
XML Interfaces to the Internet of Things with
XForms
Steven Pemberton

CWI, Amsterdam

Abstract

The internet of things is predicated on tiny, cheap, lower
power computers being embedded in devices everywhere.
However such tiny devices by definition have very little
memory and computing power available to support user
interfaces or extended servers, and so the user interface needs
to be distributed over the network.

This paper describes techniques using standard
technologies based on XML for creating remote user-
interfaces for the Internet of Things.

1. Introduction

Moore's Law is alive and well; to use the quote attributed
to Mark Twain, the reports of its death have been greatly
exaggerated. This year the 50th anniversary of Moore's
Law was celebrated, which means since Moore's original
paper was published, there have been 33⅓ iterations of
the law, which represents an improvement factor of ten
thousand million since 1965.

As an excellent test point of Moore's Law's
continuation, in February this year, almost exactly three
years after the announcement of the first version, version
2 of the Raspberry Pi computer was announced. Moore's
Law leads us to expect that every eighteen months you
can get twice as many components per unit of surface
area on an integrated circuit at the same price. (Note
that, for instance, it doesn't say anything about expected
clock speeds of computers). Since three years is exactly
two cycles of Moore's Law, does the new Raspberry Pi
deliver a four-fold improvement? Well, it is reportedly six
times faster, has four times as many cores, four times as
much memory, and twice as many USB ports as the
original, all for the same price. Moore's Law has
apparently done some pretty good work.

Moore's Law has three parameters apart from time:
price, size, and number of components. Hold any one of
these constant, and the other two can vary accordingly.
So apart from a Raspberry Pi that is the same price and
size, but is better endowed, you can also reduce the price
and size to get a less-powerful but nevertheless functional

computer. This has been observable since the
introduction of the first commercial computers in the
50's: with each order-of-magnitude decrease in price of
computers, a new generation of computers has emerged,
that gets used in a different sort of way. In the 50's you
had mainframes that cost of the order of millions, in the
60's and 70's, minicomputers, of the order of 100,000;
in the 70's and 80's, workstations, of the order of
10,000, and then starting in the early 80's the first home
computers and laptops, in the order of thousands. Now
we have netbooks and tablets of the order of hundreds,
and an emerging class of computers, like the Arduino
and the Raspberry Pi that cost of the order of tens (and
since we're talking orders of magnitude, it doesn't matter
if we're talking dollars, pounds, or euros, since they are
all roughly of the same value).

Figure 1. Arduino

Recently the first computers of the order of one unit of
currency have been appearing, such as the Arduino mini
shown in Figure 1, “Arduino”.

2. User Interfaces for Devices

One of the unanticipated successes of HTML was in its
adoption for controlling devices with embedded
computers, such as home wifi routers. To make an
adjustment to such a device, you direct your browser to
the IP address the device is running from, and a small
webserver on the device serves up webpages to you, that
allow you to fill in values, and submit them to change
the workings of the device.

doi:10.14337/XMLLondon15.Pemberton01 Page 163 of 177

1 Nest API Reference - https://developer.nest.com/documentation/api-reference

However, the form-filling facilities of HTML are rather
meager: you can fill in values, and submit them, but
there is little checking possible on the client side,
imposing a duty on the server to check values, and
construct error pages that are sent back to the client
asking for values to be corrected should they be wrong.

However, the tiny computers that are and will be
embedded and form part of the internet of things
typically have memory in kilobytes, not megabytes, and
certainly don't have the power to run a webserver that
can serve and interpret webpages; therefore a different
approach is called for.

One way is for the devices to serve up just the data of
the parameters, and accept new values for them, so that
the values can be injected into a remote interface served
from elsewhere.

3. XForms

One technology suitable for just such usage, XForms, is a
standard developed at W3C [1]. XForms is a technology
that was originally designed for improving the handling
of forms on the web. It has two essential parts. The first
part is the model, that specifies details of the data being
collected, where it comes from, its structure, and
constraints; it allows combining data from several
sources, and submitting data to different places.

The second part of XForms is the user interface, that
displays values, and specifies controls for collection,
modification, and submission of the data described, in a
device-independent way.

XForms has already been used for a number of years
to control devices in this way at many petrol stations in

the USA. Each device, storage tank, petrol pump, cash
register, and so on, contains a simple server that delivers
its data as XML instances. XForms interfaces are then
used to read and combine these values, and update
control values (for instance the price of fuel being
displayed on pumps and charged at tills).

4. Example: A Thermostat

As an example of how it could be used, Nest, a well-
known producer of internet thermostats, has published
the data-model interface to its devices1. A simple
interface to this could look like this:

<model>
 <instance id="thermostat"
 resource="http://thermostat.local/"/>
 <bind ref="ambient_temperature_c"
 type="decimal" readonly="true()"/>
 <bind ref="target_temperature_c"
 type="decimal"/>
 <bind ref="target_temperature_f" type="decimal"
 calculate="../target_temperature_c*9 div 5+32"/>
 <submission
 resource="http://thermostat.local/data"
 method="put" replace="instance"/>
</model>

Here we see an instance that contains the data obtained
from the thermostat, and three binds that assign
properties to the data, in this case types, the property
that the ambient temperature value is read-only, and a
calculation that relates the values of the target
temperature in Fahrenheit and Celsius, which ensures
that whenever the Celsius value is changed, the
Fahrenheit value automatically changes with it.

The submission element specifies where the data is to
be submitted, and what to do with the reply, in this case
that it is data that replaces the instance values.

A nice feature of this is that even if Nest changes the
data structure returned by the thermostat, as long as the
names of the elements used here remain the same, this
interface will continue to work.

5. Display Values

For a user interface for the thermostat, we need some
extra local data values. In particular we want to offer the
user the choice between Fahrenheit and Celsius in a
single control. For this we need to add an extra instance
to the model for the display values:

Page 164 of 177

XML Interfaces to the Internet of Things with XForms

https://developer.nest.com/documentation/api-reference

<instance id="display">
 <data xmlns="">
 <temperature/>
 <target>20</target>
 <scale>C</scale>
 </data>
</instance>
<bind ref="instance('display')/temperature"
 type="decimal"
 calculate="if(../scale='C', instance('thermostat')/ambient_temperature_c,
 instance('thermostat')/ambient_temperature_c * 9 div 5 + 32"/>
<bind ref="target" type="decimal"/>

Here we specify that the displayed temperature is related
to the data from the device, but with a conversion if the
user chooses for the Fahrenheit scale. Similarly, we have
to add a relation back to the thermostat instance, so that
the input required temperature is converted to Celsius if
necessary:

<bind
 ref="instance('thermostat')/target_temperature_c"
 calculate="if(instance('display')/scale='C',
 instance('display')/target,
 (instance('display')/target - 32) *
 5 div 9")/>

6. The User Interface

XForms controls are specified in a device independent
manner, that only describes what they are meant to
achieve (for instance "pick one value from this list") and
not how to do it (using radio buttons, using drop-downs
etc.) This makes it easier to adapt the interface to
different devices, screen sizes, etc., while still allowing the
use of specific interfaces, such as radio buttons, via style
sheets. For instance, to specify a control that allows the
user to chose the temperature scale, we specify

<select1 ref="instance('display')/scale"
 label="Scale">
 <item label="°C" value="C"/>
 <item label="°F" value="F"/>
</select1>

This specification allows several different possible
controls, for instance as a drop-down, or using radio
buttons, depending on style-sheet options:

Similarly, the range control specifies an input for a
number, that allows different styling options, such as
nudge buttons, a slider, or a dial; a step attribute specifies
the granularity of the changes:

<range ref="instance('display')/target" step="0.5"
 start="0" end="30"/>

Of course, these start and end values are in Celsius, and
we want to specify the limits in terms of the scale used.
However, any attribute can have a calculated value, using
attribute value templates:

<range ref="instance('display')/target" step="0.5"
 start="{instance('display')/start}"
 end="{instance('display')/end}"/>

and add these values to the display instance:

<instance id="display">
 <data xmlns="">
 <temperature/>
 <target>20</target>
 <start/>
 <end/>
 <scale>C</scale>
 </data>
</instance>
<bind ref="instance('display')/start"
 calculate="if(../scale='C', 0, 32"/>
<bind ref="instance('display')/end"
 calculate="if(../scale='C', 30, 90"/>

Page 165 of 177

XML Interfaces to the Internet of Things with XForms

7. Submitting Data

Normally in a form-based interface, there is an explicit
[submit] button or similar that indicates you are ready
with the data and want to submit it to be used.

For instance, in XForms, you would typically have
details about where the data is to be submitted, in the
form of a submission element in the model, as above:

<submission resource="http://thermostat.local/data"
 method="put" replace="instance"/>

This specifies the URL that the data is to be submitted
to, the method to be used (PUT in this case), and what
to do with the result. In the case of the thermostat, the
state of the internal values are returned again, and these
are just used to overwrite the values in the instance.

Then in the user interface, there would be a submit
control, that initiates the submission, normally displayed
as a clickable button:

<submit label="Submit"/>

However, typically in a direct-manipulation style
interface such as a thermometer, there is no moment that
you explicitly submit the data: it just happens. To effect
this in XForms, the submission has to be done
automatically. This can be done by using the standard
event mechanism inherited in XForms from DOM-based
systems [2], and using XML Events [3] to listen for
events, and react to them.

One of the events that XForms generates is the
xforms-value-changed event, which is generated
everytime a value is changed in an instance by a control.
There are several ways of specifying this, but the most
direct is to include, as a child of the control, an action
that responds to the event:

<range ref="instance('display')/target" step="0.5"
 start="{instance('display')/start}"
 end="{instance('display')/end}">
 <action ev:event="xforms-value-changed">
 <send/>
 </action>
</range>

This says that whenever the <range> control receives the
xforms-value-changed event because the bound value has
been changed, then the <send/> action is initiated, which
causes the submission to do its work. When an <action>

element only has one child like this, then it can be
contracted:

<range ref="instance('display')/target" step="0.5"
 start="{instance('display')/start}"
 end="{instance('display')/end}">
 <send ev:event="xforms-value-changed"/>
</range>

8. Polling

As a result of submitting data as shown above, the
thermostat returns the current values in its internal state,
including the currently measured temperature, which
then gets displayed.

Of course, you want to continue to display the
current temperature, even if the user hasn't changed
anything via the interface. To achieve this, the data has to
be periodically polled. This can be done also using the
event mechanism, by listening for timing events: at start
up you initiate a timer, and then listen for the event to go
off. When it goes off, you respond, and then re-initiate
the timer:

<action ev:event="my-timer">
 <send/>
 <dispatch name="my-timer" delay="20000"
 targetid="parent"/>
</action>

This <action/> element can go anywhere, as long as its
parent element has id 'parent' (as named in this case) .
The delay is specified in milliseconds, so in this case,
every 20 seconds the thermostat is polled for its current
values.

The only other thing that has to be done is to start off
the initial timer, by listening for the xforms-ready event,
which is dispatched when an XForm starts up:

<action ev:event="xforms-ready">
 <dispatch name="my-timer" delay="20000"
 targetid="parent"/>
</action>

As in the earlier case, this can be shortened:

<dispatch ev:event="xforms-ready" name="my-timer"
 delay="20000" targetid="parent"/>

Since the xforms-ready event is dispatched to the <model>
element, this <dispatch/> element should be a direct

Page 166 of 177

XML Interfaces to the Internet of Things with XForms

child of it, and since it doesn't matter where the other
action is placed, it can also be placed there:

<model id="model">
 ...
 <dispatch ev:event="xforms-ready" name="my-timer"
 delay="20000" targetid="model"/>
 <action ev:event="my-timer">
 <send/>
 <dispatch name="my-timer" delay="20000"
 targetid="model"/>
 </action>
</model>

Of course, the delay value doesn't have to be hard-wired
like this, but can also be stored in an instance, and
accessed from there:

<model id="model">
 ...
 <dispatch ev:event="xforms-ready" name="my-timer"
 delay="{instance('display')/poll-interval}"
 targetid="model"/>
 <action ev:event="my-timer">
 <send/>
 <dispatch name="my-timer"
 delay="{instance('display')/poll-interval}"
 targetid="model"/>
 </action>
</model>

9. Repetition

In many applications, there can be a variable number of
values for a particular field; for instance in a router, there
can be several rules for firewall exceptions. Traditionally
an interface is used that offers several blank entries to be
filled in. However XForms offers a dynamic control that
grows and shrinks with the number of entries, and allows
entries to be added and deleted:

<repeat ref="firewall/rules" label="Exceptions">
 <output ref="./port" label="Port"/>
 <output ref="./url" label="URL" />
</repeat>

10. Multilingual Interfaces

Every XForms control has a label. Of course, it is good to
be able to offer an interface in the language of the user.
Attribute value templates make this almost trivially easy:
you create an instance to hold the messages and labels:

<instance id="label"
 resource="http://example.com/labels-en.xml" />

which can have a structure like:

<labels lang="en">
 <submit>Submit</submit>
 <help>Help</help>
 <scale>Scale</scale>
 ...
</label>

and then reference these in the controls:

<select1 ref="instance('display')/scale"
 label="{instance('label')/scale}"> ...

Changing the language is then a simple case of having a
control that selects the language wanted:

<select1 ref="instance('lang')/language"
 label="{instance('label')/language}"> ...

and when an xforms-value-changed happens on this
control, the value chosen can be submitted, and the
labels instance replaced with the returned instance.

These also has the advantage that lables are not hard-
wired in the application, and can be updated on the fly.
And of course the languages available can also be
provided by an external instance, so that new languages
can be added on the fly.

11. Experience

XForms has been used in many projects connecting to
devices, including some very large projects of many
person-years. Experience has repeatedly shown that the
time needed to implement such projects is about one
tenth of equivalent projects done using traditional
programming methods. This advantage can largely be
ascribed to the declarative nature of XForms, so that
much administrative code that is normally needed in
programs is not needed in XForms, since the system
ensures that invariants are kept up to date.

12. Specifications and
implementations

The current official version of XForms is XForms 1.1 [4],
though XForms 2.0 is in preparation and close to
completion [5]. There are several implementations
available, that work both server-side and client-side, both
commercial and open-source. There is a tutorial [6] and a
quick reference [7] available.

Page 167 of 177

XML Interfaces to the Internet of Things with XForms

References

[1] Micah Dubinko, Leigh Klotz, Roland Merrick, and T. V. Raman. XForms 1.0. World Wide Web Consortium
(W3C). 14 October 2003.
http://www.w3.org/TR/2003/REC-xforms-20031014/

[2] Tom Pixley. Document Object Model (DOM) Level 2 Events Specification. World Wide Web Consortium (W3C).
13 November, 2000.
http://www.w3.org/TR/DOM-Level-2-Events/

[3] Shane McCarron, Steven Pemberton, and T. V. Raman. XML Events. An Events Syntax for XML. World Wide
Web Consortium (W3C). 14 October 2003.
http://www.w3.org/TR/2003/REC-xml-events-20031014/

[4] John Boyer. XForms 1.1. World Wide Web Consortium (W3C). 20 October 2009.
http://www.w3.org/TR/xforms/

[5] John Boyer, Erik Bruchez, Leigh Klotz, Steven Pemberton, and Nick Van den Bleeken. XForms 2.0. World Wide
Web Consortium (W3C).
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0

[6] Steven Pemberton. XForms for HTML Authors. World Wide Web Consortium (W3C). 27 August 2010.
http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/

[7] Steven Pemberton. XForms 1.1 Quick Reference. World Wide Web Consortium (W3C). 29 November 2010.
http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html

Page 168 of 177

XML Interfaces to the Internet of Things with XForms

http://www.w3.org/TR/2003/REC-xforms-20031014/
http://www.w3.org/TR/DOM-Level-2-Events/
http://www.w3.org/TR/2003/REC-xml-events-20031014/
http://www.w3.org/TR/xforms/
http://www.w3.org/MarkUp/Forms/wiki/XForms_2.0
http://www.w3.org/MarkUp/Forms/2010/xforms11-for-html-authors/
http://www.w3.org/MarkUp/Forms/2010/xforms11-qr.html

