
On the Fixed Parameter Tractability
and Approximability of the Minimum

Error Correction Problem

Paola Bonizzoni1, Riccardo Dondi2, Gunnar W. Klau3,5, Yuri Pirola1,
Nadia Pisanti4,5, and Simone Zaccaria1(B)

1 DISCo, Univ. degli Studi di Milano-Bicocca, Milan, Italy
{simone.zaccaria,bonizzoni,pirola}@disco.unimib.it

2 Dip. di Scienze Umane e Sociali, Univ. degli Studi di Bergamo, Bergamo, Italy
riccardo.dondi@unibg.it

3 Life Sciences, Centrum Wiskunde & Informatica (CWI),
Amsterdam, The Netherlands

gunnar.klau@cwi.nl
4 Dipartimento di Informatica, Univ. degli Studi di Pisa, Pisa, Italy

pisanti@di.unipi.it
5 Erable Team, INRIA, Lyon, France

Abstract. Haplotype assembly is the computational problem of recon-
structing the two parental copies, called haplotypes, of each chromosome
starting from sequencing reads, called fragments, possibly affected by
sequencing errors. Minimum Error Correction (MEC) is a prominent
computational problem for haplotype assembly and, given a set of frag-
ments, aims at reconstructing the two haplotypes by applying the mini-
mum number of base corrections.

By using novel combinatorial properties of MEC instances, we are able
to provide new results on the fixed-parameter tractability and approx-
imability of MEC. In particular, we show that MEC is in FPT when para-
meterized by the number of corrections, and, on “gapless” instances, it is
in FPT also when parameterized by the length of the fragments, whereas
the result known in literature forces the reconstruction of complementary
haplotypes. Then, we show that MEC cannot be approximated within
any constant factor while it is approximable within factor O(log nm)
where nm is the size of the input. Finally, we provide a practical
2-approximation algorithm for the Binary MEC, a variant of MEC that
has been applied in the framework of clustering binary data.

1 Introduction

The genome of diploid organisms, as humans, is composed of two parental copies,
called haplotypes, for each chromosome. The most frequent form of genetic
variations between the two haplotypes of the same chromosome are the Sin-
gle Nucleotide Polymorphisms (SNPs). Haplotype analysis is of fundamental
importance for a variety of applications including agricultural research, medical
diagnostic, and drug design [3,4,22].
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The task of the haplotyping problem is the reconstruction of each pair of
haplotypes. However, large scale direct experimental reconstruction from the
collected samples is not yet cost-effective. One of the computational approaches
that have been proposed, haplotype assembly, considers the high-throughput
sequencing reads (also called fragments) that have to be bipartitioned in order
to reconstruct the two haplotypes. Since for most of the SNP positions only
two nucleotides are seen, the haplotypes can be represented as binary vectors.
The fragments obtained from sequencing may not cover some positions of the
haplotypes. These uncovered positions are called holes, whereas a sequence of
holes within a fragment is called gap. However, the presence of sequencing and
(possible) mapping errors makes the haplotype assembly problem a challeng-
ing task. In literature, different combinatorial formulations of the problem have
been proposed [1,7,17,18]. Among them, Minimum Error Correction (MEC) [18]
has been proved particularly successful in the reconstruction of accurate hap-
lotypes [5,13,20]. However, MEC is a computationally hard problem. Indeed,
MEC is APX-hard even if the fragments have at least one gap [6] and remains
NP-hard even if the fragments do not contain gaps (Gapless MEC ) [6]. Instead,
the computational complexity of MEC on instances without holes – called Binary
MEC – is still unknown. Many successful approaches for coping with the com-
putational intractability of MEC are based on the parameterized complexity
framework. In particular, MEC is in FPT when parameterized by the “cover-
age” [20], that is the maximum number of fragments with non-hole values on
a SNP position. Moreover, MEC is in FPT also when parameterized by the
length of the fragments [13], but only under the all-heterozygous assumption,
that forces to reconstruct complementary haplotypes. In fact, this assumption
allows the dynamic programming algorithm of [13] to focus on the reconstruc-
tion of a single haplotype and, hence, to limit the possible combinations for each
SNP position.

Despite the significant amount of work present in the literature, some impor-
tant questions related to the fixed-parameter tractability and approximability
of MEC are still open. Two significant open problems are whether there exists
a constant approximation algorithm for MEC and whether MEC is in FPT
when parameterized by parameters of classical or practical interest, such as the
total number of corrections or the length of the fragments. Indeed, removing
the dependency on the all-heterozygous assumption from [13] does not appear
straightforward and, hence, fixed-parameter tractability of MEC when parame-
terized by the fragment length is still an open problem.

The binary restriction of MEC where the fragments do not contain holes is
particularly interesting from a mathematical point of view, and is the variant of
the well-known Hamming k-Median Clustering Problem [6,16], when k = 2. This
clustering problem asks for k representative “consensus” (also called “median”)
strings with the goal of minimizing the distance between each input string
and its closest consensus string. Hamming 2-Median Clustering is well stud-
ied from the approximation viewpoint, and a Polynomial Time Approximation
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Scheme (PTAS) has been proposed, both in a randomized [19] and deterministic
form [14].

In this work, we present advances in the characterization of the fixed-
parameter tractability and the approximability of MEC problem in the general,
gapless, and binary cases. We first show that MEC is not in APX, i.e., it is not
approximable within constant factor. However, we also show that a reduction
previously known [8] can be adapted to prove that MEC is approximable within
factor O(log nm) (where n is the number of fragments and m is the number of
SNPs) and that MEC is in FPT when parameterized by the total number of
corrections.

Furthermore, by inspecting novel combinatorial properties of gapless
instances, we show that Gapless MEC is in FPT when parameterized by the
length of the fragments and that Binary MEC can be approximated within
factor 2. Although Binary MEC is known to admit a PTAS, the 2-approximation
algorithm we give is more practical and intuitive than the previous approxima-
tion results.

2 Preliminary Definitions

In this section, we introduce some basic notions and the formal definition of the
MEC problem. In the rest of the work, we indicate, as usual, the value of a vector
s at position t as s[t].

A fragment matrix is a matrix M composed of n rows and m columns such
that each entry contains a value in {0, 1,−}. Each row of M represents a fragment
and, formally, is a vector belonging to {0, 1,−}m. Symmetrically, each column
of M corresponds to an SNP position and is a vector belonging to {0, 1,−}n.
We denote by fi the i-th row of M and by pj the j-th column of M. As a
consequence, the entry of M at the i-th row and j-th column is denoted by fi[j]
or pj [i]. The length �i of a fragment fi is defined as the number of elements in
fi between the rightmost and the leftmost non-hole elements (included) and we
denote by � the maximum length over all the fragments in M. Moreover, we
say that a column pj covers a row fi if pj [i] ∈ {0, 1} and we define the active
fragments of pj as the set active(pj) of all the covered rows, that is active(pj) =
{fi | pj [i] ∈ {0, 1}} (Notice that we denote by active(pj1 , pj2) the intersection
active(pj1)∩active(pj2) for two columns pj1 and pj2). A column pj is heterozygous
if it contains both 0’s and 1’s, otherwise is homozygous. A hole is an entry fi[j]
of M equal to the symbol −. A gap in a fragment fi is a maximal subvector of
holes in fi surrounded by non-hole entries (that is, there exist two positions j1
and j2 with j1 + 1 < j2 such that fi[j1], fi[j2] �= − and fi[t] = − for all t with
j1 < t < j2). A fragment matrix is gapless if no fragment contains a gap.

Two rows fi1 and fi2 are in conflict when there exists a position j, with
1 ≤ j ≤ m, such that fi1 [j] �= fi2 [j], and fi1 [j], fi2 [j] �= −. Otherwise, we say
that fi1 and fi2 are in agreement. A collection F of fragments is in agreement
if any pair of fragments f1, f2 in F are in agreement. A fragment matrix M is
conflict free if there exists a bipartition (F1,F2) of its fragments such that both
F1 and F2 are in agreement.
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When a fragment matrix M is conflict free, all the fragments in each part of
the bipartition can be merged in order to reconstruct a haplotype, intended as a
fragment without holes. Unfortunately, a fragment matrix M is not always con-
flict free. The Minimum Error Correction problem deals precisely with this issue
by asking for a minimum set of corrections that make a fragment matrix conflict
free, where a correction of a given fragment fi at position j, with fi[j] �= −, is
the flip of the value fi[j], replacing a 0 with a 1, or a 1 with a 0.

Problem 1 (Minimum Error Correction (MEC) problem).
Input: a fragment matrix M of n rows and m columns.
Output: a conflict free matrix M′ obtained from M with the minimum number
of corrections.

Gapless MEC is the restriction of MEC where the input fragment matrix M
is gapless, while Binary MEC is the restriction of (Gapless) MEC where the
matrix M does not contain holes (that is, when M is a binary matrix).

Given a conflict free fragment matrix M, any heterozygous column pj encodes
a bipartition of the fragments covered by pj indicating which one belongs to one
haplotype and which one belongs to other. Instead, any homozygous column pj

gives no information on how the covered fragments have to be partitioned, and
it is “in accordance” with any other bipartition or heterozygous column. More
formally, we say that two columns pj1 , pj2 of a fragment matrix are in accordance
if (1) at least one of pj1 , pj2 is homozygous, or (2) pj1 , pj2 are both heterozygous
and are identical or complementary on the fragments covered by both.

As stated in the following lemma, pairwise column accordance on gapless
matrices is a necessary and sufficient condition for being conflict free.

Lemma 2. Let M be a gapless fragment matrix. Then, M is conflict free if
and only if each pair of columns is in accordance.

Proof. By definition, if M is conflict free, each pair of columns is in accordance.
For this reason, we just prove by induction on the number m of columns in M
that if each pair of columns is in accordance, then M is conflict free.

If h = 1, the lemma obviously holds.
Assume by induction that the lemma holds for the first h columns in M,

we need to prove that the lemma still holds for the first h + 1 columns. The
submatrix on the first h columns is conflict free by induction and, for this reason,
a bipartition (P1, P2) of the corresponding fragments exists. By assumption, ph+1

and ph are in accordance. Hence, ph+1 and ph define the same bipartition on
the fragments in active(ph, ph+1). Since M is gapless, there is no column py in
{p1, . . . , ph−1} such that active(py, ph+1) \ active(ph) �= ∅, hence active(ph+1) \
active(ph) �⊆ active(py) for 1 ≤ y ≤ h−1. It follows that there exists a bipartition
(P1 ∪ P ′

1, P2 ∪ P ′
2) for all the fragments active on the first h + 1 columns, where

(P ′
1, P

′
2) is the bipartition induced by ph+1 on the fragments in active(ph+1) \

active(ph). As a consequence the submatrix on the first h+1 columns is conflict
free. 	
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Such a property is particularly important when designing exact algorithms for
Gapless MEC, as it allows to test only for pairwise column accordance in order
to ensure that the matrix is conflict free. In fact, the fixed-parameter algorithm
for Gapless MEC that we present in Sect. 4 is based on this property. Further-
more, notice that if we relax the requirement that M is gapless, then the property
does not hold. Consider, for example, the fragment matrix M composed of three
fragments f1 = 01−, f2 = −01, and f3 = 1 − 0. The three columns are pair-
wise in accordance, but the matrix is not conflict free (and, in fact, f3 contains
a gap).

Given two columns pj1 , pj2 of a fragment matrix M, we define their (gen-
eralized) Hamming distance dH(pj1 , pj2) as |{i | {pj1 [i], pj2 [i]} = {0, 1}}| while
their correction distance d(pj1 , pj2) as the minimum between dH(pj1 , pj2) and
dH(pj1 , pj2) (where p is the complement of p on non-hole entries). Notice that
the correction distance is non-negative and symmetric, but does not satisfy the
triangle inequality, hence, despite the name, is not a metric. We also define the
homozygous distance H(pj) as the minimum between the number of 0’s and 1’s
contained in pj . Intuitively, the correction distance is the cost of making a col-
umn equal or complementary to another column, while the homozygous distance
is the cost of making a column homozygous.

A solution of MEC over a fragment matrix M is a bipartition of its fragments,
that can be encoded as a binary vector O. It is easy to see that the cost of that
solution is: costM(O) =

∑m
j=1 min(d(O, pj),H(pj)).

3 Inapproximability of MEC

In this section, we show that MEC is not in APX, that is MEC cannot be
approximated within constant factor. We achieve this result by introducing an
L-reduction from the Edge Bipartization problem to MEC.

The Edge Bipartization problem is defined as follows.

Problem 3 (Edge Bipartization (EB) problem [9]).
Input: an undirected graph G = (V,E).
Output: E′ ⊆ E of minimum size such that G′ = (V,E \ E′) is bipartite.

Now, we present the details of the reduction. Given an undirected graph G =
(V,E), we build the associated fragment matrix M(G) (with |V | rows and |E|
columns) by setting, at each column pj associated with edge ej = {u, v} ∈ E,
fu[j] = 0, fv[j] = 1, and fz[j] = − for z �= u, v. Notice that, by construction,
there exists a conflict in M(G) between fragments fu and fv if and only if
{u, v} ∈ E.

Lemma 4. Let G = (V,E) be an undirected graph and M(G) be the associ-
ated fragment matrix. Given a solution E′ of EB over G, we can compute in
polynomial time a solution of MEC over M(G) with |E′| corrections. Symmet-
rically, given a solution of MEC over M(G) with h corrections, we can compute
in polynomial time a solution E′ of EB over G of size at most h.
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Proof. (⇒) Let E′ be a set of edges such that (V1�V2, E \E′) is bipartite, where
V1 and V2 are the parts of the bipartition. Build a matrix M′(G) from M(G) by
flipping, for each ej = {u, v} ∈ E′, the entry fu[j]. Clearly, M′(G) is obtained
from M(G) with |E′| corrections and it does not contain conflicts induced by
edges in E′. Let (F1,F2) be the bipartition of fragments of M′(G) such that
Fi := {fu | vu ∈ Vi} (for i ∈ {1, 2}). Each Fi is in agreement because it does not
contain a pair of fragments associated with the endpoints of an edge of E \ E′.
Hence, M′(G) is conflict free.

(⇐) Let M′(G) be a conflict free matrix obtained from M(G) with h cor-
rections and let C ′ be the subset of columns of M′(G) that contain exactly one
correction. Consider the set E′ := {ej ∈ E | pj ∈ C ′}. Clearly, |E′| ≤ h.
Since M′(G) is conflict free, there exists a bipartition (F1,F2) of the frag-
ments such that both F1,F2 are in agreement. Build sets V1, V2 such that
Vi := {vu | fu ∈ Fi} (with i ∈ {1, 2}). We claim that (V1 � V2, E \ E′) is
bipartite. Suppose to the contrary that there exists an edge ej = {u, v} ∈ E \E′

such that u, v ∈ Vi, i ∈ {1, 2}. Since fu[j] = fv[j] in M′(G), this implies that
exactly one of fu[j] and fv[j] has been corrected (since fu[j] �= fv[j] in M(G)).
As a consequence, we have that ej ∈ E′, contradicting the assumption. 	

Khot [15] proved that, under the Unique Games Conjecture, EB is not in APX.
Since Lemma 4 proves that MEC is L-reducible to EB, we have the following
result.

Theorem 5. Under the Unique Games Conjecture [15], MEC is not in APX.

The inapproximability result given in Theorem5 nicely complements an approx-
imation (and fixed-parameter tractable) result that can be easily inferred by a
reduction presented in [8]. In [8], MEC is reduced to the Maximum Bipartite
Induced Subgraph problem (MBIS). Given a vertex-weighted graph G, MBIS
asks for a maximum weight subset of vertices of G that induces a bipartite
graph. The reduction defines a graph, called fragment graph, whose set of nodes
is the union of two sets: a set of nodes, called fragment nodes, one for each frag-
ment, and a set of nodes, called entry nodes, one for each entry of the matrix. In
order to avoid the removal of fragments nodes, they are assigned a sufficiently
large weight.

The reduction can be easily reworked in order to prove approximation
and fixed-parameter tractability results for MEC. More precisely, MEC is now
reduced to the Graph Bipartization (GB) problem, a problem related to MBIS.
Given an unweighted graph G, GB asks for the minimum number of vertex
removals so that the resulting graph is bipartite. The reduction given in [8]
can be modified by defining a new version of the fragment graph (see Fig. 1),
where each (weighted) fragment node is substituted with a sufficiently large set
of fragment nodes. From the construction of the fragment graph, it follows that
a fragment matrix M is conflict free if and only if the corresponding fragment
graph is bipartite and that a solution of MEC with k corrections corresponds to
a solution of GB that removes k vertices.
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Fig. 1. A 3 × 4 fragment matrix (left) and the associated fragment graph (right).
Fragment-nodes are in black, while entry-nodes are in white.

Since GB can be approximated within factor O(log |V |) [10] and is in FPT
when parameterized by the number of removed vertices [11,23], we have that:

Theorem 6.

(1) MEC can be approximated in polynomial time within factor O(log nm) where
n is the number of fragments and m is the number of SNP positions.

(2) MEC is in FPT when parameterized by the total number of corrections.

4 Gapless MEC Is in FPT When Parameterized
by the Fragment Length

In this section, we introduce a fixed-parameter tractable algorithm for Gapless
MEC when parameterized by the maximum length � of the fragments. The algo-
rithm is based on a dynamic programming approach and aims at finding a specific
tripartition for the columns of a gapless fragment matrix M. In this section, we
assume w.l.o.g. that M is a gapless fragment matrix and the fragments of M
are sorted by starting position.

Lemma 2 provides a sufficient and necessary condition for the reconstruc-
tion of a solution for Gapless MEC, that is a conflict free fragment matrix. For
this reason, the gapless condition is required by this algorithm. In fact, if the
fragment matrix contains gaps, the accordance of the columns is not sufficient
to ensure that there are no conflicts. Therefore, we firstly show a result that
directly derives from Lemma 2. The following proposition stresses the relation-
ship between a bipartition of the fragments and a tripartition of the columns in
a gapless fragment matrix M that is conflict free.

Proposition 7. Given a gapless fragment matrix M, the following assertions
are equivalent:

1. M is conflict free.
2. There exists a bipartition (F1,F2) of the fragments, where both F1 and F2

are in agreement.
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3. There exists a tripartition T = (L,H,R) of the columns such that each column
in H is homozygous, each column in L ∪ R is heterozygous, dH(pj1 , pj2) = 0
for all the columns pj1 , pj2 ∈ L (pj1 , pj2 ∈ R, resp.) and dH(pj1 , pj2) = 0 for
each column pj1 ∈ L and each column pj2 ∈ R.

Based on Proposition 7, we introduce an algorithm for Gapless MEC that builds
a tripartition of the columns of M in order to find a conflict free matrix M′

obtained from M with the minimum number of corrections. Notice that in the
rest of this section we implicitly refer only to tripartitions built as reported in
the third assertion of Proposition 7.

The algorithm iteratively proceeds row-wise and, at each step, computes a
tripartition for the columns considered so far. In particular, the key observation
that allows to bound the exponential complexity of the algorithm to the parame-
ter � is that we can build any tripartition for all the columns in M by adding only
a subset of columns, called active columns, for each row. This subset contains
the columns covering the current fragment and the columns covering both pre-
vious and successive fragments. Indeed, we need to remember the tripartition
established by previous fragments for columns that are covered by successive
fragments. More formally, we define the set active columns for a fragment fi as:

A(i) = {pj | (pj [i] �= −) ∨ (∃x, y with x < i < y | pj [x], pj [y] �= −)}

Figure 2 represents the active columns A(i) of a fragment fi. The cardinality
of A(i) is bounded by �. In fact, considering a row fi, notice that �i ≤ � and
no column pk, to the left of fi, is in A(i). Recall that fragments are sorted by
starting position and assume that r is the number of columns pj to the right of
fi, such that there are fb, fq with b < i < q and pj [b], pj [q] �= −. Since the r
columns must be contained in A(b) for a fragment fb with a starting position
preceding the one of fi, it holds that �i + r ≤ �b ≤ �. It clearly follows that
|A(i)| = �i + r ≤ �.

Considering two rows fi1 and fi2 , with i1 < i2, a tripartition for all the
columns in A(i1) ∪ A(i2) can be computed by combining a tripartition T1 for
A(i1) and a tripartition T2 for A(i2), only if T1 and T2 are “in accordance”, that
is, they are partitioning the shared columns in the same way. For this reason, we
say that a tripartition T2 = (L2,H2, R2) for A(i2) extends another tripartition

Fig. 2. The set A(i) of active columns for a fragment fi.
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T1 = (L1,H1, R1) for A(i1) if and only if L1 ∩ A(i2) ⊆ L2, H1 ∩ A(i2) ⊆ H2,
and R1 ∩ A(i2) ⊆ R2.

At each step i, the algorithm computes a tripartition T for A(i) extending a
tripartition T ′ for A(i − 1). Since A(i − 1) also contains all the columns pj with
pj [i − 1] = − such that there exists y < i − 1 with pj [y] �= − and pj [i] �= −,
it follows that T even extends any tripartition computed at the previous steps
extended by T ′. As a consequence, we prove the following implication.

Lemma 8. If there exists a conflict free matrix M′′ obtained from M on the
first i − 1 rows that induces a tripartition T ′ for the columns in A(i − 1), and
if T is a tripartition for the columns in A(i) extending T ′, then there exists a
conflict free matrix M′ obtained from M on the first i rows that induces the
tripartition T for the columns in A(i).

Proof. By definition, pj [i] �= − and pj [y] = − for each column pj ∈ A(i)\A(i−1)
and for each y < i. By assumption T extends T ′, hence build M′ such that the
columns covered by the first i − 1 rows are tripartitioned as in M′′ and the
remaining columns only covered by fi are tripartitioned according to T . By
construction, M′ induces the tripartition T for A(i). Since M′′ is conflict free,
it follows that M′ is conflict free by Proposition 7. 	

At each step i and for each tripartition T = (L,H,R) for A(i), the algorithm
chooses the tripartition T ′ extended by T for A(i−1) that induces the minimum
cost (recursive step) and computes the minimum number of corrections to add on
the current fragment fi in order to tripartition all the columns in A(i) according
to T (local contribution). In particular, the algorithm considers the minimum
number of corrections on fi such that pj [i] = 1 or pj [i] = 0 for all pj in L and,
on the contrary, pj [i] = 0 or pj [i] = 1 for all pj in R. At the same time, the
minimum number of corrections on the fragment fi is computed for each column
pj in H such that pj on the first i rows can be optimally transformed into a
homozygous column. Therefore, we define D[i, T ] as the minimum number of
corrections to obtain a conflict free matrix M′ from M on the first i rows that
induces a tripartition T for A(i). The algorithm proceeds row-wise computing
the value D[i, T ] for each fragment fi and for each tripartition T for A(i) by the
following recursive equation:

D[i, T ] = Δ(i, T ) + min
T ′ extended by T

D[i − 1, T ′] (1)

where T ′ is a tripartition for A(i − 1). In the recursion, we consider only the
tripartitions T ′ extended by T , since the shared columns have to be partitioned
in the same way. In conclusion, the local contribution is defined as:

Δ(i, T ) = O(i,H) + min

{
E0(i, L) + E1(i, R)
E1(i, L) + E0(i, R)

where T = (L,H,R) (2)

such that Ex(i, F ) is the cost of correcting the columns in F for fragment fi

to value x, that is Ex(i, F ) = |{j | j ∈ F ∧ pj [i] /∈ {x,−}}|, and O(i,H)



On the Fixed Parameter Tractability and Approximability 109

is the minimum number of corrections to apply on fragment fi such that the
columns in H, considered on the first i rows, can be turned into homozygous
columns with minimum cost. Denote by #x

i,j the number of values equal to x

in {pj [1], . . . , pj [i]}. The minimum between #0
i,j and #1

i,j states the minimum
number of corrections necessary to turn a column pj on the first i rows into a
homozygous column. Since O(i,H) refers only to the corrections on fragment fi,
we can compute O(i,H) as:

O(i,H) =
∑

j∈H

⎧
⎪⎨

⎪⎩

1 pj [i] = 0 and #0
i,j ≤ #1

i,j

1 pj [i] = 1 and #1
i,j ≤ #0

i,j

0 otherwise
(3)

Given a set of columns F , it is easy to see that
∑

i∈{1,...,n} O(i, F ) =
∑

pj∈F H(pj).
The base case of the recurrence is D[1, T ] = Δ(1, T ) for each tripartition

T for A(1). The algorithm returns the optimum corresponding to minT D[n, T ]
where T is a tripartition for A(n). Furthermore, an optimal tripartition for all
the columns can be computed by backtracking.

The algorithm computes all the values D[i, T ] for each tripartition T of the
columns in A(i) and for each i in {1, . . . , n}. It follows that there are O(3� ·
n) entries and, therefore, the space complexity is equal to O(3� · n). Given a
tripartition T , we need O(3�) time to enumerate all the tripartitions T ′ extended
by T because we have to tripartition all the columns in |A(i − 1) \ A(i)| with
A(i − 1) ≤ � and, consequently, |A(i − 1) \ A(i)| ≤ �. Since Δ(i, T ) can be
computed in O(�) time, each entry D[i, T ] can be computed in O(3� · �). It
follows that the total running time of the algorithm is O(32� · � · n). Notice that
storing partial information during the computation (using an approach similar
to the one presented in [20]) we can decrease the complexity to O(3� · � · n).

We now show the correctness of the algorithm.

Lemma 9. Consider a gapless fragment matrix M.

1. If D[i, T ] = h, then there exists a conflict free matrix M′ obtained from M
on the first i rows with h corrections that induces a tripartition T for the
columns in A(i).

2. If M′ is a conflict free matrix obtained from M on the first i rows with h
corrections that induces a tripartition T for the columns in A(i), D[i, T ] ≤ h.

Proof. We prove the lemma by induction on the number n of rows of M. Both
the statements obviously hold for i = 1. Assume that lemma holds for i − 1, we
show that both the statements hold for i.

(1) By Eq. (1), there exists a tripartition T ′ for A(i−1) such that T extends T ′

and D[i, T ] = h = Δ(i, T )+D[i−1, T ′]. Assuming D[i−1, T ′] = h′, by induction
there exists a conflict free matrix M′′ obtained from M on the first i − 1 rows
with h′ corrections that induces a tripartition T ′ for A(i − 1). By Proposition 8,
there exists a conflict free matrix M′ obtained from M on the first i rows that
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induces a tripartition T for A(i). Since T extends T ′, by construction we can
add Δ(i, T ) corrections on fragment fi in order to build M′ starting from M′′.
It follows that M′ is obtained from M with Δ(i, T ) + h′ = h corrections.

(2) Assume that M′′ is the submatrix of M′ obtained from M on the first
i−1 rows with h′ corrections that induces a tripartition T ′ for A(i−1). Clearly,
T ′ is extended by T due to the fact that M′′ is equal to M′ on the first i − 1
rows. Since M′ contains Δ(i, T ) corrections on the row fi by construction, it
follows that h = Δ(i, T ) + h′. Moreover, we know that D[i − 1, T ′] ≤ h′ by
induction and by Eq. (1) that D[i, T ] = Δ(i, T )+minT ′′ extended by T D[i−1, T ′′].
Hence, since minT ′′ extended by T D[i − 1, T ′′] ≤ D[i − 1, T ′], we conclude that
D[i, T ] ≤ Δ(i, T ) + h′ and, consequently, D[i, T ] ≤ h. 	

From the correctness of the algorithm, it directly follows that:

Theorem 10. Gapless MEC (without the all-heterozygous assumption) is in
FPT when parameterized by the length of the fragments and it can be solved in
O(3� · � · n) time.

5 A 2-Approximation Algorithm for Binary MEC

In this section we present a 2-approximation algorithm for Binary MEC, that is
the restriction of MEC where the fragment matrix does not contain holes. The
approximation algorithm is based on the observation that heterozygous columns
in binary matrices naturally encode bipartitions of the fragments and that, by
Lemma 2, if the columns of a gapless fragment matrix are pairwise in accordance
then the matrix is conflict free. In particular, Algorithm1 builds a feasible solu-
tion SOL[t] for each t in {1, . . . , m} assuming that pt is the closest column to an
(unknown) optimal bipartition O of the fragments. Each solution SOL[t] corrects
columns pj′ with cost H(pj′) ≤ d(pt, pj′) into homozygous columns (equal to 1
or 0 depending on best choice), whereas it corrects the remaining columns pj′′

with cost d(pt, pj′′) < H(pj′′) into heterozygous columns equal (or complemen-
tary, depending on the best choice) to pt. It is easy to see that SOL[t] for each
t in {1, . . . , m} is a feasible solution (by Lemma 2) and that its cost is exactly
costM(pt).

Algorithm 1. A 2-approximation algorithm for Binary MEC
Require: A n × m binary matrix M

for t = 1 to m do � Assume that pt is the column “closest” to O
for j = 1 to m do

if H(pj) ≤ d(pt, pj) then
Set pj homozygous in SOL[t]

else
Set pj equal/complementary to pt in SOL[t]

return arg minSOL[t]costM(pt)

Algorithm 1 is a 2-approximation algorithm for Binary MEC.
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Lemma 11. Given a fragment matrix M without holes, if OPT is the optimum
for Binary MEC on input M, then Algorithm1 returns in O(m2n) time a feasible
solution with cost OPT ′ such that OPT ′ ≤ 2 · OPT.

Proof. Assume that pO is the column of M closest to an optimal biparti-
tion O, that is d(O, pO) ≤ d(O, pj) for each j in {1, . . . ,m} and assume that
dH(O, pO) ≤ dH(O, pO) (if dH(O, pO) < dH(O, pO) we can substitute O with
O since they encode the same bipartition). Clearly, one such a column exists
and dH(O, pO) ≤ d(O, pj) for each j in {1, . . . , m}. We show that, under this
assumption, d(pO, pj) ≤ 2d(O, pj). By the triangle inequality, dH(pO, pj) ≤
dH(pO, O)+dH(O, pj). Hence, since dH(pO, O) ≤ d(O, pj) ≤ dH(O, pj), we have
dH(pO, pj) ≤ 2dH(O, pj). Similarly, we can prove that dH(pO, pj) ≤ 2dH(O, pj).
As a consequence we have that d(pO, pj) ≤ 2dH(O, pj) and that d(pO, pj) ≤
2dH(O, pj), which then imply d(pO, pj) ≤ 2d(O, pj). Clearly, since d(pO, pj) ≤
2d(O, pj), we also have that min(d(pO, pj),H(pj)) ≤ 2min(d(O, pj),H(pj)).

Since Algorithm 1 iteratively assumes that each column pj is the closest col-
umn to the unknown optimal bipartition O, we have that the cost of the returned
solution is OPT ′ ≤ costM(pO) ≤ 2

∑m
j=1 min(d(O, pj),H(pj)) = 2OPT . Since

each iteration t of the algorithm computes SOL[t] in O(mn) time, the total run-
ning time is clearly equal to O(m2n). 	

Algorithm 1 runs in O(m2n) time and, due to its simplicity, it is a more direct
and practical approach than the PTAS algorithms known in literature [14,19].

6 Conclusions

Minimum Error Correction is a prominent combinatorial problem for haplotype
assembly. Investigating the approximation complexity and the fixed-parameter
tractability of MEC has proven useful to develop practical haplotype assembly
tools [2,13,20]. Despite in this paper we addressed some issues that were left
open, some other theoretical questions still need an answer.

In this work, we showed that, under the Unique Games Conjecture, MEC
is not approximable within any constant factor. However, the approximation
complexity of Gapless MEC and the computational complexity of Binary MEC
are still unknown. It would be interesting to explore whether Lemma 2, that we
used in this paper for achieving a direct 2-approximation algorithm for Binary
MEC and an FPT algorithm for Gapless MEC, is also useful for answering to
these open questions. Similarly, the design of practical FPT algorithms for the
general MEC parameterized by the fragment length is an interesting research
direction.

Recent advances in sequencing technologies are radically changing the char-
acteristics of the produced data. For example, long gapless reads with sequenc-
ing errors uniformly distributed will likely be common in the near future. The
design of FPT algorithms that exploit these characteristics is another important
research direction. Furthermore, the drop in sequencing costs allows large-scale
studies of rare diseases. In fact, they are usually caused by rare mutations that
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can only be reliably discovered by sequencing many related individuals. Hence,
we expect an increasing interest in the study of new formulations extending
MEC on structured populations (where additional constraints induced by the
Mendelian laws of inheritance improve the accuracy of the reconstructed haplo-
types [21]), as initially done in [12].
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