
Stochastic parameterizations—empirically derived or based on rigorous  

mathematical and statistical concepts—have great potential to increase the  

predictive capability of next-generation weather and climate models.
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THE NEED FOR STOCHASTIC PARAM-
ETERIZATIONS. Numerical weather and climate 
modeling is based on the discretization of the con-
tinuous equations of motion. Such models can be 
characterized in terms of their dynamical core, which 
describes the resolved scales of motion, and the physi-
cal parameterizations, which provide estimates of the 
grid-scale effect of processes, that cannot be resolved. 
This general approach has been hugely successful in 
that skillful predictions of weather and climate are 
now routinely made (e.g., Bauer et al. 2015). However, it 
has become apparent through the verification of these 
predictions that current state-of-the-art models still 
exhibit persistent and systematic shortcomings due to 
an inadequate representation of unresolved processes.

Despite the continuing increase of computing 
power, which allows numerical weather and climate 
prediction models to be run with ever-higher reso-
lution, the multiscale nature of geophysical f luid 
dynamics implies that many important physical pro-
cesses (e.g., tropical convection, gravity wave drag, 
and microphysical processes) are still not resolved. 
Parameterizations of subgrid-scale processes contain 
closure assumptions and related parameters with 
inherent uncertainties. Although increasing model 

resolution gradually pushes these assumptions 
further down the spectrum of motions, it is realistic 
to assume that some form of closure or physical 
parameterization will be present in simulation models 
into the foreseeable future.

Moreover, for climate simulations, a decision 
must be made as to whether computational resources 
should be used to increase the representation of 
subgrid physical processes or to build a comprehen-
sive Earth system model by including additional cli-
mate components such as the cryosphere, chemistry, 
and biosphere. In addition, the decision must be made 
about whether computational resources should go 
toward increased horizontal, vertical, and temporal 
resolution or additional ensemble members.

Additional challenges are posed by intrinsically 
coupled phenomena like the Madden–Julian oscilla-
tion (MJO) and tropical cyclones. Correctly simulating 
these tropical multiscale features requires resolving 
or accurately representing small-scale processes such 
as convection in addition to capturing the large-scale 
response and feedback. Many of the Coupled Model 
Intercomparison Project, phase 5 (CMIP5), climate 
models still do not properly simulate the MJO and 
convectively coupled waves (Hung et al. 2013).
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A great challenge is posed by the representation 
of partially resolved processes (either in the time 
or space domain). The range of scales on which a 
physical process is only partially resolved is often 
referred to as the “gray zone” (e.g., Gerard 2007). In 
this gray zone, the number of eddies in each grid box 
is no longer large enough to fulfill the “law of large 
numbers” underlying deterministic bulk parameter-
izations, and a stochastic approach becomes essential. 
An example for a partially resolved process is convec-
tion, which is often split into a resolved (large scale) 
and parameterized component (e.g., Arakawa 2004). 
The equilibrium assumption no longer holds when 
the model resolution is increased such that a clear 
scale separation between convection and larger scales 
no longer is valid (e.g., Yano and Plant 2012a,b). In 
this case, the subgrid-scale parameterization takes 
a prognostic form rather than being diagnostic, as 
explicitly shown for the mass-f lux formulation by 
Yano (2014).

As the next generation of numerical models 
attempts to seamlessly predict weather as well as 
climate, there is an increasing need to develop 
parameterizations that adapt automatically to dif-
ferent spatial scales (scale-aware parameterizations). 
A big advantage of the mathematically rigorous 
approach is that the subgrid model is valid for 
increasing spatial resolutions within a range of scales 
that is obtained as part of the derivation.

Mathematical approaches to stochastic modeling 
rely on the assumption that a physical system 

can be expressed in terms of variables of interest 
and variables that one does not want to explicitly 
resolve. In the mathematical literature this is usu-
ally referred to as the operation of coarse graining 
and is performed through the method of homog-
enization (Papanicolaou and Kohler 1974; Gardiner 
1985; Pavliotis and Stuart 2008). The goal is then 
to derive an effective equation for the slow predict-
able processes and to represent the effect of the now 
unresolved variables as random noise terms.

Many stochastic parameterizations are based on 
the assumption of a scale separation between the 
temporal decorrelation rates between the rapidly 
f luctuating processes represented by a white noise 
and the slow processes of interest (e.g., Gardiner 1985; 
Penland 2003a). In geophysical applications, there 
is often—but not always—a relationship between 
spatial and temporal scales of variability, with fast 
processes associated with small scales and slow pro-
cesses associated with large scales. If this is the case, 
separating physical processes by time scales can result 
in decomposing small-scale features from large-scale 
phenomena, and spatial and temporal scale separa-
tion become equivalent.

Such thinking underlies the pioneering study of 
Hasselmann (1976), who split the coupled ocean–
atmosphere system into a slow ocean and fast 
weather f luctuation components and subsequently 
derived an effective equation for the ocean circu-
lation only. One finds that the impact of the fast 
variables on the dynamics of the slow variables boils 
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down to a deterministic 
correction—a mean field 
effect sometimes referred 
to as noise-induced drift 
or rectification—plus a sto-
chastic component, which 
is a white random noise in 
the limit of infinite time-
scale separation.

A simple example dem-
onstrating noise-induced 
transitions and drifts is 
presented in Fig. 1. Assume 
that the unforced nonlin-
ear climate system can be 
described by a double-well 
potential (Fig. 1a). If the 
noise is sufficiently small 
(short red arrows) and 
under appropriate initial 
conditions, the system will 
stay for a f inite time in 
the deeper potential well 
and the associated prob-
ability density function 
of states will have a single 
maximum (Fig. 1b). As 
the amplitude of the noise 
increases (long arrows in 
Fig. 1c), the system can 
undergo a noise-induced 
transition and reach the 
secondary potential well. The resulting probability 
density function (PDF) will exhibit two local maxima 
(Fig. 1d), signifying two different climate regimes, 
rather than a single maximum, as in the small-noise 
scenario. Note that the stochastic forcing not only 
changes the variance, but also the mean.

But even a linear system characterized by a single 
potential when unforced can change the mean, if 
forced by multiplicative or state-dependent white noise 
(Figs. 1e–h). The noise is called “multiplicative” if its 
amplitude is a function of the state, which is denoted 
by the red arrows of different length in Fig. 1g. The 
noise-induced drift changes the single-well potential 
of the unforced system (Fig. 1e), so that the effective 
potential including the effects of the multiplica-
tive noise has multiple wells (not shown) and the 
associated PDF becomes bimodal (Fig. 1h). Note that 
in this example the shift in the mean compared to the 
unforced PDF (Fig. 1f) is caused by the noise, which is 
referred to as “noise-induced drift” (e.g., Sardeshmukh 
et al. 2001; Berner 2005; Sura et al. 2005).

Operational weather and climate centers now use 
stochastic parameterization schemes routinely to make 
ensemble predictions from short-range to seasonal 
time scales (e.g., Berner et al. 2009; Weisheimer et al. 
2014). Most ensembles suffer from underdispersion, 
which means that, on average, the observed state is 
more often outside the cone of forecasts than can be 
statistically justified. Stochastic perturbations intro-
duce more diversity among the forecasts, which helps 
to ameliorate this problem and result in more skillful 
ensemble forecasts.

A fundamental argument that has been often 
overlooked is that the merit of stochastic param-
eterization goes far beyond providing uncertainty 
estimations for weather and climate predictions 
but may be also needed for better representing the 
mean state (e.g., Sardeshmukh et al. 2001; Palmer 
2001; Berner et al. 2008) and regime transitions (e.g., 
Williams et al. 2003, 2004; Birner and Williams 
2008; Christensen et al. 2015a) via inherent nonlinear 
processes. This is especially relevant for climate 

Fig 1. System characterized by double-potential (a),(c) or single-potential 
well (e),(g) and their associated PDFs (b),(d),(f), and (h). (a) If the noise is 
sufficiently small and under appropriate initial conditions, the system will stay 
in the deeper potential well and the associated probability density function 
will have a single maximum (b). (c) As the amplitude of the noise increases, 
the system can undergo a noise-induced transition and reach the secondary 
minimum in the potential, leading to a shifted mean and increased variance 
in the associated probability density function (d). A linear system character-
ized by a single potential well and forced by additive white noise (e) will have a 
unimodal PDF (f). However, when forced by multiplicative (state-dependent) 
noise (g), the noise changes the effective potential of the unforced system, so 
that the associated PDF becomes bimodal (h).
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projections, which have long-standing mean-state 
errors, such as a double intertropical convergence 
zone (e.g., Lin 2007) and erroneous stratocumulus 
cloud cover, that play a crucial role in the climate 
response to external forcing.

Mechanisms for how Gaussian zero-mean fluc-
tuations can change the mean state (see Fig. 1) have 
been discussed in Tompkins and Berner (2008) and 
Beena and von Storch (2009). Tompkins and Berner 
(2008) introduce perturbations to the humidity field 
and find that positive perturbations are more likely to 
trigger a convective event than negative perturbations 
can suppress convection. Beena and von Storch (2009) 
study the ocean response air–sea flux perturbations 
and similarly find that negative buoyancy anoma-
lies result in an altered stratification, while positive 
anomalies tend to sustain the existing stratification. 
Insofar as stochastic parameterizations can change 
the mean state, they have the potential to affect the 
response to changes in the external forcing (e.g., 
Seiffert and von Storch 2008).

In mathematical terms, this is the question how 
a stochastic forcing affects the invariant measure of 
a deterministic dynamical system (Lucarini 2012) 
and how the climate response to such a forcing can 
be framed as a problem of nonequilibrium statistical 
mechanics (Colangeli et al. 2012, 2014; Lucarini and 
Sarno 2011; Lucarini et al. 2014a,b).

Here we argue that stochastic parameterizations 
are essential for

• estimating uncertainty in weather and climate 
predictions,

• reducing systematic model errors arising from 
unrepresented subgrid-scale fluctuations,

• triggering noise-induced regime transitions, and 
• capturing the response to changes in the external 

forcing

and should be applied in a systematic and consistent 
fashion, not only to weather, but also to climate 
simulations.

Several studies have identified the assessment of 
the benefits of stochastic closure schemes as a key 
outstanding challenge in the area of mathematics 
applied to the climate system (Palmer 2001, 2012; 
Palmer and Williams 2008; Williams et al. 2013). 
For accessible reviews of rigorous mathematical 
approaches applied to weather and climate, we 
refer to Penland (2003a,b), Majda et al. (2008), and 
Franzke et al. (2015). The current study focuses on 
recent developments and successful applications of 
empirical and rigorous approaches to the subgrid-

parameterization problem in weather and climate 
models.

R E P R E S E N T I N G  U N C E R TA I N T Y 
IN COMPREHENSIVE CLIMATE AND 
WEATHER MODELS. Adding uncertainty a pos-
teriori: The stochastically perturbed parameterization 
tendency scheme and the stochastic kinetic energy back-
scatter scheme. Stochastic parameterizations are based 
on the notion that, as spatial resolution increases, the 
method of averaging (Arnold 2001; Monahan and 
Culina 2011) is no longer valid and the subgrid-scale 
variability should be sampled rather than represented 
by the equilibrium mean. In addition, unrepresented 
interactions between unresolved subgrid-scale 
processes with the large-scale flow might affect the 
resolved dynamics.

The former is addressed by the stochastically per-
turbed parameterization tendency (SPPT) scheme, 
which perturbs the net tendencies of the physical 
process parameterizations (convection, radiation, 
cloud physics, turbulence, and gravity wave drag). 
One essential feature for its success is that the noise 
is correlated in space and time. SPPT has a beneficial 
impact on medium-range, seasonal, and climate 
forecasts (Buizza et al. 1999; Teixeira and Reynolds 
2008; Palmer et al. 2009; Weisheimer et al. 2014; 
Christensen et al. 2015b; Dawson and Palmer 2015; 
Batté and Doblas-Reyes 2015). SPPT tends to be most 
active in the tropics and near the surface, where the 
parameterized tendencies are large.

The stochastic kinetic energy backscatter scheme 
(SKEBS) aims to represent model uncertainty arising 
from unresolved subgrid-scale processes and their 
interactions with larger scales by introducing random 
perturbations to the streamfunction and potential 
temperature tendencies. For this purpose, the scheme 
reinjects a small fraction of the dissipated energy 
into the resolved flow. Originally developed in the 
context of large-eddy simulations (LESs; Mason and 
Thomson 1992), it was adapted by Shutts (2005) for 
numerical weather prediction (NWP).

Depending on the details of the implementations, 
SKEBS tends to have the most impact in the storm-
track regions and in the free atmosphere above the 
boundary layer and permits the physical param-
eterization schemes to adjust to a slightly perturbed 
large-scale background f low. Its beneficial impact 
on weather and climate forecasts are reported, for 
example, in Berner et al. (2011, 2015), Tennant et al. 
(2011), Weisheimer et al. (2014), Sanchez et al. (2016), 
while Shutts (2013) criticizes the arbitrary nature of 
some of the design features based on coarse graining, 
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high-resolution simulations to compute the back-
scatter term. His stochastic convective backscatter 
scheme (Shutts 2015) includes a phase relationship 
between flow and perturbations and adds additional 
perturbations to the divergent flow to remedy some 
of the identified shortcomings.

While these schemes are motivated by physical 
reasoning and scheme parameters are informed 
in some manner, for example, by coarse graining, 
high-resolution output (Shutts and Palmer 2007; 
Shutts and Callado Pallarès 2014) or comparison 
with observations (Watson et al. 2015), the per-
turbations are essentially empirical constructs. 
For example, the amplitude of the perturbations is 
typically determined as the value that satisfactorily 
reduces the ensemble underdispersion. Obviously, 
such an approach is only possible for forecast ranges 
where verification is possible, such as for short-term, 
medium-range, and seasonal forecasts. A common 
criticism of this approach is that the improved skill 
is solely the result of the increase in spread. However, 
Berner et al. (2015) found that the merits of stochastic 
parameterization go beyond increasing spread and 
can account for structural model uncertainty.

In the following examples, we show recent results 
that demonstrate the potential of stochastic param-
eterizations to improve the mean state representation 
and variability as well as the skill of seasonal forecasts.

First, we present recent results from the seasonal 
forecasting system, System 4 (S4), at the European 
Centre for Medium-Range Weather Forecasts 
(ECMWF). In the simulations with both SPPT and 
SKEBS, excessively strong convective activity over the 
Maritime Continent and the tropical western Pacific 
is reduced, leading to smaller biases in outgoing 
longwave radiation (Fig. 2, adapted from Weisheimer 

et al. 2014), cloud cover, precipitation, and near-
surface winds when compared to a simulation with-
out stochastic parameterization, stochphysOFF. The 
stochastic schemes also lead to an increase in the 
frequency (Fig. 3, from Weisheimer et al. 2014) and 
amplitude of MJO events, which is an improvement. 
A reduction of excessive amplitudes in westward-
propagating convectively coupled waves in an earlier 
model version is reported in Berner et al. (2012).

Another example of the positive impact of stochastic 
schemes is evident in climate simulations with the 
Community Earth System Model (CESM). Compared 
to observations, the modeled spectrum of average 
sea surface temperature in the Niño-3.4 region has 3 

Fig. 2. Top-of-the-atmosphere net longwave radiation (outgoing longwave radiation; W m−2) in Dec–Feb for 
the period 1981–2010. (left) StochphysOFF minus ECMWF interim reanalysis (ERA-Interim), (center) System 
4 (S4) minus reanalysis, and (right) S4 minus stochphysOFF. Significant differences at the 95% confidence level 
based on a two-sided Student’s t test are hatched. Adapted from Weisheimer et al. (2014). 

Fig. 3. Relative frequencies of MJO events in each of 
the eight MJO phases. From Weisheimer et al. (2014).
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times more power for periods between 2 and 4 years 
(Fig. 4, adapted from Christensen et al. 2017). SPPT 
markedly reduces the temperature variability in this 
frequency range, leading to a much better agreement 
with nature (Christensen et al. 2017). Interestingly, in 
these examples, adding stochasticity results in reduced 
variability, which is a nontrivial response.

Along with the improved model climate, sto-
chastic perturbations benefit probabilistic forecast 
performance on seasonal time scales. This has 
been reported in a number of studies using earlier 
versions of ECMWF’s seasonal system (Berner at al. 
2008; Doblas-Reyes et al. 2009; Palmer at al. 2009) 
and has recently been confirmed in the newest 
version (Weisheimer et al. 2014) and in the EC-Earth 
Consortium (EC-EARTH) system model (Batté 
and Doblas-Reyes 2015). Figure 5 shows ensemble 
mean and spread in forecasts for Niño-3.4-area sea 
surface temperatures with the EC-EARTH model, 
run at a standard horizontal resolution (SR; ~60 km 
for the atmospheric and ~100 km for the ocean 
component) and at high resolution (HR; ~40 km 
for the atmospheric component and 25 km for the 
ocean.) For both resolutions, the introduction of 
SPPT perturbations increases the ensemble spread. 
Furthermore, SPPT reduces the mean error in the 

standard resolution, but not as much as increasing 
horizontal resolution.

A number of studies have found evidence for 
stochasticity leading to noise-induced transitions in 
midlatitude circulation regimes, especially over the 
Pacific–North America region (Jung et al. 2005, Berner 
et al. 2012, Dawson and Palmer 2015, Weisheimer et al. 
2014). These results suggest that stochastic param-
eterizations are also relevant for the prediction of the 
dominant modes of atmospheric variability, such as 
the North Atlantic Oscillation and the Pacific–North 
America pattern (J. Berner et al. 2016, unpublished 
manuscript).

Adding uncertainty a priori: Perturbed parameter 
approaches for the atmospheric component. While the 
performance of the stochastic schemes discussed 
in the last section is undisputed, the schemes have 
been criticized in that they are added a posteriori 
to models that have been independently developed 
and tuned. Ideally, stochastic perturbations should 
represent model uncertainty where it occurs. One 
obvious way to represent uncertainty at its source 
rather than a posteriori is the perturbed parameter 
approach, which perturbs the closure parameters in 
the physical process parameterizations. There are 

Fig. 4. Power spectra of average sea surface temperature in the Niño-3.4 region in 135-yr-long simulations with 
the Community Atmosphere Model (CAM) coupled to an ocean model. (left) Compared to Hadley Centre Sea 
Ice and Sea Surface Temperature dataset (HadISST) observations (blue), the simulation has 3 times more power 
for oscillations with periods between 2 and 4 years. (right) When the simulation is repeated with the stochastic 
parameterization SPPT, the temperature variability in this range is reduced, leading to a better agreement 
between the simulated and observed spectra. Adapted from Christensen et al. (2017).
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two variants: the parameter 
can be fixed throughout 
the integration but vary 
for each ensemble member 
(e.g., Murphy et al. 2004; 
Hacker et al. 2011) or vary 
randomly with time (e.g., 
Bowler et al. 2008, 2009; 
Ollinaho et al. 2013; Jankov 
et al. 2016, manuscript sub-
mitted to Mon. Wea. Rev.). 
Strictly, the first variant 
is not a stochastic param-
eterization, but an example 
for a multimodel, since 
each ensemble member 
has a different climatology. 
However, since stochastic 
parameter perturbations 
are routinely compared to 
fixed-parameter schemes, 
this section discusses both.

W h i l e  p e r t u r b e d 
parameter ensembles typi-
cally outperform unperturbed ensembles on weather 
time scales, they typically cannot sufficiently account 
for all deficiencies in the spread (Hacker et al. 2011; 
Reynolds et al. 2011; Christensen et al. 2015b) and 
do not lead to the same reliability as the a poste-
riori schemes discussed above (Berner et al. 2015). 
Presumably, this is because a posteriori schemes are 
designed to encapsulate all model uncertainty, of 
which parameter uncertainty is only one contributor.

An ensemble system is considered statistically reli-
able when a predicted probability for a particular event 
(e.g., temperature exceeding 17°C) compares well with 
the observed frequencies. Another limitation of this 
approach is that the parameter uncertainty estimates 
are subjective, and information about parameter 
interdependencies is not included.

The following studies are examples for applica-
tions of the perturbed parameter approach to physi-
cal process parameterizations and perturbing the 
interface between different model components. We 
start with results pertaining to perturbations in the 
atmospheric component and move to those of other 
model components, such as land and ocean models, 
which are more relevant for climate applications.

A number of studies report on improved skill due 
to parameter perturbations to boundary layer and 
convection schemes (Hacker et al. 2011; Reynolds 
et al. 2011; Jankov et al. 2016, manuscript submitted 
to Mon. Wea. Rev.). Recently, a stochastic “eddy 

diffusivity–mass f lux” parameterization has been 
developed (Suselj et al. 2013, 2014) that combines an 
eddy diffusivity component with a stochastic mass-
flux scheme. The resulting scheme unifies boundary 
layer and shallow convection and was operationally 
implemented in the operational Navy Global Envi-
ronmental Model.

Christensen et al. (2015b) used an objective 
covariance estimate of parameter uncertainty 
(Järvinen et al. 2012; Ollinaho et al. 2013) for four 
convection closure parameters and developed both 
a fixed-parameter and a stochastically varying 
perturbation scheme. Both schemes improved the 
forecast skill of the ECMWF ensemble prediction 
system, with a larger impact observed for the fixed 
perturbed parameter scheme (Fig. 6, adapted from 
Christensen et al. 2015b). In addition, for some vari-
ables such as wind at 850 hPa, the scheme leads to a 
reduction in bias (Fig. 6, adapted from Christensen 
et al. 2015b).

Recently, a body of work proposes stochastic 
approaches for another atmospheric parameteriza-
tion, namely, nonorographic gravity waves (Lott et al. 
2012; Lott and Guez 2013; de la Cámara and Lott 
2015). Observational studies indicate that the gravity 
wave field is very intermittent and only predictable in 
a statistical sense. Recently, de la Cámara et al. (2014) 
informed the free parameters of the stochastic gravity 
wave scheme using momentum flux measurements.

Fig. 5. Niño-3.4 SST root-mean-square error (lines) and ensemble spread 
(dots) according to forecast time in EC-EARTH 3 seasonal reforecast experi-
ments initialized in May 1993–2009 with SR or HR atmosphere and ocean 
components, with and without activating a three-scale SPPT perturbation 
method in the atmosphere.
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Uncertainty in land surface, ocean, and coupled 
component models. Physical parameters of land 
surface models are often not well constrained by 
observations. A recent study by MacLeod et al. (2015) 

introduced parameter perturbations to key 
soil parameters and compared their impact 
with stochastic perturbations of the soil 
moisture tendencies in seasonal forecasts 
with the ECMWF coupled model. Both the 
perturbed parameter approach and the sto-
chastic tendency perturbations improved 
the forecasts of extreme air temperature for 
the European heat wave of 2003.

A shortcoming in land models stems from the 
omission of subgrid land heterogeneity, which 
impacts the surface heat f lux. Langan et al. (2014) 
retained the subgrid variability by drawing the area 
for each plant functional type at each time step from 
a Dirichlet distribution, rather than using constant 
area weights. First, results with a single-column 
model version of CESM reveal an increase in the 
variability as well as larger extreme values in con-
vective precipitation (Fig. 7, adapted from Langan 
et al. 2014).

The coupled atmosphere–ocean system is very 
sensitive to f luctuations in the f luxes between its 
component models. Air–sea f luxes of buoyancy, 
energy, and momentum vary on a vast range of 
space and time scales, including scales that are too 
small or fast to be explicitly resolved by global cli-
mate models. For example, convective clouds in the 
atmosphere will cause subgrid f luctuations at the 
air–sea interface in both the downward freshwater 
flux and shortwave solar radiation. The response of 
the climate to stochastic perturbations of the air–sea 
buoyancy f lux is studied by Williams (2012) in a 
coupled atmosphere–ocean model. The response is 
complex and involves changes to the oceanic mixed-
layer depth, sea surface temperature, atmospheric 
Hadley circulation, and freshwater flux across the sea 
surface (Fig. 8, from Williams 2012). These findings 
suggest that the lack of representation of stochastic 
subgrid variability in air–sea fluxes may contribute 

Fig. 6. Forecast diagnostics as a function of 
time for the operational (black), fixed per-
turbed parameter (blue), and stochastically 
varying perturbed parameter (red) ensemble 
forecasts. (top) Forecast bias for (a) tem-
perature at 850 hPa (T850) and (b) zonal 
wind at 850 hPa (U850) shown as a fraction 
of the bias for the operational system (BIAS/
BIASoper). (bottom) Root-mean-square 
ensemble spread (dashed lines) and root-
mean-square error (solid lines) for (c) T850 
and (d) U850. Diagnostics are averaged over 
the region 10°S–20°N, 60°E–180°. Adapted 
from Christensen et al. (2015b).

Fig. 7. The right tail of the PDF of summer-season 
hourly precipitation from a 50-member ensemble of 
1-yr single-column model simulations with stochastic 
(blue) and conventional parameterizations (black) 
and 15 years of observations (green) over a model grid 
box encompassing the U.S. Department of Energy’s 
Atmospheric Radiation Measurement program’s 
site in Lamont, OK. The large-scale forcing for the 
single-column model simulations are generated from 
a present-day CESM simulation at a spatial resolution 
of about 2.8° × 2.8°. Adapted from Langan et al. (2014).
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to some of the biases exhibited by 
contemporary coupled cl imate 
models.

Since the buoyancy effects in the 
ocean are different from those in 
the atmosphere, the length scale at 
which rotational effects become as 
important as gravity wave effects 
is much smaller. Consequently, 
mesoscale eddies in state-of-the art 
ocean models are still far from being 
resolved and are usually represented 
by traditional bulk parameteriza-
tions (Gent and McWilliams 1990; 
Redi 1982). A recent study by Li 
and von Storch (2013) computes 
the contributions from the mean 
and fluctuating component of heat 
flux divergence in a high-resolution 
ocean model. The magnitude of the 
f luctuations is about one order of 
magnitude larger than the mean 
component (Fig. 9, adapted from 
Li and von Storch 2013), suggesting 
that classical parameterizations sig-
nificantly underestimate the total 
eddy f lux. The f luctuating part, 
even though having zero mean, can 
play an important role in generating 
large-scale, low-frequency variations 
and in shaping the mean oceanic 
circulation.

Juricke et al. (2013) and Juricke 
and Jung (2014) recently investi-
gated the sensitivity of an ocean–sea 
ice model to variations in the ice 
strength parameter. As this param-
eter is not observable, large uncer-
tainties remain in the choice of its 
value, although it is very important for modeling sea 
ice drift. Varying this parameter stochastically results 
in changes to the mean sea ice distribution as well 
as sea ice spread. Compared to perturbations of the 
atmospheric initial conditions, the incorporation of 
additional stochastic ice strength perturbations leads 
to a considerable increase in spread of the simulated 
sea ice thickness in the central Arctic (Fig. 10, adapted 
from Juricke et al. 2014), which is a better match with 
the observed uncertainties (Juricke et al. 2014).

Data assimilation and extreme events. The purpose 
of data assimilation is to combine observations with 
short-term model forecasts to come up with a gridded 

and physically consistent estimate of the state of the 
atmosphere, also called “analysis.” One method is to 
use short-term forecasts as the first-guess fields in 
ensemble data assimilation. As such, ensemble data 
assimilation inherits the shortcomings of short-term 
ensemble predictions, namely, the underdispersivness 
in the spread. Recent work has demonstrated that the 
stochastic parameterizations that are beneficial for 
ensemble prediction can also improve analysis fields 
(Isaksen et al. 2007; Houtekamer et al. 2009; Mitchell 
and Gottwald 2012; Whitaker and Hamill 2012; 
Romine at al. 2014; Ha et al. 2015). In particular, Ha 
et al. (2015) showed that the inclusion of a stochastic 
parameterization improved the mean analysis, even 

Fig. 8. (a) Map of the century-mean net upward water flux (mm day–1) 
at the sea surface in a control integration of a coupled climate 
model. (b) Difference from the control for an experiment in which 
the net freshwater flux across the air–sea interface is stochastically 
perturbed before being passed to the ocean. (c) Difference from 
the control for an experiment in which the net heat flux across the 
air–sea interface is stochastically perturbed before being passed to 
the ocean. From Williams (2012).
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if the observations were constrained to those in the 
control experiment. A cutting-edge frontier is the use 
of memory effects in Kalman filter data assimilation 
schemes (O’Kane and Frederiksen 2012).

The impact of stochastic perturbations on extremes 
has only been considered very recently. Several studies 
focused on the description of non-Gaussian subgrid-
scale processes (Majda et al. 2009; Sardeshmukh 
and Sura 2009; Sura 2011; Sardeshmukh et al. 2015). 
Franzke (2012) showed that his reduced stochastic 
model (see next section) captures the extremes of 
the full model. He et al. (2012) studied the influence 
of an explicitly stochastic representation of mixing 
in the stable boundary layer on the extremes of 
near-surface wind speed in a single-column model. 
Tagle et al. (2016) were the first to study the effect of 
the stochastic parameterizations in a comprehen-
sive climate model. They found that the stochastic 
parameterizations had a big impact on the surface 
temperature mean and variability but hardly changed 
the tail behavior.

SYSTEMATIC MATHEMATICAL AND 
STATISTICAL PHYSICS APPROACHES. 
This section introduces systematic mathematical and 
statistical physics approaches to the parameterization 
problem and reports on recent work on the application 
of these rigorous methods to the weather and climate 
system.

Mathematical and numerical implications of stochasticity. 
Although the motions of the atmosphere and ocean are 
described by the Navier–Stokes equation, large-scale 
flows can often be modeled under hydrostatic approxi-
mation. This leads to the deterministic primitive equa-
tion system. If we want to represent continuous small-
scale fluctuations as stochastic terms, these equations 
need to be generalized to allow for stochasticity. A 
relevant mathematical field is thus the extension of 
the derivation to the stochastic primitive equations for 
two-dimensional (Ewald et al. 2007; Glatt-Holtz and 
Ziane 2008; Glatt-Holtz and Temam 2011) and three-
dimensional flows (Debussche et al. 2012).

Moreover, stochastic 
systems require calculi and 
numerical schemes fun-
damentally different from 
the ones available to solve 
deterministic systems. The 
two most commonly used 
stochastic integral types are 
the Itô integral (Itô 1951) 
and the Stratonovich inte-
gral (Stratonovich 1966). 
When the fast processes 
of a continuous system are 
modeled by white noise—as 
is common for physical 
applications—the resulting 
stochastic model converges 
to a Stratonovich stochas-
tic differential equation 
(Wong and Zakai 1965; 
Papanicolaou and Kohler 
19 74 ;  G a rd i ner  19 85 ; 
Penland 2003a,b). Discrete 
systems converge to the 
Itô stochastic differential 
equation. Starting in the 
1970s, a solid framework 
of numerical methods for 
stochastic ordinary dif-
ferentia l equations was 
developed (Rüemelin 1982; 
Kloeden and Platen 1992; 

Fig. 9. (a) Amplitude of fluctuations of the eddy forcing as measured by the 
standard deviation of divergence of eddy flux in a 1/10° ocean GCM. (b) Mean 
eddy forcing measured by the magnitude of the mean divergence of eddy 
heat flux. The amplitude of the fluctuations is about one order of magnitude 
larger than the mean eddy forcing. Adapted from Li and von Storch (2013).
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Milstein 1995; Kloeden 2002). However, this has 
been extended to high-order schemes only recently 
(Jentzen and Kloeden 2009; Weniger 2014). With sto-
chastic parameterizations becoming more common 
in weather and climate simulations, a revision of the 
deterministic numerical schemes should be under-
taken to ensure the convergence of the numerical 
solutions.

Homogenization and stochastic mode reduction. 
Numerical weather and climate modeling can be seen 
as a model reduction problem. Because we cannot 
numerically solve the full continuous equations, we 
have to truncate the equations at some scale and then 
treat the unresolved processes in some smart way. A 
systematic approach for the derivation of reduced-
order models from first principles is performed 
through the method of homogenization or adiabatic 
elimination (Wong and Zakai 1965; Khas’minskii 1966; 
Kurtz 1973; Papanicolaou and Kohler 1974; Pavliotis 
and Stuart 2008). The fundamental idea is to decom-
pose the state vector into slow and fast components, 
represent the fast processes by a stochastic term, and 
derive analytically an effective equation for the slow, 
predictable modes. Majda et al. (1999, 2001) expanded 
this body of work by making additional assumptions 
on the nonlinear self-interaction of the fast modes and 
coined the term “stochastic mode reduction.”

Stochastic mode reduction has been demon-
strated to successfully model regime behavior and 
low-frequency variability for conceptual models of 
the atmosphere (Majda et al. 2003), the barotropic 
vorticity (Franzke et al. 2005), and a quasigeostrophic 
three-layer model on the sphere with realistic 

orography (Franzke and Majda 2006). However, 
because of both the sheer amount of analytical deri-
vation and the compute-memory requirement in the 
numerical implementation of the resulting equations, 
stochastic mode reduction cannot be easily applied 
to comprehensive climate models of arbitrary com-
plexity. A possible way forward is to apply stochastic 
mode reduction locally at each grid point rather than 
globally (Dolaptchiev et al. 2013a,b).

These mathematical techniques are rigorously 
valid only in the limit of large time-scale separation, 
although some studies report good empirical results, 
even when this condition is not, or only partly, met 
(Dozier and Tappert 1978a,b; Majda et al. 2003, 
2008; Franzke et al. 2005; Franzke and Majda 2006). 
When the time-scale separation between the fast 
and slow processes is not too large, the picture of the 
parameterization as being constructed as the sum of 
a suitably defined deterministic plus random correc-
tions has to be amended to take memory effects into 
account (e.g., Zwanzig 2001; Chekroun et al. 2015a,b). 
Unfortunately, the condition of scale separation 
is typically not met in geophysical f luid dynamics 
applications (Sardeshmukh and Penland 2015; Yano 
2015; Yano et al. 2015), which poses limitations to the 
application of homogenization. An alternative, that 
does not make any assumptions about time-scale 
separation and provides an explicit expression for the 
terms responsible for the memory effect is proposed 
by Wouters and Lucarini (2012, 2013), who instead 
assume the presence of a weak dynamical coupling 
between the fast and slow scales of motion.

The question of which stochastic process is best 
suited to describe the nonlinear interactions of the 

Fig. 10. Difference in mean standard deviation of sea ice thickness forecasts (m) between ensembles generated 
by stochastic ice strength as well as atmospheric initial perturbations and ensembles generated solely by atmo-
spheric initial perturbations, averaged for days (left) 1–10, (center) 11–30, and (right) 31–90 after initialization 
at 0000 UTC 1 Jan. Stippled areas indicate differences statistically significant at the 5% level, using a two-tailed 
F test. Note the different contour intervals. Adapted from Juricke et al. (2014).
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unresolved processes is an open topic. While methods 
for Gaussian diffusion processes are well known 
(Oppenheim and Schafer 1975), it may be the case 
that other formulations like Lévy processes are better 
suited to describe the underlying physics. For the 
interested reader, we refer to recent studies by Penland 
and Ewald (2008), Penland and Sardeshmukh (2012), 
Hein et al. (2010), Gairing and Imkeller (2012, 2015), 
and Thompson et al. (2015).

Adaptation of concepts from statistical physics to 
weather and climate. The scale-aware representation 
of convection and clouds on high-resolution grids 
(1–50 km) has been a long-standing challenge for 
weather and climate models. Within a single model 
column, convection is not uniquely determined by the 
resolved-scale processes, and the distribution of pos-
sible realizations of subgrid-scale convection highly 
depends on model resolution. Furthermore, horizon-
tal transports of heat, moisture, or momentum from 
neighboring grid boxes are typically neglected. Thus, 
to achieve scale awareness, it is necessary to represent 
scale-dependent convective f luctuations about the 
ensemble average response. In addition, because of 
the lack of time-scale separation, a correct representa-
tion of convection across scales requires memory of 
subgrid states from previous time steps.

A novel approach to represent the fluctuations in 
an ensemble of deep convective clouds adapts con-
cepts from statistical mechanics (Craig and Cohen 
2006). Based on this theory, a stochastic parameter-
ization of deep convection was developed to represent 
fluctuations of the subgrid convective mass flux about 
statistical equilibrium (Plant and Craig 2008). This 
is especially attractive for variable-resolution grids, 

since the statistics automatically adapt to the grid 
resolution. This approach was extended to shallow 
convective clouds by introducing a memory effect 
arising from the correlation between the cloud mass 
f luxes and cloud lifetimes (Sakradzija et al. 2015). 
Figure 11 (adapted from Sakradzija et al. 2015) shows 
histograms of the subgrid cloud-base mass f lux in 
the stochastic shallow cumulus cloud scheme and 
coarse-grained large-eddy simulation at different 
horizontal resolutions. The histograms match closely 
and are scale aware.

Modeling convective processes by Markov chains and 
cellular automata. Another way to introduce temporal 
memory and nonlocal effects is the use of Markov chains 
and cellular automata. A Markov chain is a mathemati-
cal system that undergoes transitions from one discrete 
state to another, and the probabilities associated with the 
various state changes are called transition probabilities. 
If observational data or high-resolution simulations are 
used to inform the transition probabilities, the Markov 
chains are called “data driven.”

An example of this approach is the “stochastic 
convective parameterization” which describes the con-
vective state of the entire model column as a discrete 
Markov chain. (Khouider et al. 2010; Dorrestijn et al. 
2013a,b, 2015; Gottwald et al. 2016). The system can 
only reside in a few distinct convective states—such 
as (but not necessarily) clear sky and shallow or deep 
convection—and the random transitions from one 
state to another evolve as a Markov chain. For example, 
Dorrestijn et al. (2013a) cover the horizontal domain 
of the numerical model with a high-resolution lattice 
(with typical lattice spacing from 100 to 1,000 m), 
and on each lattice node lives a copy of the discrete 

Fig. 11. Histograms of the subgrid cloud-base mass flux, resulting from the stochastic shallow cumulus cloud 
scheme (STOCH) and coarse-grained LES, are compared for three horizontal grid resolutions of (left) 1.6, 
(center) 3.2, and (right) 12.8 km. Adapted from Sakradzija et al. (2015).
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stochastic process for the convective state (Fig. 12, 
adapted from Dorrestijn et al. 2013a). The transition 
probabilities are estimated from a cloud-resolving 
LES model. By averaging over blocks of lattice nodes, 
convective area fractions and related quantities can 
be obtained for spatial domains of arbitrary size. The 
resulting patterns and temporal behavior of the area 
fractions are quite realistic. Furthermore, the formula-
tion on a high-resolution lattice (or microlattice) makes 
it possible to compute convective fractions for varying 
area sizes, so that a parameterization based on these 
fractions is scale adaptive.

Frenkel et al. (2012) and Peters et al. (2013) use the 
stochastic model introduced in Khouider et al. (2010) 
but different methods to estimate the transition prob-
abilities. Khouider et al. (2010) and Frenkel et al. (2012) 
formulate the rules based on physical insight, while 
Peters et al. (2013) use observations for their estimates; 
they find that the estimates from observation can 
notably differ from those based on physical intuition.

A related approach is cellular automata, which are 
often used as simple mathematical models to simulate 
spatial self-organizational behavior such as convec-
tive organization. A cellular automaton describes the 
evolution of discrete states on a lattice grid. The states 
are updated according to a set of rules based on the 
states of neighboring cells at the previous time step. 
In addition to memory, cellular automata can allow 
for lateral communications between neighboring grid 
boxes and can thus introduce spatial correlations.

The idea of using cellular automata within NWP 
was first proposed by Palmer (2001), and the first 
applications used them as a quasi-stochastic pattern 
generator for SKEBS (Shutts 2005; Berner et al. 2008). 
Bengtsson et al. (2013) pioneered the use of a cellular 
automaton for the parameterization of convection, 
which allows for the horizontal transports of heat, 
moisture, and momentum across neighboring grid 
boxes. The scheme has been shown to enhance the 
organization of convective squall lines (Bengtsson 
et al. 2013) and improves the skill of accumulated 
precipitation in a high-resolution ensemble prediction 
system (Bengtsson and Körnich 2016).

Climate response in the presence of small -scale 
fluctuations. While there is extensive work focusing 
on the response of the climate system to changes 
in the external forcing, either natural (such as the 
forcing from a localized tropical heating as it occurs 
in El Niño) or anthropogenic (such as from increased 
greenhouse gases), little attention has been given to 
whether and how the representation of the subgrid 
scale can alter that response. In the mathematical 

community, this is the topic of response theory and 
the fluctuation–dissipation theorem (e.g., Marconi 
et al. 2008; Lacorata and Vulpiani 2007; Colangeli 
et al. 2011; Lucarini and Colangeli 2012; Colangeli 
and Lucarini 2014).

Seiffert and von Storch (2008) were the first to 
investigate the response of a climate model to CO2 
forcing in the presence of subgrid-scale f luctua-
tions in atmospheric temperature, divergence, and 
vorticity. In their model, the strength of global 
warming due to a CO2 doubling is altered by up to 
15% near the surface and up to 25% in the upper 
troposphere (Fig. 13, from Seiffert and von Storch 
2008) depending on the exact representation of the 
small-scale fluctuations. Applying a stochastic model 
to their simulations, they found that the small-scale 
f luctuations change the temperature response via 
a statistical damping that acts as a restoring force. 
In addition, the small-scale f luctuations can affect 
feedback and interaction processes that are directly 
coupled to an increase in CO2, thereby altering the 
CO2-related radiative forcing (Seiffert and von Storch 
2010).

The f luctuation–dissipation theorem (FDT) is 
concerned with the response of a system to small 
changes in the forcing. In particular, it tries to 
relate the response to the natural fluctuations in the 
system (Kubo 1966; Deker and Haake 1975; Hänggi 
and Thomas 1977; Leith 1975; Risken 1984). In the 
atmospheric sciences, the FDT operator is estimated 
from model output, in particular the variances and 
covariances of the state variables at different time 

Fig. 12. Snapshot of the spatial field of convective 
states obtained from LES data. The distinction 
between the various convective states was based on 
cloud-top height and rainwater content. Adapted from 
Dorrestijn et al. (2013a).
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lags. The so-obtained empirical linear model is able 
to predict the response to changes in the external 
forcing, such as the signature from localized tropical 
heat forcing (Gritsun and Branstator 2007; Gritsun 
et al. 2008).

Achatz et al. (2013) argue that subgrid-scale 
parameterizations developed for a present-day 
climate might no longer be accurate in a changing 
climate. They use the FDT to adjust the subgrid-
scale representation of the forced system. Figure 14 
(adapted from Achatz et al. 2013) shows that a low-
order model with a subgrid-scale parameterization 
corrected by the FDT yields a better response in 
streamfunction variance than without the correction.

While some success of FDT techniques to low-
frequency climate modeling has been demonstrated, 
some of the mathematical assumptions are not strictly 
met. Recent work expands the mathematical under-
pinning by formulating the response theory more 
generally and is better suited for nonequilibrium 
systems (Ruelle 2009; Lucarini and Sarno 2011) and 
climate projections (Lucarini et al. 2014b; Ragone 
et al. 2016).

Statistical dynamical closure theory. Kraichnan (1959) 
first illustrated that renormalization of the statistical 
equations of fluid motion can been used to produce 
self-consistent parameterizations of the subgrid 
turbulent processes. It is on this basis that Frederiksen 

and Davies (1997) developed stochastic parameteriza-
tions of subgrid turbulence in barotropic atmospheric 
simulations on the sphere. The subgrid parameteriza-
tions consist of drain, backscatter, and net eddy 
viscosities, which are determined from the statistics of 
higher-resolution closure simulations. The aim here 
is that the spectra from the low-resolution simulation 
with stochastic subgrid parameterization should be 
ideally statistically indistinguishable from those 
produced by the high-resolution simulation, which 
would allow one to save computational resources. 
Implementation of this approach into an atmospheric 
general circulation model (GCM) resulted in sig-
nificantly improved circulation and energy spectra 
(Frederiksen et al. 2003). These ideas were further 
developed by Frederiksen (1999, 2012a,b), and O’Kane 
and Frederiksen (2008).

Frederiksen and Kepert (2006) then used the 
functional form of these closure approaches to 
develop a zero-parameter stochastic modeling 
framework, where the eddy viscosities are deter-
mined from higher-resolution reference simula-
tions. This approach was successfully applied to 
baroclinic geophysical simulations in Zidikheri and 
Frederiksen (2009, 2010a,b). Recently, Kitsios et al. 
(2012, 2013, 2014) used this approach to determine 
the eddy viscosities from a series of high-resolution 
atmospheric and oceanic reference simulations. The 
isotropized versions of the subgrid eddy viscosities 
were then characterized by a set of scaling laws. 
Large-eddy simulations with subgrid models defined 
by these scaling laws (solid lines in Fig. 15) were able 
to reproduce the statistics of the high-resolution 
reference simulations (dashed lines in Fig. 15) across 
all resolved scales. This demonstrates that including 
a stochastic subgrid parameterization in the low-
resolution simulations makes them indistinguishable 
from the high-resolution reference.

The scaling laws further enable the subgrid 
parameterizations to be utilized more widely, as they 
remove the need to generate the subgrid coefficients 
from a reference simulation.

CONCLUDING REMARKS. In this article, we   
to narrow the gap between the fields of numerical 
meteorological models and applied mathematics in 
the development of stochastic parameterizations: 
on the one hand, geoscientists are often unaware of 
mathematically rigorous results that can aid in the 
development of physically relevant parameterizations, 
and on the other hand, mathematicians often do not 
know about open issues in scientific applications that 
might be mathematically tractable.

Fig. 13. Climate responses of global-mean temperature 
to a CO2 doubling (2 × CO2 minus 1 × CO2) obtained 
from the ECHAM5/Max Planck Institute Ocean Model 
experiments with different representations of small-
scale fluctuations: “diffus” refers to experiments in 
which the strength of horizontal diffusion is varied, 
and “noise” refers to experiments in which white noise 
is added to small scales of the atmospheric model 
ECHAM5. From Seiffert and von Storch (2008).
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Over the last decade 
or two, increasing evi-
dence has pointed to the 
potential of this approach, 
a lbeit applied in an ad 
hoc manner and tuned 
to specific applications. 
This is apparent in the 
choices made at operational 
weather centers, where 
stochastic parameteriza-
t ion schemes a re now 
routinely used to represent 
model inadequacy better 
and improve probabilistic 
forecast ski l l. Here, we 
revisit recent work that 
demonstrates that stochastic parameterizations are 
not only essential for the estimation of the uncer-
tainty in weather forecasts, but are also necessary 
for accurate climate and climate change projections. 
Stochastic parameterizations have the potential to 
reduce systematic model errors, trigger noise-induced 
regime transitions, and modify the response to 
changes in the external forcing.

Ideally, stochastic parameterizations should be 
developed alongside the physical parameterization 
and dynamical core development and not tuned 
to yield a particular model performance. This 
approach is hampered by the fact that parameters 
in climate and weather are typically adjusted 
(tuned) to yield the best mean state and/or the best 
variability. This can result in compensating model 
errors, which pose a big challenge to model devel-
opment in general, and stochastic parameteriza-
tions in particular. A stochastic parameterization 
might improve the model from a process perspec-
tive, but its decreased systematic error no longer 
compensates other model errors, resulting in an 
overall larger bias (Palmer and Weisheimer 2011; 
Berner et al. 2012). Clearly, such structural uncer-
tainties need to be addressed in order to improve 
the predictive skills of our models.

Mathematically rigorous approaches decompose 
the system at hand into slow and fast components. 
They focus on the accurate simulation of the large, 
predictable scales, while only the statistical properties 
of the small, unpredictable scales need to be captured. 
One finds that the impact of the fast variables on 
the dynamics of the slow variables boils down to a 
deterministic correction plus a stochastic component. 
This immediately points to the fact that the classical 
parameterization approach, which is only based on 

averaged properties, is insufficient. Understanding 
the deterministic correction term in physical terms 
will shed light on the impact of stochastic parameter-
izations on systematic model errors and, hopefully, 
compensating model errors.

Recent findings from such rigorous derivations 
suggest that, when the time scales of the processes 
we need to parameterize are not very different from 
those of the explicitly resolved dynamics—if we are in 
a gray zone—memory terms can become important. 
This is especially relevant for developing scale-aware 

Fig. 14. (left) The response in mean streamfunction variance of a barotropic 
vorticity equation to an anomalous vorticity forcing at 45°N, 150°W projected 
onto 90 empirical orthogonal functions (EOFs) and the simulation of this 
response by (center) a 90-EOF climate model with unmodified subgrid-scale 
parameterization (relative error = 0.527) and (right) a climate model with 
subgrid-scale parameterization corrected by FDT (relative error = 0.342). 
Adapted from Achatz et al. (2013).

Fig. 15. Comparison of the upper-level kinetic energy 
spectra of a two-level benchmark simulation (dashed 
line) with associated LES (solid line) at various reso-
lutions for atmospheric isotropic stochastic (isoS) 
LES, atmospheric isotropic deterministic (isoD) LES, 
atmospheric deterministic scaling law (lawD) LES, 
oceanic stochastic scaling law (lawS) LES, and oceanic 
deterministic scaling law LES. The top spectrum has 
the correct kinetic energy, with the others shifted 
down for clarity. 
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parameterizations, where it is difficult to control 
the time-scale separation as the spatial resolution 
is altered.

Of course, the stochastic approach is not a pana-
cea for the subgrid-scale parameterization problem 
and persistent model biases. Stochastic approaches 
must complement developments in the deterministic 
physical process parameterizations and dynamical 
core, as motivated by, for example, Stevens and 
Bony (2013) and Jakob (2014). Nevertheless, it is 
our conviction that basing stochastic parameteriza-
tions on sound mathematical and statistical physics 
concepts will lead to substantial improvements in 
our understanding of the Earth system as well as 
increased predictive capability in next-generation 
weather and climate models.
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