;;;;;O. It follows directly from 

00 

A.R(A., A)x = J A.e-;.1T(t)xdt 
0 

that A.R(A., A)xe G ifxe G, since G is convex and A.e_,_,dt is a probability measure on 
[O, oo ). The other half is proved analogously, using the inverse Laplace formula [6] 

1 y + ioo 
T(t)x= -2 . J eµ 1R(µ,A)xdµ (y>max(O,ro). D 

1i:I y-ioo 

Theorem 1.4. Let A be the generator of a C 0-semigroup T(t) on X. Let GcX be a 
closed convex set, invariant under T(t), 'v't;::,;;; 0. Let K be a convex compact set, 
GnK=f/J. Then there are x 0 eD(A*) and real constants y 1 <y2 such that for all 
xeG, yeK: 

Re(x0,x)~y 1 <y2 ~Re(x0,y). 

Moreover, if G is balanced, then x0 can be chosen such that 

l<x0,x)l~Y1 <Y2~1(x0,y)I. 

Proof Take ye K. Since ..1.R(A., A)y-+y (A.-+oo), there is a A. such that ..1.R(A., A)y ~G. 
Since K is compact, we may even choose A. so that this holds for all y EK, i.e., 
Gn..1.R(A.,A)K =0. By the Hahn-Banach separation theorem, there are x* EX* and 
real constants y 1 < y2 such that for all x E G and ye K, 

Re(x*, x) ~y 1 <y2 ~ Re(x*,A.R(Ji., A)y). 

By Lemma 1.3, A.R(A., A)G C G = G, hence in particular we have 

Re(x*, A.R(A., A)x) ~y 1 <y2 ~Re(x*,A.R(A.,A)y). 

Therefore, 

Re (..1.R(A., A *)x*, x) ~ y1 < y2 ~Re (Ji.R(..1., A *)x*, y) 

and so A.R(A.,A*)x* has the required properties. 
Finally, if G is convex and balanced, then note that the image of G under x 0 is 

also convex and balanced in <Candis disjunct from {(x0 ,y):(yeK)}. Hence it 
must be a multiple of the unit disc. From this it is clear that 

l<x0,x)l~Y1 <Y2~1<x0,y)I (xeG, yeK). D 

Corollary 1.5. Let F be a closed subspace of X, invariant under T(t), 'v't;;;; 0. Let y ~F. 
Then there is a x 0 e D(A*) such that 

(x0 ,x)=0 'v'xeF; (x0 ,y)=1. 

Proof By Theorem 1.4 (with G=F and K = {y}) there is a functional x 0 e D(A*) 
such that 
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On the other hand, the image of F under x 0 must be a linear subspace of <C, which 
forces (x0 , F) = 0. Finally, multiplying x0 with an appropriate scalar gives 
(x8 ,y)=1. D 

Example 1.6. Let X and T(t) be as in Example 1.2. PutF= {f eX :f(O)=O}. Then F 
is a closed subspace of X. If g is any L1-function that vanishes on F, then it vanishes 
on X, i.e., g=O a.e., as is easily seen from Lebesgue's dominated convergence 
theorem. We conclude that invariance cannot be omitted from the hypotheses in 
Theorem 1.4 and Corollary 1.5. D 

The topology that x 0 induces on X will be denoted by the 0-topology. Since 
x0 separates points on X (apply Corollary 1.5 with F= {O} !), this topology makes 
X into a locally convex topological vector space. In referring to this topology we 
will use notions like 0-closed, 0-compact, etc. 

Corollary 1.7. Let G C X be convex and invariant under T(t), \ft~ 0. Then G is closed 
if and only if it is 0-closed. 

Proof. Immediate from Theorem 1.4. D 

Bounded sequence of continuous functions in C[O, 1] that converge pointwise 
to some continuous function admit convex combinations converge uniformly [7, 
Theorem 3.13]. We will apply Corollary 1.7 to deduce the analogon for almost 
everywhere pointwise convergent sequences of functions. 

Theorem 1.8. Let (xn) be a sequence that converges to some x EX in the 0-topology. 
Then there are numbers a.in~ 0 and tin~ 0 such that 

((l 

Yi= I rt.inT(t;n)Xn-+X strongly, 
n=! 

and for each i, I a.in= 1 and only finitely many a.in are nonzero. 
n 

Proof. Let H 1 be the set {T(t)xn: n EN, t ~O}. Let H be the convex hull of H 1. Then 
both H and its closure are convex and invariant under all T(t), and by 
Corollary 1.7 its norm-closure and its O-closure are the same. Now x belongs to 
the O-closure by assumption, and it follows from metric space theory that there is 
some sequence (yi)CH norm-converging to x. D 

Define on C0 [0,1]={feC[0,1]:f(1)=0} the C0-semigroup T(t) of left­
translations by 

T(t)f(x) = {f(x + t), 
0, 

x~ 1-t; 
elsewhere. 

Corollary 1.9. Let (f.) C C0[0, 1] be a bounded sequence of functions, converging 
almost everywhere (with respect to the Lebesgue measure) to some f E C0[0, 1]. 
Then there is a sequence of convex combinations of left-translates of f. that 
converges uniformly to f. 

Proof. The semigroup adjoint space x 0 is L1[0, 1]. By Lebesgue's dominated 
convergence theorem, a.e. pointwise convergence implies O-convergence, and the 
result follows from Theorem 1.8. D 
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2. 0-Retlexivity 

The ideas of Sect. 1 will now be applied to study 0-reflexivity. We will give a new 
proof of the theorem that X is 0-reflexive iff R(,1.,A) is weakly compact [4]. From 
now on let B (B0 *) denote the closed unit ball of X (X0 *). 

It is well-known [5] that X is 0-reflexive iff R(t1., A) is a(X, X 0 )-compact. From 
this the following lemma follows easily. 

Lemma2.1. Let FcX be a closed subspace, invariant under T(t), \t't~O. If X is 
0-reflexive, then Fis 0-reflexive with respect to the restriction of T(t) to F. 

Proof By assumption the image R(A., A)B of the unit ball B of X is relatively 
0-compact and so is (R(A.,A)B)nF, since F is 0-closed by Corollary 1.7. By 
Lemma 1.3, R(A, A) (BnF) c (R(A., A)B)nF and so R(A., A) (BnF) is relatively 
0-compact. Since by Theorem 1.1 the topology induced by F0 on Fis weaker 
than the one induced by x 0 on F, R(A, A) (BnF) is relatively compact in the 
F0 -topology of F. D 
Lemma 2.2. If x0 is separable, then X is separable. 

Proof Let s0 be the unit sphere of x0 and let (x~) C s0 be a countable dense set. 
Choose (x.)CX, llx.11=1 such that j(x;',x.>J>!. Let F be the closed subspace 
spanned by the set {T(t)x.:neN, t~O}. Fis separable and invariant under T(t), 
Vt ~ 0. Suppose there is some x f/: F. By Corollary 1.5, there is an element x 0 e s0 

that annihilates F and is nonzero at y. But then 

!;~ l(x;',x.)I ~l(x0 -x;',x.>I + l(x0,x.>I 

=l(x0 -x;>,x.)I ~ llx0 -x;'ll, 

a contradiction to the density of (x~) in s0 . This shows F = X and hence X is 
separable. O 
Theorem 2.3. If X is 0-reflexive, then Bis relatively weak*-sequentially compact in 
x0. 

Proof Let (x.)cB be a countable set. We have to show that there is an element 
x0 * e x 0 • and a subsequence (x.,) such that for i-+ ro, 

(x0,x.)-+(x0*,x0> Vx 0 eX0 . 

Let Y be the closed linear span of {T(t)x.:neN, t~O}. Y is separable and 
invariant under T(t), Vt ~ 0. By Lemma 2.1, Y0 0 = Y is separable and hence Y0 is 
separable, by Lemma 2.2. Let H = (y;>) be a countable dense set in Y. Since (x.) is 
bounded, by a diagonalization argument we find a subsequence (x.) such that 
(y;;, x.) converges for all m. By considering the x.; as elements of x0* it is seen 
from the Banach-Steinhaus theorem that there is a y0 * e Y0 * such that 

(y;>,x • .)-+(y0•,y;;) Vy;> eH. 

From the denseness of (y;;) in H it follows that 

(y0,x.)-+(y0*,y0) 'r/y0 E y0. 

Now define a functional x 0 * on x0 by 

(x0*,x0>=(y0*,x0lr)' 
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xGlr denoting the restriction of x0 to Y. Then x8 * is linear and continuous: If 
x;i-+xG in X 8 , then also x;i1y-+X8 ir in Y 8 and hence 

<x0*, x;i) = <Y0*, x;ilr )-+<y0*, x01r > = <x0*, x0). 

So xG* EX8 *. Since each xn,E Y, we also have 

<x0,xn)=<x0 ir,x.)-+<y0*,x8 1r>=<x0 *,x8 ) Vx 8 EX8 . D 

Before turning to the characterization of 0-reflexivity, we note that from 
Theorem 2.3 two natural questions arise: 

1. Is B8 * itself weak*-sequentially compact? 
2. Is B8 * the weak*-sequential closure of Bin X 8 *? 
The next theorem supplies a (partial) answer. 

Theorem 2.4. Suppose X is separable and O-rejlexive. Then B8 * is weak*­
sequentially compact. Moreover, B8 * is the weak*-sequential closure of Bin XG*. 

Proof x00 =X is separable and so is x0 by Lemma 2.2. Hence BG* ismetrizable, 
by a well-known metrizability theorem [7]. Since B8 * is also weak*-compact by 
the Banach-Alaoglu theorem, it follows that BG* is weak*-sequentially compact. 
Since Be BG* is weak*-dense (this is proved in much the same way as the weak*­
denseness of the inclusion B c B**), the second statement is just a simple 
consequence of metric space theory. D 

If X is separable, the proof of Theorem 2.3 is much simpler. Indeed, we now just 
have to appeal to the first part of Theorem 2.4. 

Theorem 2.5. X is O-rejlexive if and only if R(A., A) is weakly compact. 

Proof If R(A., A) is weakly compact, then it certainly is c;(X, X 8 )-compact, and 
therefore X is 0-reflexive. Conversely, if X is 0-reflexive, then R(A., A)B is 
relatively weakly sequentially compact. To see this, let (x.) be a countable subset of 
R(A., A)B. Write Xn = R(A., A)ym Yn E B. By Theorem 2.3 there is a yG* E XG* and a 
subsequence (Yn,) of (Yn) such that 

<xG,Yn,)-+(y0*,xG) Vx0 EX0. 

In particular, taking x0 = R(A., A *)x* E D(A *) c XG we see that 

<x*,R(A.,A)yn)-+(y8 *,R(A.,A*)x*) Vx*EX*. 

Now we have 

<YG*,R(A.,A*)x*)= lim <y8 *,µR(µ,A*)R(A.,A*)x*) 
µ-oo 

= lim <y8 *,R(A.,A*)µR(µ,A*)x*) 
µ-oo 

= lim <YG*, R(A., A G)µR(µ, A *)x*) 

= lim (R(A.,AG*)y8 *,µR(µ,A*)x*) 
µ-oo 
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The first identity holds since R(A., A *)x* E X 8 , hence 

µR(µ, A *)R(A., A *)x*-+ R(A., A *)x* 

strongly as µ-+ ro. The last identity holds since 

R(A., A 8 *)y8 * ED(A8 *)cx00 =X 

J. M.A. M. van Neerven 

(using the O-reflexivity of X) and moreover, µR(µ,A*)x*-+x* in the weak* 
topology. The other identities are obvious. We have shown that 

(x*, xn) = (x*, R(A., A)yn)-+(R(A., A 8 *)y8 *, x*) Vx* EX*, 

where R(A., A 8 *)y8 * EX. This proves our claim. By the Eberlein-Shmulyan 
theorem, R(A., A)B is relatively weakly compact, i.e., R(A., A) is weakly compact. D 

Note that weak limits of subsequences in R(A., A)B are found to lie in D(A 8 *). 
It is tempting to conjecture that X is 0-reflexive iff B is (relatively) 

(sequentially) O-compact. We will show that only the "if'-part is true. In fact we 
have the following 

Example 2.6. Let X and T(t) be as in Corollary 1.9. It is well-known that 
x 0 =L1[0,1] and X is 0-reflexive with respect to T(t) [2]. Let f,. be the function 

f,.(x) = 

1 
1 X < . , =1· 
n - + 1-nx 2 ' 
0, 

1 1 1 
-<x<-+-· 2 = = 2 n' 

else. 

By Lebesgue's dominated convergence theorem, each subsequence fn,-+ X[o, tl in 
the 0-topology of X. But Xco.tJ does not belong to X (however, it does belong to 
L 00 [0, 1] =X8 * !). Thus 0-reflexivity does not imply relative sequential 0-com­
pactness of B. O 

Theorem 2.7. If B is relatively sequentially 0-compact, then X is 0-reflexive. 

Proof Let R(A., A)(xn) C R(A., A)B be a sequence. By assumption there is a 
subsequence (xn,) of (xn) and an element x0 EX such that 

(x0 ,xn)-+(x 8 ,x0 ) Vx 8 EX8 . 

In particular this is true for elements R(A., A *)x* E D(A *). Thus 

(x*, R(A., A)xn)-+(x*, R(A., A)x0 ) Vx* EX*. 

This shows that R(A.,A)B is relatively weakly sequentially compact, and therefore 
R(A., A) is weakly compact by the Eberlein-Shmulian theorem. O 

The hypothesis of Theorem 2.7 can be weakened to relative O-compactness of 
B, as is seen from the following theorem: 

Theorem 2.8. The implications i =ii==> iii hold: 
i) B is relatively 0-compact. 

ii) Every countable set in B has a 0-limit point in X. 
iii) B is relatively sequentially 0-compact. 
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Proof i =>ii: Trivial. ii=> iii: Using our semigroup versions of the Hahn-Banach 
theorems, the proof of the corresponding theorem for weak compactness, as e.g. 
given in Dunford and Schwartz [3], can be carried over almost word for word. O 

Acknowledgements. I would like to thank Odo Diekmann, who read the manuscript with extreme 
care and suggested many improvements, and Hans Heesterbeek and Henk Heijrnans for 
stimulating discussions. 

References 

1. Butzer, P.L., Berens, H.: Semigroups of operators and approximation. New York: Springer 
1967 

2. Clement, Ph., Diekmann, 0., Gyllenberg, M., Heijmans, H.J.A.M., Thieme, R.R.: Perturbation 
theory for dual semigroups, Part I. The sun-reflexive case. Math. Ann. 277, 709 725 (1987) 

3. Dunford, N., Schwartz, J.: Linear operators, Part I. General theory. New York: lnterscience 
1958 

4. Pagter, B. de: A characterization of sun-reflexivity. Math. Ann. 283, 511518 (1989) 
5. Phillips, R.S.: The adjoint semi-group. Pac. J. Math. 5, 269-283 (1955) 
6. Pazy, A.: Sernigroups of linear operators and applications to partial differential equations. 

Berlin Heidelberg New York: Springer 1983 
7. Rudin, W.: Functional analysis. New York: McGraw-Hill 1973 

Received May 26, 1989 


